summaryrefslogtreecommitdiff
path: root/chromium/net/quic/quic_sent_packet_manager.cc
blob: 6b71c70f4db3ab1a0579c1aa2562b7671a356c31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/quic_sent_packet_manager.h"

#include <algorithm>

#include "base/logging.h"
#include "base/stl_util.h"
#include "net/quic/congestion_control/pacing_sender.h"
#include "net/quic/crypto/crypto_protocol.h"
#include "net/quic/proto/cached_network_parameters.pb.h"
#include "net/quic/quic_bug_tracker.h"
#include "net/quic/quic_connection_stats.h"
#include "net/quic/quic_flags.h"
#include "net/quic/quic_utils_chromium.h"

using std::max;
using std::min;

namespace net {

// The length of the recent min rtt window in seconds. Windowing is disabled for
// values less than or equal to 0.
int32_t FLAGS_quic_recent_min_rtt_window_s = 60;

namespace {
static const int64_t kDefaultRetransmissionTimeMs = 500;
// TCP RFC calls for 1 second RTO however Linux differs from this default and
// define the minimum RTO to 200ms, we will use the same until we have data to
// support a higher or lower value.
static const int64_t kMinRetransmissionTimeMs = 200;
static const int64_t kMaxRetransmissionTimeMs = 60000;
// Maximum number of exponential backoffs used for RTO timeouts.
static const size_t kMaxRetransmissions = 10;
// Maximum number of packets retransmitted upon an RTO.
static const size_t kMaxRetransmissionsOnTimeout = 2;

// Ensure the handshake timer isnt't faster than 10ms.
// This limits the tenth retransmitted packet to 10s after the initial CHLO.
static const int64_t kMinHandshakeTimeoutMs = 10;

// Sends up to two tail loss probes before firing an RTO,
// per draft RFC draft-dukkipati-tcpm-tcp-loss-probe.
static const size_t kDefaultMaxTailLossProbes = 2;
static const int64_t kMinTailLossProbeTimeoutMs = 10;

// Number of unpaced packets to send after quiescence.
static const size_t kInitialUnpacedBurst = 10;

bool HasCryptoHandshake(const TransmissionInfo& transmission_info) {
  if (transmission_info.retransmittable_frames == nullptr) {
    return false;
  }
  return transmission_info.retransmittable_frames->HasCryptoHandshake() ==
         IS_HANDSHAKE;
}

}  // namespace

#define ENDPOINT \
  (perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ")

QuicSentPacketManager::QuicSentPacketManager(
    Perspective perspective,
    QuicPathId path_id,
    const QuicClock* clock,
    QuicConnectionStats* stats,
    CongestionControlType congestion_control_type,
    LossDetectionType loss_type)
    : unacked_packets_(),
      perspective_(perspective),
      path_id_(path_id),
      clock_(clock),
      stats_(stats),
      debug_delegate_(nullptr),
      network_change_visitor_(nullptr),
      initial_congestion_window_(kInitialCongestionWindow),
      send_algorithm_(
          SendAlgorithmInterface::Create(clock,
                                         &rtt_stats_,
                                         congestion_control_type,
                                         stats,
                                         initial_congestion_window_)),
      loss_algorithm_(LossDetectionInterface::Create(loss_type)),
      n_connection_simulation_(false),
      receive_buffer_bytes_(kDefaultSocketReceiveBuffer),
      least_packet_awaited_by_peer_(1),
      first_rto_transmission_(0),
      consecutive_rto_count_(0),
      consecutive_tlp_count_(0),
      consecutive_crypto_retransmission_count_(0),
      pending_timer_transmission_count_(0),
      max_tail_loss_probes_(kDefaultMaxTailLossProbes),
      enable_half_rtt_tail_loss_probe_(false),
      using_pacing_(false),
      use_new_rto_(false),
      handshake_confirmed_(false),
      use_general_loss_algorithm_(FLAGS_quic_general_loss_algorithm) {}

QuicSentPacketManager::~QuicSentPacketManager() {}

void QuicSentPacketManager::SetFromConfig(const QuicConfig& config) {
  if (config.HasReceivedInitialRoundTripTimeUs() &&
      config.ReceivedInitialRoundTripTimeUs() > 0) {
    rtt_stats_.set_initial_rtt_us(
        max(kMinInitialRoundTripTimeUs,
            min(kMaxInitialRoundTripTimeUs,
                config.ReceivedInitialRoundTripTimeUs())));
  } else if (config.HasInitialRoundTripTimeUsToSend() &&
             config.GetInitialRoundTripTimeUsToSend() > 0) {
    rtt_stats_.set_initial_rtt_us(
        max(kMinInitialRoundTripTimeUs,
            min(kMaxInitialRoundTripTimeUs,
                config.GetInitialRoundTripTimeUsToSend())));
  }
  // Initial RTT may have changed.
  if (network_change_visitor_ != nullptr) {
    network_change_visitor_->OnRttChange();
  }
  // TODO(ianswett): BBR is currently a server only feature.
  if (FLAGS_quic_allow_bbr && config.HasReceivedConnectionOptions() &&
      ContainsQuicTag(config.ReceivedConnectionOptions(), kTBBR)) {
    if (FLAGS_quic_recent_min_rtt_window_s > 0) {
      rtt_stats_.set_recent_min_rtt_window(
          QuicTime::Delta::FromSeconds(FLAGS_quic_recent_min_rtt_window_s));
    }
    send_algorithm_.reset(SendAlgorithmInterface::Create(
        clock_, &rtt_stats_, kBBR, stats_, initial_congestion_window_));
  }
  if (config.HasReceivedConnectionOptions() &&
      ContainsQuicTag(config.ReceivedConnectionOptions(), kRENO)) {
    if (ContainsQuicTag(config.ReceivedConnectionOptions(), kBYTE)) {
      send_algorithm_.reset(SendAlgorithmInterface::Create(
          clock_, &rtt_stats_, kRenoBytes, stats_, initial_congestion_window_));
    } else {
      send_algorithm_.reset(SendAlgorithmInterface::Create(
          clock_, &rtt_stats_, kReno, stats_, initial_congestion_window_));
    }
  } else if (config.HasReceivedConnectionOptions() &&
             ContainsQuicTag(config.ReceivedConnectionOptions(), kBYTE)) {
    send_algorithm_.reset(SendAlgorithmInterface::Create(
        clock_, &rtt_stats_, kCubicBytes, stats_, initial_congestion_window_));
  }
  if (!FLAGS_quic_disable_pacing) {
    EnablePacing();
  }

