summaryrefslogtreecommitdiff
path: root/chromium/media/gpu/video_encode_accelerator_perf_tests.cc
blob: 2ed2028ce05de87e30d818f5841e8617d332b6ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <algorithm>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <vector>

#include "base/command_line.h"
#include "base/files/file_util.h"
#include "base/json/json_writer.h"
#include "base/memory/raw_ptr.h"
#include "base/strings/string_number_conversions.h"
#include "base/time/time.h"
#include "media/base/bitstream_buffer.h"
#include "media/base/media_switches.h"
#include "media/base/media_util.h"
#include "media/base/test_data_util.h"
#include "media/base/video_decoder_config.h"
#include "media/gpu/test/video.h"
#include "media/gpu/test/video_encoder/bitstream_validator.h"
#include "media/gpu/test/video_encoder/video_encoder.h"
#include "media/gpu/test/video_encoder/video_encoder_client.h"
#include "media/gpu/test/video_encoder/video_encoder_test_environment.h"
#include "media/gpu/test/video_frame_validator.h"
#include "media/gpu/test/video_test_helpers.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/abseil-cpp/absl/types/optional.h"

namespace media {
namespace test {

namespace {

// Video encoder perf tests usage message. Make sure to also update the
// documentation under docs/media/gpu/video_encoder_perf_test_usage.md when
// making changes here.
// TODO(b/211783271): Add video_encoder_perf_test_usage.md
constexpr const char* usage_msg =
    R"(usage: video_encode_accelerator_perf_tests
           [--codec=<codec>] [--num_spatial_layers=<number>]
           [--num_temporal_layers=<number>] [--bitrate_mode=(cbr|vbr)]
           [--reverse] [--bitrate=<bitrate>]
           [-v=<level>] [--vmodule=<config>] [--output_folder]
           [--disable_vaapi_lock]
           [--gtest_help] [--help]
           [<video path>] [<video metadata path>]
)";

// Video encoder performance tests help message.
constexpr const char* help_msg =
    R"""(Run the video encode accelerator performance tests on the video
specified by <video path>. If no <video path> is given the default
"bear_320x192_40frames.yuv.webm" video will be used.

The <video metadata path> should specify the location of a json file
containing the video's metadata. By default <video path>.json will be
used.

The following arguments are supported:
   -v                   enable verbose mode, e.g. -v=2.
  --vmodule             enable verbose mode for the specified module,

  --codec               codec profile to encode, "h264 (baseline)",
                        "h264main, "h264high", "vp8" and "vp9"
  --num_spatial_layers  the number of spatial layers of the encoded
                        bitstream. A default value is 1. Only affected
                        if --codec=vp9 currently.
  --num_temporal_layers the number of temporal layers of the encoded
                        bitstream. A default value is 1.
  --bitrate_mode        The rate control mode for encoding, one of "cbr"
                        (default) or "vbr".
  --reverse             the stream plays backwards if the stream reaches
                        end of stream. So the input stream to be encoded
                        is consecutive. By default this is false.
  --bitrate             bitrate (bits in second) of a produced bitstram.
                        If not specified, a proper value for the video
                        resolution is selected by the test.
  --output_folder       overwrite the output folder used to store
                        performance metrics, if not specified results
                        will be stored in the current working directory.
  --disable_vaapi_lock  disable the global VA-API lock if applicable,
                        i.e., only on devices that use the VA-API with a libva
                        backend that's known to be thread-safe and only in
                        portions of the Chrome stack that should be able to
                        deal with the absence of the lock
                        (not the VaapiVideoDecodeAccelerator).

  --gtest_help          display the gtest help and exit.
  --help                display this help and exit.
)""";

// Default video to be used if no test video was specified.
constexpr base::FilePath::CharType kDefaultTestVideoPath[] =
    FILE_PATH_LITERAL("bear_320x192_40frames.yuv.webm");

media::test::VideoEncoderTestEnvironment* g_env;

constexpr size_t kNumFramesToEncodeForPerformance = 300;

constexpr size_t kMaxTemporalLayers = 3;
constexpr size_t kMaxSpatialLayers = 3;

// The event timeout used in perf tests because encoding 2160p
// |kNumFramesToEncodeForPerformance| frames take much time.
constexpr base::TimeDelta kPerfEventTimeout = base::Seconds(180);

// Default output folder used to store performance metrics.
constexpr const base::FilePath::CharType* kDefaultOutputFolder =
    FILE_PATH_LITERAL("perf_metrics");

// Struct storing various time-related statistics.
struct PerformanceTimeStats {
  PerformanceTimeStats() {}
  explicit PerformanceTimeStats(const std::vector<double>& times);
  double avg_ms_ = 0.0;
  double percentile_25_ms_ = 0.0;
  double percentile_50_ms_ = 0.0;
  double percentile_75_ms_ = 0.0;
};

