summaryrefslogtreecommitdiff
path: root/chromium/net/base/backoff_entry_serializer_unittest.cc
blob: 0bb8e0ba629f9f3bddb4085499ab5c045a41e548 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/base/backoff_entry.h"

#include "base/containers/span.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/time/tick_clock.h"
#include "base/time/time.h"
#include "base/values.h"
#include "net/base/backoff_entry_serializer.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace net {

namespace {

using base::Time;
using base::TimeTicks;

const Time kParseTime =
    Time::FromJsTime(1430907555111);  // May 2015 for realism

BackoffEntry::Policy base_policy = {
    0 /* num_errors_to_ignore */,
    1000 /* initial_delay_ms */,
    2.0 /* multiply_factor */,
    0.0 /* jitter_factor */,
    20000 /* maximum_backoff_ms */,
    2000 /* entry_lifetime_ms */,
    false /* always_use_initial_delay */
};

class TestTickClock : public base::TickClock {
 public:
  TestTickClock() = default;
  TestTickClock(const TestTickClock&) = delete;
  TestTickClock& operator=(const TestTickClock&) = delete;
  ~TestTickClock() override = default;

  TimeTicks NowTicks() const override { return now_ticks_; }
  void set_now(TimeTicks now) { now_ticks_ = now; }

 private:
  TimeTicks now_ticks_;
};

// This test exercises the code that computes the "backoff duration" and tests
// BackoffEntrySerializer::SerializeToList computes the backoff duration of a
// BackoffEntry by subtracting two base::TimeTicks values. Note that
// base::TimeTicks::operator- does not protect against overflow. Because
// SerializeToList never returns null, its resolution strategy is to default to
// a zero base::TimeDelta when the subtraction would overflow.
TEST(BackoffEntrySerializerTest, SpecialCasesOfBackoffDuration) {
  const base::TimeTicks kZeroTicks;

  struct TestCase {
    base::TimeTicks release_time;
    base::TimeTicks timeticks_now;
    base::TimeDelta expected_backoff_duration;
  };
  TestCase test_cases[] = {
      // Non-overflowing subtraction works as expected.
      {
          .release_time = kZeroTicks + base::Microseconds(100),
          .timeticks_now = kZeroTicks + base::Microseconds(75),
          .expected_backoff_duration = base::Microseconds(25),
      },
      {
          .release_time = kZeroTicks + base::Microseconds(25),
          .timeticks_now = kZeroTicks + base::Microseconds(100),
          .expected_backoff_duration = base::Microseconds(-75),
      },
      // Defaults to zero when one of the operands is +/- infinity.
      {
          .release_time = base::TimeTicks::Min(),
          .timeticks_now = kZeroTicks,
          .expected_backoff_duration = base::TimeDelta(),
      },
      {
          .release_time = base::TimeTicks::Max(),
          .timeticks_now = kZeroTicks,
          .expected_backoff_duration = base::TimeDelta(),
      },
      {
          .release_time = kZeroTicks,
          .timeticks_now = base::TimeTicks::Min(),
          .expected_backoff_duration = base::TimeDelta(),
      },
      {
          .release_time = kZeroTicks,
          .timeticks_now = base::TimeTicks::Max(),
          .expected_backoff_duration = base::TimeDelta(),
      },
      // Defaults to zero when both of the operands are +/- infinity.
      {
          .release_time = base::TimeTicks::Min(),
          .timeticks_now = base::TimeTicks::Min(),
          .expected_backoff_duration = base::TimeDelta(),
      },
      {
          .release_time = base::TimeTicks::Min(),
          .timeticks_now = base::TimeTicks::Max(),
          .expected_backoff_duration = base::TimeDelta(),
      },
      {
          .release_time = base::TimeTicks::Max(),
          .timeticks_now = base::TimeTicks::Min(),
          .expected_backoff_duration = base::TimeDelta(),
      },
      {
          .release_time = base::TimeTicks::Max(),
          .timeticks_now = base::TimeTicks::Max(),
          .expected_backoff_duration = base::TimeDelta(),
      },
      // Defaults to zero when the subtraction overflows, even when neither
      // operand is infinity.
      {
          .release_time = base::TimeTicks::Max() - base::Microseconds(1),
          .timeticks_now = kZeroTicks + base::Microseconds(-1),
          .expected_backoff_duration = base::TimeDelta(),
      },
  };

  size_t test_index = 0;
  for (const TestCase& test_case : test_cases) {
    SCOPED_TRACE(base::StringPrintf("Running test case #%zu", test_index));
    ++test_index;