  if (config.HasClientSentConnectionOption(k1CON, perspective_)) {
    send_algorithm_->SetNumEmulatedConnections(1);
  }
  if (config.HasClientSentConnectionOption(kNCON, perspective_)) {
    n_connection_simulation_ = true;
  }
  if (config.HasClientSentConnectionOption(kNTLP, perspective_)) {
    max_tail_loss_probes_ = 0;
  }
  if (config.HasClientSentConnectionOption(kTLPR, perspective_)) {
    enable_half_rtt_tail_loss_probe_ = true;
  }
  if (config.HasClientSentConnectionOption(kNRTO, perspective_)) {
    use_new_rto_ = true;
  }
  if (config.HasReceivedConnectionOptions() &&
      ContainsQuicTag(config.ReceivedConnectionOptions(), kTIME)) {
    loss_algorithm_.reset(LossDetectionInterface::Create(kTime));
  }
  if (config.HasReceivedSocketReceiveBuffer()) {
    receive_buffer_bytes_ =
        max(kMinSocketReceiveBuffer,
            static_cast<QuicByteCount>(config.ReceivedSocketReceiveBuffer()));
    QuicByteCount max_cwnd_bytes = static_cast<QuicByteCount>(
        receive_buffer_bytes_ * kConservativeReceiveBufferFraction);
    if (FLAGS_quic_limit_max_cwnd) {
      max_cwnd_bytes =
          min(max_cwnd_bytes, kMaxCongestionWindow * kDefaultTCPMSS);
    }
    send_algorithm_->SetMaxCongestionWindow(max_cwnd_bytes);
  }
  send_algorithm_->SetFromConfig(config, perspective_);

  if (network_change_visitor_ != nullptr) {
    network_change_visitor_->OnCongestionWindowChange();
  }
}

void QuicSentPacketManager::ResumeConnectionState(
    const CachedNetworkParameters& cached_network_params,
    bool max_bandwidth_resumption) {
  if (cached_network_params.has_min_rtt_ms()) {
    uint32_t initial_rtt_us =
        kNumMicrosPerMilli * cached_network_params.min_rtt_ms();
    rtt_stats_.set_initial_rtt_us(
        max(kMinInitialRoundTripTimeUs,
            min(kMaxInitialRoundTripTimeUs, initial_rtt_us)));
  }
  send_algorithm_->ResumeConnectionState(cached_network_params,
                                         max_bandwidth_resumption);
}

void QuicSentPacketManager::SetNumOpenStreams(size_t num_streams) {
  if (n_connection_simulation_) {
    // Ensure the number of connections is between 1 and 5.
    send_algorithm_->SetNumEmulatedConnections(
        min<size_t>(5, max<size_t>(1, num_streams)));
  }
}

void QuicSentPacketManager::OnIncomingAck(const QuicAckFrame& ack_frame,
                                          QuicTime ack_receive_time) {
  QuicByteCount bytes_in_flight = unacked_packets_.bytes_in_flight();

  UpdatePacketInformationReceivedByPeer(ack_frame);
  bool rtt_updated = MaybeUpdateRTT(ack_frame, ack_receive_time);
  DCHECK_GE(ack_frame.largest_observed, unacked_packets_.largest_observed());
  unacked_packets_.IncreaseLargestObserved(ack_frame.largest_observed);

  HandleAckForSentPackets(ack_frame);
  InvokeLossDetection(ack_receive_time);
  // Ignore losses in RTO mode.
  if (consecutive_rto_count_ > 0 && !use_new_rto_) {
    packets_lost_.clear();
  }
  MaybeInvokeCongestionEvent(rtt_updated, bytes_in_flight);
  unacked_packets_.RemoveObsoletePackets();

  sustained_bandwidth_recorder_.RecordEstimate(
      send_algorithm_->InRecovery(), send_algorithm_->InSlowStart(),
      send_algorithm_->BandwidthEstimate(), ack_receive_time, clock_->WallNow(),
      rtt_stats_.smoothed_rtt());

