summaryrefslogtreecommitdiff
path: root/chromium/media/webrtc/audio_processor.cc
blob: f5aa34725d761a08a5788055e640372155bbdf60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/webrtc/audio_processor.h"

#include <stddef.h>
#include <stdint.h>

#include <algorithm>
#include <array>
#include <limits>
#include <memory>
#include <utility>

#include "base/feature_list.h"
#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "base/task/thread_pool.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#include "build/chromecast_buildflags.h"
#include "build/chromeos_buildflags.h"
#include "media/base/audio_fifo.h"
#include "media/base/audio_parameters.h"
#include "media/base/audio_timestamp_helper.h"
#include "media/base/channel_layout.h"
#include "media/base/limits.h"
#include "media/webrtc/constants.h"
#include "media/webrtc/helpers.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "third_party/webrtc/modules/audio_processing/include/audio_processing.h"
#include "third_party/webrtc_overrides/task_queue_factory.h"

namespace media {

namespace {
constexpr int kBuffersPerSecond = 100;  // 10 ms per buffer.

int GetCaptureBufferSize(bool need_webrtc_processing,
                         const AudioParameters device_format) {
#if BUILDFLAG(IS_ANDROID) && !BUILDFLAG(IS_CAST_ANDROID)
  // TODO(henrika): Re-evaluate whether to use same logic as other platforms.
  // https://crbug.com/638081
  // Note: This computation does not match 2x10 ms as defined for audio
  // processing when rates are 50 modulo 100. 22050 Hz here gives buffer size
  // (2*22050)/100 = 441 samples, while WebRTC processes in chunks of 22050/100
  // = 220 samples. This leads to unnecessary rebuffering.
  return 2 * device_format.sample_rate() / 100;
#else
  const int buffer_size_10_ms = device_format.sample_rate() / 100;
  // If audio processing is turned on, require 10ms buffers to avoid
  // rebuffering.
  if (need_webrtc_processing) {
    DCHECK_EQ(buffer_size_10_ms, webrtc::AudioProcessing::GetFrameSize(
                                     device_format.sample_rate()));
    return buffer_size_10_ms;
  }

  // If WebRTC audio processing is not required and the native hardware buffer
  // size was provided, use it. It can be harmful, in terms of CPU/power
  // consumption, to use smaller buffer sizes than the native size.
  // (https://crbug.com/362261).
  if (int hardware_buffer_size = device_format.frames_per_buffer())
    return hardware_buffer_size;

  // If the buffer size is missing from the device parameters, provide 10ms as
  // a fall-back.
  return buffer_size_10_ms;
#endif
}
}  // namespace

// Wraps AudioBus to provide access to the array of channel pointers, since this
// is the type webrtc::AudioProcessing deals in. The array is refreshed on every
// channel_ptrs() call, and will be valid until the underlying AudioBus pointers
// are changed, e.g. through calls to SetChannelData() or SwapChannels().
class AudioProcessorCaptureBus {
 public:
  AudioProcessorCaptureBus(int channels, int frames)
      : bus_(media::AudioBus::Create(channels, frames)),
        channel_ptrs_(new float*[channels]) {
    bus_->Zero();
  }

  media::AudioBus* bus() { return bus_.get(); }

  float* const* channel_ptrs() {
    for (int i = 0; i < bus_->channels(); ++i) {
      channel_ptrs_[i] = bus_->channel(i);
    }
    return channel_ptrs_.get();
  }

 private:
  std::unique_ptr<media::AudioBus> bus_;
  std::unique_ptr<float*[]> channel_ptrs_;
};

// Wraps AudioFifo to provide a cleaner interface to AudioProcessor.
// It avoids the FIFO when the source and destination frames match. If
// |source_channels| is larger than |destination_channels|, only the first
// |destination_channels| are kept from the source.
// Does not support concurrent access.
class AudioProcessorCaptureFifo {
 public:
  AudioProcessorCaptureFifo(int source_channels,
                            int destination_channels,
                            int source_frames,
                            int destination_frames,
                            int sample_rate)
      :
#if DCHECK_IS_ON()
        source_channels_(source_channels),
        source_frames_(source_frames),
#endif
        sample_rate_(sample_rate),
        destination_(
            std::make_unique<AudioProcessorCaptureBus>(destination_channels,
                                                       destination_frames)),
        data_available_(false) {
    DCHECK_GE(source_channels, destination_channels);