    Time original_time = base::Time::Now();
    TestTickClock original_ticks;
    original_ticks.set_now(test_case.timeticks_now);
    BackoffEntry original(&base_policy, &original_ticks);
    // Set the custom release time.
    original.SetCustomReleaseTime(test_case.release_time);
    base::Value::List serialized =
        BackoffEntrySerializer::SerializeToList(original, original_time);

    // Check that the serialized backoff duration matches our expectation.
    const std::string& serialized_backoff_duration_string =
        serialized[2].GetString();
    int64_t serialized_backoff_duration_us;
    EXPECT_TRUE(base::StringToInt64(serialized_backoff_duration_string,
                                    &serialized_backoff_duration_us));

    base::TimeDelta serialized_backoff_duration =
        base::Microseconds(serialized_backoff_duration_us);
    EXPECT_EQ(serialized_backoff_duration, test_case.expected_backoff_duration);
  }
}

// This test verifies that BackoffEntrySerializer::SerializeToList will not
// serialize an infinite release time.
//
// In pseudocode, this is how absolute_release_time is computed:
//   backoff_duration = release_time - now;
//   absolute_release_time = backoff_duration + original_time;
//
// This test induces backoff_duration to be a nonzero duration and directly sets
// original_time as a large value, such that their addition will overflow.
TEST(BackoffEntrySerializerTest, SerializeFiniteReleaseTime) {
  const TimeTicks release_time = TimeTicks() + base::Microseconds(5);
  const Time original_time = Time::Max() - base::Microseconds(4);

  TestTickClock original_ticks;
  original_ticks.set_now(TimeTicks());
  BackoffEntry original(&base_policy, &original_ticks);
  original.SetCustomReleaseTime(release_time);
  base::Value::List serialized =
      BackoffEntrySerializer::SerializeToList(original, original_time);

  // Reach into the serialization and check the string-formatted release time.
  const std::string& serialized_release_time = serialized[3].GetString();
  EXPECT_EQ(serialized_release_time, "0");

  // Test that |DeserializeFromList| notices this zero-valued release time and
  // does not take it at face value.
  std::unique_ptr<BackoffEntry> deserialized =
      BackoffEntrySerializer::DeserializeFromList(serialized, &base_policy,
                                                  &original_ticks, kParseTime);
  ASSERT_TRUE(deserialized.get());
  EXPECT_EQ(original.GetReleaseTime(), deserialized->GetReleaseTime());
}

TEST(BackoffEntrySerializerTest, SerializeNoFailures) {
  Time original_time = Time::Now();
  TestTickClock original_ticks;
  original_ticks.set_now(TimeTicks::Now());
  BackoffEntry original(&base_policy, &original_ticks);
  base::Value::List serialized =
      BackoffEntrySerializer::SerializeToList(original, original_time);

  std::unique_ptr<BackoffEntry> deserialized =
      BackoffEntrySerializer::DeserializeFromList(
          serialized, &base_policy, &original_ticks, original_time);
  ASSERT_TRUE(deserialized.get());
  EXPECT_EQ(original.failure_count(), deserialized->failure_count());
  EXPECT_EQ(original.GetReleaseTime(), deserialized->GetReleaseTime());
}

// Test that deserialization fails instead of producing an entry with an
// infinite release time. (Regression test for https://crbug.com/1293904)
TEST(BackoffEntrySerializerTest, DeserializeNeverInfiniteReleaseTime) {
  base::Value::List serialized;
  serialized.Append(2);
  serialized.Append(2);
  serialized.Append("-9223372036854775807");
  serialized.Append("2");

  TestTickClock original_ticks;
  original_ticks.set_now(base::TimeTicks() + base::Microseconds(-1));

  base::Time time_now =
      base::Time::FromDeltaSinceWindowsEpoch(base::Microseconds(-1));

  std::unique_ptr<BackoffEntry> entry =
      BackoffEntrySerializer::DeserializeFromList(serialized, &base_policy,
                                                  &original_ticks, time_now);
  ASSERT_FALSE(entry);
}

