summaryrefslogtreecommitdiff
path: root/chromium/media/renderers/audio_renderer_impl_unittest.cc
blob: 7f25d00afee8a074c554e5b1ebfe9c077197654e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/renderers/audio_renderer_impl.h"

#include <memory>
#include <utility>
#include <vector>

#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/format_macros.h"
#include "base/macros.h"
#include "base/run_loop.h"
#include "base/single_thread_task_runner.h"
#include "base/strings/stringprintf.h"
#include "base/test/gmock_callback_support.h"
#include "base/test/scoped_feature_list.h"
#include "base/test/simple_test_tick_clock.h"
#include "base/test/task_environment.h"
#include "base/threading/thread_task_runner_handle.h"
#include "media/base/audio_buffer_converter.h"
#include "media/base/fake_audio_renderer_sink.h"
#include "media/base/media_client.h"
#include "media/base/media_switches.h"
#include "media/base/media_util.h"
#include "media/base/mock_audio_renderer_sink.h"
#include "media/base/mock_filters.h"
#include "media/base/test_helpers.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"

using ::base::TimeDelta;
using ::base::test::RunCallback;
using ::base::test::RunOnceCallback;
using ::testing::_;
using ::testing::DoAll;
using ::testing::Return;
using ::testing::SaveArg;

namespace media {

namespace {

// Since AudioBufferConverter is used due to different input/output sample
// rates, define some helper types to differentiate between the two.
struct InputFrames {
  explicit InputFrames(int value) : value(value) {}
  int value;
};

struct OutputFrames {
  explicit OutputFrames(int value) : value(value) {}
  int value;
};

}  // namespace

// Constants to specify the type of audio data used.
constexpr AudioCodec kCodec = kCodecVorbis;
constexpr SampleFormat kSampleFormat = kSampleFormatPlanarF32;
constexpr ChannelLayout kChannelLayout = CHANNEL_LAYOUT_STEREO;
constexpr int kChannels = 2;

// Use a different output sample rate so the AudioBufferConverter is invoked.
constexpr int kInputSamplesPerSecond = 5000;
constexpr int kOutputSamplesPerSecond = 10000;
constexpr double kOutputMicrosPerFrame =
    static_cast<double>(base::Time::kMicrosecondsPerSecond) /
    kOutputSamplesPerSecond;

// Arbitrarily chosen frame count for a typical input audio buffer.
// NOTE: Do not assume that N InputFrames in translates to N OutputFrames.
// Format differences between "in" vs "out" (reconciled by AudioBufferConverter)
// will cause the N InputFrames to generate M OutputFrames, such that N and M
// may be off by a significant factor.
constexpr int kInputFramesChunk = 256;

ACTION_P(EnterPendingDecoderInitStateAction, test) {
  test->EnterPendingDecoderInitState(std::move(arg2));
}

ACTION_P(AssertNotYetEnded, test) {
  ASSERT_FALSE(test->ended());
}

class AudioRendererImplTest : public ::testing::Test, public RendererClient {
 public:
  std::vector<std::unique_ptr<AudioDecoder>> CreateAudioDecoderForTest() {
    auto decoder = std::make_unique<MockAudioDecoder>();
    if (!enter_pending_decoder_init_) {
      EXPECT_CALL(*decoder, Initialize_(_, _, _, _, _))
          .WillOnce(DoAll(SaveArg<3>(&output_cb_),
                          RunOnceCallback<2>(
                              expected_init_result_
                                  ? OkStatus()
                                  : Status(StatusCode::kCodeOnlyForTesting))));
    } else {
      EXPECT_CALL(*decoder, Initialize_(_, _, _, _, _))
          .WillOnce(EnterPendingDecoderInitStateAction(this));
    }
    EXPECT_CALL(*decoder, Decode(_, _))
        .WillRepeatedly(Invoke(this, &AudioRendererImplTest::DecodeDecoder));
    EXPECT_CALL(*decoder, Reset_(_))
        .WillRepeatedly(Invoke(this, &AudioRendererImplTest::ResetDecoder));
    std::vector<std::unique_ptr<AudioDecoder>> decoders;
    decoders.push_back(std::move(decoder));
    return decoders;
  }

  // Give the decoder some non-garbage media properties.
  AudioRendererImplTest()
      : hardware_params_(AudioParameters::AUDIO_PCM_LOW_LATENCY,
                         kChannelLayout,
                         kOutputSamplesPerSecond,
                         512),
        main_thread_task_runner_(base::ThreadTaskRunnerHandle::Get()),
        sink_(new FakeAudioRendererSink(hardware_params_)),
        demuxer_stream_(DemuxerStream::AUDIO),
        expected_init_result_(true),
        enter_pending_decoder_init_(false),
        ended_(false) {
    AudioDecoderConfig audio_config(kCodec, kSampleFormat, kChannelLayout,
                                    kInputSamplesPerSecond, EmptyExtraData(),
                                    EncryptionScheme::kUnencrypted);
    demuxer_stream_.set_audio_decoder_config(audio_config);

    ConfigureDemuxerStream(true);

    AudioParameters out_params(AudioParameters::AUDIO_PCM_LOW_LATENCY,
                               kChannelLayout, kOutputSamplesPerSecond, 512);
    renderer_ = std::make_unique<AudioRendererImpl>(
        main_thread_task_runner_, sink_.get(),
        base::BindRepeating(&AudioRendererImplTest::CreateAudioDecoderForTest,
                            base::Unretained(this)),
        &media_log_, nullptr);
    renderer_->tick_clock_ = &tick_clock_;
    tick_clock_.Advance(base::TimeDelta::FromSeconds(1));
  }

  ~AudioRendererImplTest() override {
    SCOPED_TRACE("~AudioRendererImplTest()");
  }

  // Mock out demuxer reads.
  void ConfigureDemuxerStream(bool supports_config_changes) {
    EXPECT_CALL(demuxer_stream_, OnRead(_))
        .WillRepeatedly(Invoke(this, &AudioRendererImplTest::OnDemuxerRead));
    EXPECT_CALL(demuxer_stream_, SupportsConfigChanges())
        .WillRepeatedly(Return(supports_config_changes));
  }

  void OnDemuxerRead(DemuxerStream::ReadCB& read_cb) {
    if (simulate_demuxer_stall_) {
      simulate_demuxer_stall_ = false;
      stalled_demixer_read_cb_ = std::move(read_cb);
      return;
    }
    scoped_refptr<DecoderBuffer> decoder_buffer(new DecoderBuffer(0));
    std::move(read_cb).Run(DemuxerStream::kOk, decoder_buffer);
  }

  bool IsDemuxerStalled() { return !!stalled_demixer_read_cb_; }

  void UnstallDemuxer() {
    EXPECT_TRUE(IsDemuxerStalled());
    OnDemuxerRead(stalled_demixer_read_cb_);
  }

  // Reconfigures a renderer without config change support using given params.
  void ConfigureBasicRenderer(const AudioParameters& params) {
    hardware_params_ = params;
    sink_ = base::MakeRefCounted<FakeAudioRendererSink>(hardware_params_);
    renderer_ = std::make_unique<AudioRendererImpl>(
        main_thread_task_runner_, sink_.get(),
        base::BindRepeating(&AudioRendererImplTest::CreateAudioDecoderForTest,
                            base::Unretained(this)),
        &media_log_, nullptr);
    testing::Mock::VerifyAndClearExpectations(&demuxer_stream_);
    ConfigureDemuxerStream(false);
  }

  // Reconfigures a renderer with config change support using given params.
  void ConfigureConfigChangeRenderer(const AudioParameters& params,
                                     const AudioParameters& hardware_params) {
    hardware_params_ = hardware_params;
    sink_ = base::MakeRefCounted<FakeAudioRendererSink>(hardware_params_);
    renderer_ = std::make_unique<AudioRendererImpl>(
        main_thread_task_runner_, sink_.get(),
        base::BindRepeating(&AudioRendererImplTest::CreateAudioDecoderForTest,
                            base::Unretained(this)),
        &media_log_, nullptr);
    testing::Mock::VerifyAndClearExpectations(&demuxer_stream_);
    ConfigureDemuxerStream(true);
  }

  void ConfigureWithMockSink(const AudioParameters& params) {
    mock_sink_ = base::MakeRefCounted<MockAudioRendererSink>();
    renderer_ = std::make_unique<AudioRendererImpl>(
        main_thread_task_runner_, mock_sink_.get(),
        base::BindRepeating(&AudioRendererImplTest::CreateAudioDecoderForTest,
                            base::Unretained(this)),
        &media_log_, nullptr);
    testing::Mock::VerifyAndClearExpectations(&demuxer_stream_);
    ConfigureDemuxerStream(true);
  }

