summaryrefslogtreecommitdiff
path: root/chromium/net/disk_cache/memory/mem_entry_impl.cc
blob: bb9affc918b2134920a0f6e3e8a9cc3a8981b4ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/disk_cache/memory/mem_entry_impl.h"

#include <algorithm>
#include <utility>

#include "base/bind.h"
#include "base/format_macros.h"
#include "base/logging.h"
#include "base/metrics/histogram_macros.h"
#include "base/numerics/safe_math.h"
#include "base/strings/stringprintf.h"
#include "base/values.h"
#include "net/base/interval.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/disk_cache/memory/mem_backend_impl.h"
#include "net/disk_cache/net_log_parameters.h"
#include "net/log/net_log_event_type.h"
#include "net/log/net_log_source_type.h"

using base::Time;

namespace disk_cache {

namespace {

const int kSparseData = 1;

// Maximum size of a child of sparse entry is 2 to the power of this number.
const int kMaxChildEntryBits = 12;

// Sparse entry children have maximum size of 4KB.
const int kMaxChildEntrySize = 1 << kMaxChildEntryBits;

// Convert global offset to child index.
int64_t ToChildIndex(int64_t offset) {
  return offset >> kMaxChildEntryBits;
}

// Convert global offset to offset in child entry.
int ToChildOffset(int64_t offset) {
  return static_cast<int>(offset & (kMaxChildEntrySize - 1));
}

// Returns a name for a child entry given the base_name of the parent and the
// child_id.  This name is only used for logging purposes.
// If the entry is called entry_name, child entries will be named something
// like Range_entry_name:YYY where YYY is the number of the particular child.
std::string GenerateChildName(const std::string& base_name, int64_t child_id) {
  return base::StringPrintf("Range_%s:%" PRId64, base_name.c_str(), child_id);
}

// Returns NetLog parameters for the creation of a MemEntryImpl. A separate
// function is needed because child entries don't store their key().
base::Value NetLogEntryCreationParams(const MemEntryImpl* entry) {
  base::Value dict(base::Value::Type::DICTIONARY);
  std::string key;
  switch (entry->type()) {
    case MemEntryImpl::PARENT_ENTRY:
      key = entry->key();
      break;
    case MemEntryImpl::CHILD_ENTRY:
      key = GenerateChildName(entry->parent()->key(), entry->child_id());
      break;
  }
  dict.SetStringKey("key", key);
  dict.SetBoolKey("created", true);
  return dict;
}

}  // namespace

MemEntryImpl::MemEntryImpl(base::WeakPtr<MemBackendImpl> backend,
                           const std::string& key,
                           net::NetLog* net_log)
    : MemEntryImpl(backend,
                   key,
                   0,        // child_id
                   nullptr,  // parent
                   net_log) {
  Open();
  // Just creating the entry (without any data) could cause the storage to
  // grow beyond capacity, but we allow such infractions.
  backend_->ModifyStorageSize(GetStorageSize());
}

MemEntryImpl::MemEntryImpl(base::WeakPtr<MemBackendImpl> backend,
                           int64_t child_id,
                           MemEntryImpl* parent,
                           net::NetLog* net_log)
    : MemEntryImpl(backend,
                   std::string(),  // key
                   child_id,
                   parent,
                   net_log) {
  (*parent_->children_)[child_id] = this;
}

void MemEntryImpl::Open() {
  // Only a parent entry can be opened.
  DCHECK_EQ(PARENT_ENTRY, type());
  ++ref_count_;
  DCHECK_GE(ref_count_, 1);
  DCHECK(!doomed_);
}

bool MemEntryImpl::InUse() const {
  if (type() == CHILD_ENTRY)
    return parent_->InUse();

  return ref_count_ > 0;
}

int MemEntryImpl::GetStorageSize() const {
  int storage_size = static_cast<int32_t>(key_.size());
  for (const auto& i : data_)
    storage_size += i.size();
  return storage_size;
}

void MemEntryImpl::UpdateStateOnUse(EntryModified modified_enum) {
  if (!doomed_ && backend_)
    backend_->OnEntryUpdated(this);

  last_used_ = Time::Now();
  if (modified_enum == ENTRY_WAS_MODIFIED)
    last_modified_ = last_used_;
}

void MemEntryImpl::Doom() {
  if (!doomed_) {
    doomed_ = true;
    if (backend_)
      backend_->OnEntryDoomed(this);
    net_log_.AddEvent(net::NetLogEventType::ENTRY_DOOM);
  }
  if (!ref_count_)
    delete this;
}