PerformanceTimeStats::PerformanceTimeStats(const std::vector<double>& times) {
  if (times.empty())
    return;

  avg_ms_ = std::accumulate(times.begin(), times.end(), 0.0) / times.size();
  std::vector<double> sorted_times = times;
  std::sort(sorted_times.begin(), sorted_times.end());
  percentile_25_ms_ = sorted_times[sorted_times.size() / 4];
  percentile_50_ms_ = sorted_times[sorted_times.size() / 2];
  percentile_75_ms_ = sorted_times[(sorted_times.size() * 3) / 4];
}

// TODO(dstaessens): Investigate using more appropriate metrics for encoding.
struct PerformanceMetrics {
  // Write the collected performance metrics to the console.
  void WriteToConsole() const;
  // Write the collected performance metrics to file.
  void WriteToFile() const;

  // Total measurement duration.
  base::TimeDelta total_duration_;
  // The number of bitstreams encoded.
  size_t bitstreams_encoded_ = 0;
  // The overall number of bitstreams encoded per second.
  double bitstreams_per_second_ = 0.0;
  // List of times between subsequent bitstream buffer deliveries. This is
  // important in real-time encoding scenarios, where the delivery time should
  // be less than the frame rate used.
  std::vector<double> bitstream_delivery_times_;
  // Statistics related to the time between bitstream buffer deliveries.
  PerformanceTimeStats bitstream_delivery_stats_;
  // List of times between queuing an encode operation and getting back the
  // encoded bitstream buffer.
  std::vector<double> bitstream_encode_times_;
  // Statistics related to the encode times.
  PerformanceTimeStats bitstream_encode_stats_;
};

// The performance evaluator can be plugged into the video encoder to collect
// various performance metrics.
class PerformanceEvaluator : public BitstreamProcessor {
 public:
  // Create a new performance evaluator.
  PerformanceEvaluator() {}

  void ProcessBitstream(scoped_refptr<BitstreamRef> bitstream,
                        size_t frame_index) override;
  bool WaitUntilDone() override { return true; }

  // Start/Stop collecting performance metrics.
  void StartMeasuring();
  void StopMeasuring();

  // Get the collected performance metrics.
  const PerformanceMetrics& Metrics() const { return perf_metrics_; }

 private:
  // Start/end time of the measurement period.
  base::TimeTicks start_time_;
  base::TimeTicks end_time_;

  // Time at which the previous bitstream was delivered.
  base::TimeTicks prev_bitstream_delivery_time_;

  // Collection of various performance metrics.
  PerformanceMetrics perf_metrics_;
};

void PerformanceEvaluator::ProcessBitstream(
    scoped_refptr<BitstreamRef> bitstream,
    size_t frame_index) {
  base::TimeTicks now = base::TimeTicks::Now();

  base::TimeDelta delivery_time = (now - prev_bitstream_delivery_time_);
  perf_metrics_.bitstream_delivery_times_.push_back(
      delivery_time.InMillisecondsF());
  prev_bitstream_delivery_time_ = now;

  // TODO(hiroh): |encode_time| on upper spatial layer in SVC encoding becomes
  // larger because the bitstram is produced after lower spatial layers are
  // produced. |encode_time| should be aggregated per spatial layer.
  base::TimeDelta encode_time =
      base::TimeTicks::Now() - bitstream->source_timestamp;
  perf_metrics_.bitstream_encode_times_.push_back(
      encode_time.InMillisecondsF());
}

void PerformanceEvaluator::StartMeasuring() {
  start_time_ = base::TimeTicks::Now();
  prev_bitstream_delivery_time_ = start_time_;
}

void PerformanceEvaluator::StopMeasuring() {
  DCHECK_EQ(perf_metrics_.bitstream_delivery_times_.size(),
            perf_metrics_.bitstream_encode_times_.size());

  end_time_ = base::TimeTicks::Now();
  perf_metrics_.total_duration_ = end_time_ - start_time_;
  perf_metrics_.bitstreams_encoded_ =
      perf_metrics_.bitstream_encode_times_.size();
  perf_metrics_.bitstreams_per_second_ =
      perf_metrics_.bitstreams_encoded_ /
      perf_metrics_.total_duration_.InSecondsF();

  // Calculate delivery and encode time metrics.
  perf_metrics_.bitstream_delivery_stats_ =
      PerformanceTimeStats(perf_metrics_.bitstream_delivery_times_);
  perf_metrics_.bitstream_encode_stats_ =
      PerformanceTimeStats(perf_metrics_.bitstream_encode_times_);
}

