summaryrefslogtreecommitdiff
path: root/chromium/net/quic/quic_framer.cc
blob: cc02882ddc932598035b1e461545fe2816fa4697 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/quic_framer.h"

#include "base/containers/hash_tables.h"
#include "net/quic/crypto/quic_decrypter.h"
#include "net/quic/crypto/quic_encrypter.h"
#include "net/quic/quic_data_reader.h"
#include "net/quic/quic_data_writer.h"

using base::StringPiece;
using std::make_pair;
using std::map;
using std::max;
using std::min;
using std::numeric_limits;
using std::string;

namespace net {

namespace {

// Mask to select the lowest 48 bits of a sequence number.
const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
    GG_UINT64_C(0x0000FFFFFFFFFFFF);
const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
    GG_UINT64_C(0x00000000FFFFFFFF);
const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
    GG_UINT64_C(0x000000000000FFFF);
const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
    GG_UINT64_C(0x00000000000000FF);

const QuicGuid k1ByteGuidMask = GG_UINT64_C(0x00000000000000FF);
const QuicGuid k4ByteGuidMask = GG_UINT64_C(0x00000000FFFFFFFF);

// Number of bits the sequence number length bits are shifted from the right
// edge of the public header.
const uint8 kPublicHeaderSequenceNumberShift = 4;

// New Frame Types, QUIC v. >= 10:
// There are two interpretations for the Frame Type byte in the QUIC protocol,
// resulting in two Frame Types: Special Frame Types and Regular Frame Types.
//
// Regular Frame Types use the Frame Type byte simply. Currently defined
// Regular Frame Types are:
// Padding            : 0b 00000000 (0x00)
// ResetStream        : 0b 00000001 (0x01)
// ConnectionClose    : 0b 00000010 (0x02)
// GoAway             : 0b 00000011 (0x03)
//
// Special Frame Types encode both a Frame Type and corresponding flags
// all in the Frame Type byte. Currently defined Special Frame Types are:
// Stream             : 0b 1xxxxxxx
// Ack                : 0b 01xxxxxx
// CongestionFeedback : 0b 001xxxxx
//
// Semantics of the flag bits above (the x bits) depends on the frame type.

// Masks to determine if the frame type is a special use
// and for specific special frame types.
const uint8 kQuicFrameTypeSpecialMask = 0xE0;  // 0b 11100000
const uint8 kQuicFrameTypeStreamMask = 0x80;
const uint8 kQuicFrameTypeAckMask = 0x40;
const uint8 kQuicFrameTypeCongestionFeedbackMask = 0x20;

// Stream frame relative shifts and masks for interpreting the stream flags.
// StreamID may be 1, 2, 3, or 4 bytes.
const uint8 kQuicStreamIdShift = 2;
const uint8 kQuicStreamIDLengthMask = 0x03;

// Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
const uint8 kQuicStreamOffsetShift = 3;
const uint8 kQuicStreamOffsetMask = 0x07;

// Data length may be 0 or 2 bytes.
const uint8 kQuicStreamDataLengthShift = 1;
const uint8 kQuicStreamDataLengthMask = 0x01;

// Fin bit may be set or not.
const uint8 kQuicStreamFinShift = 1;
const uint8 kQuicStreamFinMask = 0x01;

// Sequence number size shift used in AckFrames.
const uint8 kQuicSequenceNumberLengthShift = 2;

// Acks may be truncated.
const uint8 kQuicAckTruncatedShift = 1;
const uint8 kQuicAckTruncatedMask = 0x01;

// Acks may not have any nacks.
const uint8 kQuicHasNacksMask = 0x01;

// Returns the absolute value of the difference between |a| and |b|.
QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
                               QuicPacketSequenceNumber b) {
  // Since these are unsigned numbers, we can't just return abs(a - b)
  if (a < b) {
    return b - a;
  }
  return a - b;
}

QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
                                   QuicPacketSequenceNumber a,
                                   QuicPacketSequenceNumber b) {
  return (Delta(target, a) < Delta(target, b)) ? a : b;
}

}  // namespace

QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
                       QuicTime creation_time,
                       bool is_server)
    : visitor_(NULL),
      fec_builder_(NULL),
      entropy_calculator_(NULL),
      error_(QUIC_NO_ERROR),
      last_sequence_number_(0),
      last_serialized_guid_(0),
      supported_versions_(supported_versions),
      alternative_decrypter_latch_(false),
      is_server_(is_server),
      creation_time_(creation_time) {
  DCHECK(!supported_versions.empty());
  quic_version_ = supported_versions_[0];
  decrypter_.reset(QuicDecrypter::Create(kNULL));
  encrypter_[ENCRYPTION_NONE].reset(
      QuicEncrypter::Create(kNULL));
}

QuicFramer::~QuicFramer() {}

// static
size_t QuicFramer::GetMinStreamFrameSize(QuicVersion version,
                                         QuicStreamId stream_id,
                                         QuicStreamOffset offset,
                                         bool last_frame_in_packet) {
  return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
      GetStreamOffsetSize(offset) +
      (last_frame_in_packet ? 0 : kQuicStreamPayloadLengthSize);
}

// static
size_t QuicFramer::GetMinAckFrameSize(
    QuicVersion version,
    QuicSequenceNumberLength sequence_number_length,
    QuicSequenceNumberLength largest_observed_length) {
  return kQuicFrameTypeSize + kQuicEntropyHashSize +
      sequence_number_length + kQuicEntropyHashSize +
      largest_observed_length + kQuicDeltaTimeLargestObservedSize;
}

// static
size_t QuicFramer::GetMinRstStreamFrameSize() {
  return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicErrorCodeSize +
      kQuicErrorDetailsLengthSize;
}

// static
size_t QuicFramer::GetMinConnectionCloseFrameSize() {
  return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
}

// static
size_t QuicFramer::GetMinGoAwayFrameSize() {
  return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
      kQuicMaxStreamIdSize;
}

// static
size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
  // Sizes are 1 through 4 bytes.
  for (int i = 1; i <= 4; ++i) {
    stream_id >>= 8;
    if (stream_id == 0) {
      return i;
    }
  }
  LOG(DFATAL) << "Failed to determine StreamIDSize.";
  return 4;
}

// static
size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
  // 0 is a special case.
  if (offset == 0) {
    return 0;
  }
  // 2 through 8 are the remaining sizes.
  offset >>= 8;
  for (int i = 2; i <= 8; ++i) {
    offset >>= 8;
    if (offset == 0) {
      return i;
    }
  }
  LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
  return 8;
}

// static
size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
  return kPublicFlagsSize + PACKET_8BYTE_GUID +
      number_versions * kQuicVersionSize;
}

// static
bool QuicFramer::CanTruncate(
    QuicVersion version, const QuicFrame& frame, size_t free_bytes) {
  if ((frame.type == ACK_FRAME || frame.type == CONNECTION_CLOSE_FRAME) &&
      free_bytes >= GetMinAckFrameSize(version,
                                       PACKET_6BYTE_SEQUENCE_NUMBER,
                                       PACKET_6BYTE_SEQUENCE_NUMBER)) {
    return true;
  }
  return false;
}

bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
  for (size_t i = 0; i < supported_versions_.size(); ++i) {
    if (version == supported_versions_[i]) {
      return true;
    }
  }
  return false;
}

size_t QuicFramer::GetSerializedFrameLength(
    const QuicFrame& frame,
    size_t free_bytes,
    bool first_frame,
    bool last_frame,
    QuicSequenceNumberLength sequence_number_length) {
  if (frame.type == PADDING_FRAME) {
    // PADDING implies end of packet.
    return free_bytes;
  }
  size_t frame_len =
      ComputeFrameLength(frame, last_frame, sequence_number_length);
  if (frame_len > free_bytes) {
    // Only truncate the first frame in a packet, so if subsequent ones go
    // over, stop including more frames.
    if (!first_frame) {
      return 0;
    }
    if (CanTruncate(quic_version_, frame, free_bytes)) {
      // Truncate the frame so the packet will not exceed kMaxPacketSize.
      // Note that we may not use every byte of the writer in this case.
      DVLOG(1) << "Truncating large frame";
      return free_bytes;
    }
  }
  return frame_len;
}

QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) { }

QuicFramer::AckFrameInfo::~AckFrameInfo() { }

QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
    const QuicPacketHeader& header) const {
  return header.entropy_flag << (header.packet_sequence_number % 8);
}