  // Anytime we are making forward progress and have a new RTT estimate, reset
  // the backoff counters.
  if (rtt_updated) {
    if (consecutive_rto_count_ > 0) {
      // If the ack acknowledges data sent prior to the RTO,
      // the RTO was spurious.
      if (ack_frame.largest_observed < first_rto_transmission_) {
        // Replace SRTT with latest_rtt and increase the variance to prevent
        // a spurious RTO from happening again.
        rtt_stats_.ExpireSmoothedMetrics();
      } else {
        if (!use_new_rto_) {
          send_algorithm_->OnRetransmissionTimeout(true);
        }
      }
    }
    // Reset all retransmit counters any time a new packet is acked.
    consecutive_rto_count_ = 0;
    consecutive_tlp_count_ = 0;
    consecutive_crypto_retransmission_count_ = 0;
  }

  if (debug_delegate_ != nullptr) {
    debug_delegate_->OnIncomingAck(ack_frame, ack_receive_time,
                                   unacked_packets_.largest_observed(),
                                   rtt_updated, GetLeastUnacked());
  }
}

void QuicSentPacketManager::UpdatePacketInformationReceivedByPeer(
    const QuicAckFrame& ack_frame) {
  if (ack_frame.missing_packets.Empty()) {
    least_packet_awaited_by_peer_ = ack_frame.largest_observed + 1;
  } else {
    least_packet_awaited_by_peer_ = ack_frame.missing_packets.Min();
  }
}

void QuicSentPacketManager::MaybeInvokeCongestionEvent(
    bool rtt_updated,
    QuicByteCount bytes_in_flight) {
  if (!rtt_updated && packets_acked_.empty() && packets_lost_.empty()) {
    return;
  }
  send_algorithm_->OnCongestionEvent(rtt_updated, bytes_in_flight,
                                     packets_acked_, packets_lost_);
  packets_acked_.clear();
  packets_lost_.clear();
  if (network_change_visitor_ != nullptr) {
    network_change_visitor_->OnCongestionWindowChange();
  }
}

void QuicSentPacketManager::HandleAckForSentPackets(
    const QuicAckFrame& ack_frame) {
  // Go through the packets we have not received an ack for and see if this
  // incoming_ack shows they've been seen by the peer.
  QuicTime::Delta delta_largest_observed =
      ack_frame.delta_time_largest_observed;
  QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
  for (QuicUnackedPacketMap::iterator it = unacked_packets_.begin();
       it != unacked_packets_.end(); ++it, ++packet_number) {
    if (packet_number > ack_frame.largest_observed) {
      // These packets are still in flight.
      break;
    }

    if (ack_frame.missing_packets.Contains(packet_number)) {
      // Don't continue to increase the nack count for packets not in flight.
      if (!it->in_flight) {
        continue;
      }
      // Consider it multiple nacks when there is a gap between the missing
      // packet and the largest observed, since the purpose of a nack
      // threshold is to tolerate re-ordering.  This handles both StretchAcks
      // and Forward Acks.
      // The nack count only increases when the largest observed increases.
      QuicPacketCount min_nacks = ack_frame.largest_observed - packet_number;
      // Truncated acks can nack the largest observed, so use a min of 1.
      if (min_nacks == 0) {
        min_nacks = 1;
      }
      unacked_packets_.NackPacket(packet_number, min_nacks);
      continue;
    }
    // Packet was acked, so remove it from our unacked packet list.
    DVLOG(1) << ENDPOINT << "Got an ack for packet " << packet_number;
    // If data is associated with the most recent transmission of this
    // packet, then inform the caller.
    if (it->in_flight) {
      packets_acked_.push_back(std::make_pair(packet_number, it->bytes_sent));
    }
    MarkPacketHandled(packet_number, &(*it), delta_largest_observed);
  }

  // Discard any retransmittable frames associated with revived packets.
  if (ack_frame.latest_revived_packet != 0) {
    MarkPacketRevived(ack_frame.latest_revived_packet, delta_largest_observed);
  }
}

bool QuicSentPacketManager::HasRetransmittableFrames(
    QuicPacketNumber packet_number) const {
  return unacked_packets_.HasRetransmittableFrames(packet_number);
}

void QuicSentPacketManager::RetransmitUnackedPackets(
    TransmissionType retransmission_type) {
  DCHECK(retransmission_type == ALL_UNACKED_RETRANSMISSION ||
         retransmission_type == ALL_INITIAL_RETRANSMISSION);
  QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
  for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
       it != unacked_packets_.end(); ++it, ++packet_number) {
    const RetransmittableFrames* frames = it->retransmittable_frames;
    if (frames != nullptr &&
        (retransmission_type == ALL_UNACKED_RETRANSMISSION ||
         it->encryption_level == ENCRYPTION_INITIAL)) {
      MarkForRetransmission(packet_number, retransmission_type);
    } else if (it->is_fec_packet) {
      // Remove FEC packets from the packet map, since we can't retransmit them.
      unacked_packets_.RemoveFromInFlight(packet_number);
    }
  }
}

void QuicSentPacketManager::NeuterUnencryptedPackets() {
  QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
  for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
       it != unacked_packets_.end(); ++it, ++packet_number) {
    if (it->retransmittable_frames != nullptr &&
        it->encryption_level == ENCRYPTION_NONE) {
      // Once you're forward secure, no unencrypted packets will be sent, crypto
      // or otherwise. Unencrypted packets are neutered and abandoned, to ensure
      // they are not retransmitted or considered lost from a congestion control
      // perspective.
      pending_retransmissions_.erase(packet_number);
      unacked_packets_.RemoveFromInFlight(packet_number);
      unacked_packets_.RemoveRetransmittability(packet_number);
    }
  }
}