  // RendererClient implementation.
  MOCK_METHOD1(OnError, void(PipelineStatus));
  void OnEnded() override {
    CHECK(!ended_);
    ended_ = true;
  }
  void OnStatisticsUpdate(const PipelineStatistics& stats) override {
    last_statistics_.audio_memory_usage += stats.audio_memory_usage;
  }
  MOCK_METHOD2(OnBufferingStateChange,
               void(BufferingState, BufferingStateChangeReason));
  MOCK_METHOD1(OnWaiting, void(WaitingReason));
  MOCK_METHOD1(OnAudioConfigChange, void(const AudioDecoderConfig&));
  MOCK_METHOD1(OnVideoConfigChange, void(const VideoDecoderConfig&));
  MOCK_METHOD1(OnVideoNaturalSizeChange, void(const gfx::Size&));
  MOCK_METHOD1(OnVideoOpacityChange, void(bool));
  MOCK_METHOD1(OnVideoFrameRateChange, void(base::Optional<int>));
  MOCK_METHOD1(OnDurationChange, void(base::TimeDelta));
  MOCK_METHOD1(OnRemotePlayStateChange, void(MediaStatus::State state));
  MOCK_METHOD1(TranscribeAudioCallback, void(scoped_refptr<AudioBuffer>));

  void InitializeRenderer(DemuxerStream* demuxer_stream,
                          PipelineStatusCallback pipeline_status_cb) {
    EXPECT_CALL(*this, OnWaiting(_)).Times(0);
    EXPECT_CALL(*this, OnVideoNaturalSizeChange(_)).Times(0);
    EXPECT_CALL(*this, OnVideoOpacityChange(_)).Times(0);
    EXPECT_CALL(*this, OnVideoConfigChange(_)).Times(0);
    renderer_->Initialize(demuxer_stream, nullptr, this,
                          std::move(pipeline_status_cb));
  }

  void Initialize() {
    InitializeWithStatus(PIPELINE_OK);
    next_timestamp_ =
        std::make_unique<AudioTimestampHelper>(kInputSamplesPerSecond);
  }

  void InitializeBitstreamFormat() {
    EXPECT_CALL(media_client_, IsSupportedBitstreamAudioCodec(_))
        .WillRepeatedly(Return(true));
    SetMediaClient(&media_client_);

    hardware_params_.Reset(AudioParameters::AUDIO_BITSTREAM_EAC3,
                           kChannelLayout, kOutputSamplesPerSecond, 512);
    sink_ = base::MakeRefCounted<FakeAudioRendererSink>(hardware_params_);
    AudioDecoderConfig audio_config(
        kCodecAC3, kSampleFormatEac3, kChannelLayout, kInputSamplesPerSecond,
        EmptyExtraData(), EncryptionScheme::kUnencrypted);
    demuxer_stream_.set_audio_decoder_config(audio_config);

    ConfigureDemuxerStream(true);

    renderer_ = std::make_unique<AudioRendererImpl>(
        main_thread_task_runner_, sink_.get(),
        base::BindRepeating(&AudioRendererImplTest::CreateAudioDecoderForTest,
                            base::Unretained(this)),
        &media_log_, nullptr);

    Initialize();
  }

  void InitializeWithStatus(PipelineStatus expected) {
    SCOPED_TRACE(base::StringPrintf("InitializeWithStatus(%d)", expected));

    WaitableMessageLoopEvent event;
    InitializeRenderer(&demuxer_stream_, event.GetPipelineStatusCB());
    event.RunAndWaitForStatus(expected);

    // We should have no reads.
    EXPECT_TRUE(!decode_cb_);
  }

  void InitializeAndDestroy() {
    WaitableMessageLoopEvent event;
    InitializeRenderer(&demuxer_stream_, event.GetPipelineStatusCB());

    // Destroy the |renderer_| before we let the MessageLoop run, this simulates
    // an interleaving in which we end up destroying the |renderer_| while the
    // OnDecoderSelected callback is in flight.
    renderer_.reset();
    event.RunAndWaitForStatus(PIPELINE_ERROR_ABORT);
  }

  void InitializeAndDestroyDuringDecoderInit() {
    enter_pending_decoder_init_ = true;

    WaitableMessageLoopEvent event;
    InitializeRenderer(&demuxer_stream_, event.GetPipelineStatusCB());
    base::RunLoop().RunUntilIdle();
    DCHECK(init_decoder_cb_);

    renderer_.reset();
    event.RunAndWaitForStatus(PIPELINE_ERROR_ABORT);
  }

  void EnterPendingDecoderInitState(AudioDecoder::InitCB cb) {
    init_decoder_cb_ = std::move(cb);
  }

  void FlushDuringPendingRead() {
    SCOPED_TRACE("FlushDuringPendingRead()");
    WaitableMessageLoopEvent flush_event;
    renderer_->Flush(flush_event.GetClosure());
    SatisfyPendingRead(InputFrames(kInputFramesChunk));
    flush_event.RunAndWait();

    EXPECT_FALSE(IsDecodePending());
  }

  void Preroll() { Preroll(base::TimeDelta(), base::TimeDelta(), PIPELINE_OK); }

  void Preroll(base::TimeDelta start_timestamp,
               base::TimeDelta first_timestamp,
               PipelineStatus expected) {
    SCOPED_TRACE(base::StringPrintf("Preroll(%" PRId64 ", %d)",
                                    first_timestamp.InMilliseconds(),
                                    expected));
    next_timestamp_->SetBaseTimestamp(first_timestamp);

    // Fill entire buffer to complete prerolling.
    renderer_->SetMediaTime(start_timestamp);
    renderer_->StartPlaying();
    WaitForPendingRead();
    EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH,
                                              BUFFERING_CHANGE_REASON_UNKNOWN));
    DeliverRemainingAudio();
  }

  void StartTicking() {
    renderer_->StartTicking();
    renderer_->SetPlaybackRate(1.0);
  }

  void StopTicking() { renderer_->StopTicking(); }

  bool IsDecodePending() const { return !!decode_cb_; }

  void WaitForPendingRead() {
    SCOPED_TRACE("WaitForPendingRead()");
    if (decode_cb_)
      return;

    DCHECK(!wait_for_pending_decode_cb_);

    WaitableMessageLoopEvent event;
    wait_for_pending_decode_cb_ = event.GetClosure();
    event.RunAndWait();

    DCHECK(decode_cb_);
    DCHECK(!wait_for_pending_decode_cb_);
  }

  // Delivers decoded frames to |renderer_|.
  void SatisfyPendingRead(InputFrames frames) {
    CHECK_GT(frames.value, 0);
    CHECK(decode_cb_);

    scoped_refptr<AudioBuffer> buffer;
    if (hardware_params_.IsBitstreamFormat()) {
      buffer = MakeBitstreamAudioBuffer(kSampleFormatEac3, kChannelLayout,
                                        kChannels, kInputSamplesPerSecond, 1, 0,
                                        frames.value, frames.value / 2,
                                        next_timestamp_->GetTimestamp());
    } else {
      buffer = MakeAudioBuffer<float>(
          kSampleFormat, kChannelLayout, kChannels, kInputSamplesPerSecond,
          1.0f, 0.0f, frames.value, next_timestamp_->GetTimestamp());
    }
    next_timestamp_->AddFrames(frames.value);

    DeliverBuffer(DecodeStatus::OK, std::move(buffer));
  }

  void DeliverEndOfStream() {
    DCHECK(decode_cb_);

    // Return EOS buffer to trigger EOS frame.
    EXPECT_CALL(demuxer_stream_, OnRead(_))
        .WillOnce(RunOnceCallback<0>(DemuxerStream::kOk,
                                     DecoderBuffer::CreateEOSBuffer()));

    // Satify pending |decode_cb_| to trigger a new DemuxerStream::Read().
    main_thread_task_runner_->PostTask(
        FROM_HERE, base::BindOnce(std::move(decode_cb_), DecodeStatus::OK));

    WaitForPendingRead();

    main_thread_task_runner_->PostTask(
        FROM_HERE, base::BindOnce(std::move(decode_cb_), DecodeStatus::OK));

    base::RunLoop().RunUntilIdle();
    EXPECT_EQ(last_statistics_.audio_memory_usage,
              renderer_->algorithm_->GetMemoryUsage());
  }

