summaryrefslogtreecommitdiff
path: root/chromium/net/quic/core/congestion_control/bandwidth_sampler_test.cc
blob: 517ab552cb8b236608d2b2080c85273caa45ee13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/core/congestion_control/bandwidth_sampler.h"

#include "net/quic/platform/api/quic_flags.h"
#include "net/quic/platform/api/quic_test.h"
#include "net/quic/test_tools/mock_clock.h"

namespace net {
namespace test {

class BandwidthSamplerPeer {
 public:
  static size_t GetNumberOfTrackedPackets(const BandwidthSampler& sampler) {
    if (FLAGS_quic_reloadable_flag_quic_faster_bandwidth_sampler) {
      return sampler.connection_state_map_new_.number_of_present_entries();
    }
    return sampler.connection_state_map_.size();
  }

  static QuicByteCount GetPacketSize(const BandwidthSampler& sampler,
                                     QuicPacketNumber packet_number) {
    if (FLAGS_quic_reloadable_flag_quic_faster_bandwidth_sampler) {
      return sampler.connection_state_map_new_.GetEntry(packet_number)->size;
    }
    auto iterator = sampler.connection_state_map_.find(packet_number);
    return iterator->second.size;
  }
};

const QuicByteCount kRegularPacketSize = 1280;
// Enforce divisibility for some of the tests.
static_assert((kRegularPacketSize & 31) == 0,
              "kRegularPacketSize has to be five times divisible by 2");

// A test fixture with utility methods for BandwidthSampler tests.
class BandwidthSamplerTest : public QuicTest {
 protected:
  BandwidthSamplerTest() : bytes_in_flight_(0) {
    // Ensure that the clock does not start at zero.
    clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));
  }

  MockClock clock_;
  BandwidthSampler sampler_;
  QuicByteCount bytes_in_flight_;

  void SendPacketInner(QuicPacketNumber packet_number,
                       QuicByteCount bytes,
                       HasRetransmittableData has_retransmittable_data) {
    sampler_.OnPacketSent(clock_.Now(), packet_number, bytes, bytes_in_flight_,
                          has_retransmittable_data);
    if (has_retransmittable_data == HAS_RETRANSMITTABLE_DATA) {
      bytes_in_flight_ += bytes;
    }
  }

  void SendPacket(QuicPacketNumber packet_number) {
    SendPacketInner(packet_number, kRegularPacketSize,
                    HAS_RETRANSMITTABLE_DATA);
  }

  BandwidthSample AckPacketInner(QuicPacketNumber packet_number) {
    QuicByteCount size =
        BandwidthSamplerPeer::GetPacketSize(sampler_, packet_number);
    bytes_in_flight_ -= size;
    return sampler_.OnPacketAcknowledged(clock_.Now(), packet_number);
  }

  // Acknowledge receipt of a packet and expect it to be not app-limited.
  QuicBandwidth AckPacket(QuicPacketNumber packet_number) {
    BandwidthSample sample = AckPacketInner(packet_number);
    EXPECT_FALSE(sample.is_app_limited);
    return sample.bandwidth;
  }

  void LosePacket(QuicPacketNumber packet_number) {
    QuicByteCount size =
        BandwidthSamplerPeer::GetPacketSize(sampler_, packet_number);
    bytes_in_flight_ -= size;
    sampler_.OnPacketLost(packet_number);
  }

  // Sends one packet and acks it.  Then, send 20 packets.  Finally, send
  // another 20 packets while acknowledging previous 20.
  void Send40PacketsAndAckFirst20(QuicTime::Delta time_between_packets) {
    // Send 20 packets at a constant inter-packet time.
    for (QuicPacketNumber i = 1; i <= 20; i++) {
      SendPacket(i);
      clock_.AdvanceTime(time_between_packets);
    }

    // Ack packets 1 to 20, while sending new packets at the same rate as
    // before.
    for (QuicPacketNumber i = 1; i <= 20; i++) {
      AckPacket(i);
      SendPacket(i + 20);
      clock_.AdvanceTime(time_between_packets);
    }
  }
};