void MemEntryImpl::Close() {
  DCHECK_EQ(PARENT_ENTRY, type());
  --ref_count_;
  if (ref_count_ == 0 && !doomed_) {
    // At this point the user is clearly done writing, so make sure there isn't
    // wastage due to exponential growth of vector for main data stream.
    Compact();
    if (children_) {
      for (const auto& child_info : *children_) {
        if (child_info.second != this)
          child_info.second->Compact();
      }
    }
  }
  DCHECK_GE(ref_count_, 0);
  if (!ref_count_ && doomed_)
    delete this;
}

std::string MemEntryImpl::GetKey() const {
  // A child entry doesn't have key so this method should not be called.
  DCHECK_EQ(PARENT_ENTRY, type());
  return key_;
}

Time MemEntryImpl::GetLastUsed() const {
  return last_used_;
}

Time MemEntryImpl::GetLastModified() const {
  return last_modified_;
}

int32_t MemEntryImpl::GetDataSize(int index) const {
  if (index < 0 || index >= kNumStreams)
    return 0;
  return data_[index].size();
}

int MemEntryImpl::ReadData(int index,
                           int offset,
                           IOBuffer* buf,
                           int buf_len,
                           CompletionOnceCallback callback) {
  if (net_log_.IsCapturing()) {
    NetLogReadWriteData(net_log_, net::NetLogEventType::ENTRY_READ_DATA,
                        net::NetLogEventPhase::BEGIN, index, offset, buf_len,
                        false);
  }

  int result = InternalReadData(index, offset, buf, buf_len);

  if (net_log_.IsCapturing()) {
    NetLogReadWriteComplete(net_log_, net::NetLogEventType::ENTRY_READ_DATA,
                            net::NetLogEventPhase::END, result);
  }
  return result;
}

int MemEntryImpl::WriteData(int index,
                            int offset,
                            IOBuffer* buf,
                            int buf_len,
                            CompletionOnceCallback callback,
                            bool truncate) {
  if (net_log_.IsCapturing()) {
    NetLogReadWriteData(net_log_, net::NetLogEventType::ENTRY_WRITE_DATA,
                        net::NetLogEventPhase::BEGIN, index, offset, buf_len,
                        truncate);
  }

  int result = InternalWriteData(index, offset, buf, buf_len, truncate);

  if (net_log_.IsCapturing()) {
    NetLogReadWriteComplete(net_log_, net::NetLogEventType::ENTRY_WRITE_DATA,
                            net::NetLogEventPhase::END, result);
  }

  return result;
}

int MemEntryImpl::ReadSparseData(int64_t offset,
                                 IOBuffer* buf,
                                 int buf_len,
                                 CompletionOnceCallback callback) {
  if (net_log_.IsCapturing()) {
    NetLogSparseOperation(net_log_, net::NetLogEventType::SPARSE_READ,
                          net::NetLogEventPhase::BEGIN, offset, buf_len);
  }
  int result = InternalReadSparseData(offset, buf, buf_len);
  if (net_log_.IsCapturing())
    net_log_.EndEvent(net::NetLogEventType::SPARSE_READ);
  return result;
}

int MemEntryImpl::WriteSparseData(int64_t offset,
                                  IOBuffer* buf,
                                  int buf_len,
                                  CompletionOnceCallback callback) {
  if (net_log_.IsCapturing()) {
    NetLogSparseOperation(net_log_, net::NetLogEventType::SPARSE_WRITE,
                          net::NetLogEventPhase::BEGIN, offset, buf_len);
  }
  int result = InternalWriteSparseData(offset, buf, buf_len);
  if (net_log_.IsCapturing())
    net_log_.EndEvent(net::NetLogEventType::SPARSE_WRITE);
  return result;
}

int MemEntryImpl::GetAvailableRange(int64_t offset,
                                    int len,
                                    int64_t* start,
                                    CompletionOnceCallback callback) {
  if (net_log_.IsCapturing()) {
    NetLogSparseOperation(net_log_, net::NetLogEventType::SPARSE_GET_RANGE,
                          net::NetLogEventPhase::BEGIN, offset, len);
  }
  int result = InternalGetAvailableRange(offset, len, start);
  if (net_log_.IsCapturing()) {
    net_log_.EndEvent(net::NetLogEventType::SPARSE_GET_RANGE, [&] {
      return CreateNetLogGetAvailableRangeResultParams(*start, result);
    });
  }
  return result;
}