  // Delivers frames until |renderer_|'s internal buffer is full and no longer
  // has pending reads.
  void DeliverRemainingAudio() {
    // NOTE: !IsDecodePending() -> frames_remaining_in_buffer() == 0... but the
    // arrow is unidirectional! DecoderStream does its own buffering of decoded
    // output such that it generally triggers reads even after the renderer's
    // buffer is full. Hence, the loop below must check both of the conditions
    // to ensure no pending reads exist after the function returns.
    while (frames_remaining_in_buffer().value > 0 || IsDecodePending()) {
      SatisfyPendingRead(InputFrames(kInputFramesChunk));
    }
  }

  // Consumes data from the buffer until what remains drops below the buffer's
  // capacity. Note that the buffer is often over-filled, such that consuming
  // a fixed amount of data cannot guarantee we fall bellow the full line.
  // Precondition: the buffer must be full when called.
  bool ConsumeBufferedDataUntilNotFull() {
    int buffered = frames_buffered().value;
    int capacity = buffer_capacity().value;
    DCHECK(buffered >= capacity);

    int overfill = buffered > capacity ? buffered - capacity : 0;
    int quarter_buffer = capacity / 4;

    // Leaves the buffer 3/4 full.
    return ConsumeBufferedData(OutputFrames(overfill + quarter_buffer));
  }

  // Attempts to consume |requested_frames| frames from |renderer_|'s internal
  // buffer. Returns true if and only if all of |requested_frames| were able
  // to be consumed.
  bool ConsumeBufferedData(OutputFrames requested_frames,
                           base::TimeDelta delay) {
    std::unique_ptr<AudioBus> bus =
        AudioBus::Create(kChannels, requested_frames.value);
    int frames_read = 0;
    EXPECT_TRUE(sink_->Render(bus.get(), delay, &frames_read));
    return frames_read == requested_frames.value;
  }

  bool ConsumeBufferedData(OutputFrames requested_frames) {
    return ConsumeBufferedData(requested_frames, base::TimeDelta());
  }

  bool ConsumeBitstreamBufferedData(OutputFrames requested_frames,
                                    base::TimeDelta delay = base::TimeDelta()) {
    std::unique_ptr<AudioBus> bus =
        AudioBus::Create(kChannels, requested_frames.value);
    int total_frames_read = 0;
    while (total_frames_read != requested_frames.value) {
      int frames_read = 0;
      EXPECT_TRUE(sink_->Render(bus.get(), delay, &frames_read));

      if (frames_read <= 0)
        break;
      total_frames_read += frames_read;
    }

    return total_frames_read == requested_frames.value;
  }

  base::TimeTicks ConvertMediaTime(base::TimeDelta timestamp,
                                   bool* is_time_moving) {
    std::vector<base::TimeTicks> wall_clock_times;
    *is_time_moving = renderer_->GetWallClockTimes(
        std::vector<base::TimeDelta>(1, timestamp), &wall_clock_times);
    return wall_clock_times[0];
  }

  base::TimeTicks CurrentMediaWallClockTime(bool* is_time_moving) {
    std::vector<base::TimeTicks> wall_clock_times;
    *is_time_moving = renderer_->GetWallClockTimes(
        std::vector<base::TimeDelta>(), &wall_clock_times);
    return wall_clock_times[0];
  }

  OutputFrames frames_buffered() {
    return OutputFrames(renderer_->algorithm_->BufferedFrames());
  }

  OutputFrames buffer_playback_threshold() {
    return OutputFrames(renderer_->algorithm_->QueuePlaybackThreshold());
  }

  OutputFrames buffer_capacity() {
    return OutputFrames(renderer_->algorithm_->QueueCapacity());
  }

  OutputFrames frames_remaining_in_buffer() {
    // This can happen if too much data was delivered, in which case the buffer
    // will accept the data but not increase capacity.
    if (frames_buffered().value > buffer_capacity().value) {
      return OutputFrames(0);
    }
    return OutputFrames(buffer_capacity().value - frames_buffered().value);
  }

  bool is_buffer_full() { return renderer_->algorithm_->IsQueueFull(); }

  void force_config_change(const AudioDecoderConfig& config) {
    renderer_->OnConfigChange(config);
  }

  InputFrames converter_input_frames_left() const {
    return InputFrames(
        renderer_->buffer_converter_->input_frames_left_for_testing());
  }

  base::TimeDelta CurrentMediaTime() { return renderer_->CurrentMediaTime(); }

  std::vector<bool> channel_mask() const {
    CHECK(renderer_->algorithm_);
    return renderer_->algorithm_->channel_mask_for_testing();
  }

  bool ended() const { return ended_; }

  void DecodeDecoder(scoped_refptr<DecoderBuffer> buffer,
                     AudioDecoder::DecodeCB decode_cb) {
    // TODO(scherkus): Make this a DCHECK after threading semantics are fixed.
    if (!main_thread_task_runner_->BelongsToCurrentThread()) {
      main_thread_task_runner_->PostTask(
          FROM_HERE,
          base::BindOnce(&AudioRendererImplTest::DecodeDecoder,
                         base::Unretained(this), buffer, std::move(decode_cb)));
      return;
    }

    CHECK(!decode_cb_) << "Overlapping decodes are not permitted";
    decode_cb_ = std::move(decode_cb);

    // Wake up WaitForPendingRead() if needed.
    if (wait_for_pending_decode_cb_)
      std::move(wait_for_pending_decode_cb_).Run();
  }

  void ResetDecoder(base::OnceClosure& reset_cb) {
    if (decode_cb_) {
      // |reset_cb| will be called in DeliverBuffer(), after the decoder is
      // flushed.
      reset_cb_ = std::move(reset_cb);
      return;
    }

    main_thread_task_runner_->PostTask(FROM_HERE, std::move(reset_cb));
  }

  void DeliverBuffer(DecodeStatus status, scoped_refptr<AudioBuffer> buffer) {
    CHECK(decode_cb_);

    if (buffer.get() && !buffer->end_of_stream())
      output_cb_.Run(std::move(buffer));
    std::move(decode_cb_).Run(status);

    if (reset_cb_)
      std::move(reset_cb_).Run();

    base::RunLoop().RunUntilIdle();
  }

  // Fixture members.
  AudioParameters hardware_params_;
  base::test::TaskEnvironment task_environment_;
  const scoped_refptr<base::SingleThreadTaskRunner> main_thread_task_runner_;
  NullMediaLog media_log_;
  std::unique_ptr<AudioRendererImpl> renderer_;
  scoped_refptr<FakeAudioRendererSink> sink_;
  scoped_refptr<MockAudioRendererSink> mock_sink_;
  base::SimpleTestTickClock tick_clock_;
  PipelineStatistics last_statistics_;

  MockDemuxerStream demuxer_stream_;
  MockMediaClient media_client_;

  // When |simulate_demuxer_stall_| is set OnDemuxerRead() will put the callback
  // in  |stalled_demixer_read_cb_| instead of calling it.
  bool simulate_demuxer_stall_ = false;
  DemuxerStream::ReadCB stalled_demixer_read_cb_;

  // Used for satisfying reads.
  AudioDecoder::OutputCB output_cb_;
  AudioDecoder::DecodeCB decode_cb_;
  base::OnceClosure reset_cb_;
  std::unique_ptr<AudioTimestampHelper> next_timestamp_;

  // Run during DecodeDecoder() to unblock WaitForPendingRead().
  base::OnceClosure wait_for_pending_decode_cb_;

  AudioDecoder::InitCB init_decoder_cb_;
  bool expected_init_result_;
  bool enter_pending_decoder_init_;
  bool ended_;

  DISALLOW_COPY_AND_ASSIGN(AudioRendererImplTest);
};

TEST_F(AudioRendererImplTest, Initialize_Successful) {
  Initialize();
}

TEST_F(AudioRendererImplTest, Initialize_DecoderInitFailure) {
  expected_init_result_ = false;
  InitializeWithStatus(DECODER_ERROR_NOT_SUPPORTED);
}

TEST_F(AudioRendererImplTest, ReinitializeForDifferentStream) {
  // Initialize and start playback
  Initialize();
  Preroll();
  StartTicking();
  EXPECT_TRUE(ConsumeBufferedDataUntilNotFull());
  WaitForPendingRead();

  // Stop playback and flush
  StopTicking();
  EXPECT_TRUE(IsDecodePending());
  // Flush and expect to be notified that we have nothing.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  FlushDuringPendingRead();

  // Prepare a new demuxer stream.
  MockDemuxerStream new_stream(DemuxerStream::AUDIO);
  EXPECT_CALL(new_stream, SupportsConfigChanges()).WillOnce(Return(false));
  AudioDecoderConfig audio_config(kCodec, kSampleFormat, kChannelLayout,
                                  kInputSamplesPerSecond, EmptyExtraData(),
                                  EncryptionScheme::kUnencrypted);
  new_stream.set_audio_decoder_config(audio_config);

  // The renderer is now in the flushed state and can be reinitialized.
  WaitableMessageLoopEvent event;
  InitializeRenderer(&new_stream, event.GetPipelineStatusCB());
  event.RunAndWaitForStatus(PIPELINE_OK);
}

TEST_F(AudioRendererImplTest, SignalConfigChange) {
  // Initialize and start playback.
  Initialize();
  Preroll();
  StartTicking();
  EXPECT_TRUE(ConsumeBufferedData(OutputFrames(256)));
  // Note: no need to WaitForPendingRead() here or below. Historically this test
  // seemed to wait, but really the read was already pending because preroll
  // didn't satisfy the final read from decoder stream.