// Test the sampler in a simple stop-and-wait sender setting.
TEST_F(BandwidthSamplerTest, SendAndWait) {
  QuicTime::Delta time_between_packets = QuicTime::Delta::FromMilliseconds(10);
  QuicBandwidth expected_bandwidth =
      QuicBandwidth::FromBytesPerSecond(kRegularPacketSize * 100);

  // Send packets at the constant bandwidth.
  for (QuicPacketNumber i = 1; i < 20; i++) {
    SendPacket(i);
    clock_.AdvanceTime(time_between_packets);
    QuicBandwidth current_sample = AckPacket(i);
    EXPECT_EQ(expected_bandwidth, current_sample);
  }

  // Send packets at the exponentially decreasing bandwidth.
  for (QuicPacketNumber i = 20; i < 25; i++) {
    time_between_packets = time_between_packets * 2;
    expected_bandwidth = expected_bandwidth * 0.5;

    SendPacket(i);
    clock_.AdvanceTime(time_between_packets);
    QuicBandwidth current_sample = AckPacket(i);
    EXPECT_EQ(expected_bandwidth, current_sample);
  }
  EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_));
  EXPECT_EQ(0u, bytes_in_flight_);
}

// Test the sampler during regular windowed sender scenario with fixed
// CWND of 20.
TEST_F(BandwidthSamplerTest, SendPaced) {
  const QuicTime::Delta time_between_packets =
      QuicTime::Delta::FromMilliseconds(1);
  QuicBandwidth expected_bandwidth =
      QuicBandwidth::FromKBytesPerSecond(kRegularPacketSize);

  Send40PacketsAndAckFirst20(time_between_packets);

  // Ack the packets 21 to 40, arriving at the correct bandwidth.
  QuicBandwidth last_bandwidth = QuicBandwidth::Zero();
  for (QuicPacketNumber i = 21; i <= 40; i++) {
    last_bandwidth = AckPacket(i);
    EXPECT_EQ(expected_bandwidth, last_bandwidth);
    clock_.AdvanceTime(time_between_packets);
  }
  EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_));
  EXPECT_EQ(0u, bytes_in_flight_);
}

// Test the sampler in a scenario where 50% of packets is consistently lost.
TEST_F(BandwidthSamplerTest, SendWithLosses) {
  const QuicTime::Delta time_between_packets =
      QuicTime::Delta::FromMilliseconds(1);
  QuicBandwidth expected_bandwidth =
      QuicBandwidth::FromKBytesPerSecond(kRegularPacketSize) * 0.5;

  // Send 20 packets, each 1 ms apart.
  for (QuicPacketNumber i = 1; i <= 20; i++) {
    SendPacket(i);
    clock_.AdvanceTime(time_between_packets);
  }

  // Ack packets 1 to 20, losing every even-numbered packet, while sending new
  // packets at the same rate as before.
  for (QuicPacketNumber i = 1; i <= 20; i++) {
    if (i % 2 == 0) {
      AckPacket(i);
    } else {
      LosePacket(i);
    }
    SendPacket(i + 20);
    clock_.AdvanceTime(time_between_packets);
  }

  // Ack the packets 21 to 40 with the same loss pattern.
  QuicBandwidth last_bandwidth = QuicBandwidth::Zero();
  for (QuicPacketNumber i = 21; i <= 40; i++) {
    if (i % 2 == 0) {
      last_bandwidth = AckPacket(i);
      EXPECT_EQ(expected_bandwidth, last_bandwidth);
    } else {
      LosePacket(i);
    }
    clock_.AdvanceTime(time_between_packets);
  }
  EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_));
  EXPECT_EQ(0u, bytes_in_flight_);
}

// Test the sampler in a scenario where the 50% of packets are not
// congestion controlled (specifically, non-retransmittable data is not
// congestion controlled).  Should be functionally consistent in behavior with
// the SendWithLosses test.
TEST_F(BandwidthSamplerTest, NotCongestionControlled) {
  const QuicTime::Delta time_between_packets =
      QuicTime::Delta::FromMilliseconds(1);
  QuicBandwidth expected_bandwidth =
      QuicBandwidth::FromKBytesPerSecond(kRegularPacketSize) * 0.5;

