summaryrefslogtreecommitdiff
path: root/chromium/net/quic/quic_fec_group_test.cc
blob: d9c303aee5b345a7e036f36dfb08051767a625b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <algorithm>
#include <vector>

#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "net/quic/quic_fec_group.h"
#include "testing/gmock/include/gmock/gmock.h"

using ::testing::_;
using base::StringPiece;

namespace net {

namespace {

const char* kData[] = {
  "abc12345678",
  "987defg",
  "ghi12345",
  "987jlkmno",
  "mno4567890",
  "789pqrstuvw",
};

const bool kEntropyFlag[] = {
  false,
  true,
  true,
  false,
  true,
  true,
};

const bool kTestFecPacketEntropy = false;

}  // namespace

class QuicFecGroupTest : public ::testing::Test {
 protected:
  void RunTest(size_t num_packets, size_t lost_packet, bool out_of_order) {
    size_t max_len = strlen(kData[0]);
    scoped_ptr<char[]>redundancy(new char[max_len]);
    bool entropy_redundancy = false;
    for (size_t packet = 0; packet < num_packets; ++packet) {
      for (size_t i = 0; i < max_len; i++) {
        if (packet == 0) {
          // Initialize to the first packet.
          redundancy[i] = kData[0][i];
          continue;
        }
        // XOR in the remaining packets.
        uint8 byte = i > strlen(kData[packet]) ? 0x00 : kData[packet][i];
        redundancy[i] = redundancy[i] ^ byte;
      }
      entropy_redundancy = (entropy_redundancy != kEntropyFlag[packet]);
    }

    QuicFecGroup group;

    // If we're out of order, send the FEC packet in the position of the
    // lost packet. Otherwise send all (non-missing) packets, then FEC.
    if (out_of_order) {
      // Update the FEC state for each non-lost packet.
      for (size_t packet = 0; packet < num_packets; packet++) {
        if (packet == lost_packet) {
          ASSERT_FALSE(group.IsFinished());
          QuicFecData fec;
          fec.fec_group = 0;
          fec.redundancy = StringPiece(redundancy.get(), strlen(kData[0]));
          ASSERT_TRUE(group.UpdateFec(num_packets, entropy_redundancy, fec));
        } else {
          QuicPacketHeader header;
          header.packet_sequence_number = packet;
          header.entropy_flag = kEntropyFlag[packet];
          ASSERT_TRUE(group.Update(header, kData[packet]));
        }
        ASSERT_TRUE(group.CanRevive() == (packet == num_packets - 1));
      }
    } else {
    // Update the FEC state for each non-lost packet.
      for (size_t packet = 0; packet < num_packets; packet++) {
        if (packet == lost_packet) {
          continue;
        }

        QuicPacketHeader header;
        header.packet_sequence_number = packet;
        header.entropy_flag = kEntropyFlag[packet];
        ASSERT_TRUE(group.Update(header, kData[packet]));
        ASSERT_FALSE(group.CanRevive());
      }

      ASSERT_FALSE(group.IsFinished());
      // Attempt to revive the missing packet.
      QuicFecData fec;
      fec.fec_group = 0;
      fec.redundancy = StringPiece(redundancy.get(), strlen(kData[0]));

      ASSERT_TRUE(group.UpdateFec(num_packets, entropy_redundancy, fec));
    }
    QuicPacketHeader header;
    char recovered[kMaxPacketSize];
    ASSERT_TRUE(group.CanRevive());
    size_t len = group.Revive(&header, recovered, arraysize(recovered));
    ASSERT_NE(0u, len)
        << "Failed to revive packet " << lost_packet << " out of "
        << num_packets;
    EXPECT_EQ(lost_packet, header.packet_sequence_number)
        << "Failed to revive packet " << lost_packet << " out of "
        << num_packets;
    EXPECT_EQ(kEntropyFlag[lost_packet], header.entropy_flag);
    ASSERT_GE(len, strlen(kData[lost_packet])) << "Incorrect length";
    for (size_t i = 0; i < strlen(kData[lost_packet]); i++) {
      EXPECT_EQ(kData[lost_packet][i], recovered[i]);
    }
    ASSERT_TRUE(group.IsFinished());
  }
};

