1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// An Interval<T> is a data structure used to represent a contiguous, mutable
// range over an ordered type T. Supported operations include testing a value to
// see whether it is included in the interval, comparing two intervals, and
// performing their union, intersection, and difference. For the purposes of
// this library, an "ordered type" is any type that induces a total order on its
// values via its less-than operator (operator<()). Examples of such types are
// basic arithmetic types like int and double as well as class types like
// string.
//
// An Interval<T> is represented using the usual C++ STL convention, namely as
// the half-open interval [min, max). A point p is considered to be contained in
// the interval iff p >= min && p < max. One consequence of this definition is
// that for any non-empty interval, min is contained in the interval but max is
// not. There is no canonical representation for the empty interval; rather, any
// interval where max <= min is regarded as empty. As a consequence, two empty
// intervals will still compare as equal despite possibly having different
// underlying min() or max() values. Also beware of the terminology used here:
// the library uses the terms "min" and "max" rather than "begin" and "end" as
// is conventional for the STL.
//
// T is required to be default- and copy-constructable, to have an assignment
// operator, and the full complement of comparison operators (<, <=, ==, !=, >=,
// >). A difference operator (operator-()) is required if Interval<T>::Length
// is used.
//
// For equality comparisons, Interval<T> supports an Equals() method and an
// operator==() which delegates to it. Two intervals are considered equal if
// either they are both empty or if their corresponding min and max fields
// compare equal. For ordered comparisons, Interval<T> also provides the
// comparator Interval<T>::Less and an operator<() which delegates to it.
// Unfortunately this comparator is currently buggy because its behavior is
// inconsistent with Equals(): two empty ranges with different representations
// may be regarded as equivalent by Equals() but regarded as different by
// the comparator. Bug 9240050 has been created to address this.
//
// This class is thread-compatible if T is thread-compatible. (See
// go/thread-compatible).
//
// Examples:
// Interval<int> r1(0, 100); // The interval [0, 100).
// EXPECT_TRUE(r1.Contains(0));
// EXPECT_TRUE(r1.Contains(50));
// EXPECT_FALSE(r1.Contains(100)); // 100 is just outside the interval.
//
// Interval<int> r2(50, 150); // The interval [50, 150).
// EXPECT_TRUE(r1.Intersects(r2));
// EXPECT_FALSE(r1.Contains(r2));
// EXPECT_TRUE(r1.IntersectWith(r2)); // Mutates r1.
// EXPECT_EQ(Interval<int>(50, 100), r1); // r1 is now [50, 100).
//
// Interval<int> r3(1000, 2000); // The interval [1000, 2000).
// EXPECT_TRUE(r1.IntersectWith(r3)); // Mutates r1.
// EXPECT_TRUE(r1.Empty()); // Now r1 is empty.
// EXPECT_FALSE(r1.Contains(r1.min())); // e.g. doesn't contain its own min.
#ifndef NET_BASE_INTERVAL_H_
#define NET_BASE_INTERVAL_H_
#include <stddef.h>
#include <algorithm>
#include <functional>
#include <ostream>
#include <string>
#include <utility>
#include <vector>
namespace net {
template <typename T>
class Interval {
private:
// TODO(rtenneti): Implement after suupport for std::decay.
#if 0
// Type trait for deriving the return type for Interval::Length. If
// operator-() is not defined for T, then the return type is void. This makes
// the signature for Length compile so that the class can be used for such T,
// but code that calls Length would still generate a compilation error.
template <typename U>
class DiffTypeOrVoid {
private:
template <typename V>
static auto f(const V* v) -> decltype(*v - *v);
template <typename V>
static void f(...);
public:
using type = typename std::decay<decltype(f<U>(0))>::type;
};
#endif
public:
// Compatibility alias.
using Less = std::less<Interval>;
// Construct an Interval representing an empty interval.
Interval() : min_(), max_() {}
// Construct an Interval representing the interval [min, max). If min < max,
// the constructed object will represent the non-empty interval containing all
// values from min up to (but not including) max. On the other hand, if min >=
// max, the constructed object will represent the empty interval.
Interval(const T& min, const T& max) : min_(min), max_(max) {}
const T& min() const { return min_; }
const T& max() const { return max_; }
void SetMin(const T& t) { min_ = t; }
void SetMax(const T& t) { max_ = t; }
void Set(const T& min, const T& max) {
SetMin(min);
SetMax(max);
}
void Clear() { *this = {}; }
void CopyFrom(const Interval& i) { *this = i; }
bool Equals(const Interval& i) const { return *this == i; }
bool Empty() const { return min() >= max(); }
// Returns the length of this interval. The value returned is zero if
// IsEmpty() is true; otherwise the value returned is max() - min().
const T Length() const { return (min_ >= max_ ? min_ : max_) - min_; }
// Returns true iff t >= min() && t < max().
bool Contains(const T& t) const { return min() <= t && max() > t; }
// Returns true iff *this and i are non-empty, and *this includes i. "*this
// includes i" means that for all t, if i.Contains(t) then this->Contains(t).