    if (source_channels > destination_channels) {
      audio_source_intermediate_ =
          media::AudioBus::CreateWrapper(destination_channels);
    }

    if (source_frames != destination_frames) {
      // Since we require every Push to be followed by as many Consumes as
      // possible, twice the larger of the two is a (probably) loose upper bound
      // on the FIFO size.
      const int fifo_frames = 2 * std::max(source_frames, destination_frames);
      fifo_ =
          std::make_unique<media::AudioFifo>(destination_channels, fifo_frames);
    }
  }

  void Push(const media::AudioBus& source, base::TimeDelta audio_delay) {
#if DCHECK_IS_ON()
    DCHECK_EQ(source.channels(), source_channels_);
    DCHECK_EQ(source.frames(), source_frames_);
#endif
    const media::AudioBus* source_to_push = &source;

    if (audio_source_intermediate_) {
      for (int i = 0; i < destination_->bus()->channels(); ++i) {
        audio_source_intermediate_->SetChannelData(
            i, const_cast<float*>(source.channel(i)));
      }
      audio_source_intermediate_->set_frames(source.frames());
      source_to_push = audio_source_intermediate_.get();
    }

    if (fifo_) {
      CHECK_LT(fifo_->frames(), destination_->bus()->frames());
      next_audio_delay_ =
          audio_delay + fifo_->frames() * base::Seconds(1) / sample_rate_;
      fifo_->Push(source_to_push);
    } else {
      CHECK(!data_available_);
      source_to_push->CopyTo(destination_->bus());
      next_audio_delay_ = audio_delay;
      data_available_ = true;
    }
  }

  // Returns true if there are destination_frames() of data available to be
  // consumed, and otherwise false.
  bool Consume(AudioProcessorCaptureBus** destination,
               base::TimeDelta* audio_delay) {
    if (fifo_) {
      if (fifo_->frames() < destination_->bus()->frames())
        return false;

      fifo_->Consume(destination_->bus(), 0, destination_->bus()->frames());
      *audio_delay = next_audio_delay_;
      next_audio_delay_ -=
          destination_->bus()->frames() * base::Seconds(1) / sample_rate_;
    } else {
      if (!data_available_)
        return false;
      *audio_delay = next_audio_delay_;
      // The data was already copied to |destination_| in this case.
      data_available_ = false;
    }

    *destination = destination_.get();
    return true;
  }

 private:
#if DCHECK_IS_ON()
  const int source_channels_;
  const int source_frames_;
#endif
  const int sample_rate_;
  std::unique_ptr<media::AudioBus> audio_source_intermediate_;
  std::unique_ptr<AudioProcessorCaptureBus> destination_;
  std::unique_ptr<media::AudioFifo> fifo_;

  // When using |fifo_|, this is the audio delay of the first sample to be
  // consumed next from the FIFO.  When not using |fifo_|, this is the audio
  // delay of the first sample in |destination_|.
  base::TimeDelta next_audio_delay_;

  // True when |destination_| contains the data to be returned by the next call
  // to Consume().  Only used when the FIFO is disabled.
  bool data_available_;
};

// static
std::unique_ptr<AudioProcessor> AudioProcessor::Create(
    DeliverProcessedAudioCallback deliver_processed_audio_callback,
    LogCallback log_callback,
    const AudioProcessingSettings& settings,
    const media::AudioParameters& input_format,
    const media::AudioParameters& output_format) {
  log_callback.Run(base::StringPrintf(
      "AudioProcessor::Create({multi_channel_capture_processing=%s})",
      settings.multi_channel_capture_processing ? "true" : "false"));

  rtc::scoped_refptr<webrtc::AudioProcessing> webrtc_audio_processing =
      media::CreateWebRtcAudioProcessingModule(settings);

  return std::make_unique<AudioProcessor>(
      std::move(deliver_processed_audio_callback), std::move(log_callback),
      input_format, output_format, std::move(webrtc_audio_processing),
      settings.stereo_mirroring);
}