// Test only.
SerializedPacket QuicFramer::BuildUnsizedDataPacket(
    const QuicPacketHeader& header,
    const QuicFrames& frames) {
  const size_t max_plaintext_size = GetMaxPlaintextSize(kMaxPacketSize);
  size_t packet_size = GetPacketHeaderSize(header);
  for (size_t i = 0; i < frames.size(); ++i) {
    DCHECK_LE(packet_size, max_plaintext_size);
    bool first_frame = i == 0;
    bool last_frame = i == frames.size() - 1;
    const size_t frame_size = GetSerializedFrameLength(
        frames[i], max_plaintext_size - packet_size, first_frame, last_frame,
        header.public_header.sequence_number_length);
    DCHECK(frame_size);
    packet_size += frame_size;
  }
  return BuildDataPacket(header, frames, packet_size);
}

SerializedPacket QuicFramer::BuildDataPacket(
    const QuicPacketHeader& header,
    const QuicFrames& frames,
    size_t packet_size) {
  QuicDataWriter writer(packet_size);
  const SerializedPacket kNoPacket(
      0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
  if (!AppendPacketHeader(header, &writer)) {
    return kNoPacket;
  }

  for (size_t i = 0; i < frames.size(); ++i) {
    const QuicFrame& frame = frames[i];

    const bool last_frame_in_packet = i == (frames.size() - 1);
    if (!AppendTypeByte(frame, last_frame_in_packet, &writer)) {
      return kNoPacket;
    }

    switch (frame.type) {
      case PADDING_FRAME:
        writer.WritePadding();
        break;
      case STREAM_FRAME:
        if (!AppendStreamFramePayload(
            *frame.stream_frame, last_frame_in_packet, &writer)) {
          return kNoPacket;
        }
        break;
      case ACK_FRAME:
        if (!AppendAckFramePayloadAndTypeByte(
                header, *frame.ack_frame, &writer)) {
          return kNoPacket;
        }
        break;
      case CONGESTION_FEEDBACK_FRAME:
        if (!AppendQuicCongestionFeedbackFramePayload(
                *frame.congestion_feedback_frame, &writer)) {
          return kNoPacket;
        }
        break;
      case RST_STREAM_FRAME:
        if (!AppendRstStreamFramePayload(*frame.rst_stream_frame, &writer)) {
          return kNoPacket;
        }
        break;
      case CONNECTION_CLOSE_FRAME:
        if (!AppendConnectionCloseFramePayload(
                *frame.connection_close_frame, &writer)) {
          return kNoPacket;
        }
        break;
      case GOAWAY_FRAME:
        if (!AppendGoAwayFramePayload(*frame.goaway_frame, &writer)) {
          return kNoPacket;
        }
        break;
      default:
        RaiseError(QUIC_INVALID_FRAME_DATA);
        return kNoPacket;
    }
  }

  // Save the length before writing, because take clears it.
  const size_t len = writer.length();
  // Less than or equal because truncated acks end up with max_plaintex_size
  // length, even though they're typically slightly shorter.
  DCHECK_LE(len, packet_size);
  QuicPacket* packet = QuicPacket::NewDataPacket(
      writer.take(), len, true, header.public_header.guid_length,
      header.public_header.version_flag,
      header.public_header.sequence_number_length);

  if (fec_builder_) {
    fec_builder_->OnBuiltFecProtectedPayload(header,
                                             packet->FecProtectedData());
  }

  return SerializedPacket(header.packet_sequence_number,
                          header.public_header.sequence_number_length, packet,
                          GetPacketEntropyHash(header), NULL);
}

SerializedPacket QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
                                            const QuicFecData& fec) {
  DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
  DCHECK_NE(0u, header.fec_group);
  size_t len = GetPacketHeaderSize(header);
  len += fec.redundancy.length();

  QuicDataWriter writer(len);
  const SerializedPacket kNoPacket(
      0, PACKET_1BYTE_SEQUENCE_NUMBER, NULL, 0, NULL);
  if (!AppendPacketHeader(header, &writer)) {
    return kNoPacket;
  }

  if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
    return kNoPacket;
  }

  return SerializedPacket(
      header.packet_sequence_number,
      header.public_header.sequence_number_length,
      QuicPacket::NewFecPacket(writer.take(), len, true,
                               header.public_header.guid_length,
                               header.public_header.version_flag,
                               header.public_header.sequence_number_length),
      GetPacketEntropyHash(header), NULL);
}

// static
QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
    const QuicPublicResetPacket& packet) {
  DCHECK(packet.public_header.reset_flag);
  size_t len = GetPublicResetPacketSize();
  QuicDataWriter writer(len);

  uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
                                   PACKET_PUBLIC_FLAGS_8BYTE_GUID |
                                   PACKET_PUBLIC_FLAGS_6BYTE_SEQUENCE);
  if (!writer.WriteUInt8(flags)) {
    return NULL;
  }

  if (!writer.WriteUInt64(packet.public_header.guid)) {
    return NULL;
  }

  if (!writer.WriteUInt64(packet.nonce_proof)) {
    return NULL;
  }

  if (!AppendPacketSequenceNumber(PACKET_6BYTE_SEQUENCE_NUMBER,
                                  packet.rejected_sequence_number,
                                  &writer)) {
    return NULL;
  }

  return new QuicEncryptedPacket(writer.take(), len, true);
}

QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
    const QuicPacketPublicHeader& header,
    const QuicVersionVector& supported_versions) {
  DCHECK(header.version_flag);
  size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
  QuicDataWriter writer(len);

  uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
                                   PACKET_PUBLIC_FLAGS_8BYTE_GUID |
                                   PACKET_PUBLIC_FLAGS_6BYTE_SEQUENCE);
  if (!writer.WriteUInt8(flags)) {
    return NULL;
  }

  if (!writer.WriteUInt64(header.guid)) {
    return NULL;
  }

  for (size_t i = 0; i < supported_versions.size(); ++i) {
    if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
      return NULL;
    }
  }

  return new QuicEncryptedPacket(writer.take(), len, true);
}

bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
  DCHECK(!reader_.get());
  reader_.reset(new QuicDataReader(packet.data(), packet.length()));

  visitor_->OnPacket();

  // First parse the public header.
  QuicPacketPublicHeader public_header;
  if (!ProcessPublicHeader(&public_header)) {
    DLOG(WARNING) << "Unable to process public header.";
    DCHECK_NE("", detailed_error_);
    return RaiseError(QUIC_INVALID_PACKET_HEADER);
  }

  if (is_server_ && public_header.version_flag &&
      public_header.versions[0] != quic_version_) {
    if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
      reader_.reset(NULL);
      return true;
    }
  }

  bool rv;
  if (!is_server_ && public_header.version_flag) {
    rv = ProcessVersionNegotiationPacket(&public_header);
  } else if (public_header.reset_flag) {
    rv = ProcessPublicResetPacket(public_header);
  } else {
    rv = ProcessDataPacket(public_header, packet);
  }

  reader_.reset(NULL);
  return rv;
}

bool QuicFramer::ProcessVersionNegotiationPacket(
    QuicPacketPublicHeader* public_header) {
  DCHECK(!is_server_);
  // Try reading at least once to raise error if the packet is invalid.
  do {
    QuicTag version;
    if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
      set_detailed_error("Unable to read supported version in negotiation.");
      return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
    }
    public_header->versions.push_back(QuicTagToQuicVersion(version));
  } while (!reader_->IsDoneReading());

  visitor_->OnVersionNegotiationPacket(*public_header);
  return true;
}

bool QuicFramer::ProcessDataPacket(
    const QuicPacketPublicHeader& public_header,
    const QuicEncryptedPacket& packet) {
  QuicPacketHeader header(public_header);
  if (!ProcessPacketHeader(&header, packet)) {
    DLOG(WARNING) << "Unable to process data packet header.";
    return false;
  }

  if (!visitor_->OnPacketHeader(header)) {
    // The visitor suppresses further processing of the packet.
    return true;
  }

  if (packet.length() > kMaxPacketSize) {
    DLOG(WARNING) << "Packet too large: " << packet.length();
    return RaiseError(QUIC_PACKET_TOO_LARGE);
  }