void PerformanceMetrics::WriteToConsole() const {
  std::cout << "Bitstreams encoded:     " << bitstreams_encoded_ << std::endl;
  std::cout << "Total duration:         " << total_duration_.InMillisecondsF()
            << "ms" << std::endl;
  std::cout << "FPS:                    " << bitstreams_per_second_
            << std::endl;
  std::cout << "Bitstream delivery time - average:       "
            << bitstream_delivery_stats_.avg_ms_ << "ms" << std::endl;
  std::cout << "Bitstream delivery time - percentile 25: "
            << bitstream_delivery_stats_.percentile_25_ms_ << "ms" << std::endl;
  std::cout << "Bitstream delivery time - percentile 50: "
            << bitstream_delivery_stats_.percentile_50_ms_ << "ms" << std::endl;
  std::cout << "Bitstream delivery time - percentile 75: "
            << bitstream_delivery_stats_.percentile_75_ms_ << "ms" << std::endl;
  std::cout << "Bitstream encode time - average:       "
            << bitstream_encode_stats_.avg_ms_ << "ms" << std::endl;
  std::cout << "Bitstream encode time - percentile 25: "
            << bitstream_encode_stats_.percentile_25_ms_ << "ms" << std::endl;
  std::cout << "Bitstream encode time - percentile 50: "
            << bitstream_encode_stats_.percentile_50_ms_ << "ms" << std::endl;
  std::cout << "Bitstream encode time - percentile 75: "
            << bitstream_encode_stats_.percentile_75_ms_ << "ms" << std::endl;
}

void PerformanceMetrics::WriteToFile() const {
  base::FilePath output_folder_path = base::FilePath(g_env->OutputFolder());
  if (!DirectoryExists(output_folder_path))
    base::CreateDirectory(output_folder_path);
  output_folder_path = base::MakeAbsoluteFilePath(output_folder_path);

  // Write performance metrics to json.
  base::Value metrics(base::Value::Type::DICTIONARY);
  metrics.SetKey("BitstreamsEncoded",
                 base::Value(base::checked_cast<int>(bitstreams_encoded_)));
  metrics.SetKey("TotalDurationMs",
                 base::Value(total_duration_.InMillisecondsF()));
  metrics.SetKey("FPS", base::Value(bitstreams_per_second_));
  metrics.SetKey("BitstreamDeliveryTimeAverage",
                 base::Value(bitstream_delivery_stats_.avg_ms_));
  metrics.SetKey("BitstreamDeliveryTimePercentile25",
                 base::Value(bitstream_delivery_stats_.percentile_25_ms_));
  metrics.SetKey("BitstreamDeliveryTimePercentile50",
                 base::Value(bitstream_delivery_stats_.percentile_50_ms_));
  metrics.SetKey("BitstreamDeliveryTimePercentile75",
                 base::Value(bitstream_delivery_stats_.percentile_75_ms_));
  metrics.SetKey("BitstreamEncodeTimeAverage",
                 base::Value(bitstream_encode_stats_.avg_ms_));
  metrics.SetKey("BitstreamEncodeTimePercentile25",
                 base::Value(bitstream_encode_stats_.percentile_25_ms_));
  metrics.SetKey("BitstreamEncodeTimePercentile50",
                 base::Value(bitstream_encode_stats_.percentile_50_ms_));
  metrics.SetKey("BitstreamEncodeTimePercentile75",
                 base::Value(bitstream_encode_stats_.percentile_75_ms_));

  // Write bitstream delivery times to json.
  base::Value delivery_times(base::Value::Type::LIST);
  for (double bitstream_delivery_time : bitstream_delivery_times_) {
    delivery_times.Append(bitstream_delivery_time);
  }
  metrics.SetKey("BitstreamDeliveryTimes", std::move(delivery_times));

  // Write bitstream encodes times to json.
  base::Value encode_times(base::Value::Type::LIST);
  for (double bitstream_encode_time : bitstream_encode_times_) {
    encode_times.Append(bitstream_encode_time);
  }
  metrics.SetKey("BitstreamEncodeTimes", std::move(encode_times));

  // Write json to file.
  std::string metrics_str;
  ASSERT_TRUE(base::JSONWriter::WriteWithOptions(
      metrics, base::JSONWriter::OPTIONS_PRETTY_PRINT, &metrics_str));
  base::FilePath metrics_file_path = output_folder_path.Append(
      g_env->GetTestOutputFilePath().AddExtension(FILE_PATH_LITERAL(".json")));
  // Make sure that the directory into which json is saved is created.
  LOG_ASSERT(base::CreateDirectory(metrics_file_path.DirName()));
  base::File metrics_output_file(
      base::FilePath(metrics_file_path),
      base::File::FLAG_CREATE_ALWAYS | base::File::FLAG_WRITE);
  int bytes_written = metrics_output_file.WriteAtCurrentPos(
      metrics_str.data(), metrics_str.length());
  ASSERT_EQ(bytes_written, static_cast<int>(metrics_str.length()));
  VLOG(0) << "Wrote performance metrics to: " << metrics_file_path;
}

struct BitstreamQualityMetrics {
  BitstreamQualityMetrics(const PSNRVideoFrameValidator* const psnr_validator,
                          const SSIMVideoFrameValidator* const ssim_validator,
                          const absl::optional<size_t>& spatial_idx,
                          const absl::optional<size_t>& temporal_idx);

  void Output(uint32_t target_bitrate, uint32_t actual_bitrate);

  absl::optional<size_t> spatial_idx;
  absl::optional<size_t> temporal_idx;

 private:
  struct QualityStats {
    QualityStats() = default;
    QualityStats(const QualityStats&) = default;
    QualityStats& operator=(const QualityStats&) = default;