bool MemEntryImpl::CouldBeSparse() const {
  DCHECK_EQ(PARENT_ENTRY, type());
  return (children_.get() != nullptr);
}

net::Error MemEntryImpl::ReadyForSparseIO(CompletionOnceCallback callback) {
  return net::OK;
}

void MemEntryImpl::SetLastUsedTimeForTest(base::Time time) {
  last_used_ = time;
}

size_t MemEntryImpl::EstimateMemoryUsage() const {
  // Subtlety: the entries in children_ are not double counted, as the entry
  // pointers won't be followed by EstimateMemoryUsage.
  return base::trace_event::EstimateMemoryUsage(data_) +
         base::trace_event::EstimateMemoryUsage(key_) +
         base::trace_event::EstimateMemoryUsage(children_);
}

// ------------------------------------------------------------------------

MemEntryImpl::MemEntryImpl(base::WeakPtr<MemBackendImpl> backend,
                           const ::std::string& key,
                           int64_t child_id,
                           MemEntryImpl* parent,
                           net::NetLog* net_log)
    : key_(key),
      ref_count_(0),
      child_id_(child_id),
      child_first_pos_(0),
      parent_(parent),
      last_modified_(Time::Now()),
      last_used_(last_modified_),
      backend_(backend),
      doomed_(false) {
  backend_->OnEntryInserted(this);
  net_log_ = net::NetLogWithSource::Make(
      net_log, net::NetLogSourceType::MEMORY_CACHE_ENTRY);
  net_log_.BeginEvent(net::NetLogEventType::DISK_CACHE_MEM_ENTRY_IMPL,
                      [&] { return NetLogEntryCreationParams(this); });
}

MemEntryImpl::~MemEntryImpl() {
  if (backend_)
    backend_->ModifyStorageSize(-GetStorageSize());

  if (type() == PARENT_ENTRY) {
    if (children_) {
      EntryMap children;
      children_->swap(children);

      for (auto& it : children) {
        // Since |this| is stored in the map, it should be guarded against
        // double dooming, which will result in double destruction.
        if (it.second != this)
          it.second->Doom();
      }
    }
  } else {
    parent_->children_->erase(child_id_);
  }
  net_log_.EndEvent(net::NetLogEventType::DISK_CACHE_MEM_ENTRY_IMPL);
}

int MemEntryImpl::InternalReadData(int index, int offset, IOBuffer* buf,
                                   int buf_len) {
  DCHECK(type() == PARENT_ENTRY || index == kSparseData);

  if (index < 0 || index >= kNumStreams || buf_len < 0)
    return net::ERR_INVALID_ARGUMENT;

  int entry_size = data_[index].size();
  if (offset >= entry_size || offset < 0 || !buf_len)
    return 0;

  int end_offset;
  if (!base::CheckAdd(offset, buf_len).AssignIfValid(&end_offset) ||
      end_offset > entry_size)
    buf_len = entry_size - offset;

  UpdateStateOnUse(ENTRY_WAS_NOT_MODIFIED);
  std::copy(data_[index].begin() + offset,
            data_[index].begin() + offset + buf_len, buf->data());
  return buf_len;
}

int MemEntryImpl::InternalWriteData(int index, int offset, IOBuffer* buf,
                                    int buf_len, bool truncate) {
  DCHECK(type() == PARENT_ENTRY || index == kSparseData);
  if (!backend_)
    return net::ERR_INSUFFICIENT_RESOURCES;

  if (index < 0 || index >= kNumStreams)
    return net::ERR_INVALID_ARGUMENT;

  if (offset < 0 || buf_len < 0)
    return net::ERR_INVALID_ARGUMENT;

  int max_file_size = backend_->MaxFileSize();

  int end_offset;
  if (offset > max_file_size || buf_len > max_file_size ||
      !base::CheckAdd(offset, buf_len).AssignIfValid(&end_offset) ||
      end_offset > max_file_size) {
    return net::ERR_FAILED;
  }

  int old_data_size = data_[index].size();
  if (truncate || old_data_size < end_offset) {
    int delta = end_offset - old_data_size;
    backend_->ModifyStorageSize(delta);
    if (backend_->HasExceededStorageSize()) {
      backend_->ModifyStorageSize(-delta);
      return net::ERR_INSUFFICIENT_RESOURCES;
    }

    data_[index].resize(end_offset);

    // Zero fill any hole.
    if (old_data_size < offset) {
      std::fill(data_[index].begin() + old_data_size,
                data_[index].begin() + offset, 0);
    }
  }