  // Force config change to simulate detected change from decoder stream. Expect
  // that RendererClient to be signaled with the new config.
  const AudioDecoderConfig kValidAudioConfig(
      kCodecVorbis, kSampleFormatPlanarF32, CHANNEL_LAYOUT_STEREO, 44100,
      EmptyExtraData(), EncryptionScheme::kUnencrypted);
  EXPECT_TRUE(kValidAudioConfig.IsValidConfig());
  EXPECT_CALL(*this, OnAudioConfigChange(DecoderConfigEq(kValidAudioConfig)));
  force_config_change(kValidAudioConfig);

  // Verify rendering can continue after config change.
  EXPECT_TRUE(ConsumeBufferedData(OutputFrames(256)));

  // Force a config change with an invalid dummy config. This is occasionally
  // done to reset internal state and should not bubble to the RendererClient.
  EXPECT_CALL(*this, OnAudioConfigChange(_)).Times(0);
  const AudioDecoderConfig kInvalidConfig;
  EXPECT_FALSE(kInvalidConfig.IsValidConfig());
  force_config_change(kInvalidConfig);
}

TEST_F(AudioRendererImplTest, Preroll) {
  Initialize();
  Preroll();
}

TEST_F(AudioRendererImplTest, StartTicking) {
  Initialize();
  Preroll();
  StartTicking();

  // Drain internal buffer, we should have a pending read.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  WaitForPendingRead();
}

TEST_F(AudioRendererImplTest, TranscribeAudioCallback) {
  Initialize();
  EXPECT_CALL(*this, TranscribeAudioCallback(_)).Times(0);

  Preroll();
  StartTicking();
}

TEST_F(AudioRendererImplTest, EndOfStream) {
  Initialize();
  Preroll();
  StartTicking();

  // Drain internal buffer, we should have a pending read.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  WaitForPendingRead();

  // Forcefully trigger underflow.
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));

  // Fulfill the read with an end-of-stream buffer. Doing so should change our
  // buffering state so playback resumes.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH,
                                            BUFFERING_CHANGE_REASON_UNKNOWN));
  DeliverEndOfStream();

  // Consume all remaining data. We shouldn't have signal ended yet.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  base::RunLoop().RunUntilIdle();
  EXPECT_FALSE(ended());

  // Ended should trigger on next render call.
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));
  base::RunLoop().RunUntilIdle();
  EXPECT_TRUE(ended());
}

TEST_F(AudioRendererImplTest, DecoderUnderflow) {
  Initialize();
  Preroll();
  StartTicking();

  // Drain internal buffer, we should have a pending read.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  WaitForPendingRead();

  // Verify the next FillBuffer() call triggers a buffering state change
  // update. Expect a decoder underflow flag because demuxer is not blocked on a
  // pending read.
  EXPECT_CALL(
      *this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, DECODER_UNDERFLOW));
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));

  // Verify we're still not getting audio data.
  EXPECT_EQ(0, frames_buffered().value);
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));

  // Deliver enough data to have enough for buffering.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH,
                                            BUFFERING_CHANGE_REASON_UNKNOWN));
  DeliverRemainingAudio();

  // Verify we're getting audio data.
  EXPECT_TRUE(ConsumeBufferedData(OutputFrames(1)));
}

TEST_F(AudioRendererImplTest, DemuxerUnderflow) {
  Initialize();
  Preroll();
  StartTicking();

  // Drain internal buffer, we should have a pending read.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  WaitForPendingRead();

  // Verify the next FillBuffer() call triggers a buffering state change
  // update. Expect a demuxer underflow flag because demuxer is blocked on a
  // pending read.
  EXPECT_CALL(
      *this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, DEMUXER_UNDERFLOW));
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));

  // Verify we're still not getting audio data.
  EXPECT_EQ(0, frames_buffered().value);
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));

  // Deliver enough data to have enough for buffering.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH,
                                            BUFFERING_CHANGE_REASON_UNKNOWN));

  // Stall the demuxer to trigger underflow.
  simulate_demuxer_stall_ = true;
  SatisfyPendingRead(InputFrames(kInputFramesChunk));
  UnstallDemuxer();

  DeliverRemainingAudio();

  // Verify we're getting audio data.
  EXPECT_TRUE(ConsumeBufferedData(OutputFrames(1)));
}

TEST_F(AudioRendererImplTest, Underflow_CapacityResetsAfterFlush) {
  Initialize();
  Preroll();
  StartTicking();

  // Drain internal buffer, we should have a pending read.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  WaitForPendingRead();

  // Verify the next FillBuffer() call triggers the underflow callback
  // since the decoder hasn't delivered any data after it was drained.
  OutputFrames initial_capacity = buffer_capacity();
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));

  // Verify that the buffer capacity increased as a result of underflowing.
  EXPECT_GT(buffer_capacity().value, initial_capacity.value);

  // Verify that the buffer capacity is restored to the |initial_capacity|.
  StopTicking();
  FlushDuringPendingRead();
  EXPECT_EQ(buffer_capacity().value, initial_capacity.value);
}

TEST_F(AudioRendererImplTest, Underflow_CapacityIncreasesBeforeHaveNothing) {
  Initialize();
  Preroll();
  StartTicking();

  // Verify the next FillBuffer() call triggers the underflow callback
  // since the decoder hasn't delivered any data after it was drained.
  OutputFrames initial_capacity = buffer_capacity();

  // Drain internal buffer.
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(frames_buffered().value + 1)));

  // Verify that the buffer capacity increased despite not sending have nothing.
  EXPECT_GT(buffer_capacity().value, initial_capacity.value);
}

TEST_F(AudioRendererImplTest, Underflow_OneCapacityIncreasePerUnderflow) {
  Initialize();
  Preroll();
  StartTicking();

  OutputFrames prev_capacity = buffer_capacity();

  // Consume more than is available (partial read) to trigger underflow.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(frames_buffered().value + 1)));

  // Verify first underflow triggers an increase to buffer capacity and
  // signals HAVE_NOTHING.
  EXPECT_GT(buffer_capacity().value, prev_capacity.value);
  prev_capacity = buffer_capacity();
  // Give HAVE_NOTHING a chance to post.
  base::RunLoop().RunUntilIdle();
  testing::Mock::VerifyAndClearExpectations(this);

  // Try reading again, this time with the queue totally empty. We should expect
  // NO additional HAVE_NOTHING and NO increase to capacity because we still
  // haven't refilled the queue since the previous underflow.
  EXPECT_EQ(0, frames_buffered().value);
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _))
      .Times(0);
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));
  EXPECT_EQ(buffer_capacity().value, prev_capacity.value);
  // Give HAVE_NOTHING a chance to NOT post.
  base::RunLoop().RunUntilIdle();
  testing::Mock::VerifyAndClearExpectations(this);

  // Fill the buffer back up.
  WaitForPendingRead();
  DeliverRemainingAudio();
  EXPECT_GT(frames_buffered().value, 0);

  // Consume all available data without underflowing. Expect no buffer state
  // change and no change to capacity.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _))
      .Times(0);
  EXPECT_TRUE(ConsumeBufferedData(OutputFrames(frames_buffered().value)));
  EXPECT_EQ(buffer_capacity().value, prev_capacity.value);
  // Give HAVE_NOTHING a chance to NOT post.
  base::RunLoop().RunUntilIdle();
  testing::Mock::VerifyAndClearExpectations(this);