  // Handle the payload.
  if (!header.fec_flag) {
    if (header.is_in_fec_group == IN_FEC_GROUP) {
      StringPiece payload = reader_->PeekRemainingPayload();
      visitor_->OnFecProtectedPayload(payload);
    }
    if (!ProcessFrameData(header)) {
      DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error.
      DLOG(WARNING) << "Unable to process frame data.";
      return false;
    }
  } else {
    QuicFecData fec_data;
    fec_data.fec_group = header.fec_group;
    fec_data.redundancy = reader_->ReadRemainingPayload();
    visitor_->OnFecData(fec_data);
  }

  visitor_->OnPacketComplete();
  return true;
}

bool QuicFramer::ProcessPublicResetPacket(
    const QuicPacketPublicHeader& public_header) {
  QuicPublicResetPacket packet(public_header);
  if (!reader_->ReadUInt64(&packet.nonce_proof)) {
    set_detailed_error("Unable to read nonce proof.");
    return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
  }
  // TODO(satyamshekhar): validate nonce to protect against DoS.

  if (!reader_->ReadUInt48(&packet.rejected_sequence_number)) {
    set_detailed_error("Unable to read rejected sequence number.");
    return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
  }
  visitor_->OnPublicResetPacket(packet);
  return true;
}

bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
                                      StringPiece payload) {
  DCHECK(!reader_.get());

  visitor_->OnRevivedPacket();

  header->entropy_hash = GetPacketEntropyHash(*header);

  if (!visitor_->OnPacketHeader(*header)) {
    return true;
  }

  if (payload.length() > kMaxPacketSize) {
    set_detailed_error("Revived packet too large.");
    return RaiseError(QUIC_PACKET_TOO_LARGE);
  }

  reader_.reset(new QuicDataReader(payload.data(), payload.length()));
  if (!ProcessFrameData(*header)) {
    DCHECK_NE(QUIC_NO_ERROR, error_);  // ProcessFrameData sets the error.
    DLOG(WARNING) << "Unable to process frame data.";
    return false;
  }

  visitor_->OnPacketComplete();
  reader_.reset(NULL);
  return true;
}

bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
                                    QuicDataWriter* writer) {
  DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
  uint8 public_flags = 0;
  if (header.public_header.reset_flag) {
    public_flags |= PACKET_PUBLIC_FLAGS_RST;
  }
  if (header.public_header.version_flag) {
    public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
  }

  public_flags |=
      GetSequenceNumberFlags(header.public_header.sequence_number_length)
          << kPublicHeaderSequenceNumberShift;

  switch (header.public_header.guid_length) {
    case PACKET_0BYTE_GUID:
      if (!writer->WriteUInt8(public_flags | PACKET_PUBLIC_FLAGS_0BYTE_GUID)) {
        return false;
      }
      break;
    case PACKET_1BYTE_GUID:
      if (!writer->WriteUInt8(public_flags | PACKET_PUBLIC_FLAGS_1BYTE_GUID)) {
         return false;
      }
      if (!writer->WriteUInt8(header.public_header.guid & k1ByteGuidMask)) {
        return false;
      }
      break;
    case PACKET_4BYTE_GUID:
      if (!writer->WriteUInt8(public_flags | PACKET_PUBLIC_FLAGS_4BYTE_GUID)) {
         return false;
      }
      if (!writer->WriteUInt32(header.public_header.guid & k4ByteGuidMask)) {
        return false;
      }
      break;
    case PACKET_8BYTE_GUID:
      if (!writer->WriteUInt8(public_flags | PACKET_PUBLIC_FLAGS_8BYTE_GUID)) {
        return false;
      }
      if (!writer->WriteUInt64(header.public_header.guid)) {
        return false;
      }
      break;
  }
  last_serialized_guid_ = header.public_header.guid;

  if (header.public_header.version_flag) {
    DCHECK(!is_server_);
    writer->WriteUInt32(QuicVersionToQuicTag(quic_version_));
  }

  if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
                                  header.packet_sequence_number, writer)) {
    return false;
  }

  uint8 private_flags = 0;
  if (header.entropy_flag) {
    private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
  }
  if (header.is_in_fec_group == IN_FEC_GROUP) {
    private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
  }
  if (header.fec_flag) {
    private_flags |= PACKET_PRIVATE_FLAGS_FEC;
  }
  if (!writer->WriteUInt8(private_flags)) {
    return false;
  }

  // The FEC group number is the sequence number of the first fec
  // protected packet, or 0 if this packet is not protected.
  if (header.is_in_fec_group == IN_FEC_GROUP) {
    DCHECK_GE(header.packet_sequence_number, header.fec_group);
    DCHECK_GT(255u, header.packet_sequence_number - header.fec_group);
    // Offset from the current packet sequence number to the first fec
    // protected packet.
    uint8 first_fec_protected_packet_offset =
        header.packet_sequence_number - header.fec_group;
    if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
      return false;
    }
  }

  return true;
}

QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
    QuicSequenceNumberLength sequence_number_length,
    QuicPacketSequenceNumber packet_sequence_number) const {
  // The new sequence number might have wrapped to the next epoch, or
  // it might have reverse wrapped to the previous epoch, or it might
  // remain in the same epoch.  Select the sequence number closest to the
  // next expected sequence number, the previous sequence number plus 1.

  // epoch_delta is the delta between epochs the sequence number was serialized
  // with, so the correct value is likely the same epoch as the last sequence
  // number or an adjacent epoch.
  const QuicPacketSequenceNumber epoch_delta =
      GG_UINT64_C(1) << (8 * sequence_number_length);
  QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
  QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
  QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
  QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;

  return ClosestTo(next_sequence_number,
                   epoch + packet_sequence_number,
                   ClosestTo(next_sequence_number,
                             prev_epoch + packet_sequence_number,
                             next_epoch + packet_sequence_number));
}

bool QuicFramer::ProcessPublicHeader(
    QuicPacketPublicHeader* public_header) {
  uint8 public_flags;
  if (!reader_->ReadBytes(&public_flags, 1)) {
    set_detailed_error("Unable to read public flags.");
    return false;
  }

  public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
  public_header->version_flag =
      (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;

  if (!public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
    set_detailed_error("Illegal public flags value.");
    return false;
  }

  if (public_header->reset_flag && public_header->version_flag) {
    set_detailed_error("Got version flag in reset packet");
    return false;
  }

  switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_GUID) {
    case PACKET_PUBLIC_FLAGS_8BYTE_GUID:
      if (!reader_->ReadUInt64(&public_header->guid)) {
        set_detailed_error("Unable to read GUID.");
        return false;
      }
      public_header->guid_length = PACKET_8BYTE_GUID;
      break;
    case PACKET_PUBLIC_FLAGS_4BYTE_GUID:
      // If the guid is truncated, expect to read the last serialized guid.
      if (!reader_->ReadBytes(&public_header->guid, PACKET_4BYTE_GUID)) {
        set_detailed_error("Unable to read GUID.");
        return false;
      }
      if ((public_header->guid & k4ByteGuidMask) !=
          (last_serialized_guid_ & k4ByteGuidMask)) {
        set_detailed_error(
            "Truncated 4 byte GUID does not match previous guid.");
        return false;
      }
      public_header->guid_length = PACKET_4BYTE_GUID;
      public_header->guid = last_serialized_guid_;
      break;
    case PACKET_PUBLIC_FLAGS_1BYTE_GUID:
      if (!reader_->ReadBytes(&public_header->guid, PACKET_1BYTE_GUID)) {
        set_detailed_error("Unable to read GUID.");
        return false;
      }
      if ((public_header->guid & k1ByteGuidMask) !=
          (last_serialized_guid_ & k1ByteGuidMask)) {
        set_detailed_error(
            "Truncated 1 byte GUID does not match previous guid.");
        return false;
      }
      public_header->guid_length = PACKET_1BYTE_GUID;
      public_header->guid = last_serialized_guid_;
      break;
    case PACKET_PUBLIC_FLAGS_0BYTE_GUID:
      public_header->guid_length = PACKET_0BYTE_GUID;
      public_header->guid = last_serialized_guid_;
      break;
  }

  public_header->sequence_number_length =
      ReadSequenceNumberLength(
          public_flags >> kPublicHeaderSequenceNumberShift);

  // Read the version only if the packet is from the client.
  // version flag from the server means version negotiation packet.
  if (public_header->version_flag && is_server_) {
    QuicTag version_tag;
    if (!reader_->ReadUInt32(&version_tag)) {
      set_detailed_error("Unable to read protocol version.");
      return false;
    }