// Note the unintuitive consequence of this definition: this method always
// returns false when i is the empty interval.
bool Contains(const Interval& i) const {
return !Empty() && !i.Empty() && min() <= i.min() && max() >= i.max();
}
// Returns true iff there exists some point t for which this->Contains(t) &&
// i.Contains(t) evaluates to true, i.e. if the intersection is non-empty.
bool Intersects(const Interval& i) const {
return !Empty() && !i.Empty() && min() < i.max() && max() > i.min();
}
// Returns true iff there exists some point t for which this->Contains(t) &&
// i.Contains(t) evaluates to true, i.e. if the intersection is non-empty.
// Furthermore, if the intersection is non-empty and the intersection pointer
// is not null, this method stores the calculated intersection in
// *intersection.
bool Intersects(const Interval& i, Interval* out) const;
// Sets *this to be the intersection of itself with i. Returns true iff
// *this was modified.
bool IntersectWith(const Interval& i);
// Calculates the smallest interval containing both *this i, and updates *this
// to represent that interval, and returns true iff *this was modified.
bool SpanningUnion(const Interval& i);
// Determines the difference between two intervals as in
// Difference(Interval&, vector*), but stores the results directly in out
// parameters rather than dynamically allocating an Interval* and appending
// it to a vector. If two results are generated, the one with the smaller
// value of min() will be stored in *lo and the other in *hi. Otherwise (if
// fewer than two results are generated), unused arguments will be set to the
// empty interval (it is possible that *lo will be empty and *hi non-empty).
// The method returns true iff the intersection of *this and i is non-empty.
bool Difference(const Interval& i, Interval* lo, Interval* hi) const;
friend bool operator==(const Interval& a, const Interval& b) {
bool ae = a.Empty();
bool be = b.Empty();
if (ae && be)
return true; // All empties are equal.
if (ae != be)
return false; // Empty cannot equal nonempty.
return a.min() == b.min() && a.max() == b.max();
}
friend bool operator!=(const Interval& a, const Interval& b) {
return !(a == b);
}
// Defines a comparator which can be used to induce an order on Intervals, so
// that, for example, they can be stored in an ordered container such as
// std::set. The ordering is arbitrary, but does provide the guarantee that,
// for non-empty intervals X and Y, if X contains Y, then X <= Y.
// TODO(kosak): The current implementation of this comparator has a problem
// because the ordering it induces is inconsistent with that of Equals(). In
// particular, this comparator does not properly consider all empty intervals
// equivalent. Bug b/9240050 has been created to track this.
friend bool operator<(const Interval& a, const Interval& b) {
return a.min() < b.min() || (a.min() == b.min() && a.max() > b.max());
}
friend std::ostream& operator<<(std::ostream& out, const Interval& i) {
return out << "[" << i.min() << ", " << i.max() << ")";
}
private:
T min_; // Inclusive lower bound.
T max_; // Exclusive upper bound.
};
//==============================================================================
// Implementation details: Clients can stop reading here.
template <typename T>
bool Interval<T>::Intersects(const Interval& i, Interval* out) const {
if (!Intersects(i))
return false;
if (out != nullptr) {
*out = Interval(std::max(min(), i.min()), std::min(max(), i.max()));
}
return true;
}
template <typename T>
bool Interval<T>::IntersectWith(const Interval& i) {
if (Empty())
return false;
bool modified = false;
if (i.min() > min()) {
SetMin(i.min());
modified = true;
}
if (i.max() < max()) {
SetMax(i.max());
modified = true;
}
return modified;
}
template <typename T>
bool Interval<T>::SpanningUnion(const Interval& i) {
if (i.Empty())
return false;
if (Empty()) {
*this = i;
return true;
}
bool modified = false;
if (i.min() < min()) {
SetMin(i.min());
modified = true;
}
if (i.max() > max()) {
SetMax(i.max());
modified = true;
}
return modified;
}
template <typename T>
bool Interval<T>::Difference(const Interval& i,
Interval* lo,
Interval* hi) const {
// Initialize *lo and *hi to empty
*lo = {};
*hi = {};
if (Empty())
return false;
if (i.Empty()) {
*lo = *this;
return false;
}
if (min() < i.max() && min() >= i.min() && max() > i.max()) {
// [------ this ------)
// [------ i ------)
// [-- result ---)
*hi = Interval(i.max(), max());
return true;
}
if (max() > i.min() && max() <= i.max() && min() < i.min()) {
// [------ this ------)
// [------ i ------)
// [- result -)
*lo = Interval(min(), i.min());
return true;
}
if (min() < i.min() && max() > i.max()) {
// [------- this --------)
// [---- i ----)
// [ R1 ) [ R2 )
// There are two results: R1 and R2.
*lo = Interval(min(), i.min());
*hi = Interval(i.max(), max());
return true;
}
if (min() >= i.min() && max() <= i.max()) {
// [--- this ---)
// [------ i --------)
// Intersection is <this>, so difference yields the empty interval.
return true;
}
*lo = *this; // No intersection.
return false;
}
} // namespace net
#endif // NET_BASE_INTERVAL_H_
|