  // Now empty, trigger underflow attempting to read one frame. This should
  // signal buffering state change and increase capacity.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));
  EXPECT_GT(buffer_capacity().value, prev_capacity.value);
  // Give HAVE_NOTHING a chance to NOT post.
  base::RunLoop().RunUntilIdle();
  testing::Mock::VerifyAndClearExpectations(this);
}

// Verify that the proper reduced search space is configured for playback rate
// changes when upmixing is applied to the input.
TEST_F(AudioRendererImplTest, ChannelMask) {
  AudioParameters hw_params(AudioParameters::AUDIO_PCM_LOW_LATENCY,
                            CHANNEL_LAYOUT_7_1, kOutputSamplesPerSecond, 1024);
  ConfigureConfigChangeRenderer(
      AudioParameters(AudioParameters::AUDIO_PCM_LOW_LATENCY,
                      CHANNEL_LAYOUT_STEREO, kOutputSamplesPerSecond, 1024),
      hw_params);
  Initialize();
  std::vector<bool> mask = channel_mask();
  EXPECT_FALSE(mask.empty());
  ASSERT_EQ(mask.size(), static_cast<size_t>(hw_params.channels()));
  for (int ch = 0; ch < hw_params.channels(); ++ch) {
    if (ch > 1)
      ASSERT_FALSE(mask[ch]);
    else
      ASSERT_TRUE(mask[ch]);
  }

  renderer_->SetMediaTime(base::TimeDelta());
  renderer_->StartPlaying();
  WaitForPendingRead();

  // Force a channel configuration change.
  scoped_refptr<AudioBuffer> buffer = MakeAudioBuffer<float>(
      kSampleFormat, hw_params.channel_layout(), hw_params.channels(),
      kInputSamplesPerSecond, 1.0f, 0.0f, kInputFramesChunk, base::TimeDelta());
  DeliverBuffer(DecodeStatus::OK, std::move(buffer));

  // All channels should now be enabled.
  mask = channel_mask();
  EXPECT_FALSE(mask.empty());
  ASSERT_EQ(mask.size(), static_cast<size_t>(hw_params.channels()));
  for (int ch = 0; ch < hw_params.channels(); ++ch)
    ASSERT_TRUE(mask[ch]);
}

// Verify that the proper channel mask is configured when downmixing is applied
// to the input with discrete layout. The default hardware layout is stereo.
TEST_F(AudioRendererImplTest, ChannelMask_DownmixDiscreteLayout) {
  int audio_channels = 9;

  AudioDecoderConfig audio_config(
      kCodecOpus, kSampleFormat, CHANNEL_LAYOUT_DISCRETE,
      kInputSamplesPerSecond, EmptyExtraData(), EncryptionScheme::kUnencrypted);
  audio_config.SetChannelsForDiscrete(audio_channels);
  demuxer_stream_.set_audio_decoder_config(audio_config);
  ConfigureDemuxerStream(true);

  // Fake an attached webaudio client.
  sink_->SetIsOptimizedForHardwareParameters(false);

  Initialize();
  std::vector<bool> mask = channel_mask();
  EXPECT_FALSE(mask.empty());
  ASSERT_EQ(mask.size(), static_cast<size_t>(audio_channels));
  for (int ch = 0; ch < audio_channels; ++ch)
    ASSERT_TRUE(mask[ch]);
}

TEST_F(AudioRendererImplTest, Underflow_Flush) {
  Initialize();
  Preroll();
  StartTicking();

  // Force underflow.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  WaitForPendingRead();
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));
  WaitForPendingRead();
  StopTicking();

  // We shouldn't expect another buffering state change when flushing.
  FlushDuringPendingRead();
}

TEST_F(AudioRendererImplTest, PendingRead_Flush) {
  Initialize();

  Preroll();
  StartTicking();

  // Partially drain internal buffer so we get a pending read.
  EXPECT_TRUE(ConsumeBufferedDataUntilNotFull());
  WaitForPendingRead();

  StopTicking();

  EXPECT_TRUE(IsDecodePending());

  // Flush and expect to be notified that we have nothing.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  FlushDuringPendingRead();

  // Preroll again to a different timestamp and verify it completed normally.
  const base::TimeDelta seek_timestamp =
      base::TimeDelta::FromMilliseconds(1000);
  Preroll(seek_timestamp, seek_timestamp, PIPELINE_OK);
}

TEST_F(AudioRendererImplTest, PendingRead_Destroy) {
  Initialize();

  Preroll();
  StartTicking();

  // Partially drain internal buffer so we get a pending read.
  EXPECT_TRUE(ConsumeBufferedDataUntilNotFull());
  WaitForPendingRead();

  StopTicking();

  EXPECT_TRUE(IsDecodePending());

  renderer_.reset();
}

TEST_F(AudioRendererImplTest, PendingFlush_Destroy) {
  Initialize();

  Preroll();
  StartTicking();

  // Partially drain internal buffer so we get a pending read.
  EXPECT_TRUE(ConsumeBufferedDataUntilNotFull());
  WaitForPendingRead();

  StopTicking();

  EXPECT_TRUE(IsDecodePending());

  // Start flushing.
  WaitableMessageLoopEvent flush_event;
  renderer_->Flush(flush_event.GetClosure());

  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  SatisfyPendingRead(InputFrames(kInputFramesChunk));

  renderer_.reset();
}

TEST_F(AudioRendererImplTest, InitializeThenDestroy) {
  InitializeAndDestroy();
}

TEST_F(AudioRendererImplTest, InitializeThenDestroyDuringDecoderInit) {
  InitializeAndDestroyDuringDecoderInit();
}

TEST_F(AudioRendererImplTest, CurrentMediaTimeBehavior) {
  Initialize();
  Preroll();
  StartTicking();

  AudioTimestampHelper timestamp_helper(kOutputSamplesPerSecond);
  timestamp_helper.SetBaseTimestamp(base::TimeDelta());

  // Time should be the starting timestamp as nothing has been consumed yet.
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());

  const OutputFrames frames_to_consume(frames_buffered().value / 3);
  const base::TimeDelta kConsumptionDuration =
      timestamp_helper.GetFrameDuration(frames_to_consume.value);

  // Render() has not be called yet, thus no data has been consumed, so
  // advancing tick clock must not change the media time.
  tick_clock_.Advance(kConsumptionDuration);
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());

  // Consume some audio data.
  EXPECT_TRUE(ConsumeBufferedData(frames_to_consume));
  // No need to wait for a pending read here. It may or may not happen depending
  // on how over-filled the buffer is. Either way, not important for this test.

  // Time shouldn't change just yet because we've only sent the initial audio
  // data to the hardware.
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());

  // Advancing the tick clock now should result in an estimated media time.
  tick_clock_.Advance(kConsumptionDuration);
  EXPECT_EQ(timestamp_helper.GetTimestamp() + kConsumptionDuration,
            CurrentMediaTime());

  // Consume some more audio data.
  EXPECT_TRUE(ConsumeBufferedData(frames_to_consume));

  // Time should change now that Render() has been called a second time.
  timestamp_helper.AddFrames(frames_to_consume.value);
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());

  // Advance current time well past all played audio to simulate an irregular or
  // delayed OS callback. The value should be clamped to whats been rendered.
  timestamp_helper.AddFrames(frames_to_consume.value);
  tick_clock_.Advance(kConsumptionDuration * 2);
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());

  // Consume some more audio data.
  EXPECT_TRUE(ConsumeBufferedData(frames_to_consume));

  // Stop ticking, the media time should be clamped to what's been rendered.
  StopTicking();
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());
  tick_clock_.Advance(kConsumptionDuration * 2);
  timestamp_helper.AddFrames(frames_to_consume.value);
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());
}

TEST_F(AudioRendererImplTest, RenderingDelayedForEarlyStartTime) {
  Initialize();

  // Choose a first timestamp a few buffers into the future, which ends halfway
  // through the desired output buffer; this allows for maximum test coverage.
  const double kBuffers = 4.5;
  const base::TimeDelta first_timestamp =
      base::TimeDelta::FromSecondsD(hardware_params_.frames_per_buffer() *
                                    kBuffers / hardware_params_.sample_rate());

  Preroll(base::TimeDelta(), first_timestamp, PIPELINE_OK);
  StartTicking();

  // Verify the first few buffers are silent.
  std::unique_ptr<AudioBus> bus = AudioBus::Create(hardware_params_);
  int frames_read = 0;
  for (int i = 0; i < std::floor(kBuffers); ++i) {
    EXPECT_TRUE(sink_->Render(bus.get(), base::TimeDelta(), &frames_read));
    EXPECT_EQ(frames_read, bus->frames());
    for (int j = 0; j < bus->frames(); ++j)
      ASSERT_FLOAT_EQ(0.0f, bus->channel(0)[j]);