    // If the version from the new packet is the same as the version of this
    // framer, then the public flags should be set to something we understand.
    // If not, this raises an error.
    QuicVersion version = QuicTagToQuicVersion(version_tag);
    if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
      set_detailed_error("Illegal public flags value.");
      return false;
    }
    public_header->versions.push_back(version);
  }
  return true;
}

// static
bool QuicFramer::ReadGuidFromPacket(const QuicEncryptedPacket& packet,
                                    QuicGuid* guid) {
  QuicDataReader reader(packet.data(), packet.length());
  uint8 public_flags;
  if (!reader.ReadBytes(&public_flags, 1)) {
    return false;
  }
  // Ensure it's an 8 byte guid.
  if ((public_flags & PACKET_PUBLIC_FLAGS_8BYTE_GUID) !=
          PACKET_PUBLIC_FLAGS_8BYTE_GUID) {
    return false;
  }

  return reader.ReadUInt64(guid);
}

// static
QuicSequenceNumberLength QuicFramer::ReadSequenceNumberLength(uint8 flags) {
  switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
    case PACKET_FLAGS_6BYTE_SEQUENCE:
      return PACKET_6BYTE_SEQUENCE_NUMBER;
    case PACKET_FLAGS_4BYTE_SEQUENCE:
      return PACKET_4BYTE_SEQUENCE_NUMBER;
    case PACKET_FLAGS_2BYTE_SEQUENCE:
      return PACKET_2BYTE_SEQUENCE_NUMBER;
    case PACKET_FLAGS_1BYTE_SEQUENCE:
      return PACKET_1BYTE_SEQUENCE_NUMBER;
    default:
      LOG(DFATAL) << "Unreachable case statement.";
      return PACKET_6BYTE_SEQUENCE_NUMBER;
  }
}

// static
QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
    QuicPacketSequenceNumber sequence_number) {
  if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
    return PACKET_1BYTE_SEQUENCE_NUMBER;
  } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
    return PACKET_2BYTE_SEQUENCE_NUMBER;
  } else if (sequence_number <
             GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
    return PACKET_4BYTE_SEQUENCE_NUMBER;
  } else {
    return PACKET_6BYTE_SEQUENCE_NUMBER;
  }
}

// static
uint8 QuicFramer::GetSequenceNumberFlags(
    QuicSequenceNumberLength sequence_number_length) {
  switch (sequence_number_length) {
    case PACKET_1BYTE_SEQUENCE_NUMBER:
      return PACKET_FLAGS_1BYTE_SEQUENCE;
    case PACKET_2BYTE_SEQUENCE_NUMBER:
      return PACKET_FLAGS_2BYTE_SEQUENCE;
    case PACKET_4BYTE_SEQUENCE_NUMBER:
      return PACKET_FLAGS_4BYTE_SEQUENCE;
    case PACKET_6BYTE_SEQUENCE_NUMBER:
      return PACKET_FLAGS_6BYTE_SEQUENCE;
    default:
      LOG(DFATAL) << "Unreachable case statement.";
      return PACKET_FLAGS_6BYTE_SEQUENCE;
  }
}

// static
QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
    const QuicAckFrame& frame) {
  const ReceivedPacketInfo& received_info = frame.received_info;

  AckFrameInfo ack_info;
  if (!received_info.missing_packets.empty()) {
    DCHECK_GE(received_info.largest_observed,
              *received_info.missing_packets.rbegin());
    size_t cur_range_length = 0;
    SequenceNumberSet::const_iterator iter =
        received_info.missing_packets.begin();
    QuicPacketSequenceNumber last_missing = *iter;
    ++iter;
    for (; iter != received_info.missing_packets.end(); ++iter) {
      if (cur_range_length != numeric_limits<uint8>::max() &&
          *iter == (last_missing + 1)) {
        ++cur_range_length;
      } else {
        ack_info.nack_ranges[last_missing - cur_range_length]
            = cur_range_length;
        cur_range_length = 0;
      }
      ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
      last_missing = *iter;
    }
    // Include the last nack range.
    ack_info.nack_ranges[last_missing - cur_range_length] = cur_range_length;
    // Include the range to the largest observed.
    ack_info.max_delta = max(ack_info.max_delta,
                             received_info.largest_observed - last_missing);
  }
  return ack_info;
}

bool QuicFramer::ProcessPacketHeader(
    QuicPacketHeader* header,
    const QuicEncryptedPacket& packet) {
  if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
                                   &header->packet_sequence_number)) {
    set_detailed_error("Unable to read sequence number.");
    return RaiseError(QUIC_INVALID_PACKET_HEADER);
  }

  if (header->packet_sequence_number == 0u) {
    set_detailed_error("Packet sequence numbers cannot be 0.");
    return RaiseError(QUIC_INVALID_PACKET_HEADER);
  }

  if (!visitor_->OnUnauthenticatedHeader(*header)) {
    return false;
  }

  if (!DecryptPayload(*header, packet)) {
    set_detailed_error("Unable to decrypt payload.");
    return RaiseError(QUIC_DECRYPTION_FAILURE);
  }

  uint8 private_flags;
  if (!reader_->ReadBytes(&private_flags, 1)) {
    set_detailed_error("Unable to read private flags.");
    return RaiseError(QUIC_INVALID_PACKET_HEADER);
  }

  if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
    set_detailed_error("Illegal private flags value.");
    return RaiseError(QUIC_INVALID_PACKET_HEADER);
  }

  header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
  header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;

  if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
    header->is_in_fec_group = IN_FEC_GROUP;
    uint8 first_fec_protected_packet_offset;
    if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
      set_detailed_error("Unable to read first fec protected packet offset.");
      return RaiseError(QUIC_INVALID_PACKET_HEADER);
    }
    if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
      set_detailed_error("First fec protected packet offset must be less "
                         "than the sequence number.");
      return RaiseError(QUIC_INVALID_PACKET_HEADER);
    }
    header->fec_group =
        header->packet_sequence_number - first_fec_protected_packet_offset;
  }

  header->entropy_hash = GetPacketEntropyHash(*header);
  // Set the last sequence number after we have decrypted the packet
  // so we are confident is not attacker controlled.
  last_sequence_number_ = header->packet_sequence_number;
  return true;
}

bool QuicFramer::ProcessPacketSequenceNumber(
    QuicSequenceNumberLength sequence_number_length,
    QuicPacketSequenceNumber* sequence_number) {
  QuicPacketSequenceNumber wire_sequence_number = 0u;
  if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
    return false;
  }

  // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
  // in case the first guess is incorrect.
  *sequence_number =
      CalculatePacketSequenceNumberFromWire(sequence_number_length,
                                            wire_sequence_number);
  return true;
}

bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
  if (reader_->IsDoneReading()) {
    set_detailed_error("Packet has no frames.");
    return RaiseError(QUIC_MISSING_PAYLOAD);
  }
  while (!reader_->IsDoneReading()) {
    uint8 frame_type;
    if (!reader_->ReadBytes(&frame_type, 1)) {
      set_detailed_error("Unable to read frame type.");
      return RaiseError(QUIC_INVALID_FRAME_DATA);
    }

    if (frame_type & kQuicFrameTypeSpecialMask) {
      // Stream Frame
      if (frame_type & kQuicFrameTypeStreamMask) {
        QuicStreamFrame frame;
        if (!ProcessStreamFrame(frame_type, &frame)) {
          return RaiseError(QUIC_INVALID_STREAM_DATA);
        }
        if (!visitor_->OnStreamFrame(frame)) {
          DVLOG(1) << "Visitor asked to stop further processing.";
          // Returning true since there was no parsing error.
          return true;
        }
        continue;
      }

      // Ack Frame
      if (frame_type & kQuicFrameTypeAckMask) {
        QuicAckFrame frame;
        if (!ProcessAckFrame(header, frame_type, &frame)) {
          return RaiseError(QUIC_INVALID_ACK_DATA);
        }
        if (!visitor_->OnAckFrame(frame)) {
          DVLOG(1) << "Visitor asked to stop further processing.";
          // Returning true since there was no parsing error.
          return true;
        }
        continue;
      }

      // Congestion Feedback Frame
      if (frame_type & kQuicFrameTypeCongestionFeedbackMask) {
        QuicCongestionFeedbackFrame frame;
        if (!ProcessQuicCongestionFeedbackFrame(&frame)) {
          return RaiseError(QUIC_INVALID_CONGESTION_FEEDBACK_DATA);
        }
        if (!visitor_->OnCongestionFeedbackFrame(frame)) {
          DVLOG(1) << "Visitor asked to stop further processing.";
          // Returning true since there was no parsing error.
          return true;
        }
        continue;
      }