TEST(BackoffEntrySerializerTest, SerializeTimeOffsets) {
  Time original_time = Time::FromJsTime(1430907555111);  // May 2015 for realism
  TestTickClock original_ticks;
  BackoffEntry original(&base_policy, &original_ticks);
  // 2 errors.
  original.InformOfRequest(false);
  original.InformOfRequest(false);
  base::Value::List serialized =
      BackoffEntrySerializer::SerializeToList(original, original_time);

  {
    // Test that immediate deserialization round-trips.
    std::unique_ptr<BackoffEntry> deserialized =
        BackoffEntrySerializer::DeserializeFromList(
            serialized, &base_policy, &original_ticks, original_time);
    ASSERT_TRUE(deserialized.get());
    EXPECT_EQ(original.failure_count(), deserialized->failure_count());
    EXPECT_EQ(original.GetReleaseTime(), deserialized->GetReleaseTime());
  }

  {
    // Test deserialization when wall clock has advanced but TimeTicks::Now()
    // hasn't (e.g. device was rebooted).
    Time later_time = original_time + base::Days(1);
    std::unique_ptr<BackoffEntry> deserialized =
        BackoffEntrySerializer::DeserializeFromList(
            serialized, &base_policy, &original_ticks, later_time);
    ASSERT_TRUE(deserialized.get());
    EXPECT_EQ(original.failure_count(), deserialized->failure_count());
    // Remaining backoff duration continues decreasing while device is off.
    // Since TimeTicks::Now() has not advanced, the absolute release time ticks
    // will decrease accordingly.
    EXPECT_GT(original.GetTimeUntilRelease(),
              deserialized->GetTimeUntilRelease());
    EXPECT_EQ(original.GetReleaseTime() - base::Days(1),
              deserialized->GetReleaseTime());
  }

  {
    // Test deserialization when TimeTicks::Now() has advanced but wall clock
    // hasn't (e.g. it's an hour later, but a DST change cancelled that out).
    TestTickClock later_ticks;
    later_ticks.set_now(TimeTicks() + base::Days(1));
    std::unique_ptr<BackoffEntry> deserialized =
        BackoffEntrySerializer::DeserializeFromList(
            serialized, &base_policy, &later_ticks, original_time);
    ASSERT_TRUE(deserialized.get());
    EXPECT_EQ(original.failure_count(), deserialized->failure_count());
    // According to the wall clock, no time has passed. So remaining backoff
    // duration is preserved, hence the absolute release time ticks increases.
    // This isn't ideal - by also serializing the current time and time ticks,
    // it would be possible to detect that time has passed but the wall clock
    // went backwards, and reduce the remaining backoff duration accordingly,
    // however the current implementation does not do this as the benefit would
    // be somewhat marginal.
    EXPECT_EQ(original.GetTimeUntilRelease(),
              deserialized->GetTimeUntilRelease());
    EXPECT_EQ(original.GetReleaseTime() + base::Days(1),
              deserialized->GetReleaseTime());
  }

  {
    // Test deserialization when both wall clock and TimeTicks::Now() have
    // advanced (e.g. it's just later than it used to be).
    TestTickClock later_ticks;
    later_ticks.set_now(TimeTicks() + base::Days(1));
    Time later_time = original_time + base::Days(1);
    std::unique_ptr<BackoffEntry> deserialized =
        BackoffEntrySerializer::DeserializeFromList(serialized, &base_policy,
                                                    &later_ticks, later_time);
    ASSERT_TRUE(deserialized.get());
    EXPECT_EQ(original.failure_count(), deserialized->failure_count());
    // Since both have advanced by the same amount, the absolute release time
    // ticks should be preserved; the remaining backoff duration will have
    // decreased of course, since time has passed.
    EXPECT_GT(original.GetTimeUntilRelease(),
              deserialized->GetTimeUntilRelease());
    EXPECT_EQ(original.GetReleaseTime(), deserialized->GetReleaseTime());
  }