    // Buffer may have been previously over-filled. Only expect new reads when
    // we drop below "full".
    if (!is_buffer_full()) {
      WaitForPendingRead();
      DeliverRemainingAudio();
    }
  }

  // Verify the last buffer is half silence and half real data.
  EXPECT_TRUE(sink_->Render(bus.get(), base::TimeDelta(), &frames_read));
  EXPECT_EQ(frames_read, bus->frames());
  const int zero_frames =
      bus->frames() * (kBuffers - static_cast<int>(kBuffers));

  for (int i = 0; i < zero_frames; ++i)
    ASSERT_FLOAT_EQ(0.0f, bus->channel(0)[i]);
  for (int i = zero_frames; i < bus->frames(); ++i)
    ASSERT_NE(0.0f, bus->channel(0)[i]);
}

TEST_F(AudioRendererImplTest, RenderingDelayedForSuspend) {
  Initialize();
  Preroll(base::TimeDelta(), base::TimeDelta(), PIPELINE_OK);
  StartTicking();

  // Verify the first buffer is real data.
  int frames_read = 0;
  std::unique_ptr<AudioBus> bus = AudioBus::Create(hardware_params_);
  EXPECT_TRUE(sink_->Render(bus.get(), base::TimeDelta(), &frames_read));
  EXPECT_NE(0, frames_read);
  for (int i = 0; i < bus->frames(); ++i)
    ASSERT_NE(0.0f, bus->channel(0)[i]);

  // Verify after suspend we get silence.
  renderer_->OnSuspend();
  EXPECT_TRUE(sink_->Render(bus.get(), base::TimeDelta(), &frames_read));
  EXPECT_EQ(0, frames_read);

  // Verify after resume we get audio.
  bus->Zero();
  renderer_->OnResume();
  EXPECT_TRUE(sink_->Render(bus.get(), base::TimeDelta(), &frames_read));
  EXPECT_NE(0, frames_read);
  for (int i = 0; i < bus->frames(); ++i)
    ASSERT_NE(0.0f, bus->channel(0)[i]);
}

TEST_F(AudioRendererImplTest, RenderingDelayDoesNotOverflow) {
  Initialize();

  // Choose a first timestamp as far into the future as possible. Without care
  // this can cause an overflow in rendering arithmetic.
  Preroll(base::TimeDelta(), base::TimeDelta::Max(), PIPELINE_OK);
  StartTicking();
  EXPECT_TRUE(ConsumeBufferedData(OutputFrames(1)));
}

TEST_F(AudioRendererImplTest, ImmediateEndOfStream) {
  Initialize();

  renderer_->SetMediaTime(base::TimeDelta());
  renderer_->StartPlaying();
  WaitForPendingRead();

  // The buffering state change must occur before the ended signal.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH,
                                            BUFFERING_CHANGE_REASON_UNKNOWN))
      .WillOnce(AssertNotYetEnded(this));
  DeliverEndOfStream();

  EXPECT_TRUE(ended());
}

TEST_F(AudioRendererImplTest, OnRenderErrorCausesDecodeError) {
  Initialize();
  Preroll();
  StartTicking();

  EXPECT_CALL(*this, OnError(AUDIO_RENDERER_ERROR));
  sink_->OnRenderError();
  base::RunLoop().RunUntilIdle();
}

// Test for AudioRendererImpl calling Pause()/Play() on the sink when the
// playback rate is set to zero and non-zero.
TEST_F(AudioRendererImplTest, SetPlaybackRate) {
  Initialize();
  Preroll();

  // Rendering hasn't started. Sink should always be paused.
  EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());
  renderer_->SetPlaybackRate(0.0);
  EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());
  renderer_->SetPlaybackRate(1.0);
  EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());

  // Rendering has started with non-zero rate. Rate changes will affect sink
  // state.
  renderer_->StartTicking();
  EXPECT_EQ(FakeAudioRendererSink::kPlaying, sink_->state());
  renderer_->SetPlaybackRate(0.0);
  EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());
  renderer_->SetPlaybackRate(1.0);
  EXPECT_EQ(FakeAudioRendererSink::kPlaying, sink_->state());

  // Rendering has stopped. Sink should be paused.
  renderer_->StopTicking();
  EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());

  // Start rendering with zero playback rate. Sink should be paused until
  // non-zero rate is set.
  renderer_->SetPlaybackRate(0.0);
  renderer_->StartTicking();
  EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());
  renderer_->SetPlaybackRate(1.0);
  EXPECT_EQ(FakeAudioRendererSink::kPlaying, sink_->state());
}

TEST_F(AudioRendererImplTest, TimeSourceBehavior) {
  Initialize();
  Preroll();

  AudioTimestampHelper timestamp_helper(kOutputSamplesPerSecond);
  timestamp_helper.SetBaseTimestamp(base::TimeDelta());

  // Prior to start, time should be shown as not moving.
  bool is_time_moving = false;
  EXPECT_EQ(base::TimeTicks(),
            ConvertMediaTime(base::TimeDelta(), &is_time_moving));
  EXPECT_FALSE(is_time_moving);

  EXPECT_EQ(base::TimeTicks(), CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_FALSE(is_time_moving);

  // Start ticking, but use a zero playback rate, time should still be stopped
  // until a positive playback rate is set and the first Render() is called.
  renderer_->SetPlaybackRate(0.0);
  StartTicking();
  EXPECT_EQ(base::TimeTicks(), CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_FALSE(is_time_moving);
  renderer_->SetPlaybackRate(1.0);
  EXPECT_EQ(base::TimeTicks(), CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_FALSE(is_time_moving);
  renderer_->SetPlaybackRate(1.0);

  // Issue the first render call to start time moving.
  OutputFrames frames_to_consume(frames_buffered().value / 2);
  EXPECT_TRUE(ConsumeBufferedData(frames_to_consume));
  WaitForPendingRead();

  // Time shouldn't change just yet because we've only sent the initial audio
  // data to the hardware.
  EXPECT_EQ(tick_clock_.NowTicks(),
            ConvertMediaTime(base::TimeDelta(), &is_time_moving));
  EXPECT_TRUE(is_time_moving);

  // A system suspend should freeze the time state and resume restart it.
  renderer_->OnSuspend();
  EXPECT_EQ(tick_clock_.NowTicks(),
            ConvertMediaTime(base::TimeDelta(), &is_time_moving));
  EXPECT_FALSE(is_time_moving);
  renderer_->OnResume();
  EXPECT_EQ(tick_clock_.NowTicks(),
            ConvertMediaTime(base::TimeDelta(), &is_time_moving));
  EXPECT_TRUE(is_time_moving);

  // Consume some more audio data.
  frames_to_consume = frames_buffered();
  tick_clock_.Advance(
      base::TimeDelta::FromSecondsD(1.0 / kOutputSamplesPerSecond));
  EXPECT_TRUE(ConsumeBufferedData(frames_to_consume));

  // Time should change now that the audio hardware has called back.
  const base::TimeTicks wall_clock_time_zero =
      tick_clock_.NowTicks() -
      timestamp_helper.GetFrameDuration(frames_to_consume.value);
  EXPECT_EQ(wall_clock_time_zero,
            ConvertMediaTime(base::TimeDelta(), &is_time_moving));
  EXPECT_TRUE(is_time_moving);

  // Store current media time before advancing the tick clock since the call is
  // compensated based on TimeTicks::Now().
  const base::TimeDelta current_media_time = renderer_->CurrentMediaTime();

  // The current wall clock time should change as our tick clock advances, up
  // until we've reached the end of played out frames.
  const int kSteps = 4;
  const base::TimeDelta kAdvanceDelta =
      timestamp_helper.GetFrameDuration(frames_to_consume.value) / kSteps;

  for (int i = 0; i < kSteps; ++i) {
    tick_clock_.Advance(kAdvanceDelta);
    EXPECT_EQ(tick_clock_.NowTicks(),
              CurrentMediaWallClockTime(&is_time_moving));
    EXPECT_TRUE(is_time_moving);
  }

  // Converting the current media time should be relative to wall clock zero.
  EXPECT_EQ(wall_clock_time_zero + kSteps * kAdvanceDelta,
            ConvertMediaTime(current_media_time, &is_time_moving));
  EXPECT_TRUE(is_time_moving);