AudioProcessor::AudioProcessor(
    DeliverProcessedAudioCallback deliver_processed_audio_callback,
    LogCallback log_callback,
    const media::AudioParameters& input_format,
    const media::AudioParameters& output_format,
    rtc::scoped_refptr<webrtc::AudioProcessing> webrtc_audio_processing,
    bool stereo_mirroring)
    : webrtc_audio_processing_(webrtc_audio_processing),
      stereo_mirroring_(stereo_mirroring),
      log_callback_(std::move(log_callback)),
      input_format_(input_format),
      output_format_(output_format),
      deliver_processed_audio_callback_(
          std::move(deliver_processed_audio_callback)),
      audio_delay_stats_reporter_(kBuffersPerSecond),
      playout_fifo_(
          // Unretained is safe, since the callback is always called
          // synchronously within the AudioProcessor.
          base::BindRepeating(&AudioProcessor::AnalyzePlayoutData,
                              base::Unretained(this))) {
  DCHECK(deliver_processed_audio_callback_);
  DCHECK(log_callback_);

  CHECK(input_format_.IsValid());
  CHECK(output_format_.IsValid());
  if (webrtc_audio_processing_) {
    DCHECK_EQ(
        webrtc::AudioProcessing::GetFrameSize(output_format_.sample_rate()),
        output_format_.frames_per_buffer());
  }
  if (input_format_.sample_rate() % 100 != 0 ||
      output_format_.sample_rate() % 100 != 0) {
    // The WebRTC audio processing module may simulate clock drift on
    // non-divisible sample rates.
    SendLogMessage(base::StringPrintf(
        "%s: WARNING: Sample rate not divisible by 100, processing is provided "
        "on a best-effort basis. input rate=[%d], output rate=[%d]",
        __func__, input_format_.sample_rate(), output_format_.sample_rate()));
  }
  SendLogMessage(base::StringPrintf(
      "%s({input_format_=[%s], output_format_=[%s]})", __func__,
      input_format_.AsHumanReadableString().c_str(),
      output_format_.AsHumanReadableString().c_str()));

  // If audio processing is needed, rebuffer to APM frame size. If not, rebuffer
  // to the requested output format.
  const int fifo_output_frames_per_buffer =
      webrtc_audio_processing_
          ? webrtc::AudioProcessing::GetFrameSize(input_format_.sample_rate())
          : output_format_.frames_per_buffer();
  SendLogMessage(base::StringPrintf(
      "%s => (capture FIFO: fifo_output_frames_per_buffer=%d)", __func__,
      fifo_output_frames_per_buffer));
  capture_fifo_ = std::make_unique<AudioProcessorCaptureFifo>(
      input_format.channels(), input_format_.channels(),
      input_format.frames_per_buffer(), fifo_output_frames_per_buffer,
      input_format.sample_rate());

  if (webrtc_audio_processing_) {
    output_bus_ = std::make_unique<AudioProcessorCaptureBus>(
        output_format_.channels(), output_format.frames_per_buffer());
  }
}

AudioProcessor::~AudioProcessor() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(owning_sequence_);
  OnStopDump();
}

void AudioProcessor::ProcessCapturedAudio(const media::AudioBus& audio_source,
                                          base::TimeTicks audio_capture_time,
                                          int num_preferred_channels,
                                          double volume,
                                          bool key_pressed) {
  DCHECK(deliver_processed_audio_callback_);
  // Sanity-check the input audio format in debug builds.
  DCHECK(input_format_.IsValid());
  DCHECK_EQ(audio_source.channels(), input_format_.channels());
  DCHECK_EQ(audio_source.frames(), input_format_.frames_per_buffer());

  base::TimeDelta capture_delay = base::TimeTicks::Now() - audio_capture_time;
  TRACE_EVENT1("audio", "AudioProcessor::ProcessCapturedAudio", "delay (ms)",
               capture_delay.InMillisecondsF());

  capture_fifo_->Push(audio_source, capture_delay);

  // Process and consume the data in the FIFO until there is not enough
  // data to process.
  AudioProcessorCaptureBus* process_bus;
  while (capture_fifo_->Consume(&process_bus, &capture_delay)) {
    // Use the process bus directly if audio processing is disabled.
    AudioProcessorCaptureBus* output_bus = process_bus;
    absl::optional<double> new_volume;
    if (webrtc_audio_processing_) {
      output_bus = output_bus_.get();
      new_volume =
          ProcessData(process_bus->channel_ptrs(), process_bus->bus()->frames(),
                      capture_delay, volume, key_pressed,
                      num_preferred_channels, output_bus->channel_ptrs());
    }