  // Send 20 packets, each 1 ms apart. Every even packet is not congestion
  // controlled.
  for (QuicPacketNumber i = 1; i <= 20; i++) {
    SendPacketInner(
        i, kRegularPacketSize,
        i % 2 == 0 ? HAS_RETRANSMITTABLE_DATA : NO_RETRANSMITTABLE_DATA);
    clock_.AdvanceTime(time_between_packets);
  }

  // Ensure only congestion controlled packets are tracked.
  EXPECT_EQ(10u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_));

  // Ack packets 2 to 21, ignoring every even-numbered packet, while sending new
  // packets at the same rate as before.
  for (QuicPacketNumber i = 1; i <= 20; i++) {
    if (i % 2 == 0) {
      AckPacket(i);
    }
    SendPacketInner(
        i + 20, kRegularPacketSize,
        i % 2 == 0 ? HAS_RETRANSMITTABLE_DATA : NO_RETRANSMITTABLE_DATA);
    clock_.AdvanceTime(time_between_packets);
  }

  // Ack the packets 22 to 41 with the same congestion controlled pattern.
  QuicBandwidth last_bandwidth = QuicBandwidth::Zero();
  for (QuicPacketNumber i = 21; i <= 40; i++) {
    if (i % 2 == 0) {
      last_bandwidth = AckPacket(i);
      EXPECT_EQ(expected_bandwidth, last_bandwidth);
    }
    clock_.AdvanceTime(time_between_packets);
  }

  // Since only congestion controlled packets are entered into the map, it has
  // to be empty at this point.
  EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_));
  EXPECT_EQ(0u, bytes_in_flight_);
}

// Simulate a situation where ACKs arrive in burst and earlier than usual, thus
// producing an ACK rate which is higher than the original send rate.
TEST_F(BandwidthSamplerTest, CompressedAck) {
  const QuicTime::Delta time_between_packets =
      QuicTime::Delta::FromMilliseconds(1);
  QuicBandwidth expected_bandwidth =
      QuicBandwidth::FromKBytesPerSecond(kRegularPacketSize);

  Send40PacketsAndAckFirst20(time_between_packets);

  // Simulate an RTT somewhat lower than the one for 1-to-21 transmission.
  clock_.AdvanceTime(time_between_packets * 15);

  // Ack the packets 21 to 40 almost immediately at once.
  QuicBandwidth last_bandwidth = QuicBandwidth::Zero();
  QuicTime::Delta ridiculously_small_time_delta =
      QuicTime::Delta::FromMicroseconds(20);
  for (QuicPacketNumber i = 21; i <= 40; i++) {
    last_bandwidth = AckPacket(i);
    clock_.AdvanceTime(ridiculously_small_time_delta);
  }
  EXPECT_EQ(expected_bandwidth, last_bandwidth);
  EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_));
  EXPECT_EQ(0u, bytes_in_flight_);
}

// Tests receiving ACK packets in the reverse order.
TEST_F(BandwidthSamplerTest, ReorderedAck) {
  const QuicTime::Delta time_between_packets =
      QuicTime::Delta::FromMilliseconds(1);
  QuicBandwidth expected_bandwidth =
      QuicBandwidth::FromKBytesPerSecond(kRegularPacketSize);

  Send40PacketsAndAckFirst20(time_between_packets);

  // Ack the packets 21 to 40 in the reverse order, while sending packets 41 to
  // 60.
  QuicBandwidth last_bandwidth = QuicBandwidth::Zero();
  for (QuicPacketNumber i = 0; i < 20; i++) {
    last_bandwidth = AckPacket(40 - i);
    EXPECT_EQ(expected_bandwidth, last_bandwidth);
    SendPacket(41 + i);
    clock_.AdvanceTime(time_between_packets);
  }

  // Ack the packets 41 to 60, now in the regular order.
  for (QuicPacketNumber i = 41; i <= 60; i++) {
    last_bandwidth = AckPacket(i);
    EXPECT_EQ(expected_bandwidth, last_bandwidth);
    clock_.AdvanceTime(time_between_packets);
  }
  EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_));
  EXPECT_EQ(0u, bytes_in_flight_);
}