  UpdateStateOnUse(ENTRY_WAS_MODIFIED);

  if (!buf_len)
    return 0;

  std::copy(buf->data(), buf->data() + buf_len, data_[index].begin() + offset);
  return buf_len;
}

int MemEntryImpl::InternalReadSparseData(int64_t offset,
                                         IOBuffer* buf,
                                         int buf_len) {
  DCHECK_EQ(PARENT_ENTRY, type());

  if (!InitSparseInfo())
    return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;

  if (offset < 0 || buf_len < 0)
    return net::ERR_INVALID_ARGUMENT;

  // Ensure that offset + buf_len does not overflow. This ensures that
  // offset + io_buf->BytesConsumed() never overflows below.
  // The result of std::min is guaranteed to fit into int since buf_len did.
  buf_len = std::min(static_cast<int64_t>(buf_len),
                     std::numeric_limits<int64_t>::max() - offset);

  // We will keep using this buffer and adjust the offset in this buffer.
  scoped_refptr<net::DrainableIOBuffer> io_buf =
      base::MakeRefCounted<net::DrainableIOBuffer>(buf, buf_len);

  // Iterate until we have read enough.
  while (io_buf->BytesRemaining()) {
    MemEntryImpl* child = GetChild(offset + io_buf->BytesConsumed(), false);

    // No child present for that offset.
    if (!child)
      break;

    // We then need to prepare the child offset and len.
    int child_offset = ToChildOffset(offset + io_buf->BytesConsumed());

    // If we are trying to read from a position that the child entry has no data
    // we should stop.
    if (child_offset < child->child_first_pos_)
      break;
    if (net_log_.IsCapturing()) {
      NetLogSparseReadWrite(net_log_,
                            net::NetLogEventType::SPARSE_READ_CHILD_DATA,
                            net::NetLogEventPhase::BEGIN,
                            child->net_log_.source(), io_buf->BytesRemaining());
    }
    int ret =
        child->ReadData(kSparseData, child_offset, io_buf.get(),
                        io_buf->BytesRemaining(), CompletionOnceCallback());
    if (net_log_.IsCapturing()) {
      net_log_.EndEventWithNetErrorCode(
          net::NetLogEventType::SPARSE_READ_CHILD_DATA, ret);
    }

    // If we encounter an error in one entry, return immediately.
    if (ret < 0)
      return ret;
    else if (ret == 0)
      break;

    // Increment the counter by number of bytes read in the child entry.
    io_buf->DidConsume(ret);
  }

  UpdateStateOnUse(ENTRY_WAS_NOT_MODIFIED);
  return io_buf->BytesConsumed();
}

int MemEntryImpl::InternalWriteSparseData(int64_t offset,
                                          IOBuffer* buf,
                                          int buf_len) {
  DCHECK_EQ(PARENT_ENTRY, type());

  if (!InitSparseInfo())
    return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;

  // We can't generally do this without the backend since we need it to create
  // child entries.
  if (!backend_)
    return net::ERR_FAILED;

  // Check that offset + buf_len does not overflow. This ensures that
  // offset + io_buf->BytesConsumed() never overflows below.
  if (offset < 0 || buf_len < 0 || !base::CheckAdd(offset, buf_len).IsValid())
    return net::ERR_INVALID_ARGUMENT;

  scoped_refptr<net::DrainableIOBuffer> io_buf =
      base::MakeRefCounted<net::DrainableIOBuffer>(buf, buf_len);

  // This loop walks through child entries continuously starting from |offset|
  // and writes blocks of data (of maximum size kMaxChildEntrySize) into each
  // child entry until all |buf_len| bytes are written. The write operation can
  // start in the middle of an entry.
  while (io_buf->BytesRemaining()) {
    MemEntryImpl* child = GetChild(offset + io_buf->BytesConsumed(), true);
    int child_offset = ToChildOffset(offset + io_buf->BytesConsumed());

    // Find the right amount to write, this evaluates the remaining bytes to
    // write and remaining capacity of this child entry.
    int write_len =
        std::min(io_buf->BytesRemaining(), kMaxChildEntrySize - child_offset);

    // Keep a record of the last byte position (exclusive) in the child.
    int data_size = child->GetDataSize(kSparseData);

    if (net_log_.IsCapturing()) {
      NetLogSparseReadWrite(
          net_log_, net::NetLogEventType::SPARSE_WRITE_CHILD_DATA,
          net::NetLogEventPhase::BEGIN, child->net_log_.source(), write_len);
    }