  // Advancing once more will exceed the amount of played out frames finally.
  const base::TimeDelta kOneSample =
      base::TimeDelta::FromSecondsD(1.0 / kOutputSamplesPerSecond);
  base::TimeTicks current_time = tick_clock_.NowTicks();
  tick_clock_.Advance(kOneSample);
  EXPECT_EQ(current_time, CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_TRUE(is_time_moving);

  StopTicking();
  DeliverRemainingAudio();

  // Elapse a lot of time between StopTicking() and the next Render() call.
  const base::TimeDelta kOneSecond = base::TimeDelta::FromSeconds(1);
  tick_clock_.Advance(kOneSecond);
  StartTicking();

  // Time should be stopped until the next render call.
  EXPECT_EQ(current_time, CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_FALSE(is_time_moving);

  // Consume some buffered data with a small delay.
  uint32_t delay_frames = 500;
  base::TimeDelta delay_time = base::TimeDelta::FromMicroseconds(
      std::round(delay_frames * kOutputMicrosPerFrame));

  frames_to_consume.value = frames_buffered().value / 16;
  EXPECT_TRUE(ConsumeBufferedData(frames_to_consume, delay_time));

  // Verify time is adjusted for the current delay.
  current_time = tick_clock_.NowTicks() + delay_time;
  EXPECT_EQ(current_time, CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_TRUE(is_time_moving);
  EXPECT_EQ(current_time,
            ConvertMediaTime(renderer_->CurrentMediaTime(), &is_time_moving));
  EXPECT_TRUE(is_time_moving);

  tick_clock_.Advance(kOneSample);
  renderer_->SetPlaybackRate(2);
  EXPECT_EQ(current_time, CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_TRUE(is_time_moving);
  EXPECT_EQ(current_time + kOneSample * 2,
            ConvertMediaTime(renderer_->CurrentMediaTime(), &is_time_moving));
  EXPECT_TRUE(is_time_moving);

  // Advance far enough that we shouldn't be clamped to current time (tested
  // already above).
  tick_clock_.Advance(kOneSecond);
  EXPECT_EQ(
      current_time + timestamp_helper.GetFrameDuration(frames_to_consume.value),
      CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_TRUE(is_time_moving);
}

TEST_F(AudioRendererImplTest, BitstreamEndOfStream) {
  // NOTE: bitstream formats are pass-through to sink, so input size == output
  // NOTE: bitstream audio buffers must always consume a whole number of
  // buffers (i.e. N*kOutputFramesChunk).
  const int kOutputFramesChunk = kInputFramesChunk;

  InitializeBitstreamFormat();
  Preroll();
  StartTicking();

  // Drain past the internal buffer, triggering underflow and a pending read.
  EXPECT_FALSE(ConsumeBitstreamBufferedData(
      OutputFrames(frames_buffered().value + kOutputFramesChunk)));
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  WaitForPendingRead();

  // Fulfill the read with an end-of-stream buffer. Doing so should change our
  // buffering state so playback resumes.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH,
                                            BUFFERING_CHANGE_REASON_UNKNOWN));
  DeliverEndOfStream();

  // Consume all remaining data. We shouldn't have signal ended yet.
  if (frames_buffered().value != 0)
    EXPECT_TRUE(ConsumeBitstreamBufferedData(frames_buffered()));
  base::RunLoop().RunUntilIdle();
  EXPECT_FALSE(ended());

  // Ended should trigger on next render call.
  EXPECT_FALSE(ConsumeBitstreamBufferedData(OutputFrames(1)));
  base::RunLoop().RunUntilIdle();
  EXPECT_TRUE(ended());

  // Clear the use of |media_client_|, which was set in
  // InitializeBitstreamFormat().
  SetMediaClient(nullptr);
}

TEST_F(AudioRendererImplTest, MutedPlaybackBadDeviceInfo) {
  base::test::ScopedFeatureList scoped_feature_list_;
  scoped_feature_list_.InitAndEnableFeature(kSuspendMutedAudio);

  mock_sink_ = base::MakeRefCounted<MockAudioRendererSink>(
      std::string(), OUTPUT_DEVICE_STATUS_ERROR_NOT_AUTHORIZED,
      AudioParameters());
  renderer_ = std::make_unique<AudioRendererImpl>(
      main_thread_task_runner_, mock_sink_.get(),
      base::BindRepeating(&AudioRendererImplTest::CreateAudioDecoderForTest,
                          base::Unretained(this)),
      &media_log_, nullptr);
  testing::Mock::VerifyAndClearExpectations(&demuxer_stream_);
  ConfigureDemuxerStream(true);

  EXPECT_CALL(*mock_sink_, SetVolume(0)).Times(0);
  renderer_->SetVolume(0);

  // Playback startup should use never touch our passed in sink, since an
  // internal NullAudioSink is always used for bad device info.
  EXPECT_CALL(*mock_sink_, Start()).Times(0);
  Initialize();
  Preroll();
  StartTicking();

  EXPECT_CALL(*mock_sink_, Pause()).Times(0);
  StopTicking();
  EXPECT_CALL(*mock_sink_, Play()).Times(0);
  StartTicking();
  testing::Mock::VerifyAndClearExpectations(mock_sink_.get());

  EXPECT_CALL(*mock_sink_, SetVolume(1)).Times(0);
  EXPECT_CALL(*mock_sink_, Start()).Times(0);
  EXPECT_CALL(*mock_sink_, Play()).Times(0);
  renderer_->SetVolume(1);

  EXPECT_CALL(*mock_sink_, Pause()).Times(0);
  StopTicking();
  EXPECT_CALL(*mock_sink_, Stop()).Times(0);
}

TEST_F(AudioRendererImplTest, BasicMutedPlayback) {
  base::test::ScopedFeatureList scoped_feature_list_;
  scoped_feature_list_.InitAndEnableFeature(kSuspendMutedAudio);
  ConfigureWithMockSink(hardware_params_);

  EXPECT_CALL(*mock_sink_, SetVolume(0));
  renderer_->SetVolume(0);

  // Playback startup shouldn't start the real sink.
  EXPECT_CALL(*mock_sink_, Start()).Times(0);
  Initialize();
  Preroll();
  StartTicking();

  // Play pause should all function as normal on the muted sink.
  EXPECT_CALL(*mock_sink_, Pause()).Times(0);
  StopTicking();
  EXPECT_CALL(*mock_sink_, Play()).Times(0);
  StartTicking();
  testing::Mock::VerifyAndClearExpectations(mock_sink_.get());

  // First unmute should start and play the real sink.
  EXPECT_CALL(*mock_sink_, SetVolume(1));
  EXPECT_CALL(*mock_sink_, Start());
  EXPECT_CALL(*mock_sink_, Play());
  renderer_->SetVolume(1);

  // Play pause should all function as normal on the normal sink.
  EXPECT_CALL(*mock_sink_, Pause());
  StopTicking();
  EXPECT_CALL(*mock_sink_, Play());
  StartTicking();
  testing::Mock::VerifyAndClearExpectations(mock_sink_.get());

  // Muting again should pause the real sink.
  EXPECT_CALL(*mock_sink_, SetVolume(0));
  EXPECT_CALL(*mock_sink_, Pause());
  renderer_->SetVolume(0);
  testing::Mock::VerifyAndClearExpectations(mock_sink_.get());

  // Second unmuted play shouldn't try to Start() again.
  EXPECT_CALL(*mock_sink_, SetVolume(0.5f));
  EXPECT_CALL(*mock_sink_, Play());
  renderer_->SetVolume(0.5f);
  testing::Mock::VerifyAndClearExpectations(mock_sink_.get());

  EXPECT_CALL(*mock_sink_, Pause());
  StopTicking();
  EXPECT_CALL(*mock_sink_, Stop());
}

TEST_F(AudioRendererImplTest, SinkIsFlushed) {
  ConfigureWithMockSink(AudioParameters(AudioParameters::AUDIO_PCM_LOW_LATENCY,
                                        kChannelLayout, kOutputSamplesPerSecond,
                                        1024 * 15));
  Initialize();
  Preroll();
  StartTicking();
  StopTicking();

  // Verify renderer Flush() triggers sink Flush().
  EXPECT_CALL(*mock_sink_, Flush());
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  WaitableMessageLoopEvent flush_event;
  renderer_->Flush(flush_event.GetClosure());
  flush_event.RunAndWait();
}