    double avg = 0;
    double percentile_25 = 0;
    double percentile_50 = 0;
    double percentile_75 = 0;
    std::vector<double> values_in_order;
  };

  static QualityStats ComputeQualityStats(
      const std::map<size_t, double>& values);

  void WriteToConsole(const std::string& svc_text,
                      const BitstreamQualityMetrics::QualityStats& psnr_stats,
                      const BitstreamQualityMetrics::QualityStats& ssim_stats,
                      uint32_t target_bitrate,
                      uint32_t actual_bitrate) const;
  void WriteToFile(const std::string& svc_text,
                   const BitstreamQualityMetrics::QualityStats& psnr_stats,
                   const BitstreamQualityMetrics::QualityStats& ssim_stats,
                   uint32_t target_bitrate,
                   uint32_t actual_bitrate) const;

  const PSNRVideoFrameValidator* const psnr_validator;
  const SSIMVideoFrameValidator* const ssim_validator;
};

BitstreamQualityMetrics::BitstreamQualityMetrics(
    const PSNRVideoFrameValidator* const psnr_validator,
    const SSIMVideoFrameValidator* const ssim_validator,
    const absl::optional<size_t>& spatial_idx,
    const absl::optional<size_t>& temporal_idx)
    : spatial_idx(spatial_idx),
      temporal_idx(temporal_idx),
      psnr_validator(psnr_validator),
      ssim_validator(ssim_validator) {}

// static
BitstreamQualityMetrics::QualityStats
BitstreamQualityMetrics::ComputeQualityStats(
    const std::map<size_t, double>& values) {
  if (values.empty())
    return QualityStats();
  std::vector<double> sorted_values;
  std::vector<std::pair<size_t, double>> index_and_value;
  sorted_values.reserve(values.size());
  index_and_value.reserve(values.size());
  for (const auto& v : values) {
    sorted_values.push_back(v.second);
    index_and_value.emplace_back(v.first, v.second);
  }
  std::sort(sorted_values.begin(), sorted_values.end());
  std::sort(index_and_value.begin(), index_and_value.end());
  QualityStats stats;
  stats.avg = std::accumulate(sorted_values.begin(), sorted_values.end(), 0.0) /
              sorted_values.size();
  stats.percentile_25 = sorted_values[sorted_values.size() / 4];
  stats.percentile_50 = sorted_values[sorted_values.size() / 2];
  stats.percentile_75 = sorted_values[(sorted_values.size() * 3) / 4];
  stats.values_in_order.resize(index_and_value.size());
  for (size_t i = 0; i < index_and_value.size(); ++i)
    stats.values_in_order[i] = index_and_value[i].second;
  return stats;
}

void BitstreamQualityMetrics::Output(uint32_t target_bitrate,
                                     uint32_t actual_bitrate) {
  std::string svc_text;
  if (spatial_idx)
    svc_text += "L" + base::NumberToString(*spatial_idx + 1);
  if (temporal_idx)
    svc_text += "T" + base::NumberToString(*temporal_idx + 1);

  auto psnr_stats = ComputeQualityStats(psnr_validator->GetPSNRValues());
  auto ssim_stats = ComputeQualityStats(ssim_validator->GetSSIMValues());

  WriteToConsole(svc_text, psnr_stats, ssim_stats, target_bitrate,
                 actual_bitrate);
  WriteToFile(svc_text, psnr_stats, ssim_stats, target_bitrate, actual_bitrate);
}

void BitstreamQualityMetrics::WriteToConsole(
    const std::string& svc_text,
    const BitstreamQualityMetrics::QualityStats& psnr_stats,
    const BitstreamQualityMetrics::QualityStats& ssim_stats,
    uint32_t target_bitrate,
    uint32_t actual_bitrate) const {
  const auto default_ssize = std::cout.precision();
  std::cout << "[ Result " << svc_text << "]" << std::endl;
  std::cout << "Bitrate: " << actual_bitrate << " (target:  " << target_bitrate
            << ")" << std::endl;
  std::cout << "Bitrate deviation: " << std::fixed << std::setprecision(2)
            << (actual_bitrate * 100.0 / target_bitrate) - 100.0 << " %"
            << std::endl;

  std::cout << std::fixed << std::setprecision(4);
  std::cout << "SSIM - average:       " << ssim_stats.avg << std::endl;
  std::cout << "SSIM - percentile 25: " << ssim_stats.percentile_25
            << std::endl;
  std::cout << "SSIM - percentile 50: " << ssim_stats.percentile_50
            << std::endl;
  std::cout << "SSIM - percentile 75: " << ssim_stats.percentile_75
            << std::endl;
  std::cout << "PSNR - average:       " << psnr_stats.avg << std::endl;
  std::cout << "PSNR - percentile 25: " << psnr_stats.percentile_25
            << std::endl;
  std::cout << "PSNR - percentile 50: " << psnr_stats.percentile_50
            << std::endl;
  std::cout << "PSNR - percentile 75: " << psnr_stats.percentile_75
            << std::endl;
  std::cout.precision(default_ssize);
}