      // This was a special frame type that did not match any
      // of the known ones. Error.
      set_detailed_error("Illegal frame type.");
      DLOG(WARNING) << "Illegal frame type: "
                    << static_cast<int>(frame_type);
      return RaiseError(QUIC_INVALID_FRAME_DATA);
    }

    switch (frame_type) {
      case PADDING_FRAME:
        // We're done with the packet.
        return true;

      case RST_STREAM_FRAME: {
        QuicRstStreamFrame frame;
        if (!ProcessRstStreamFrame(&frame)) {
          return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
        }
        if (!visitor_->OnRstStreamFrame(frame)) {
          DVLOG(1) << "Visitor asked to stop further processing.";
          // Returning true since there was no parsing error.
          return true;
        }
        continue;
      }

      case CONNECTION_CLOSE_FRAME: {
        QuicConnectionCloseFrame frame;
        if (!ProcessConnectionCloseFrame(&frame)) {
          return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
        }

        if (!visitor_->OnConnectionCloseFrame(frame)) {
          DVLOG(1) << "Visitor asked to stop further processing.";
          // Returning true since there was no parsing error.
          return true;
        }
        continue;
      }

      case GOAWAY_FRAME: {
        QuicGoAwayFrame goaway_frame;
        if (!ProcessGoAwayFrame(&goaway_frame)) {
          return RaiseError(QUIC_INVALID_GOAWAY_DATA);
        }
        if (!visitor_->OnGoAwayFrame(goaway_frame)) {
          DVLOG(1) << "Visitor asked to stop further processing.";
          // Returning true since there was no parsing error.
          return true;
        }
        continue;
      }

      default:
        set_detailed_error("Illegal frame type.");
        DLOG(WARNING) << "Illegal frame type: "
                      << static_cast<int>(frame_type);
        return RaiseError(QUIC_INVALID_FRAME_DATA);
    }
  }

  return true;
}

bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
                                    QuicStreamFrame* frame) {
  uint8 stream_flags = frame_type;

  stream_flags &= ~kQuicFrameTypeStreamMask;

  // Read from right to left: StreamID, Offset, Data Length, Fin.
  const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
  stream_flags >>= kQuicStreamIdShift;

  uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
  // There is no encoding for 1 byte, only 0 and 2 through 8.
  if (offset_length > 0) {
    offset_length += 1;
  }
  stream_flags >>= kQuicStreamOffsetShift;

  bool has_data_length =
      (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
  stream_flags >>= kQuicStreamDataLengthShift;

  frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;

  frame->stream_id = 0;
  if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
    set_detailed_error("Unable to read stream_id.");
    return false;
  }

  frame->offset = 0;
  if (!reader_->ReadBytes(&frame->offset, offset_length)) {
    set_detailed_error("Unable to read offset.");
    return false;
  }

  StringPiece frame_data;
  if (has_data_length) {
    if (!reader_->ReadStringPiece16(&frame_data)) {
      set_detailed_error("Unable to read frame data.");
      return false;
    }
  } else {
    if (!reader_->ReadStringPiece(&frame_data, reader_->BytesRemaining())) {
      set_detailed_error("Unable to read frame data.");
      return false;
    }
  }
  // Point frame to the right data.
  frame->data.Clear();
  if (!frame_data.empty()) {
    frame->data.Append(const_cast<char*>(frame_data.data()), frame_data.size());
  }

  return true;
}

bool QuicFramer::ProcessAckFrame(const QuicPacketHeader& header,
                                 uint8 frame_type,
                                 QuicAckFrame* frame) {
  if (!ProcessSentInfo(header, &frame->sent_info)) {
    return false;
  }
  if (!ProcessReceivedInfo(frame_type, &frame->received_info)) {
    return false;
  }
  return true;
}

bool QuicFramer::ProcessReceivedInfo(uint8 frame_type,
                                     ReceivedPacketInfo* received_info) {
  // Determine the three lengths from the frame type: largest observed length,
  // missing sequence number length, and missing range length.
  const QuicSequenceNumberLength missing_sequence_number_length =
      ReadSequenceNumberLength(frame_type);
  frame_type >>= kQuicSequenceNumberLengthShift;
  const QuicSequenceNumberLength largest_observed_sequence_number_length =
      ReadSequenceNumberLength(frame_type);
  frame_type >>= kQuicSequenceNumberLengthShift;
  received_info->is_truncated = frame_type & kQuicAckTruncatedMask;
  frame_type >>= kQuicAckTruncatedShift;
  bool has_nacks = frame_type & kQuicHasNacksMask;

  if (!reader_->ReadBytes(&received_info->entropy_hash, 1)) {
    set_detailed_error("Unable to read entropy hash for received packets.");
    return false;
  }

  if (!reader_->ReadBytes(&received_info->largest_observed,
                          largest_observed_sequence_number_length)) {
    set_detailed_error("Unable to read largest observed.");
    return false;
  }

  uint64 delta_time_largest_observed_us;
  if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
    set_detailed_error("Unable to read delta time largest observed.");
    return false;
  }

  if (delta_time_largest_observed_us == kUFloat16MaxValue) {
    received_info->delta_time_largest_observed = QuicTime::Delta::Infinite();
  } else {
    received_info->delta_time_largest_observed =
        QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
  }

  if (!has_nacks) {
    return true;
  }

  uint8 num_missing_ranges;
  if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
    set_detailed_error("Unable to read num missing packet ranges.");
    return false;
  }

  QuicPacketSequenceNumber last_sequence_number =
      received_info->largest_observed;
  for (size_t i = 0; i < num_missing_ranges; ++i) {
    QuicPacketSequenceNumber missing_delta = 0;
    if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
      set_detailed_error("Unable to read missing sequence number delta.");
      return false;
    }
    last_sequence_number -= missing_delta;
    QuicPacketSequenceNumber range_length = 0;
    if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
      set_detailed_error("Unable to read missing sequence number range.");
      return false;
    }
    for (size_t i = 0; i <= range_length; ++i) {
      received_info->missing_packets.insert(last_sequence_number - i);
    }
    // Subtract an extra 1 to ensure ranges are represented efficiently and
    // can't overlap by 1 sequence number.  This allows a missing_delta of 0
    // to represent an adjacent nack range.
    last_sequence_number -= (range_length + 1);
  }

  return true;
}

bool QuicFramer::ProcessSentInfo(const QuicPacketHeader& header,
                                 SentPacketInfo* sent_info) {
  if (!reader_->ReadBytes(&sent_info->entropy_hash, 1)) {
    set_detailed_error("Unable to read entropy hash for sent packets.");
    return false;
  }

  QuicPacketSequenceNumber least_unacked_delta = 0;
  if (!reader_->ReadBytes(&least_unacked_delta,
                          header.public_header.sequence_number_length)) {
    set_detailed_error("Unable to read least unacked delta.");
    return false;
  }
  DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
  sent_info->least_unacked =
      header.packet_sequence_number - least_unacked_delta;

  return true;
}

bool QuicFramer::ProcessQuicCongestionFeedbackFrame(
    QuicCongestionFeedbackFrame* frame) {
  uint8 feedback_type;
  if (!reader_->ReadBytes(&feedback_type, 1)) {
    set_detailed_error("Unable to read congestion feedback type.");
    return false;
  }
  frame->type =
      static_cast<CongestionFeedbackType>(feedback_type);

  switch (frame->type) {
    case kInterArrival: {
      CongestionFeedbackMessageInterArrival* inter_arrival =
          &frame->inter_arrival;
      if (!reader_->ReadUInt16(
              &inter_arrival->accumulated_number_of_lost_packets)) {
        set_detailed_error(
            "Unable to read accumulated number of lost packets.");
        return false;
      }
      uint8 num_received_packets;
      if (!reader_->ReadBytes(&num_received_packets, 1)) {
        set_detailed_error("Unable to read num received packets.");
        return false;
      }

      if (num_received_packets > 0u) {
        uint64 smallest_received;
        if (!ProcessPacketSequenceNumber(PACKET_6BYTE_SEQUENCE_NUMBER,
                                         &smallest_received)) {
          set_detailed_error("Unable to read smallest received.");
          return false;
        }