    // Swap channels before interleaving the data.
    if (stereo_mirroring_ &&
        output_format_.channel_layout() == media::CHANNEL_LAYOUT_STEREO) {
      // Swap the first and second channels.
      output_bus->bus()->SwapChannels(0, 1);
    }

    deliver_processed_audio_callback_.Run(*output_bus->bus(),
                                          audio_capture_time, new_volume);
  }
}

void AudioProcessor::SetOutputWillBeMuted(bool muted) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(owning_sequence_);
  SendLogMessage(
      base::StringPrintf("%s({muted=%s})", __func__, muted ? "true" : "false"));
  if (webrtc_audio_processing_) {
    webrtc_audio_processing_->set_output_will_be_muted(muted);
  }
}

void AudioProcessor::OnStartDump(base::File dump_file) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(owning_sequence_);
  DCHECK(dump_file.IsValid());

  if (webrtc_audio_processing_) {
    if (!worker_queue_) {
      worker_queue_ = std::make_unique<rtc::TaskQueue>(
          CreateWebRtcTaskQueue(rtc::TaskQueue::Priority::LOW));
    }
    // Here tasks will be posted on the |worker_queue_|. It must be
    // kept alive until media::StopEchoCancellationDump is called or the
    // webrtc::AudioProcessing instance is destroyed.
    media::StartEchoCancellationDump(webrtc_audio_processing_.get(),
                                     std::move(dump_file), worker_queue_.get());
  } else {
    // Post the file close to avoid blocking the control sequence.
    base::ThreadPool::PostTask(
        FROM_HERE, {base::TaskPriority::LOWEST, base::MayBlock()},
        base::BindOnce([](base::File) {}, std::move(dump_file)));
  }
}

void AudioProcessor::OnStopDump() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(owning_sequence_);
  if (!worker_queue_)
    return;
  if (webrtc_audio_processing_)
    media::StopEchoCancellationDump(webrtc_audio_processing_.get());
  worker_queue_.reset(nullptr);
}

void AudioProcessor::OnPlayoutData(const AudioBus& audio_bus,
                                   int sample_rate,
                                   base::TimeDelta audio_delay) {
  TRACE_EVENT1("audio", "AudioProcessor::OnPlayoutData", "delay (ms)",
               audio_delay.InMillisecondsF());

  if (!webrtc_audio_processing_) {
    return;
  }

  unbuffered_playout_delay_ = audio_delay;

  if (!playout_sample_rate_hz_ || sample_rate != *playout_sample_rate_hz_) {
    // We reset the buffer on sample rate changes because the current buffer
    // content is rendered obsolete (the audio processing module will reset
    // internally) and the FIFO does not resample previous content to the new
    // rate.
    // Channel count changes are already handled within the AudioPushFifo.
    playout_sample_rate_hz_ = sample_rate;
    const int samples_per_channel =
        webrtc::AudioProcessing::GetFrameSize(sample_rate);
    playout_fifo_.Reset(samples_per_channel);
  }

  playout_fifo_.Push(audio_bus);
}

void AudioProcessor::AnalyzePlayoutData(const AudioBus& audio_bus,
                                        int frame_delay) {
  DCHECK(webrtc_audio_processing_);
  DCHECK(playout_sample_rate_hz_.has_value());

  const base::TimeDelta playout_delay =
      unbuffered_playout_delay_ +
      AudioTimestampHelper::FramesToTime(frame_delay, *playout_sample_rate_hz_);
  playout_delay_ = playout_delay;
  TRACE_EVENT1("audio", "AudioProcessor::AnalyzePlayoutData", "delay (ms)",
               playout_delay.InMillisecondsF());

  webrtc::StreamConfig input_stream_config(*playout_sample_rate_hz_,
                                           audio_bus.channels());
  std::array<const float*, media::limits::kMaxChannels> input_ptrs;
  for (int i = 0; i < audio_bus.channels(); ++i)
    input_ptrs[i] = audio_bus.channel(i);

  const int apm_error = webrtc_audio_processing_->AnalyzeReverseStream(
      input_ptrs.data(), input_stream_config);
  if (apm_error != webrtc::AudioProcessing::kNoError &&
      apm_playout_error_code_log_count_ < 10) {
    LOG(ERROR) << "MSAP::OnPlayoutData: AnalyzeReverseStream error="
               << apm_error;
    ++apm_playout_error_code_log_count_;
  }
}

webrtc::AudioProcessingStats AudioProcessor::GetStats() {
  if (!webrtc_audio_processing_)
    return {};
  return webrtc_audio_processing_->GetStatistics();
}

absl::optional<double> AudioProcessor::ProcessData(
    const float* const* process_ptrs,
    int process_frames,
    base::TimeDelta capture_delay,
    double volume,
    bool key_pressed,
    int num_preferred_channels,
    float* const* output_ptrs) {
  DCHECK(webrtc_audio_processing_);

  const base::TimeDelta playout_delay = playout_delay_;