void QuicSentPacketManager::MarkForRetransmission(
    QuicPacketNumber packet_number,
    TransmissionType transmission_type) {
  const TransmissionInfo& transmission_info =
      unacked_packets_.GetTransmissionInfo(packet_number);
  LOG_IF(DFATAL, transmission_info.retransmittable_frames == nullptr);
  // Both TLP and the new RTO leave the packets in flight and let the loss
  // detection decide if packets are lost.
  if (transmission_type != TLP_RETRANSMISSION &&
      transmission_type != RTO_RETRANSMISSION) {
    unacked_packets_.RemoveFromInFlight(packet_number);
  }
  // TODO(ianswett): Currently the RTO can fire while there are pending NACK
  // retransmissions for the same data, which is not ideal.
  if (ContainsKey(pending_retransmissions_, packet_number)) {
    return;
  }

  pending_retransmissions_[packet_number] = transmission_type;
}

void QuicSentPacketManager::RecordOneSpuriousRetransmission(
    const TransmissionInfo& info) {
  stats_->bytes_spuriously_retransmitted += info.bytes_sent;
  ++stats_->packets_spuriously_retransmitted;
  if (debug_delegate_ != nullptr) {
    debug_delegate_->OnSpuriousPacketRetransmission(info.transmission_type,
                                                    info.bytes_sent);
  }
}

void QuicSentPacketManager::RecordSpuriousRetransmissions(
    const TransmissionInfo& info,
    QuicPacketNumber acked_packet_number) {
  if (unacked_packets_.track_single_retransmission()) {
    QuicPacketNumber retransmission = info.retransmission;
    while (retransmission != 0) {
      const TransmissionInfo& retransmit_info =
          unacked_packets_.GetTransmissionInfo(retransmission);
      retransmission = retransmit_info.retransmission;
      RecordOneSpuriousRetransmission(retransmit_info);
    }
    return;
  }
  const PacketNumberList* all_transmissions = info.all_transmissions;
  for (PacketNumberList::const_reverse_iterator it =
           all_transmissions->rbegin();
       it != all_transmissions->rend() && *it > acked_packet_number; ++it) {
    // ianswett: Prevents crash in b/20552846.
    if (*it < unacked_packets_.GetLeastUnacked() ||
        *it > unacked_packets_.largest_sent_packet()) {
      QUIC_BUG << "Retransmission out of range:" << *it
               << " least unacked:" << unacked_packets_.GetLeastUnacked()
               << " largest sent:" << unacked_packets_.largest_sent_packet();
      return;
    }
    const TransmissionInfo& retransmit_info =
        unacked_packets_.GetTransmissionInfo(*it);

    RecordOneSpuriousRetransmission(retransmit_info);
  }
}

bool QuicSentPacketManager::HasPendingRetransmissions() const {
  return !pending_retransmissions_.empty();
}

QuicSentPacketManager::PendingRetransmission
QuicSentPacketManager::NextPendingRetransmission() {
  LOG_IF(DFATAL, pending_retransmissions_.empty())
      << "Unexpected call to PendingRetransmissions() with empty pending "
      << "retransmission list. Corrupted memory usage imminent.";
  QuicPacketNumber packet_number = pending_retransmissions_.begin()->first;
  TransmissionType transmission_type = pending_retransmissions_.begin()->second;
  if (unacked_packets_.HasPendingCryptoPackets()) {
    // Ensure crypto packets are retransmitted before other packets.
    for (const auto& pair : pending_retransmissions_) {
      if (HasCryptoHandshake(
              unacked_packets_.GetTransmissionInfo(pair.first))) {
        packet_number = pair.first;
        transmission_type = pair.second;
        break;
      }
    }
  }
  DCHECK(unacked_packets_.IsUnacked(packet_number)) << packet_number;
  const TransmissionInfo& transmission_info =
      unacked_packets_.GetTransmissionInfo(packet_number);
  DCHECK(transmission_info.retransmittable_frames);

  return PendingRetransmission(path_id_, packet_number, transmission_type,
                               *transmission_info.retransmittable_frames,
                               transmission_info.encryption_level,
                               transmission_info.packet_number_length);
}

QuicPacketNumber QuicSentPacketManager::GetNewestRetransmission(
    QuicPacketNumber packet_number,
    const TransmissionInfo& transmission_info) const {
  if (unacked_packets_.track_single_retransmission()) {
    QuicPacketNumber retransmission = transmission_info.retransmission;
    while (retransmission != 0) {
      packet_number = retransmission;
      retransmission =
          unacked_packets_.GetTransmissionInfo(retransmission).retransmission;
    }
    return packet_number;
  } else {
    return transmission_info.all_transmissions == nullptr
               ? packet_number
               : *transmission_info.all_transmissions->rbegin();
  }
}

void QuicSentPacketManager::MarkPacketRevived(
    QuicPacketNumber packet_number,
    QuicTime::Delta delta_largest_observed) {
  if (!unacked_packets_.IsUnacked(packet_number)) {
    return;
  }

  const TransmissionInfo& transmission_info =
      unacked_packets_.GetTransmissionInfo(packet_number);
  QuicPacketNumber newest_transmission =
      GetNewestRetransmission(packet_number, transmission_info);
  // This packet has been revived at the receiver. If we were going to
  // retransmit it, do not retransmit it anymore.
  pending_retransmissions_.erase(newest_transmission);