void BitstreamQualityMetrics::WriteToFile(
    const std::string& svc_text,
    const BitstreamQualityMetrics::QualityStats& psnr_stats,
    const BitstreamQualityMetrics::QualityStats& ssim_stats,
    uint32_t target_bitrate,
    uint32_t actual_bitrate) const {
  base::FilePath output_folder_path = base::FilePath(g_env->OutputFolder());
  if (!DirectoryExists(output_folder_path))
    base::CreateDirectory(output_folder_path);
  output_folder_path = base::MakeAbsoluteFilePath(output_folder_path);
  // Write quality metrics to json.
  base::Value metrics(base::Value::Type::DICTIONARY);
  if (!svc_text.empty())
    metrics.SetKey("SVC", base::Value(svc_text));
  metrics.SetKey("Bitrate",
                 base::Value(base::checked_cast<int>(actual_bitrate)));
  metrics.SetKey(
      "BitrateDeviation",
      base::Value((actual_bitrate * 100.0 / target_bitrate) - 100.0));
  metrics.SetKey("SSIMAverage", base::Value(ssim_stats.avg));
  metrics.SetKey("PSNRAverage", base::Value(psnr_stats.avg));
  // Write ssim values bitstream delivery times to json.
  base::Value ssim_values(base::Value::Type::LIST);
  for (double value : ssim_stats.values_in_order)
    ssim_values.Append(value);
  metrics.SetKey("SSIMValues", std::move(ssim_values));

  // Write psnr values to json.
  base::Value psnr_values(base::Value::Type::LIST);
  for (double value : psnr_stats.values_in_order)
    psnr_values.Append(value);
  metrics.SetKey("PSNRValues", std::move(psnr_values));

  // Write json to file.
  std::string metrics_str;
  ASSERT_TRUE(base::JSONWriter::WriteWithOptions(
      metrics, base::JSONWriter::OPTIONS_PRETTY_PRINT, &metrics_str));
  base::FilePath metrics_file_path = output_folder_path.Append(
      g_env->GetTestOutputFilePath()
          .AddExtension(svc_text.empty() ? "" : "." + svc_text)
          .AddExtension(FILE_PATH_LITERAL(".json")));
  // Make sure that the directory into which json is saved is created.
  LOG_ASSERT(base::CreateDirectory(metrics_file_path.DirName()));
  base::File metrics_output_file(
      base::FilePath(metrics_file_path),
      base::File::FLAG_CREATE_ALWAYS | base::File::FLAG_WRITE);
  int bytes_written = metrics_output_file.WriteAtCurrentPos(
      metrics_str.data(), metrics_str.length());
  ASSERT_EQ(bytes_written, static_cast<int>(metrics_str.length()));
  VLOG(0) << "Wrote performance metrics to: " << metrics_file_path;
}

// Video encode test class. Performs setup and teardown for each single test.
// It measures the performance in encoding NV12 GpuMemoryBuffer based
// VideoFrame.
class VideoEncoderTest : public ::testing::Test {
 public:
  // Creates VideoEncoder for encoding NV12 GpuMemoryBuffer based VideoFrames.
  // The input VideoFrames are provided every 1 / |encoder_rate| seconds if it
  // is specified. Or they are provided as soon as the previous input VideoFrame
  // is consumed by VideoEncoder. |measure_quality| measures SSIM and PSNR
  // values of encoded bitstream comparing the original input VideoFrames.
  std::unique_ptr<VideoEncoder> CreateVideoEncoder(
      absl::optional<uint32_t> encode_rate,
      bool measure_quality) {
    Video* video = g_env->GenerateNV12Video();
    VideoCodecProfile profile = g_env->Profile();
    const media::VideoBitrateAllocation& bitrate = g_env->BitrateAllocation();
    const std::vector<VideoEncodeAccelerator::Config::SpatialLayer>&
        spatial_layers = g_env->SpatialLayers();
    std::vector<std::unique_ptr<BitstreamProcessor>> bitstream_processors;
    if (measure_quality) {
      bitstream_processors = CreateBitstreamProcessorsForQualityPerformance(
          video, profile, spatial_layers);
    } else {
      auto performance_evaluator = std::make_unique<PerformanceEvaluator>();
      performance_evaluator_ = performance_evaluator.get();
      bitstream_processors.push_back(std::move(performance_evaluator));
    }
    LOG_ASSERT(!bitstream_processors.empty())
        << "Failed to create bitstream processors";