  {
    // Test deserialization when wall clock has gone backwards but TimeTicks
    // haven't (e.g. the system clock was fast but they fixed it).
    EXPECT_LT(base::Seconds(1), original.GetTimeUntilRelease());
    Time earlier_time = original_time - base::Seconds(1);
    std::unique_ptr<BackoffEntry> deserialized =
        BackoffEntrySerializer::DeserializeFromList(
            serialized, &base_policy, &original_ticks, earlier_time);
    ASSERT_TRUE(deserialized.get());
    EXPECT_EQ(original.failure_count(), deserialized->failure_count());
    // If only the absolute wall clock time was serialized, subtracting the
    // (decreased) current wall clock time from the serialized wall clock time
    // could give very large (incorrect) values for remaining backoff duration.
    // But instead the implementation also serializes the remaining backoff
    // duration, and doesn't allow the duration to increase beyond it's previous
    // value during deserialization. Hence when the wall clock goes backwards
    // the remaining backoff duration will be preserved.
    EXPECT_EQ(original.GetTimeUntilRelease(),
              deserialized->GetTimeUntilRelease());
    // Since TimeTicks::Now() hasn't changed, the absolute release time ticks
    // will be equal too in this particular case.
    EXPECT_EQ(original.GetReleaseTime(), deserialized->GetReleaseTime());
  }
}

TEST(BackoffEntrySerializerTest, DeserializeUnknownVersion) {
  base::Value::List serialized;
  serialized.Append(0);       // Format version that never existed
  serialized.Append(0);       // Failure count
  serialized.Append(2.0);     // Backoff duration
  serialized.Append("1234");  // Absolute release time

  auto deserialized = BackoffEntrySerializer::DeserializeFromList(
      serialized, &base_policy, nullptr, kParseTime);
  ASSERT_FALSE(deserialized);
}

TEST(BackoffEntrySerializerTest, DeserializeVersion1) {
  base::Value::List serialized;
  serialized.Append(SerializationFormatVersion::kVersion1);
  serialized.Append(0);       // Failure count
  serialized.Append(2.0);     // Backoff duration in seconds as double
  serialized.Append("1234");  // Absolute release time

  auto deserialized = BackoffEntrySerializer::DeserializeFromList(
      serialized, &base_policy, nullptr, kParseTime);
  ASSERT_TRUE(deserialized);
}

TEST(BackoffEntrySerializerTest, DeserializeVersion2) {
  base::Value::List serialized;
  serialized.Append(SerializationFormatVersion::kVersion2);
  serialized.Append(0);       // Failure count
  serialized.Append("2000");  // Backoff duration
  serialized.Append("1234");  // Absolute release time

  auto deserialized = BackoffEntrySerializer::DeserializeFromList(
      serialized, &base_policy, nullptr, kParseTime);
  ASSERT_TRUE(deserialized);
}

TEST(BackoffEntrySerializerTest, DeserializeVersion2NegativeDuration) {
  base::Value::List serialized;
  serialized.Append(SerializationFormatVersion::kVersion2);
  serialized.Append(0);        // Failure count
  serialized.Append("-2000");  // Backoff duration
  serialized.Append("1234");   // Absolute release time

  auto deserialized = BackoffEntrySerializer::DeserializeFromList(
      serialized, &base_policy, nullptr, kParseTime);
  ASSERT_TRUE(deserialized);
}

TEST(BackoffEntrySerializerTest, DeserializeVersion1WrongDurationType) {
  base::Value::List serialized;
  serialized.Append(SerializationFormatVersion::kVersion1);
  serialized.Append(0);       // Failure count
  serialized.Append("2000");  // Backoff duration in seconds as double
  serialized.Append("1234");  // Absolute release time

  auto deserialized = BackoffEntrySerializer::DeserializeFromList(
      serialized, &base_policy, nullptr, kParseTime);
  ASSERT_FALSE(deserialized);
}

TEST(BackoffEntrySerializerTest, DeserializeVersion2WrongDurationType) {
  base::Value::List serialized;
  serialized.Append(SerializationFormatVersion::kVersion2);
  serialized.Append(0);       // Failure count
  serialized.Append(2.0);     // Backoff duration
  serialized.Append("1234");  // Absolute release time

  auto deserialized = BackoffEntrySerializer::DeserializeFromList(
      serialized, &base_policy, nullptr, kParseTime);
  ASSERT_FALSE(deserialized);
}

}  // namespace

}  // namespace net