  // The AckListener needs to be notified for revived packets,
  // since it indicates the packet arrived from the appliction's perspective.
  unacked_packets_.NotifyAndClearListeners(newest_transmission,
                                           delta_largest_observed);

  unacked_packets_.RemoveRetransmittability(packet_number);
}

void QuicSentPacketManager::MarkPacketHandled(
    QuicPacketNumber packet_number,
    TransmissionInfo* info,
    QuicTime::Delta delta_largest_observed) {
  QuicPacketNumber newest_transmission =
      GetNewestRetransmission(packet_number, *info);
  // Remove the most recent packet, if it is pending retransmission.
  pending_retransmissions_.erase(newest_transmission);

  // The AckListener needs to be notified about the most recent
  // transmission, since that's the one only one it tracks.
  if (newest_transmission == packet_number) {
    unacked_packets_.NotifyAndClearListeners(&info->ack_listeners,
                                             delta_largest_observed);
  } else {
    unacked_packets_.NotifyAndClearListeners(newest_transmission,
                                             delta_largest_observed);
    RecordSpuriousRetransmissions(*info, packet_number);
    // Remove the most recent packet from flight if it's a crypto handshake
    // packet, since they won't be acked now that one has been processed.
    // Other crypto handshake packets won't be in flight, only the newest
    // transmission of a crypto packet is in flight at once.
    // TODO(ianswett): Instead of handling all crypto packets special,
    // only handle nullptr encrypted packets in a special way.
    const TransmissionInfo& newest_transmission_info =
        unacked_packets_.GetTransmissionInfo(newest_transmission);
    if (HasCryptoHandshake(newest_transmission_info)) {
      unacked_packets_.RemoveFromInFlight(newest_transmission);
    }
  }

  unacked_packets_.RemoveFromInFlight(info);
  unacked_packets_.RemoveRetransmittability(info);
}

bool QuicSentPacketManager::IsUnacked(QuicPacketNumber packet_number) const {
  return unacked_packets_.IsUnacked(packet_number);
}

bool QuicSentPacketManager::HasUnackedPackets() const {
  return unacked_packets_.HasUnackedPackets();
}

QuicPacketNumber QuicSentPacketManager::GetLeastUnacked() const {
  return unacked_packets_.GetLeastUnacked();
}

bool QuicSentPacketManager::OnPacketSent(
    SerializedPacket* serialized_packet,
    QuicPacketNumber original_packet_number,
    QuicTime sent_time,
    QuicByteCount bytes,
    TransmissionType transmission_type,
    HasRetransmittableData has_retransmittable_data) {
  QuicPacketNumber packet_number = serialized_packet->packet_number;
  DCHECK_LT(0u, packet_number);
  DCHECK(!unacked_packets_.IsUnacked(packet_number));
  LOG_IF(DFATAL, bytes == 0) << "Cannot send empty packets.";

  if (original_packet_number != 0) {
    if (!pending_retransmissions_.erase(original_packet_number)) {
      QUIC_BUG << "Expected packet number to be in "
               << "pending_retransmissions_.  packet_number: "
               << original_packet_number;
    }
  }

  if (pending_timer_transmission_count_ > 0) {
    --pending_timer_transmission_count_;
  }

  // Only track packets as in flight that the send algorithm wants us to track.
  // Since FEC packets should also be counted towards the congestion window,
  // consider them as retransmittable for the purposes of congestion control.
  HasRetransmittableData has_congestion_controlled_data =
      serialized_packet->is_fec_packet ? HAS_RETRANSMITTABLE_DATA
                                       : has_retransmittable_data;
  // TODO(ianswett): Remove sent_time, because it's unused.
  const bool in_flight = send_algorithm_->OnPacketSent(
      sent_time, unacked_packets_.bytes_in_flight(), packet_number, bytes,
      has_congestion_controlled_data);

  unacked_packets_.AddSentPacket(serialized_packet, original_packet_number,
                                 transmission_type, sent_time, bytes,
                                 in_flight);

  // Take ownership of the retransmittable frames before exiting.
  serialized_packet->retransmittable_frames = nullptr;
  // Reset the retransmission timer anytime a pending packet is sent.
  return in_flight;
}

void QuicSentPacketManager::OnRetransmissionTimeout() {
  DCHECK(unacked_packets_.HasInFlightPackets());
  DCHECK_EQ(0u, pending_timer_transmission_count_);
  // Handshake retransmission, timer based loss detection, TLP, and RTO are
  // implemented with a single alarm. The handshake alarm is set when the
  // handshake has not completed, the loss alarm is set when the loss detection
  // algorithm says to, and the TLP and  RTO alarms are set after that.
  // The TLP alarm is always set to run for under an RTO.
  switch (GetRetransmissionMode()) {
    case HANDSHAKE_MODE:
      ++stats_->crypto_retransmit_count;
      RetransmitCryptoPackets();
      return;
    case LOSS_MODE: {
      ++stats_->loss_timeout_count;
      QuicByteCount bytes_in_flight = unacked_packets_.bytes_in_flight();
      InvokeLossDetection(clock_->Now());
      MaybeInvokeCongestionEvent(false, bytes_in_flight);
      return;
    }
    case TLP_MODE:
      // If no tail loss probe can be sent, because there are no retransmittable
      // packets, execute a conventional RTO to abandon old packets.
      ++stats_->tlp_count;
      ++consecutive_tlp_count_;
      pending_timer_transmission_count_ = 1;
      // TLPs prefer sending new data instead of retransmitting data, so
      // give the connection a chance to write before completing the TLP.
      return;
    case RTO_MODE:
      ++stats_->rto_count;
      RetransmitRtoPackets();
      return;
  }
}