    VideoEncoderClientConfig config(video, profile, spatial_layers, bitrate,
                                    g_env->Reverse());
    config.input_storage_type =
        VideoEncodeAccelerator::Config::StorageType::kGpuMemoryBuffer;
    config.num_frames_to_encode = kNumFramesToEncodeForPerformance;
    if (encode_rate) {
      config.encode_interval = base::Seconds(1u) / encode_rate.value();
    }

    auto video_encoder =
        VideoEncoder::Create(config, std::move(bitstream_processors));
    LOG_ASSERT(video_encoder);
    LOG_ASSERT(video_encoder->Initialize(video));

    return video_encoder;
  }

 protected:
  raw_ptr<PerformanceEvaluator> performance_evaluator_;
  std::vector<BitstreamQualityMetrics> quality_metrics_;

 private:
  std::unique_ptr<BitstreamValidator> CreateBitstreamValidator(
      const VideoCodecProfile profile,
      const gfx::Rect& visible_rect,
      const absl::optional<size_t>& spatial_layer_index_to_decode,
      const absl::optional<size_t>& temporal_layer_index_to_decode,
      const std::vector<gfx::Size>& spatial_layer_resolutions) {
    std::vector<std::unique_ptr<VideoFrameProcessor>> video_frame_processors;
    VideoFrameValidator::GetModelFrameCB get_model_frame_cb =
        base::BindRepeating(&VideoEncoderTest::GetModelFrame,
                            base::Unretained(this), visible_rect);
    auto ssim_validator = SSIMVideoFrameValidator::Create(
        get_model_frame_cb, /*corrupt_frame_processor=*/nullptr,
        VideoFrameValidator::ValidationMode::kAverage,
        /*tolerance=*/0.0);
    LOG_ASSERT(ssim_validator);
    auto psnr_validator = PSNRVideoFrameValidator::Create(
        get_model_frame_cb, /*corrupt_frame_processor=*/nullptr,
        VideoFrameValidator::ValidationMode::kAverage,
        /*tolerance=*/0.0);
    LOG_ASSERT(psnr_validator);
    quality_metrics_.push_back(BitstreamQualityMetrics(
        psnr_validator.get(), ssim_validator.get(),
        spatial_layer_index_to_decode, temporal_layer_index_to_decode));
    video_frame_processors.push_back(std::move(ssim_validator));
    video_frame_processors.push_back(std::move(psnr_validator));

    VideoDecoderConfig decoder_config(
        VideoCodecProfileToVideoCodec(profile), profile,
        VideoDecoderConfig::AlphaMode::kIsOpaque, VideoColorSpace(),
        kNoTransformation, visible_rect.size(), visible_rect,
        visible_rect.size(), EmptyExtraData(), EncryptionScheme::kUnencrypted);

    return BitstreamValidator::Create(
        decoder_config, kNumFramesToEncodeForPerformance - 1,
        std::move(video_frame_processors), spatial_layer_index_to_decode,
        temporal_layer_index_to_decode, spatial_layer_resolutions);
  }

  // Create bitstream processors for quality performance tests.
  std::vector<std::unique_ptr<BitstreamProcessor>>
  CreateBitstreamProcessorsForQualityPerformance(
      Video* video,
      VideoCodecProfile profile,
      const std::vector<VideoEncodeAccelerator::Config::SpatialLayer>&
          spatial_layers) {
    std::vector<std::unique_ptr<BitstreamProcessor>> bitstream_processors;

    raw_data_helper_ = RawDataHelper::Create(video, g_env->Reverse());
    if (!raw_data_helper_) {
      LOG(ERROR) << "Failed to create raw data helper";
      return bitstream_processors;
    }

    if (spatial_layers.empty()) {
      // Simple stream encoding.
      bitstream_processors.push_back(CreateBitstreamValidator(
          profile, gfx::Rect(video->Resolution()),
          /*spatial_layer_index_to_decode=*/absl::nullopt,
          /*temporal_layer_index_to_decode=*/absl::nullopt,
          /*spatial_layer_resolutions=*/{}));
      LOG_ASSERT(!!bitstream_processors.back());
    } else {
      // Temporal/Spatial layer encoding.
      std::vector<gfx::Size> spatial_layer_resolutions;
      for (const auto& sl : spatial_layers)
        spatial_layer_resolutions.emplace_back(sl.width, sl.height);

      for (size_t sid = 0; sid < spatial_layers.size(); ++sid) {
        for (size_t tid = 0; tid < spatial_layers[sid].num_of_temporal_layers;
             ++tid) {
          bitstream_processors.push_back(CreateBitstreamValidator(
              profile, gfx::Rect(spatial_layer_resolutions[sid]), sid, tid,
              spatial_layer_resolutions));
          LOG_ASSERT(!!bitstream_processors.back());
        }
      }
    }

    return bitstream_processors;
  }

  scoped_refptr<const VideoFrame> GetModelFrame(const gfx::Rect& visible_rect,
                                                size_t frame_index) {
    LOG_ASSERT(raw_data_helper_);
    auto frame = raw_data_helper_->GetFrame(frame_index);
    if (!frame)
      return nullptr;
    if (visible_rect.size() == frame->visible_rect().size())
      return frame;
    return ScaleVideoFrame(frame.get(), visible_rect.size());
  }

  std::unique_ptr<RawDataHelper> raw_data_helper_;
};