TEST_F(AudioRendererImplTest, LowLatencyHint) {
  // Frames per buffer chosen to be small enough that we will have some room to
  // decrease the algorithm buffer below its default value of 200ms.
  int kFramesPerBuffer = 100;
  // Use a basic setup that avoids buffer conversion and sample rate mismatch.
  // This simplifies passing frames to the algorithm and verification of
  // frames-to-time logic.
  ConfigureBasicRenderer(AudioParameters(AudioParameters::AUDIO_PCM_LOW_LATENCY,
                                         kChannelLayout, kInputSamplesPerSecond,
                                         kFramesPerBuffer));
  Initialize();

  // Setup renderer for playback.
  next_timestamp_->SetBaseTimestamp(base::TimeDelta());
  renderer_->SetMediaTime(base::TimeDelta());
  renderer_->StartPlaying();
  StartTicking();
  WaitForPendingRead();

  // With no latency hint set, the default playback threshold should equal
  // the buffer's total capacity.
  const int default_buffer_playback_threshold =
      buffer_playback_threshold().value;
  const int default_buffer_capacity = buffer_capacity().value;
  EXPECT_EQ(default_buffer_playback_threshold, default_buffer_capacity);

  // Fill the buffer to the playback threshold. Verify HAVE_ENOUGH is reached.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH,
                                            BUFFERING_CHANGE_REASON_UNKNOWN));
  SatisfyPendingRead(InputFrames(default_buffer_playback_threshold));
  EXPECT_EQ(frames_buffered().value, default_buffer_playback_threshold);
  base::RunLoop().RunUntilIdle();  // Let HAVE_ENOUGH post.
  testing::Mock::VerifyAndClearExpectations(this);

  // Force underflow by reading 1 frame past the buffered amount.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  ConsumeBitstreamBufferedData(OutputFrames(frames_buffered().value + 1));
  base::RunLoop().RunUntilIdle();  // Let HAVE_NOTHING post.
  testing::Mock::VerifyAndClearExpectations(this);

  // Underflow should trigger a capacity increase *when no latency hint is set*.
  // Playback threshold should also increase, still matching capacity.
  EXPECT_GT(buffer_capacity().value, default_buffer_capacity);
  EXPECT_EQ(buffer_playback_threshold().value, buffer_capacity().value);

  // Set a *LATENCY HINT* that reduces the playback buffering threshold by half.
  base::TimeDelta default_buffering_latency =
      AudioTimestampHelper::FramesToTime(default_buffer_playback_threshold,
                                         kInputSamplesPerSecond);
  base::TimeDelta low_latency = default_buffering_latency / 2;
  renderer_->SetLatencyHint(low_latency);

  // Verify playback threshold now reflects the lower latency target.
  int low_latency_playback_threshold = buffer_playback_threshold().value;
  EXPECT_EQ(AudioTimestampHelper::FramesToTime(low_latency_playback_threshold,
                                               kInputSamplesPerSecond),
            low_latency);

  // Verify total buffer capacity is unchanged, leaving it higher than the
  // playback threshold.
  EXPECT_EQ(buffer_capacity().value, default_buffer_capacity);
  EXPECT_GT(buffer_capacity().value, low_latency_playback_threshold);

  // Verify HAVE_ENOUGH is reached when filled to this lower threshold value.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH,
                                            BUFFERING_CHANGE_REASON_UNKNOWN));
  SatisfyPendingRead(InputFrames(low_latency_playback_threshold));
  EXPECT_EQ(frames_buffered().value, low_latency_playback_threshold);
  base::RunLoop().RunUntilIdle();  // Let HAVE_ENOUGH post.
  testing::Mock::VerifyAndClearExpectations(this);

  // Verify the buffer will happily continue filling, exceeding the playback
  // threshold, until it becomes "full";
  DeliverRemainingAudio();
  EXPECT_GE(frames_buffered().value, buffer_capacity().value);

  // Again force underflow by reading 1 frame past the buffered amount.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  ConsumeBitstreamBufferedData(OutputFrames(frames_buffered().value + 1));
  base::RunLoop().RunUntilIdle();  // Let HAVE_NOTHING post.
  testing::Mock::VerifyAndClearExpectations(this);

  // With latency hint set, this underflow should NOT trigger a capacity
  // increase, nor a change to the playback threshold.
  EXPECT_EQ(buffer_capacity().value, default_buffer_capacity);
  EXPECT_EQ(buffer_playback_threshold().value, low_latency_playback_threshold);
}

TEST_F(AudioRendererImplTest, HighLatencyHint) {
  // Frames per buffer chosen to be small enough that we will have some room to
  // decrease the algorithm buffer below its default value of 200ms.
  int kFramesPerBuffer = 100;
  // Use a basic setup that avoids buffer conversion and sample rate mismatch.
  // This simplifies passing frames to the algorithm and verification of
  // frames-to-time logic.
  ConfigureBasicRenderer(AudioParameters(AudioParameters::AUDIO_PCM_LOW_LATENCY,
                                         kChannelLayout, kInputSamplesPerSecond,
                                         kFramesPerBuffer));
  Initialize();

  // Setup renderer for playback.
  next_timestamp_->SetBaseTimestamp(base::TimeDelta());
  renderer_->SetMediaTime(base::TimeDelta());
  renderer_->StartPlaying();
  StartTicking();
  WaitForPendingRead();

  // With no latency hint set, the default playback threshold should equal
  // the buffer's total capacity.
  const int default_buffer_playback_threshold =
      buffer_playback_threshold().value;
  const int default_buffer_capacity = buffer_capacity().value;
  EXPECT_EQ(default_buffer_playback_threshold, default_buffer_capacity);

  // Fill the buffer to the playback threshold. Verify HAVE_ENOUGH is reached.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH,
                                            BUFFERING_CHANGE_REASON_UNKNOWN));
  SatisfyPendingRead(InputFrames(default_buffer_playback_threshold));
  EXPECT_EQ(frames_buffered().value, default_buffer_playback_threshold);
  base::RunLoop().RunUntilIdle();  // Let HAVE_ENOUGH post.
  testing::Mock::VerifyAndClearExpectations(this);

  // Force underflow by reading 1 frame past the buffered amount.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  ConsumeBitstreamBufferedData(OutputFrames(frames_buffered().value + 1));
  base::RunLoop().RunUntilIdle();  // Let HAVE_NOTHING post.
  testing::Mock::VerifyAndClearExpectations(this);

  // Underflow should trigger a capacity increase *when no latency hint is set*.
  // Playback threshold should also increase, still matching capacity.
  EXPECT_GT(buffer_capacity().value, default_buffer_capacity);
  EXPECT_EQ(buffer_playback_threshold().value, buffer_capacity().value);

  // Set a *LATENCY HINT* that increases the playback buffering threshold by 2x.
  base::TimeDelta default_buffering_latency =
      AudioTimestampHelper::FramesToTime(default_buffer_playback_threshold,
                                         kInputSamplesPerSecond);
  base::TimeDelta high_latency = default_buffering_latency * 2;
  renderer_->SetLatencyHint(high_latency);

  // Verify playback threshold now reflects the higher latency target.
  int high_latency_playback_threshold = buffer_playback_threshold().value;
  EXPECT_EQ(AudioTimestampHelper::FramesToTime(high_latency_playback_threshold,
                                               kInputSamplesPerSecond),
            high_latency);

  // Verify total buffer capacity is also increased by the same amount.
  EXPECT_GT(buffer_capacity().value, default_buffer_capacity);
  EXPECT_EQ(buffer_capacity().value, high_latency_playback_threshold);

  // Verify HAVE_ENOUGH is reached when filled to this higher threshold value.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH,
                                            BUFFERING_CHANGE_REASON_UNKNOWN));
  SatisfyPendingRead(InputFrames(high_latency_playback_threshold));
  EXPECT_EQ(frames_buffered().value, high_latency_playback_threshold);
  base::RunLoop().RunUntilIdle();  // Let HAVE_ENOUGH post.
  testing::Mock::VerifyAndClearExpectations(this);

  // Verify the buffer is also considered "full" when saturated to this higher
  // threshold.
  EXPECT_GE(frames_buffered().value, buffer_capacity().value);

  // Again force underflow by reading 1 frame past the buffered amount.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING, _));
  ConsumeBitstreamBufferedData(OutputFrames(frames_buffered().value + 1));
  base::RunLoop().RunUntilIdle();  // Let HAVE_NOTHING post.
  testing::Mock::VerifyAndClearExpectations(this);

  // With a latency hint set, this underflow should NOT trigger a capacity
  // increase, nor a change to the playback threshold.
  EXPECT_EQ(buffer_capacity().value, high_latency_playback_threshold);
  EXPECT_EQ(buffer_playback_threshold().value, high_latency_playback_threshold);
}

}  // namespace media