void QuicSentPacketManager::RetransmitCryptoPackets() {
  DCHECK_EQ(HANDSHAKE_MODE, GetRetransmissionMode());
  ++consecutive_crypto_retransmission_count_;
  bool packet_retransmitted = false;
  QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
  for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
       it != unacked_packets_.end(); ++it, ++packet_number) {
    // Only retransmit frames which are in flight, and therefore have been sent.
    if (!it->in_flight || it->retransmittable_frames == nullptr ||
        it->retransmittable_frames->HasCryptoHandshake() != IS_HANDSHAKE) {
      continue;
    }
    packet_retransmitted = true;
    MarkForRetransmission(packet_number, HANDSHAKE_RETRANSMISSION);
    ++pending_timer_transmission_count_;
  }
  DCHECK(packet_retransmitted) << "No crypto packets found to retransmit.";
}

bool QuicSentPacketManager::MaybeRetransmitTailLossProbe() {
  if (pending_timer_transmission_count_ == 0) {
    return false;
  }
  QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
  for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
       it != unacked_packets_.end(); ++it, ++packet_number) {
    // Only retransmit frames which are in flight, and therefore have been sent.
    if (!it->in_flight || it->retransmittable_frames == nullptr) {
      continue;
    }
    if (!handshake_confirmed_) {
      DCHECK_NE(IS_HANDSHAKE, it->retransmittable_frames->HasCryptoHandshake());
    }
    MarkForRetransmission(packet_number, TLP_RETRANSMISSION);
    return true;
  }
  DLOG(ERROR)
      << "No retransmittable packets, so RetransmitOldestPacket failed.";
  return false;
}

void QuicSentPacketManager::RetransmitRtoPackets() {
  LOG_IF(DFATAL, pending_timer_transmission_count_ > 0)
      << "Retransmissions already queued:" << pending_timer_transmission_count_;
  // Mark two packets for retransmission.
  QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
  for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
       it != unacked_packets_.end(); ++it, ++packet_number) {
    if (it->retransmittable_frames != nullptr &&
        pending_timer_transmission_count_ < kMaxRetransmissionsOnTimeout) {
      MarkForRetransmission(packet_number, RTO_RETRANSMISSION);
      ++pending_timer_transmission_count_;
    }
    // Abandon non-retransmittable data that's in flight to ensure it doesn't
    // fill up the congestion window.
    const bool has_retransmissions =
        unacked_packets_.track_single_retransmission()
            ? it->retransmission != 0
            : it->all_transmissions != nullptr;
    if (it->retransmittable_frames == nullptr && it->in_flight &&
        !has_retransmissions) {
      unacked_packets_.RemoveFromInFlight(packet_number);
    }
  }
  if (pending_timer_transmission_count_ > 0) {
    if (consecutive_rto_count_ == 0) {
      first_rto_transmission_ = unacked_packets_.largest_sent_packet() + 1;
    }
    ++consecutive_rto_count_;
  }
}

QuicSentPacketManager::RetransmissionTimeoutMode
QuicSentPacketManager::GetRetransmissionMode() const {
  DCHECK(unacked_packets_.HasInFlightPackets());
  if (!handshake_confirmed_ && unacked_packets_.HasPendingCryptoPackets()) {
    return HANDSHAKE_MODE;
  }
  if (loss_algorithm_->GetLossTimeout() != QuicTime::Zero()) {
    return LOSS_MODE;
  }
  if (consecutive_tlp_count_ < max_tail_loss_probes_) {
    if (unacked_packets_.HasUnackedRetransmittableFrames()) {
      return TLP_MODE;
    }
  }
  return RTO_MODE;
}

void QuicSentPacketManager::InvokeLossDetection(QuicTime time) {
  if (use_general_loss_algorithm_) {
    loss_algorithm_->DetectLosses(unacked_packets_, time, rtt_stats_,
                                  &packets_lost_);
    for (const std::pair<QuicPacketNumber, QuicByteCount>& pair :
         packets_lost_) {
      ++stats_->packets_lost;
      // TODO(ianswett): This could be optimized.
      if (unacked_packets_.HasRetransmittableFrames(pair.first)) {
        MarkForRetransmission(pair.first, LOSS_RETRANSMISSION);
      } else {
        // Since we will not retransmit this, we need to remove it from
        // unacked_packets_.   This is either the current transmission of
        // a packet whose previous transmission has been acked, a packet that
        // has been TLP retransmitted, or an FEC packet.
        unacked_packets_.RemoveFromInFlight(pair.first);
      }
    }
    return;
  }
  PacketNumberSet lost_packets = loss_algorithm_->DetectLostPackets(
      unacked_packets_, time, unacked_packets_.largest_observed(), rtt_stats_);
  for (PacketNumberSet::const_iterator it = lost_packets.begin();
       it != lost_packets.end(); ++it) {
    QuicPacketNumber packet_number = *it;
    const TransmissionInfo& transmission_info =
        unacked_packets_.GetTransmissionInfo(packet_number);
    // TODO(ianswett): If it's expected the FEC packet may repair the loss, it
    // should be recorded as a loss to the send algorithm, but not retransmitted
    // until it's known whether the FEC packet arrived.
    ++stats_->packets_lost;
    packets_lost_.push_back(
        std::make_pair(packet_number, transmission_info.bytes_sent));
    DVLOG(1) << ENDPOINT << "Lost packet " << packet_number;