    // Always writes to the child entry. This operation may overwrite data
    // previously written.
    // TODO(hclam): if there is data in the entry and this write is not
    // continuous we may want to discard this write.
    int ret = child->WriteData(kSparseData, child_offset, io_buf.get(),
                               write_len, CompletionOnceCallback(), true);
    if (net_log_.IsCapturing()) {
      net_log_.EndEventWithNetErrorCode(
          net::NetLogEventType::SPARSE_WRITE_CHILD_DATA, ret);
    }
    if (ret < 0)
      return ret;
    else if (ret == 0)
      break;

    // Keep a record of the first byte position in the child if the write was
    // not aligned nor continuous. This is to enable witting to the middle
    // of an entry and still keep track of data off the aligned edge.
    if (data_size != child_offset)
      child->child_first_pos_ = child_offset;

    // Adjust the offset in the IO buffer.
    io_buf->DidConsume(ret);
  }

  UpdateStateOnUse(ENTRY_WAS_MODIFIED);
  return io_buf->BytesConsumed();
}

int MemEntryImpl::InternalGetAvailableRange(int64_t offset,
                                            int len,
                                            int64_t* start) {
  DCHECK_EQ(PARENT_ENTRY, type());
  DCHECK(start);

  if (!InitSparseInfo())
    return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;

  if (offset < 0 || len < 0 || !start)
    return net::ERR_INVALID_ARGUMENT;

  // Truncate |len| to make sure that |offset + len| does not overflow.
  // This is OK since one can't write that far anyway.
  // The result of std::min is guaranteed to fit into int since |len| did.
  len = std::min(static_cast<int64_t>(len),
                 std::numeric_limits<int64_t>::max() - offset);

  net::Interval<int64_t> requested(offset, offset + len);

  // Find the first relevant child, if any --- may have to skip over
  // one entry as it may be before the range (consider, for example,
  // if the request is for [2048, 10000), while [0, 1024) is a valid range
  // for the entry).
  EntryMap::const_iterator i = children_->lower_bound(ToChildIndex(offset));
  if (i != children_->cend() && !ChildInterval(i).Intersects(requested))
    ++i;
  net::Interval<int64_t> found;
  if (i != children_->cend() &&
      requested.Intersects(ChildInterval(i), &found)) {
    // Found something relevant; now just need to expand this out if next
    // children are contiguous and relevant to the request.
    while (true) {
      ++i;
      net::Interval<int64_t> relevant_in_next_child;
      if (i == children_->cend() ||
          !requested.Intersects(ChildInterval(i), &relevant_in_next_child) ||
          relevant_in_next_child.min() != found.max()) {
        break;
      }

      found.SpanningUnion(relevant_in_next_child);
    }
    *start = found.min();
    return found.Length();
  }

  *start = offset;
  return 0;
}

bool MemEntryImpl::InitSparseInfo() {
  DCHECK_EQ(PARENT_ENTRY, type());

  if (!children_) {
    // If we already have some data in sparse stream but we are being
    // initialized as a sparse entry, we should fail.
    if (GetDataSize(kSparseData))
      return false;
    children_.reset(new EntryMap());

    // The parent entry stores data for the first block, so save this object to
    // index 0.
    (*children_)[0] = this;
  }
  return true;
}

MemEntryImpl* MemEntryImpl::GetChild(int64_t offset, bool create) {
  DCHECK_EQ(PARENT_ENTRY, type());
  int64_t index = ToChildIndex(offset);
  auto i = children_->find(index);
  if (i != children_->end())
    return i->second;
  if (create)
    return new MemEntryImpl(backend_, index, this, net_log_.net_log());
  return nullptr;
}

net::Interval<int64_t> MemEntryImpl::ChildInterval(
    MemEntryImpl::EntryMap::const_iterator i) {
  DCHECK(i != children_->cend());
  const MemEntryImpl* child = i->second;
  // The valid range in child is [child_first_pos_, DataSize), since the child
  // entry ops just use standard disk_cache::Entry API, so DataSize is
  // not aware of any hole in the beginning.
  int64_t child_responsibility_start = (i->first) * kMaxChildEntrySize;
  return net::Interval<int64_t>(
      child_responsibility_start + child->child_first_pos_,
      child_responsibility_start + child->GetDataSize(kSparseData));
}

void MemEntryImpl::Compact() {
  // Stream 0 should already be fine since it's written out in a single WriteData().
  data_[1].shrink_to_fit();
  data_[2].shrink_to_fit();
}

}  // namespace disk_cache