}  // namespace

// Encode |kNumFramesToEncodeForPerformance| frames while measuring uncapped
// performance. This test will encode a video as fast as possible, and gives an
// idea about the maximum output of the encoder.
TEST_F(VideoEncoderTest, MeasureUncappedPerformance) {
  auto encoder = CreateVideoEncoder(/*encode_rate=*/absl::nullopt,
                                    /*measure_quality=*/false);
  encoder->SetEventWaitTimeout(kPerfEventTimeout);

  performance_evaluator_->StartMeasuring();
  encoder->Encode();
  EXPECT_TRUE(encoder->WaitForFlushDone());
  performance_evaluator_->StopMeasuring();

  auto metrics = performance_evaluator_->Metrics();
  metrics.WriteToConsole();
  metrics.WriteToFile();

  EXPECT_EQ(encoder->GetFlushDoneCount(), 1u);
  EXPECT_EQ(encoder->GetFrameReleasedCount(), kNumFramesToEncodeForPerformance);
}

// Encode |kNumFramesToEncodeForPerformance| frames while measuring capped
// performance. This test will encode a video at a fixed ratio, 30fps.
// This test can be used to measure the cpu metrics during encoding.
TEST_F(VideoEncoderTest, MeasureCappedPerformance) {
  const uint32_t kEncodeRate = 30;
  auto encoder = CreateVideoEncoder(/*encode_rate=*/kEncodeRate,
                                    /*measure_quality=*/false);
  encoder->SetEventWaitTimeout(kPerfEventTimeout);

  performance_evaluator_->StartMeasuring();
  encoder->Encode();
  EXPECT_TRUE(encoder->WaitForFlushDone());
  performance_evaluator_->StopMeasuring();

  auto metrics = performance_evaluator_->Metrics();
  metrics.WriteToConsole();
  metrics.WriteToFile();

  EXPECT_EQ(encoder->GetFlushDoneCount(), 1u);
  EXPECT_EQ(encoder->GetFrameReleasedCount(), kNumFramesToEncodeForPerformance);
}

TEST_F(VideoEncoderTest, MeasureProducedBitstreamQuality) {
  auto encoder = CreateVideoEncoder(/*encode_rate=*/absl::nullopt,
                                    /*measure_quality=*/true);
  encoder->SetEventWaitTimeout(kPerfEventTimeout);

  encoder->Encode();
  EXPECT_TRUE(encoder->WaitForFlushDone());
  EXPECT_EQ(encoder->GetFlushDoneCount(), 1u);
  EXPECT_EQ(encoder->GetFrameReleasedCount(), kNumFramesToEncodeForPerformance);
  EXPECT_TRUE(encoder->WaitForBitstreamProcessors());

  const VideoEncoderStats stats = encoder->GetStats();
  for (auto& metrics : quality_metrics_) {
    absl::optional<size_t> spatial_idx = metrics.spatial_idx;
    absl::optional<size_t> temporal_idx = metrics.temporal_idx;
    uint32_t target_bitrate = 0;
    uint32_t actual_bitrate = 0;
    if (!spatial_idx && !temporal_idx) {
      target_bitrate = g_env->BitrateAllocation().GetSumBps();
      actual_bitrate = stats.Bitrate();
    } else {
      CHECK(spatial_idx && temporal_idx);
      // Target and actual bitrates in temporal layer encoding are the sum of
      // bitrates of the temporal layers in the spatial layer.
      for (size_t tid = 0; tid <= *temporal_idx; ++tid) {
        target_bitrate +=
            g_env->BitrateAllocation().GetBitrateBps(*spatial_idx, tid);
        actual_bitrate += stats.LayerBitrate(*spatial_idx, tid);
      }
    }

    metrics.Output(target_bitrate, actual_bitrate);
  }
}

// TODO(b/211783279) The |performance_evaluator_| only keeps track of the last
// created encoder. We should instead keep track of multiple evaluators, and
// then decide how to aggregate/report those metrics.
TEST_F(VideoEncoderTest,
       MeasureUncappedPerformance_MultipleConcurrentEncoders) {
  // Run two encoders for larger resolutions to avoid creating shared memory
  // buffers during the test on lower end devices.
  constexpr gfx::Size k1080p(1920, 1080);
  const size_t kMinSupportedConcurrentEncoders =
      g_env->Video()->Resolution().GetArea() >= k1080p.GetArea() ? 2 : 3;

  std::vector<std::unique_ptr<VideoEncoder>> encoders(
      kMinSupportedConcurrentEncoders);
  for (size_t i = 0; i < kMinSupportedConcurrentEncoders; ++i) {
    encoders[i] = CreateVideoEncoder(/*encode_rate=*/absl::nullopt,
                                     /*measure_quality=*/false);
    encoders[i]->SetEventWaitTimeout(kPerfEventTimeout);
  }

  performance_evaluator_->StartMeasuring();

  for (auto&& encoder : encoders)
    encoder->Encode();

  for (auto&& encoder : encoders) {
    EXPECT_TRUE(encoder->WaitForFlushDone());
    EXPECT_EQ(encoder->GetFlushDoneCount(), 1u);
    EXPECT_EQ(encoder->GetFrameReleasedCount(),
              kNumFramesToEncodeForPerformance);
  }

  performance_evaluator_->StopMeasuring();
  auto metrics = performance_evaluator_->Metrics();
  metrics.WriteToConsole();
  metrics.WriteToFile();
}
}  // namespace test
}  // namespace media

int main(int argc, char** argv) {
  // Set the default test data path.
  media::test::Video::SetTestDataPath(media::GetTestDataPath());