    if (transmission_info.retransmittable_frames != nullptr) {
      MarkForRetransmission(packet_number, LOSS_RETRANSMISSION);
    } else {
      // Since we will not retransmit this, we need to remove it from
      // unacked_packets_.   This is either the current transmission of
      // a packet whose previous transmission has been acked, a packet that has
      // been TLP retransmitted, or an FEC packet.
      unacked_packets_.RemoveFromInFlight(packet_number);
    }
  }
}

bool QuicSentPacketManager::MaybeUpdateRTT(const QuicAckFrame& ack_frame,
                                           const QuicTime& ack_receive_time) {
  // We rely on delta_time_largest_observed to compute an RTT estimate, so we
  // only update rtt when the largest observed gets acked.
  // NOTE: If ack is a truncated ack, then the largest observed is in fact
  // unacked, and may cause an RTT sample to be taken.
  if (!unacked_packets_.IsUnacked(ack_frame.largest_observed)) {
    return false;
  }
  // We calculate the RTT based on the highest ACKed packet number, the lower
  // packet numbers will include the ACK aggregation delay.
  const TransmissionInfo& transmission_info =
      unacked_packets_.GetTransmissionInfo(ack_frame.largest_observed);
  // Ensure the packet has a valid sent time.
  if (transmission_info.sent_time == QuicTime::Zero()) {
    QUIC_BUG << "Acked packet has zero sent time, largest_observed:"
             << ack_frame.largest_observed;
    return false;
  }

  QuicTime::Delta send_delta =
      ack_receive_time.Subtract(transmission_info.sent_time);
  rtt_stats_.UpdateRtt(send_delta, ack_frame.delta_time_largest_observed,
                       ack_receive_time);

  if (network_change_visitor_ != nullptr) {
    network_change_visitor_->OnRttChange();
  }

  return true;
}

QuicTime::Delta QuicSentPacketManager::TimeUntilSend(
    QuicTime now,
    HasRetransmittableData retransmittable) {
  // The TLP logic is entirely contained within QuicSentPacketManager, so the
  // send algorithm does not need to be consulted.
  if (pending_timer_transmission_count_ > 0) {
    return QuicTime::Delta::Zero();
  }
  return send_algorithm_->TimeUntilSend(now, unacked_packets_.bytes_in_flight(),
                                        retransmittable);
}

// Uses a 25ms delayed ack timer. Also helps with better signaling
// in low-bandwidth (< ~384 kbps), where an ack is sent per packet.
// Ensures that the Delayed Ack timer is always set to a value lesser
// than the retransmission timer's minimum value (MinRTO). We want the
// delayed ack to get back to the QUIC peer before the sender's
// retransmission timer triggers.  Since we do not know the
// reverse-path one-way delay, we assume equal delays for forward and
// reverse paths, and ensure that the timer is set to less than half
// of the MinRTO.
// There may be a value in making this delay adaptive with the help of
// the sender and a signaling mechanism -- if the sender uses a
// different MinRTO, we may get spurious retransmissions. May not have
// any benefits, but if the delayed ack becomes a significant source
// of (likely, tail) latency, then consider such a mechanism.
const QuicTime::Delta QuicSentPacketManager::DelayedAckTime() const {
  return QuicTime::Delta::FromMilliseconds(
      min(kMaxDelayedAckTimeMs, kMinRetransmissionTimeMs / 2));
}

const QuicTime QuicSentPacketManager::GetRetransmissionTime() const {
  // Don't set the timer if there are no packets in flight or we've already
  // queued a tlp transmission and it hasn't been sent yet.
  if (!unacked_packets_.HasInFlightPackets() ||
      pending_timer_transmission_count_ > 0) {
    return QuicTime::Zero();
  }
  switch (GetRetransmissionMode()) {
    case HANDSHAKE_MODE:
      return clock_->ApproximateNow().Add(GetCryptoRetransmissionDelay());
    case LOSS_MODE:
      return loss_algorithm_->GetLossTimeout();
    case TLP_MODE: {
      // TODO(ianswett): When CWND is available, it would be preferable to
      // set the timer based on the earliest retransmittable packet.
      // Base the updated timer on the send time of the last packet.
      const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime();
      const QuicTime tlp_time = sent_time.Add(GetTailLossProbeDelay());
      // Ensure the TLP timer never gets set to a time in the past.
      return QuicTime::Max(clock_->ApproximateNow(), tlp_time);
    }
    case RTO_MODE: {
      // The RTO is based on the first outstanding packet.
      const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime();
      QuicTime rto_time = sent_time.Add(GetRetransmissionDelay());
      // Wait for TLP packets to be acked before an RTO fires.
      QuicTime tlp_time =
          unacked_packets_.GetLastPacketSentTime().Add(GetTailLossProbeDelay());
      return QuicTime::Max(tlp_time, rto_time);
    }
  }
  DCHECK(false);
  return QuicTime::Zero();
}

