summaryrefslogtreecommitdiff
path: root/chromium/net/quic/congestion_control/tcp_cubic_sender.cc
blob: 50fc3937b992bcb87d1e2afae8d9065772f68c09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/quic/congestion_control/tcp_cubic_sender.h"

#include <algorithm>

#include "base/metrics/histogram.h"

using std::max;

namespace net {

namespace {
// Constants based on TCP defaults.
// The minimum cwnd based on RFC 3782 (TCP NewReno) for cwnd reductions on a
// fast retransmission.  The cwnd after a timeout is still 1.
const QuicTcpCongestionWindow kMinimumCongestionWindow = 2;
const int64 kHybridStartLowWindow = 16;
const QuicByteCount kMaxSegmentSize = kDefaultTCPMSS;
const QuicByteCount kDefaultReceiveWindow = 64000;
const int64 kInitialCongestionWindow = 10;
const int kMaxBurstLength = 3;
// Constants used for RTT calculation.
const int kInitialRttMs = 60;  // At a typical RTT 60 ms.
const float kAlpha = 0.125f;
const float kOneMinusAlpha = (1 - kAlpha);
const float kBeta = 0.25f;
const float kOneMinusBeta = (1 - kBeta);
};  // namespace

TcpCubicSender::TcpCubicSender(
    const QuicClock* clock,
    bool reno,
    QuicTcpCongestionWindow max_tcp_congestion_window)
    : hybrid_slow_start_(clock),
      cubic_(clock),
      reno_(reno),
      congestion_window_count_(0),
      receive_window_(kDefaultReceiveWindow),
      last_received_accumulated_number_of_lost_packets_(0),
      bytes_in_flight_(0),
      update_end_sequence_number_(true),
      end_sequence_number_(0),
      largest_sent_sequence_number_(0),
      largest_acked_sequence_number_(0),
      largest_sent_at_last_cutback_(0),
      congestion_window_(kInitialCongestionWindow),
      slowstart_threshold_(max_tcp_congestion_window),
      max_tcp_congestion_window_(max_tcp_congestion_window),
      delay_min_(QuicTime::Delta::Zero()),
      smoothed_rtt_(QuicTime::Delta::Zero()),
      mean_deviation_(QuicTime::Delta::Zero()) {
}

TcpCubicSender::~TcpCubicSender() {
  UMA_HISTOGRAM_COUNTS("Net.QuicSession.FinalTcpCwnd", congestion_window_);
}

void TcpCubicSender::SetMaxPacketSize(QuicByteCount /*max_packet_size*/) {
}

void TcpCubicSender::SetFromConfig(const QuicConfig& config, bool is_server) {
  if (is_server) {
    // Set the initial window size.
    congestion_window_ = config.server_initial_congestion_window();
  }
}

void TcpCubicSender::OnIncomingQuicCongestionFeedbackFrame(
    const QuicCongestionFeedbackFrame& feedback,
    QuicTime feedback_receive_time,
    const SentPacketsMap& /*sent_packets*/) {
  if (last_received_accumulated_number_of_lost_packets_ !=
      feedback.tcp.accumulated_number_of_lost_packets) {
    int recovered_lost_packets =
        last_received_accumulated_number_of_lost_packets_ -
        feedback.tcp.accumulated_number_of_lost_packets;
    last_received_accumulated_number_of_lost_packets_ =
        feedback.tcp.accumulated_number_of_lost_packets;
    if (recovered_lost_packets > 0) {
      // Assume the loss could be as late as the last acked packet.
      OnPacketLost(largest_acked_sequence_number_, feedback_receive_time);
    }
  }
  receive_window_ = feedback.tcp.receive_window;
}

void TcpCubicSender::OnPacketAcked(
    QuicPacketSequenceNumber acked_sequence_number,
    QuicByteCount acked_bytes,
    QuicTime::Delta rtt) {
  DCHECK_GE(bytes_in_flight_, acked_bytes);
  bytes_in_flight_ -= acked_bytes;
  largest_acked_sequence_number_ = max(acked_sequence_number,
                                       largest_acked_sequence_number_);
  CongestionAvoidance(acked_sequence_number);
  AckAccounting(rtt);
  if (end_sequence_number_ == acked_sequence_number) {
    DVLOG(1) << "Start update end sequence number @" << acked_sequence_number;
    update_end_sequence_number_ = true;
  }
}

void TcpCubicSender::OnPacketLost(QuicPacketSequenceNumber sequence_number,
                                  QuicTime /*ack_receive_time*/) {
  // TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets
  // already sent should be treated as a single loss event, since it's expected.
  if (sequence_number <= largest_sent_at_last_cutback_) {
    DVLOG(1) << "Ignoring loss for largest_missing:" << sequence_number
               << " because it was sent prior to the last CWND cutback.";
    return;
  }