// Test the app-limited logic.
TEST_F(BandwidthSamplerTest, AppLimited) {
  const QuicTime::Delta time_between_packets =
      QuicTime::Delta::FromMilliseconds(1);
  QuicBandwidth expected_bandwidth =
      QuicBandwidth::FromKBytesPerSecond(kRegularPacketSize);

  Send40PacketsAndAckFirst20(time_between_packets);

  // We are now app-limited. Ack 21 to 40 as usual, but do not send anything for
  // now.
  sampler_.OnAppLimited();
  for (QuicPacketNumber i = 21; i <= 40; i++) {
    QuicBandwidth current_sample = AckPacket(i);
    EXPECT_EQ(expected_bandwidth, current_sample);
    clock_.AdvanceTime(time_between_packets);
  }

  // Enter quiescence.
  clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1));

  // Send packets 41 to 60, all of which would be marked as app-limited.
  for (QuicPacketNumber i = 41; i <= 60; i++) {
    SendPacket(i);
    clock_.AdvanceTime(time_between_packets);
  }

  // Ack packets 41 to 60, while sending packets 61 to 80.  41 to 60 should be
  // app-limited and underestimate the bandwidth due to that.
  for (QuicPacketNumber i = 41; i <= 60; i++) {
    BandwidthSample sample = AckPacketInner(i);
    EXPECT_TRUE(sample.is_app_limited);
    EXPECT_LT(sample.bandwidth, 0.7f * expected_bandwidth);

    SendPacket(i + 20);
    clock_.AdvanceTime(time_between_packets);
  }

  // Run out of packets, and then ack packet 61 to 80, all of which should have
  // correct non-app-limited samples.
  for (QuicPacketNumber i = 61; i <= 80; i++) {
    QuicBandwidth last_bandwidth = AckPacket(i);
    EXPECT_EQ(expected_bandwidth, last_bandwidth);
    clock_.AdvanceTime(time_between_packets);
  }

  EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_));
  EXPECT_EQ(0u, bytes_in_flight_);
}

// Test the samples taken at the first flight of packets sent.
TEST_F(BandwidthSamplerTest, FirstRoundTrip) {
  const QuicTime::Delta time_between_packets =
      QuicTime::Delta::FromMilliseconds(1);
  const QuicTime::Delta rtt = QuicTime::Delta::FromMilliseconds(800);
  const int num_packets = 10;
  const QuicByteCount num_bytes = kRegularPacketSize * num_packets;
  const QuicBandwidth real_bandwidth =
      QuicBandwidth::FromBytesAndTimeDelta(num_bytes, rtt);

  for (QuicPacketNumber i = 1; i <= 10; i++) {
    SendPacket(i);
    clock_.AdvanceTime(time_between_packets);
  }

  clock_.AdvanceTime(rtt - num_packets * time_between_packets);

  QuicBandwidth last_sample = QuicBandwidth::Zero();
  for (QuicPacketNumber i = 1; i <= 10; i++) {
    QuicBandwidth sample = AckPacket(i);
    EXPECT_GT(sample, last_sample);
    last_sample = sample;
    clock_.AdvanceTime(time_between_packets);
  }

  // The final measured sample for the first flight of sample is expected to be
  // smaller than the real bandwidth, yet it should not lose more than 10%. The
  // specific value of the error depends on the difference between the RTT and
  // the time it takes to exhaust the congestion window (i.e. in the limit when
  // all packets are sent simultaneously, last sample would indicate the real
  // bandwidth).
  EXPECT_LT(last_sample, real_bandwidth);
  EXPECT_GT(last_sample, 0.9f * real_bandwidth);
}

// Test sampler's ability to remove obsolete packets.
TEST_F(BandwidthSamplerTest, RemoveObsoletePackets) {
  SendPacket(1);
  SendPacket(2);
  SendPacket(3);
  SendPacket(4);
  SendPacket(5);

  clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(100));

  EXPECT_EQ(5u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_));
  sampler_.RemoveObsoletePackets(4);
  EXPECT_EQ(2u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_));
  sampler_.OnPacketLost(4);
  EXPECT_EQ(1u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_));
  AckPacket(5);
  EXPECT_EQ(0u, BandwidthSamplerPeer::GetNumberOfTrackedPackets(sampler_));
}

}  // namespace test
}  // namespace net