        uint64 time_received_us;
        if (!reader_->ReadUInt64(&time_received_us)) {
          set_detailed_error("Unable to read time received.");
          return false;
        }
        QuicTime time_received = creation_time_.Add(
            QuicTime::Delta::FromMicroseconds(time_received_us));

        inter_arrival->received_packet_times.insert(
            make_pair(smallest_received, time_received));

        for (uint8 i = 0; i < num_received_packets - 1; ++i) {
          uint16 sequence_delta;
          if (!reader_->ReadUInt16(&sequence_delta)) {
            set_detailed_error(
                "Unable to read sequence delta in received packets.");
            return false;
          }

          int32 time_delta_us;
          if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
            set_detailed_error(
                "Unable to read time delta in received packets.");
            return false;
          }
          QuicPacketSequenceNumber packet = smallest_received + sequence_delta;
          inter_arrival->received_packet_times.insert(
              make_pair(packet, time_received.Add(
                  QuicTime::Delta::FromMicroseconds(time_delta_us))));
        }
      }
      break;
    }
    case kFixRate: {
      uint32 bitrate = 0;
      if (!reader_->ReadUInt32(&bitrate)) {
        set_detailed_error("Unable to read bitrate.");
        return false;
      }
      frame->fix_rate.bitrate = QuicBandwidth::FromBytesPerSecond(bitrate);
      break;
    }
    case kTCP: {
      CongestionFeedbackMessageTCP* tcp = &frame->tcp;
      if (!reader_->ReadUInt16(&tcp->accumulated_number_of_lost_packets)) {
        set_detailed_error(
            "Unable to read accumulated number of lost packets.");
        return false;
      }
      // TODO(ianswett): Remove receive window, since it's constant.
      uint16 receive_window = 0;
      if (!reader_->ReadUInt16(&receive_window)) {
        set_detailed_error("Unable to read receive window.");
        return false;
      }
      // Simple bit packing, don't send the 4 least significant bits.
      tcp->receive_window = static_cast<QuicByteCount>(receive_window) << 4;
      break;
    }
    default:
      set_detailed_error("Illegal congestion feedback type.");
      DLOG(WARNING) << "Illegal congestion feedback type: "
                    << frame->type;
      return RaiseError(QUIC_INVALID_FRAME_DATA);
  }

  return true;
}

bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
  if (!reader_->ReadUInt32(&frame->stream_id)) {
    set_detailed_error("Unable to read stream_id.");
    return false;
  }

  uint32 error_code;
  if (!reader_->ReadUInt32(&error_code)) {
    set_detailed_error("Unable to read rst stream error code.");
    return false;
  }

  if (error_code >= QUIC_STREAM_LAST_ERROR ||
      error_code < QUIC_STREAM_NO_ERROR) {
    set_detailed_error("Invalid rst stream error code.");
    return false;
  }

  frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);

  StringPiece error_details;
  if (!reader_->ReadStringPiece16(&error_details)) {
    set_detailed_error("Unable to read rst stream error details.");
    return false;
  }
  frame->error_details = error_details.as_string();

  return true;
}

bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
  uint32 error_code;
  if (!reader_->ReadUInt32(&error_code)) {
    set_detailed_error("Unable to read connection close error code.");
    return false;
  }

  if (error_code >= QUIC_LAST_ERROR ||
         error_code < QUIC_NO_ERROR) {
    set_detailed_error("Invalid error code.");
    return false;
  }

  frame->error_code = static_cast<QuicErrorCode>(error_code);

  StringPiece error_details;
  if (!reader_->ReadStringPiece16(&error_details)) {
    set_detailed_error("Unable to read connection close error details.");
    return false;
  }
  frame->error_details = error_details.as_string();

  return true;
}

bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
  uint32 error_code;
  if (!reader_->ReadUInt32(&error_code)) {
    set_detailed_error("Unable to read go away error code.");
    return false;
  }
  frame->error_code = static_cast<QuicErrorCode>(error_code);

  if (error_code >= QUIC_LAST_ERROR ||
      error_code < QUIC_NO_ERROR) {
    set_detailed_error("Invalid error code.");
    return false;
  }

  uint32 stream_id;
  if (!reader_->ReadUInt32(&stream_id)) {
    set_detailed_error("Unable to read last good stream id.");
    return false;
  }
  frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);

  StringPiece reason_phrase;
  if (!reader_->ReadStringPiece16(&reason_phrase)) {
    set_detailed_error("Unable to read goaway reason.");
    return false;
  }
  frame->reason_phrase = reason_phrase.as_string();

  return true;
}

// static
StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
    const QuicEncryptedPacket& encrypted,
    QuicGuidLength guid_length,
    bool includes_version,
    QuicSequenceNumberLength sequence_number_length) {
  return StringPiece(encrypted.data() + kStartOfHashData,
                     GetStartOfEncryptedData(
                         guid_length, includes_version, sequence_number_length)
                     - kStartOfHashData);
}

void QuicFramer::SetDecrypter(QuicDecrypter* decrypter) {
  DCHECK(alternative_decrypter_.get() == NULL);
  decrypter_.reset(decrypter);
}

void QuicFramer::SetAlternativeDecrypter(QuicDecrypter* decrypter,
                                         bool latch_once_used) {
  alternative_decrypter_.reset(decrypter);
  alternative_decrypter_latch_ = latch_once_used;
}

const QuicDecrypter* QuicFramer::decrypter() const {
  return decrypter_.get();
}

const QuicDecrypter* QuicFramer::alternative_decrypter() const {
  return alternative_decrypter_.get();
}

void QuicFramer::SetEncrypter(EncryptionLevel level,
                              QuicEncrypter* encrypter) {
  DCHECK_GE(level, 0);
  DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
  encrypter_[level].reset(encrypter);
}

const QuicEncrypter* QuicFramer::encrypter(EncryptionLevel level) const {
  DCHECK_GE(level, 0);
  DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
  DCHECK(encrypter_[level].get() != NULL);
  return encrypter_[level].get();
}

void QuicFramer::SwapCryptersForTest(QuicFramer* other) {
  for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
    encrypter_[i].swap(other->encrypter_[i]);
  }
  decrypter_.swap(other->decrypter_);
  alternative_decrypter_.swap(other->alternative_decrypter_);

  const bool other_latch = other->alternative_decrypter_latch_;
  other->alternative_decrypter_latch_ = alternative_decrypter_latch_;
  alternative_decrypter_latch_ = other_latch;
}

QuicEncryptedPacket* QuicFramer::EncryptPacket(
    EncryptionLevel level,
    QuicPacketSequenceNumber packet_sequence_number,
    const QuicPacket& packet) {
  DCHECK(encrypter_[level].get() != NULL);

  scoped_ptr<QuicData> out(encrypter_[level]->EncryptPacket(
      packet_sequence_number, packet.AssociatedData(), packet.Plaintext()));
  if (out.get() == NULL) {
    RaiseError(QUIC_ENCRYPTION_FAILURE);
    return NULL;
  }
  StringPiece header_data = packet.BeforePlaintext();
  size_t len =  header_data.length() + out->length();
  char* buffer = new char[len];
  // TODO(rch): eliminate this buffer copy by passing in a buffer to Encrypt().
  memcpy(buffer, header_data.data(), header_data.length());
  memcpy(buffer + header_data.length(), out->data(), out->length());
  return new QuicEncryptedPacket(buffer, len, true);
}

size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
  // In order to keep the code simple, we don't have the current encryption
  // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
  size_t min_plaintext_size = ciphertext_size;

  for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
    if (encrypter_[i].get() != NULL) {
      size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
      if (size < min_plaintext_size) {
        min_plaintext_size = size;
      }
    }
  }

  return min_plaintext_size;
}

bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
                                const QuicEncryptedPacket& packet) {
  StringPiece encrypted;
  if (!reader_->ReadStringPiece(&encrypted, reader_->BytesRemaining())) {
    return false;
  }
  DCHECK(decrypter_.get() != NULL);
  decrypted_.reset(decrypter_->DecryptPacket(
      header.packet_sequence_number,
      GetAssociatedDataFromEncryptedPacket(
          packet,
          header.public_header.guid_length,
          header.public_header.version_flag,
          header.public_header.sequence_number_length),
      encrypted));
  if  (decrypted_.get() == NULL && alternative_decrypter_.get() != NULL) {
    decrypted_.reset(alternative_decrypter_->DecryptPacket(
        header.packet_sequence_number,
        GetAssociatedDataFromEncryptedPacket(
            packet,
            header.public_header.guid_length,
            header.public_header.version_flag,
            header.public_header.sequence_number_length),
        encrypted));
    if (decrypted_.get() != NULL) {
      if (alternative_decrypter_latch_) {
        // Switch to the alternative decrypter and latch so that we cannot
        // switch back.
        decrypter_.reset(alternative_decrypter_.release());
      } else {
        // Switch the alternative decrypter so that we use it first next time.
        decrypter_.swap(alternative_decrypter_);
      }
    }
  }