  TRACE_EVENT2("audio", "AudioProcessor::ProcessData", "capture_delay (ms)",
               capture_delay.InMillisecondsF(), "playout_delay (ms)",
               playout_delay.InMillisecondsF());

  const int64_t total_delay_ms =
      (capture_delay + playout_delay).InMilliseconds();

  if (total_delay_ms > 300 && large_delay_log_count_ < 10) {
    LOG(WARNING) << "Large audio delay, capture delay: "
                 << capture_delay.InMillisecondsF()
                 << "ms; playout delay: " << playout_delay.InMillisecondsF()
                 << "ms";
    ++large_delay_log_count_;
  }

  audio_delay_stats_reporter_.ReportDelay(capture_delay, playout_delay);

  webrtc::AudioProcessing* ap = webrtc_audio_processing_.get();
  DCHECK_LE(total_delay_ms, std::numeric_limits<int>::max());
  ap->set_stream_delay_ms(base::saturated_cast<int>(total_delay_ms));

  // Keep track of the maximum number of preferred channels. The number of
  // output channels of APM can increase if preferred by the sinks, but
  // never decrease.
  max_num_preferred_output_channels_ =
      std::max(max_num_preferred_output_channels_, num_preferred_channels);

  // Upscale the volume to the range expected by the WebRTC automatic gain
  // controller.
#if BUILDFLAG(IS_WIN) || BUILDFLAG(IS_MAC)
  DCHECK_LE(volume, 1.0);
#elif BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS_LACROS) || \
    BUILDFLAG(IS_OPENBSD)
  // We have a special situation on Linux where the microphone volume can be
  // "higher than maximum". The input volume slider in the sound preference
  // allows the user to set a scaling that is higher than 100%. It means that
  // even if the reported maximum levels is N, the actual microphone level can
  // go up to 1.5x*N and that corresponds to a normalized |volume| of 1.5x.
  DCHECK_LE(volume, 1.6);
#endif
  // Map incoming volume range of [0.0, 1.0] to [0, 255] used by AGC.
  // The volume can be higher than 255 on Linux, and it will be cropped to
  // 255 since AGC does not allow values out of range.
  const int max_analog_gain_level = media::MaxWebRtcAnalogGainLevel();
  int current_analog_gain_level =
      static_cast<int>((volume * max_analog_gain_level) + 0.5);
  current_analog_gain_level =
      std::min(current_analog_gain_level, max_analog_gain_level);
  DCHECK_LE(current_analog_gain_level, max_analog_gain_level);

  ap->set_stream_analog_level(current_analog_gain_level);
  ap->set_stream_key_pressed(key_pressed);

  // Depending on how many channels the sinks prefer, the number of APM output
  // channels is allowed to vary between 1 and the number of channels of the
  // output format. The output format in turn depends on the input format.
  // Example: With a stereo mic the output format will have 2 channels, and APM
  // will produce 1 or 2 output channels depending on the sinks.
  int num_apm_output_channels =
      std::min(max_num_preferred_output_channels_, output_format_.channels());

  // Limit number of apm output channels to 2 to avoid potential problems with
  // discrete channel mapping.
  num_apm_output_channels = std::min(num_apm_output_channels, 2);

  CHECK_GE(num_apm_output_channels, 1);
  const webrtc::StreamConfig apm_output_config = webrtc::StreamConfig(
      output_format_.sample_rate(), num_apm_output_channels);

  int err = ap->ProcessStream(process_ptrs, CreateStreamConfig(input_format_),
                              apm_output_config, output_ptrs);
  DCHECK_EQ(err, 0) << "ProcessStream() error: " << err;

  // Upmix if the number of channels processed by APM is less than the number
  // specified in the output format. Channels above stereo will be set to zero.
  if (num_apm_output_channels < output_format_.channels()) {
    if (num_apm_output_channels == 1) {
      // The right channel is a copy of the left channel. Remaining channels
      // have already been set to zero at initialization.
      memcpy(&output_ptrs[1][0], &output_ptrs[0][0],
             output_format_.frames_per_buffer() * sizeof(output_ptrs[0][0]));
    }
  }