const QuicTime::Delta QuicSentPacketManager::GetCryptoRetransmissionDelay()
    const {
  // This is equivalent to the TailLossProbeDelay, but slightly more aggressive
  // because crypto handshake messages don't incur a delayed ack time.
  QuicTime::Delta srtt = rtt_stats_.smoothed_rtt();
  if (srtt.IsZero()) {
    srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_.initial_rtt_us());
  }
  int64_t delay_ms = max(kMinHandshakeTimeoutMs,
                         static_cast<int64_t>(1.5 * srtt.ToMilliseconds()));
  return QuicTime::Delta::FromMilliseconds(
      delay_ms << consecutive_crypto_retransmission_count_);
}

const QuicTime::Delta QuicSentPacketManager::GetTailLossProbeDelay() const {
  QuicTime::Delta srtt = rtt_stats_.smoothed_rtt();
  if (srtt.IsZero()) {
    srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_.initial_rtt_us());
  }
  if (enable_half_rtt_tail_loss_probe_ && consecutive_tlp_count_ == 0u) {
    return QuicTime::Delta::FromMilliseconds(
        max(kMinTailLossProbeTimeoutMs,
            static_cast<int64_t>(0.5 * srtt.ToMilliseconds())));
  }
  if (!unacked_packets_.HasMultipleInFlightPackets()) {
    return QuicTime::Delta::Max(
        srtt.Multiply(2),
        srtt.Multiply(1.5).Add(
            QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs / 2)));
  }
  return QuicTime::Delta::FromMilliseconds(
      max(kMinTailLossProbeTimeoutMs,
          static_cast<int64_t>(2 * srtt.ToMilliseconds())));
}

const QuicTime::Delta QuicSentPacketManager::GetRetransmissionDelay() const {
  QuicTime::Delta retransmission_delay = send_algorithm_->RetransmissionDelay();
  if (retransmission_delay.IsZero()) {
    // We are in the initial state, use default timeout values.
    retransmission_delay =
        QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
  } else if (retransmission_delay.ToMilliseconds() < kMinRetransmissionTimeMs) {
    retransmission_delay =
        QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs);
  }

  // Calculate exponential back off.
  retransmission_delay = retransmission_delay.Multiply(
      1 << min<size_t>(consecutive_rto_count_, kMaxRetransmissions));

  if (retransmission_delay.ToMilliseconds() > kMaxRetransmissionTimeMs) {
    return QuicTime::Delta::FromMilliseconds(kMaxRetransmissionTimeMs);
  }
  return retransmission_delay;
}

const RttStats* QuicSentPacketManager::GetRttStats() const {
  return &rtt_stats_;
}

QuicBandwidth QuicSentPacketManager::BandwidthEstimate() const {
  // TODO(ianswett): Remove BandwidthEstimate from SendAlgorithmInterface
  // and implement the logic here.
  return send_algorithm_->BandwidthEstimate();
}

const QuicSustainedBandwidthRecorder&
QuicSentPacketManager::SustainedBandwidthRecorder() const {
  return sustained_bandwidth_recorder_;
}

QuicPacketCount QuicSentPacketManager::EstimateMaxPacketsInFlight(
    QuicByteCount max_packet_length) const {
  return send_algorithm_->GetCongestionWindow() / max_packet_length;
}

QuicPacketCount QuicSentPacketManager::GetCongestionWindowInTcpMss() const {
  return send_algorithm_->GetCongestionWindow() / kDefaultTCPMSS;
}

QuicByteCount QuicSentPacketManager::GetCongestionWindowInBytes() const {
  return send_algorithm_->GetCongestionWindow();
}

QuicPacketCount QuicSentPacketManager::GetSlowStartThresholdInTcpMss() const {
  return send_algorithm_->GetSlowStartThreshold() / kDefaultTCPMSS;
}

void QuicSentPacketManager::CancelRetransmissionsForStream(
    QuicStreamId stream_id) {
  unacked_packets_.CancelRetransmissionsForStream(stream_id);
  PendingRetransmissionMap::iterator it = pending_retransmissions_.begin();
  while (it != pending_retransmissions_.end()) {
    if (HasRetransmittableFrames(it->first)) {
      ++it;
      continue;
    }
    it = pending_retransmissions_.erase(it);
  }
}

void QuicSentPacketManager::EnablePacing() {
  // TODO(ianswett): Replace with a method which wraps the send algorithm in a
  // pacer every time a new algorithm is set.
  if (using_pacing_) {
    return;
  }

  // Set up a pacing sender with a 1 millisecond alarm granularity, the same as
  // the default granularity of the Linux kernel's FQ qdisc.
  using_pacing_ = true;
  send_algorithm_.reset(new PacingSender(send_algorithm_.release(),
                                         QuicTime::Delta::FromMilliseconds(1),
                                         kInitialUnpacedBurst));
}

void QuicSentPacketManager::OnConnectionMigration(PeerAddressChangeType type) {
  if (type == UNKNOWN) {
    return;
  }

  if (type == NAT_PORT_REBINDING || type == IPV4_SUBNET_REBINDING) {
    // Rtt and cwnd do not need to be reset when the peer address change is
    // considered to be caused by NATs.
    return;
  }

  rtt_stats_.OnConnectionMigration();
  send_algorithm_->OnConnectionMigration();
}

}  // namespace net