TEST_F(QuicFecGroupTest, UpdateAndRevive) {
  RunTest(2, 0, false);
  RunTest(2, 1, false);

  RunTest(3, 0, false);
  RunTest(3, 1, false);
  RunTest(3, 2, false);
}

TEST_F(QuicFecGroupTest, UpdateAndReviveOutOfOrder) {
  RunTest(2, 0, true);
  RunTest(2, 1, true);

  RunTest(3, 0, true);
  RunTest(3, 1, true);
  RunTest(3, 2, true);
}

TEST_F(QuicFecGroupTest, UpdateFecIfReceivedPacketIsNotCovered) {
  char data1[] = "abc123";
  char redundancy[arraysize(data1)];
  for (size_t i = 0; i < arraysize(data1); i++) {
    redundancy[i] = data1[i];
  }

  QuicFecGroup group;

  QuicPacketHeader header;
  header.packet_sequence_number = 3;
  group.Update(header, data1);

  QuicFecData fec;
  fec.fec_group = 1;
  fec.redundancy = redundancy;

  header.packet_sequence_number = 2;
  ASSERT_FALSE(group.UpdateFec(2, kTestFecPacketEntropy, fec));
}

TEST_F(QuicFecGroupTest, ProtectsPacketsBefore) {
  QuicPacketHeader header;
  header.packet_sequence_number = 3;

  QuicFecGroup group;
  ASSERT_TRUE(group.Update(header, kData[0]));

  EXPECT_FALSE(group.ProtectsPacketsBefore(1));
  EXPECT_FALSE(group.ProtectsPacketsBefore(2));
  EXPECT_FALSE(group.ProtectsPacketsBefore(3));
  EXPECT_TRUE(group.ProtectsPacketsBefore(4));
  EXPECT_TRUE(group.ProtectsPacketsBefore(5));
  EXPECT_TRUE(group.ProtectsPacketsBefore(50));
}

TEST_F(QuicFecGroupTest, ProtectsPacketsBeforeWithSeveralPackets) {
  QuicPacketHeader header;
  header.packet_sequence_number = 3;

  QuicFecGroup group;
  ASSERT_TRUE(group.Update(header, kData[0]));

  header.packet_sequence_number = 7;
  ASSERT_TRUE(group.Update(header, kData[0]));

  header.packet_sequence_number = 5;
  ASSERT_TRUE(group.Update(header, kData[0]));

  EXPECT_FALSE(group.ProtectsPacketsBefore(1));
  EXPECT_FALSE(group.ProtectsPacketsBefore(2));
  EXPECT_FALSE(group.ProtectsPacketsBefore(3));
  EXPECT_TRUE(group.ProtectsPacketsBefore(4));
  EXPECT_TRUE(group.ProtectsPacketsBefore(5));
  EXPECT_TRUE(group.ProtectsPacketsBefore(6));
  EXPECT_TRUE(group.ProtectsPacketsBefore(7));
  EXPECT_TRUE(group.ProtectsPacketsBefore(8));
  EXPECT_TRUE(group.ProtectsPacketsBefore(9));
  EXPECT_TRUE(group.ProtectsPacketsBefore(50));
}

TEST_F(QuicFecGroupTest, ProtectsPacketsBeforeWithFecData) {
  QuicFecData fec;
  fec.fec_group = 2;
  fec.redundancy = kData[0];

  QuicFecGroup group;
  ASSERT_TRUE(group.UpdateFec(3, kTestFecPacketEntropy, fec));

  EXPECT_FALSE(group.ProtectsPacketsBefore(1));
  EXPECT_FALSE(group.ProtectsPacketsBefore(2));
  EXPECT_TRUE(group.ProtectsPacketsBefore(3));
  EXPECT_TRUE(group.ProtectsPacketsBefore(4));
  EXPECT_TRUE(group.ProtectsPacketsBefore(5));
  EXPECT_TRUE(group.ProtectsPacketsBefore(50));
}

}  // namespace net