  if  (decrypted_.get() == NULL) {
    return false;
  }

  reader_.reset(new QuicDataReader(decrypted_->data(), decrypted_->length()));
  return true;
}

size_t QuicFramer::GetAckFrameSize(
    const QuicAckFrame& ack,
    QuicSequenceNumberLength sequence_number_length) {
  AckFrameInfo ack_info = GetAckFrameInfo(ack);
  QuicSequenceNumberLength largest_observed_length =
      GetMinSequenceNumberLength(ack.received_info.largest_observed);
  QuicSequenceNumberLength missing_sequence_number_length =
      GetMinSequenceNumberLength(ack_info.max_delta);

  return GetMinAckFrameSize(quic_version_,
                            sequence_number_length,
                            largest_observed_length) +
      (ack_info.nack_ranges.empty() ? 0 : kNumberOfMissingPacketsSize) +
       ack_info.nack_ranges.size() *
           (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
}

size_t QuicFramer::ComputeFrameLength(
    const QuicFrame& frame,
    bool last_frame_in_packet,
    QuicSequenceNumberLength sequence_number_length) {
  switch (frame.type) {
    case STREAM_FRAME:
      return GetMinStreamFrameSize(quic_version_,
                                   frame.stream_frame->stream_id,
                                   frame.stream_frame->offset,
                                   last_frame_in_packet) +
          frame.stream_frame->data.TotalBufferSize();
    case ACK_FRAME: {
      return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
    }
    case CONGESTION_FEEDBACK_FRAME: {
      size_t len = kQuicFrameTypeSize;
      const QuicCongestionFeedbackFrame& congestion_feedback =
          *frame.congestion_feedback_frame;
      len += 1;  // Congestion feedback type.

      switch (congestion_feedback.type) {
        case kInterArrival: {
          const CongestionFeedbackMessageInterArrival& inter_arrival =
              congestion_feedback.inter_arrival;
          len += 2;
          len += 1;  // Number received packets.
          if (inter_arrival.received_packet_times.size() > 0) {
            len += PACKET_6BYTE_SEQUENCE_NUMBER;  // Smallest received.
            len += 8;  // Time.
            // 2 bytes per sequence number delta plus 4 bytes per delta time.
            len += PACKET_6BYTE_SEQUENCE_NUMBER *
                (inter_arrival.received_packet_times.size() - 1);
          }
          break;
        }
        case kFixRate:
          len += 4;
          break;
        case kTCP:
          len += 4;
          break;
        default:
          set_detailed_error("Illegal feedback type.");
          DVLOG(1) << "Illegal feedback type: " << congestion_feedback.type;
          break;
      }
      return len;
    }
    case RST_STREAM_FRAME:
      return GetMinRstStreamFrameSize() +
          frame.rst_stream_frame->error_details.size();
    case CONNECTION_CLOSE_FRAME:
      return GetMinConnectionCloseFrameSize() +
          frame.connection_close_frame->error_details.size();
    case GOAWAY_FRAME:
      return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
    case PADDING_FRAME:
      DCHECK(false);
      return 0;
    case NUM_FRAME_TYPES:
      DCHECK(false);
      return 0;
  }

  // Not reachable, but some Chrome compilers can't figure that out.  *sigh*
  DCHECK(false);
  return 0;
}

bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
                                bool last_frame_in_packet,
                                QuicDataWriter* writer) {
  uint8 type_byte = 0;
  switch (frame.type) {
    case STREAM_FRAME: {
      if (frame.stream_frame == NULL) {
        LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
      }
      // Fin bit.
      type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;

      // Data Length bit.
      type_byte <<= kQuicStreamDataLengthShift;
      type_byte |= last_frame_in_packet ? 0 : kQuicStreamDataLengthMask;

      // Offset 3 bits.
      type_byte <<= kQuicStreamOffsetShift;
      const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
      if (offset_len > 0) {
        type_byte |= offset_len - 1;
      }

      // stream id 2 bits.
      type_byte <<= kQuicStreamIdShift;
      type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
      type_byte |= kQuicFrameTypeStreamMask;  // Set Stream Frame Type to 1.
      break;
    }
    case ACK_FRAME:
      return true;
    case CONGESTION_FEEDBACK_FRAME: {
      // TODO(ianswett): Use extra 5 bits in the congestion feedback framing.
      type_byte = kQuicFrameTypeCongestionFeedbackMask;
      break;
    }
    default:
      type_byte = frame.type;
      break;
  }

  return writer->WriteUInt8(type_byte);
}

// static
bool QuicFramer::AppendPacketSequenceNumber(
    QuicSequenceNumberLength sequence_number_length,
    QuicPacketSequenceNumber packet_sequence_number,
    QuicDataWriter* writer) {
  // Ensure the entire sequence number can be written.
  if (writer->capacity() - writer->length() <
      static_cast<size_t>(sequence_number_length)) {
    return false;
  }
  switch (sequence_number_length) {
    case PACKET_1BYTE_SEQUENCE_NUMBER:
      return writer->WriteUInt8(
          packet_sequence_number & k1ByteSequenceNumberMask);
      break;
    case PACKET_2BYTE_SEQUENCE_NUMBER:
      return writer->WriteUInt16(
          packet_sequence_number & k2ByteSequenceNumberMask);
      break;
    case PACKET_4BYTE_SEQUENCE_NUMBER:
      return writer->WriteUInt32(
          packet_sequence_number & k4ByteSequenceNumberMask);
      break;
    case PACKET_6BYTE_SEQUENCE_NUMBER:
      return writer->WriteUInt48(
          packet_sequence_number & k6ByteSequenceNumberMask);
      break;
    default:
      NOTREACHED() << "sequence_number_length: " << sequence_number_length;
      return false;
  }
}

bool QuicFramer::AppendStreamFramePayload(
    const QuicStreamFrame& frame,
    bool last_frame_in_packet,
    QuicDataWriter* writer) {
  if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
    return false;
  }
  if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
    return false;
  }
  if (!last_frame_in_packet) {
    if (!writer->WriteUInt16(frame.data.TotalBufferSize())) {
      return false;
    }
  }

  if (!writer->WriteIOVector(frame.data)) {
    return false;
  }
  return true;
}

// static
bool QuicFramer::HasVersionFlag(const QuicEncryptedPacket& packet) {
  return packet.length() > 0 &&
      (packet.data()[0] & PACKET_PUBLIC_FLAGS_VERSION) != 0;
}

// static
QuicPacketSequenceNumber QuicFramer::CalculateLargestObserved(
    const SequenceNumberSet& missing_packets,
    SequenceNumberSet::const_iterator largest_written) {
  SequenceNumberSet::const_iterator it = largest_written;
  QuicPacketSequenceNumber previous_missing = *it;
  ++it;

  // See if the next thing is a gap in the missing packets: if it's a
  // non-missing packet we can return it.
  if (it != missing_packets.end() && previous_missing + 1 != *it) {
    return *it - 1;
  }

  // Otherwise return the largest missing packet, as indirectly observed.
  return *largest_written;
}

void QuicFramer::set_version(const QuicVersion version) {
  DCHECK(IsSupportedVersion(version));
  quic_version_ = version;
}

bool QuicFramer::AppendAckFramePayloadAndTypeByte(
    const QuicPacketHeader& header,
    const QuicAckFrame& frame,
    QuicDataWriter* writer) {
  AckFrameInfo ack_info = GetAckFrameInfo(frame);
  QuicPacketSequenceNumber ack_largest_observed =
      frame.received_info.largest_observed;
  QuicSequenceNumberLength largest_observed_length =
      GetMinSequenceNumberLength(ack_largest_observed);
  QuicSequenceNumberLength missing_sequence_number_length =
      GetMinSequenceNumberLength(ack_info.max_delta);
  // Determine whether we need to truncate ranges.
  size_t available_range_bytes = writer->capacity() - writer->length() -
      GetMinAckFrameSize(quic_version_,
                         header.public_header.sequence_number_length,
                         largest_observed_length);
  size_t max_num_ranges = available_range_bytes /
      (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
  max_num_ranges =
      min(static_cast<size_t>(numeric_limits<uint8>::max()), max_num_ranges);
  bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
  DVLOG_IF(1, truncated) << "Truncating ack from "
                         << ack_info.nack_ranges.size() << " ranges to "
                         << max_num_ranges;