  // In a normal TCP we would need to know the lowest missing packet to detect
  // if we receive 3 missing packets. Here we get a missing packet for which we
  // enter TCP Fast Retransmit immediately.
  if (reno_) {
    congestion_window_ = congestion_window_ >> 1;
    slowstart_threshold_ = congestion_window_;
  } else {
    congestion_window_ =
        cubic_.CongestionWindowAfterPacketLoss(congestion_window_);
    slowstart_threshold_ = congestion_window_;
  }
  // Enforce TCP's minimimum congestion window of 2*MSS.
  if (congestion_window_ < kMinimumCongestionWindow) {
    congestion_window_ = kMinimumCongestionWindow;
  }
  largest_sent_at_last_cutback_ = largest_sent_sequence_number_;
  DVLOG(1) << "Incoming loss; congestion window:" << congestion_window_;
}

bool TcpCubicSender::OnPacketSent(QuicTime /*sent_time*/,
                                  QuicPacketSequenceNumber sequence_number,
                                  QuicByteCount bytes,
                                  TransmissionType transmission_type,
                                  HasRetransmittableData is_retransmittable) {
  // Only update bytes_in_flight_ for data packets.
  if (is_retransmittable != HAS_RETRANSMITTABLE_DATA) {
    return false;
  }

  bytes_in_flight_ += bytes;
  if (largest_sent_sequence_number_ < sequence_number) {
    // TODO(rch): Ensure that packets are really sent in order.
    // DCHECK_LT(largest_sent_sequence_number_, sequence_number);
    largest_sent_sequence_number_ = sequence_number;
  }
  if (transmission_type == NOT_RETRANSMISSION && update_end_sequence_number_) {
    end_sequence_number_ = sequence_number;
    if (AvailableSendWindow() == 0) {
      update_end_sequence_number_ = false;
      DVLOG(1) << "Stop update end sequence number @" << sequence_number;
    }
  }
  return true;
}

void TcpCubicSender::OnPacketAbandoned(QuicPacketSequenceNumber sequence_number,
                                       QuicByteCount abandoned_bytes) {
  DCHECK_GE(bytes_in_flight_, abandoned_bytes);
  bytes_in_flight_ -= abandoned_bytes;
}

QuicTime::Delta TcpCubicSender::TimeUntilSend(
    QuicTime /* now */,
    TransmissionType transmission_type,
    HasRetransmittableData has_retransmittable_data,
    IsHandshake handshake) {
  if (transmission_type == NACK_RETRANSMISSION ||
      has_retransmittable_data == NO_RETRANSMITTABLE_DATA ||
      handshake == IS_HANDSHAKE) {
    // For TCP we can always send an ACK immediately.
    // We also immediately send any handshake packet (CHLO, etc.).  We provide
    // this special dispensation for handshake messages in QUIC, although the
    // concept is not present in TCP.
    return QuicTime::Delta::Zero();
  }
  if (AvailableSendWindow() == 0) {
    return QuicTime::Delta::Infinite();
  }
  return QuicTime::Delta::Zero();
}

QuicByteCount TcpCubicSender::AvailableSendWindow() {
  if (bytes_in_flight_ > SendWindow()) {
    return 0;
  }
  return SendWindow() - bytes_in_flight_;
}

QuicByteCount TcpCubicSender::SendWindow() {
  // What's the current send window in bytes.
  return std::min(receive_window_, GetCongestionWindow());
}

QuicBandwidth TcpCubicSender::BandwidthEstimate() const {
  return QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(),
                                              SmoothedRtt());
}

QuicTime::Delta TcpCubicSender::SmoothedRtt() const {
  if (smoothed_rtt_.IsZero()) {
    return QuicTime::Delta::FromMilliseconds(kInitialRttMs);
  }
  return smoothed_rtt_;
}

QuicTime::Delta TcpCubicSender::RetransmissionDelay() const {
  return QuicTime::Delta::FromMicroseconds(
      smoothed_rtt_.ToMicroseconds() + 4 * mean_deviation_.ToMicroseconds());
}