  // Return a new mic volume, if the volume has been changed.
  const int recommended_analog_gain_level =
      ap->recommended_stream_analog_level();
  if (recommended_analog_gain_level == current_analog_gain_level) {
    return absl::nullopt;
  } else {
    return static_cast<double>(recommended_analog_gain_level) /
           media::MaxWebRtcAnalogGainLevel();
  }
}

// Called on the owning sequence.
void AudioProcessor::SendLogMessage(const std::string& message) {
  log_callback_.Run(base::StringPrintf("MSAP::%s [this=0x%" PRIXPTR "]",
                                       message.c_str(),
                                       reinterpret_cast<uintptr_t>(this)));
}

absl::optional<AudioParameters> AudioProcessor::ComputeInputFormat(
    const AudioParameters& device_format,
    const AudioProcessingSettings& audio_processing_settings) {
  const ChannelLayout channel_layout = device_format.channel_layout();

  // The audio processor can only handle up to two channels.
  if (channel_layout != CHANNEL_LAYOUT_MONO &&
      channel_layout != CHANNEL_LAYOUT_STEREO &&
      channel_layout != CHANNEL_LAYOUT_DISCRETE) {
    return absl::nullopt;
  }

  AudioParameters params(
      device_format.format(), device_format.channel_layout_config(),
      device_format.sample_rate(),
      GetCaptureBufferSize(
          audio_processing_settings.NeedWebrtcAudioProcessing(),
          device_format));
  params.set_effects(device_format.effects());
  if (channel_layout == CHANNEL_LAYOUT_DISCRETE) {
    DCHECK_LE(device_format.channels(), 2);
  }
  DVLOG(1) << params.AsHumanReadableString();
  CHECK(params.IsValid());
  return params;
}

// If WebRTC audio processing is used, the default output format is fixed to the
// native WebRTC processing format in order to avoid rebuffering and resampling.
// If not, then the input format is essentially preserved.
// static
AudioParameters AudioProcessor::GetDefaultOutputFormat(
    const AudioParameters& input_format,
    const AudioProcessingSettings& settings) {
  const bool need_webrtc_audio_processing =
      settings.NeedWebrtcAudioProcessing();
  // TODO(crbug.com/1336055): Investigate why chromecast devices need special
  // logic here.
  const int output_sample_rate =
      need_webrtc_audio_processing ?
#if BUILDFLAG(IS_CASTOS) || BUILDFLAG(IS_CAST_ANDROID)
                                   std::min(media::kAudioProcessingSampleRateHz,
                                            input_format.sample_rate())
#else
                                   media::kAudioProcessingSampleRateHz
#endif
                                   : input_format.sample_rate();

  media::ChannelLayoutConfig output_channel_layout_config;
  if (!need_webrtc_audio_processing) {
    output_channel_layout_config = input_format.channel_layout_config();
  } else if (settings.multi_channel_capture_processing) {
    // The number of output channels is equal to the number of input channels.
    // If the media stream audio processor receives stereo input it will
    // output stereo. To reduce computational complexity, APM will not perform
    // full multichannel processing unless any sink requests more than one
    // channel. If the input is multichannel but the sinks are not interested
    // in more than one channel, APM will internally downmix the signal to
    // mono and process it. The processed mono signal will then be upmixed to
    // same number of channels as the input before leaving the media stream
    // audio processor. If a sink later requests stereo, APM will start
    // performing true stereo processing. There will be no need to change the
    // output format.

    output_channel_layout_config = input_format.channel_layout_config();
  } else {
    output_channel_layout_config = ChannelLayoutConfig::Mono();
  }

  // When processing is enabled, the buffer size is dictated by
  // webrtc::AudioProcessing (typically 10 ms). When processing is disabled, we
  // use the same size as the source if it is less than that.
  //
  // TODO(ajm): This conditional buffer size appears to be assuming knowledge of
  // the sink based on the source parameters. PeerConnection sinks seem to want
  // 10 ms chunks regardless, while WebAudio sinks want less, and we're assuming
  // we can identify WebAudio sinks by the input chunk size. Less fragile would
  // be to have the sink actually tell us how much it wants (as in the above
  // todo).
  int output_frames = webrtc::AudioProcessing::GetFrameSize(output_sample_rate);
  if (!need_webrtc_audio_processing &&
      input_format.frames_per_buffer() < output_frames) {
    output_frames = input_format.frames_per_buffer();
  }

  media::AudioParameters output_format = media::AudioParameters(
      input_format.format(), output_channel_layout_config, output_sample_rate,
      output_frames);
  return output_format;
}
}  // namespace media