  // Print the help message if requested. This needs to be done before
  // initializing gtest, to overwrite the default gtest help message.
  base::CommandLine::Init(argc, argv);
  const base::CommandLine* cmd_line = base::CommandLine::ForCurrentProcess();
  LOG_ASSERT(cmd_line);
  if (cmd_line->HasSwitch("help")) {
    std::cout << media::test::usage_msg << "\n" << media::test::help_msg;
    return 0;
  }

  // Check if a video was specified on the command line.
  base::CommandLine::StringVector args = cmd_line->GetArgs();
  base::FilePath video_path =
      (args.size() >= 1) ? base::FilePath(args[0])
                         : base::FilePath(media::test::kDefaultTestVideoPath);
  base::FilePath video_metadata_path =
      (args.size() >= 2) ? base::FilePath(args[1]) : base::FilePath();
  std::string codec = "h264";
  size_t num_spatial_layers = 1u;
  size_t num_temporal_layers = 1u;
  media::Bitrate::Mode bitrate_mode = media::Bitrate::Mode::kConstant;
  bool reverse = false;
  absl::optional<uint32_t> encode_bitrate;
  std::vector<base::test::FeatureRef> disabled_features;

  // Parse command line arguments.
  base::FilePath::StringType output_folder = media::test::kDefaultOutputFolder;
  base::CommandLine::SwitchMap switches = cmd_line->GetSwitches();
  for (base::CommandLine::SwitchMap::const_iterator it = switches.begin();
       it != switches.end(); ++it) {
    if (it->first.find("gtest_") == 0 ||               // Handled by GoogleTest
        it->first == "v" || it->first == "vmodule") {  // Handled by Chrome
      continue;
    }

    if (it->first == "output_folder") {
      output_folder = it->second;
    } else if (it->first == "codec") {
      codec = it->second;
    } else if (it->first == "num_spatial_layers") {
      if (!base::StringToSizeT(it->second, &num_spatial_layers)) {
        std::cout << "invalid number of spatial layers: " << it->second << "\n";
        return EXIT_FAILURE;
      }
      if (num_spatial_layers > media::test::kMaxSpatialLayers) {
        std::cout << "unsupported number of spatial layers: " << it->second
                  << "\n";
        return EXIT_FAILURE;
      }
    } else if (it->first == "num_temporal_layers") {
      if (!base::StringToSizeT(it->second, &num_temporal_layers)) {
        std::cout << "invalid number of temporal layers: " << it->second
                  << "\n";
        return EXIT_FAILURE;
      }
      if (num_spatial_layers > media::test::kMaxTemporalLayers) {
        std::cout << "unsupported number of temporal layers: " << it->second
                  << "\n";
        return EXIT_FAILURE;
      }
    } else if (it->first == "bitrate_mode") {
      if (it->second == "vbr") {
        bitrate_mode = media::Bitrate::Mode::kVariable;
      } else if (it->second != "cbr") {
        std::cout << "unknown bitrate mode \"" << it->second
                  << "\", possible values are \"cbr|vbr\"\n";
        return EXIT_FAILURE;
      }
    } else if (it->first == "reverse") {
      reverse = true;
    } else if (it->first == "bitrate") {
      unsigned value;
      if (!base::StringToUint(it->second, &value)) {
        std::cout << "invalid bitrate " << it->second << "\n"
                  << media::test::usage_msg;
        return EXIT_FAILURE;
      }
      encode_bitrate = base::checked_cast<uint32_t>(value);
    } else if (it->first == "disable_vaapi_lock") {
      disabled_features.push_back(media::kGlobalVaapiLock);
    } else {
      std::cout << "unknown option: --" << it->first << "\n"
                << media::test::usage_msg;
      return EXIT_FAILURE;
    }
  }

  testing::InitGoogleTest(&argc, argv);

  // Set up our test environment.
  media::test::VideoEncoderTestEnvironment* test_environment =
      media::test::VideoEncoderTestEnvironment::Create(
          video_path, video_metadata_path, false, base::FilePath(output_folder),
          codec, num_temporal_layers, num_spatial_layers,
          false /* output_bitstream */, encode_bitrate, bitrate_mode, reverse,
          media::test::FrameOutputConfig(),
          /*enabled_features=*/{}, disabled_features);
  if (!test_environment)
    return EXIT_FAILURE;

  media::test::g_env = static_cast<media::test::VideoEncoderTestEnvironment*>(
      testing::AddGlobalTestEnvironment(test_environment));

  return RUN_ALL_TESTS();
}