  // Write out the type byte by setting the low order bits and doing shifts
  // to make room for the next bit flags to be set.
  // Whether there are any nacks.
  uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;

  // truncating bit.
  type_byte <<= kQuicAckTruncatedShift;
  type_byte |= truncated ? kQuicAckTruncatedMask : 0;

  // Largest observed sequence number length.
  type_byte <<= kQuicSequenceNumberLengthShift;
  type_byte |= GetSequenceNumberFlags(largest_observed_length);

  // Missing sequence number length.
  type_byte <<= kQuicSequenceNumberLengthShift;
  type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);

  type_byte |= kQuicFrameTypeAckMask;

  if (!writer->WriteUInt8(type_byte)) {
    return false;
  }

  // TODO(satyamshekhar): Decide how often we really should send this
  // entropy_hash update.
  if (!writer->WriteUInt8(frame.sent_info.entropy_hash)) {
    return false;
  }

  DCHECK_GE(header.packet_sequence_number, frame.sent_info.least_unacked);
  const QuicPacketSequenceNumber least_unacked_delta =
      header.packet_sequence_number - frame.sent_info.least_unacked;
  if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
                                  least_unacked_delta, writer)) {
    return false;
  }

  const ReceivedPacketInfo& received_info = frame.received_info;
  QuicPacketEntropyHash ack_entropy_hash = received_info.entropy_hash;
  NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
  if (truncated) {
    // Skip the nack ranges which the truncated ack won't include and set
    // a correct largest observed for the truncated ack.
    for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
         ++i) {
      ++ack_iter;
    }
    // If the last range is followed by acks, include them.
    // If the last range is followed by another range, specify the end of the
    // range as the largest_observed.
    ack_largest_observed = ack_iter->first - 1;
    // Also update the entropy so it matches the largest observed.
    ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
    ++ack_iter;
  }

  if (!writer->WriteUInt8(ack_entropy_hash)) {
    return false;
  }

  if (!AppendPacketSequenceNumber(largest_observed_length,
                                  ack_largest_observed, writer)) {
    return false;
  }

  uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
  if (!received_info.delta_time_largest_observed.IsInfinite()) {
    DCHECK_LE(0u,
              frame.received_info.delta_time_largest_observed.ToMicroseconds());
    delta_time_largest_observed_us =
        received_info.delta_time_largest_observed.ToMicroseconds();
  }

  if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
    return false;
  }

  if (ack_info.nack_ranges.empty()) {
    return true;
  }

  const uint8 num_missing_ranges =
      min(ack_info.nack_ranges.size(), max_num_ranges);
  if (!writer->WriteBytes(&num_missing_ranges, 1)) {
    return false;
  }

  int num_ranges_written = 0;
  QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
  for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
    // Calculate the delta to the last number in the range.
    QuicPacketSequenceNumber missing_delta =
        last_sequence_written - (ack_iter->first + ack_iter->second);
    if (!AppendPacketSequenceNumber(missing_sequence_number_length,
                                    missing_delta, writer)) {
      return false;
    }
    if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
                                    ack_iter->second, writer)) {
      return false;
    }
    // Subtract 1 so a missing_delta of 0 means an adjacent range.
    last_sequence_written = ack_iter->first - 1;
    ++num_ranges_written;
  }

  DCHECK_EQ(num_missing_ranges, num_ranges_written);
  return true;
}

bool QuicFramer::AppendQuicCongestionFeedbackFramePayload(
    const QuicCongestionFeedbackFrame& frame,
    QuicDataWriter* writer) {
  if (!writer->WriteBytes(&frame.type, 1)) {
    return false;
  }

  switch (frame.type) {
    case kInterArrival: {
      const CongestionFeedbackMessageInterArrival& inter_arrival =
          frame.inter_arrival;
      if (!writer->WriteUInt16(
              inter_arrival.accumulated_number_of_lost_packets)) {
        return false;
      }
      DCHECK_GE(numeric_limits<uint8>::max(),
                inter_arrival.received_packet_times.size());
      if (inter_arrival.received_packet_times.size() >
          numeric_limits<uint8>::max()) {
        return false;
      }
      // TODO(ianswett): Make num_received_packets a varint.
      uint8 num_received_packets =
          inter_arrival.received_packet_times.size();
      if (!writer->WriteBytes(&num_received_packets, 1)) {
        return false;
      }
      if (num_received_packets > 0) {
        TimeMap::const_iterator it =
            inter_arrival.received_packet_times.begin();

        QuicPacketSequenceNumber lowest_sequence = it->first;
        if (!AppendPacketSequenceNumber(PACKET_6BYTE_SEQUENCE_NUMBER,
                                        lowest_sequence, writer)) {
          return false;
        }

        QuicTime lowest_time = it->second;
        if (!writer->WriteUInt64(
                lowest_time.Subtract(creation_time_).ToMicroseconds())) {
          return false;
        }

        for (++it; it != inter_arrival.received_packet_times.end(); ++it) {
          QuicPacketSequenceNumber sequence_delta = it->first - lowest_sequence;
          DCHECK_GE(numeric_limits<uint16>::max(), sequence_delta);
          if (sequence_delta > numeric_limits<uint16>::max()) {
            return false;
          }
          if (!writer->WriteUInt16(static_cast<uint16>(sequence_delta))) {
            return false;
          }

          int32 time_delta_us =
              it->second.Subtract(lowest_time).ToMicroseconds();
          if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
            return false;
          }
        }
      }
      break;
    }
    case kFixRate: {
      const CongestionFeedbackMessageFixRate& fix_rate =
          frame.fix_rate;
      if (!writer->WriteUInt32(fix_rate.bitrate.ToBytesPerSecond())) {
        return false;
      }
      break;
    }
    case kTCP: {
      const CongestionFeedbackMessageTCP& tcp = frame.tcp;
      DCHECK_LE(tcp.receive_window, 1u << 20);
      // Simple bit packing, don't send the 4 least significant bits.
      uint16 receive_window = static_cast<uint16>(tcp.receive_window >> 4);
      if (!writer->WriteUInt16(tcp.accumulated_number_of_lost_packets)) {
        return false;
      }
      if (!writer->WriteUInt16(receive_window)) {
        return false;
      }
      break;
    }
    default:
      return false;
  }

  return true;
}

bool QuicFramer::AppendRstStreamFramePayload(
        const QuicRstStreamFrame& frame,
        QuicDataWriter* writer) {
  if (!writer->WriteUInt32(frame.stream_id)) {
    return false;
  }

  uint32 error_code = static_cast<uint32>(frame.error_code);
  if (!writer->WriteUInt32(error_code)) {
    return false;
  }

  if (!writer->WriteStringPiece16(frame.error_details)) {
    return false;
  }
  return true;
}

bool QuicFramer::AppendConnectionCloseFramePayload(
    const QuicConnectionCloseFrame& frame,
    QuicDataWriter* writer) {
  uint32 error_code = static_cast<uint32>(frame.error_code);
  if (!writer->WriteUInt32(error_code)) {
    return false;
  }
  if (!writer->WriteStringPiece16(frame.error_details)) {
    return false;
  }
  return true;
}

bool QuicFramer::AppendGoAwayFramePayload(const QuicGoAwayFrame& frame,
                                          QuicDataWriter* writer) {
  uint32 error_code = static_cast<uint32>(frame.error_code);
  if (!writer->WriteUInt32(error_code)) {
    return false;
  }
  uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
  if (!writer->WriteUInt32(stream_id)) {
    return false;
  }
  if (!writer->WriteStringPiece16(frame.reason_phrase)) {
    return false;
  }
  return true;
}

bool QuicFramer::RaiseError(QuicErrorCode error) {
  DVLOG(1) << detailed_error_;
  set_error(error);
  visitor_->OnError(this);
  reader_.reset(NULL);
  return false;
}

}  // namespace net