QuicByteCount TcpCubicSender::GetCongestionWindow() const {
  return congestion_window_ * kMaxSegmentSize;
}

void TcpCubicSender::Reset() {
  delay_min_ = QuicTime::Delta::Zero();
  hybrid_slow_start_.Restart();
}

bool TcpCubicSender::IsCwndLimited() const {
  const QuicByteCount congestion_window_bytes = congestion_window_ *
      kMaxSegmentSize;
  if (bytes_in_flight_ >= congestion_window_bytes) {
    return true;
  }
  const QuicByteCount tcp_max_burst = kMaxBurstLength * kMaxSegmentSize;
  const QuicByteCount left = congestion_window_bytes - bytes_in_flight_;
  return left <= tcp_max_burst;
}

// Called when we receive an ack. Normal TCP tracks how many packets one ack
// represents, but quic has a separate ack for each packet.
void TcpCubicSender::CongestionAvoidance(QuicPacketSequenceNumber ack) {
  if (!IsCwndLimited()) {
    // We don't update the congestion window unless we are close to using the
    // window we have available.
    return;
  }
  if (congestion_window_ < slowstart_threshold_) {
    // Slow start.
    if (hybrid_slow_start_.EndOfRound(ack)) {
      hybrid_slow_start_.Reset(end_sequence_number_);
    }
    // congestion_window_cnt is the number of acks since last change of snd_cwnd
    if (congestion_window_ < max_tcp_congestion_window_) {
      // TCP slow start, exponential growth, increase by one for each ACK.
      congestion_window_++;
    }
    DVLOG(1) << "Slow start; congestion window:" << congestion_window_;
  } else {
    if (congestion_window_ < max_tcp_congestion_window_) {
      if (reno_) {
        // Classic Reno congestion avoidance provided for testing.
        if (congestion_window_count_ >= congestion_window_) {
          congestion_window_++;
          congestion_window_count_ = 0;
        } else {
          congestion_window_count_++;
        }
        DVLOG(1) << "Reno; congestion window:" << congestion_window_;
      } else {
        congestion_window_ = std::min(
            max_tcp_congestion_window_,
            cubic_.CongestionWindowAfterAck(congestion_window_, delay_min_));
        DVLOG(1) << "Cubic; congestion window:" << congestion_window_;
      }
    }
  }
}

void TcpCubicSender::OnRetransmissionTimeout() {
  cubic_.Reset();
  congestion_window_ = kMinimumCongestionWindow;
}

void TcpCubicSender::AckAccounting(QuicTime::Delta rtt) {
  if (rtt.IsInfinite() || rtt.IsZero()) {
    DVLOG(1) << "Ignoring rtt, because it's "
               << (rtt.IsZero() ? "Zero" : "Infinite");
    return;
  }
  // RTT can't be negative.
  DCHECK_LT(0, rtt.ToMicroseconds());

  // TODO(pwestin): Discard delay samples right after fast recovery,
  // during 1 second?.

  // First time call or link delay decreases.
  if (delay_min_.IsZero() || delay_min_ > rtt) {
    delay_min_ = rtt;
  }
  // First time call.
  if (smoothed_rtt_.IsZero()) {
    smoothed_rtt_ = rtt;
    mean_deviation_ = QuicTime::Delta::FromMicroseconds(
        rtt.ToMicroseconds() / 2);
  } else {
    mean_deviation_ = QuicTime::Delta::FromMicroseconds(
        kOneMinusBeta * mean_deviation_.ToMicroseconds() +
        kBeta * abs(smoothed_rtt_.ToMicroseconds() - rtt.ToMicroseconds()));
    smoothed_rtt_ = QuicTime::Delta::FromMicroseconds(
        kOneMinusAlpha * smoothed_rtt_.ToMicroseconds() +
        kAlpha * rtt.ToMicroseconds());
    DVLOG(1) << "Cubic; smoothed_rtt_:" << smoothed_rtt_.ToMicroseconds()
               << " mean_deviation_:" << mean_deviation_.ToMicroseconds();
  }

  // Hybrid start triggers when cwnd is larger than some threshold.
  if (congestion_window_ <= slowstart_threshold_ &&
      congestion_window_ >= kHybridStartLowWindow) {
    if (!hybrid_slow_start_.started()) {
      // Time to start the hybrid slow start.
      hybrid_slow_start_.Reset(end_sequence_number_);
    }
    hybrid_slow_start_.Update(rtt, delay_min_);
    if (hybrid_slow_start_.Exit()) {
      slowstart_threshold_ = congestion_window_;
    }
  }
}

}  // namespace net