summaryrefslogtreecommitdiff
path: root/chromium/media/gpu/vaapi/vp9_svc_layers_unittest.cc
blob: fb01ff963280f245ee1377070438aecb08109fec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
// Copyright 2020 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/gpu/vaapi/vp9_svc_layers.h"

#include <algorithm>
#include <array>
#include <map>
#include <vector>

#include "base/containers/contains.h"
#include "media/filters/vp9_parser.h"
#include "media/gpu/vp9_picture.h"
#include "media/gpu/vp9_reference_frame_vector.h"
#include "media/video/video_encode_accelerator.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/abseil-cpp/absl/types/optional.h"

namespace media {

namespace {

constexpr gfx::Size kDefaultEncodeSize(1280, 720);
constexpr int kSpatialLayerResolutionDenom[] = {4, 2, 1};

std::vector<VP9SVCLayers::SpatialLayer> GetDefaultSVCLayers(
    size_t num_spatial_layers,
    size_t num_temporal_layers) {
  std::vector<VP9SVCLayers::SpatialLayer> spatial_layers;
  for (uint8_t i = 0; i < num_spatial_layers; ++i) {
    VP9SVCLayers::SpatialLayer spatial_layer;
    const int denom = kSpatialLayerResolutionDenom[i];
    spatial_layer.width = kDefaultEncodeSize.width() / denom;
    spatial_layer.height = kDefaultEncodeSize.height() / denom;
    spatial_layer.num_of_temporal_layers = num_temporal_layers;
    spatial_layers.push_back(spatial_layer);
  }
  return spatial_layers;
}

std::vector<gfx::Size> GetDefaultSVCResolutions(size_t num_spatial_layers) {
  std::vector<gfx::Size> spatial_layer_resolutions;
  for (size_t i = 0; i < num_spatial_layers; ++i) {
    const int denom = kSpatialLayerResolutionDenom[i];
    spatial_layer_resolutions.emplace_back(
        gfx::Size(kDefaultEncodeSize.width() / denom,
                  kDefaultEncodeSize.height() / denom));
  }
  return spatial_layer_resolutions;
}
}  // namespace

class VP9SVCLayersTest
    : public ::testing::TestWithParam<::testing::tuple<size_t, size_t>> {
 public:
  VP9SVCLayersTest() = default;
  ~VP9SVCLayersTest() = default;

 protected:
  void VerifyRefFrames(
      const Vp9FrameHeader& frame_hdr,
      const Vp9Metadata& metadata,
      const std::array<bool, kVp9NumRefsPerFrame>& ref_frames_used,
      const Vp9ReferenceFrameVector& ref_frames,
      const size_t num_spatial_layers,
      const bool key_pic);
  void VerifySVCStructure(bool keyframe,
                          size_t num_temporal_layers,
                          size_t num_spatial_layers,
                          const Vp9Metadata& metadata);

 private:
  std::vector<uint8_t> temporal_indices_[VP9SVCLayers::kMaxSpatialLayers];
  uint8_t spatial_index_;
};

void VP9SVCLayersTest::VerifySVCStructure(bool key_pic,
                                          size_t num_temporal_layers,
                                          size_t num_spatial_layers,
                                          const Vp9Metadata& metadata) {
  const uint8_t temporal_index = metadata.temporal_idx;
  const uint8_t spatial_index = metadata.spatial_idx;
  // Spatial index monotonically increases modulo |num_spatial_layers|.
  if (!key_pic || spatial_index != 0u)
    EXPECT_EQ((spatial_index_ + 1) % num_spatial_layers, spatial_index);

  spatial_index_ = spatial_index;
  auto& temporal_indices = temporal_indices_[spatial_index];
  if (key_pic) {
    temporal_indices.clear();
    temporal_indices.push_back(temporal_index);
    return;
  }
  EXPECT_FALSE(temporal_indices.empty());
  if (num_temporal_layers > 1)
    EXPECT_NE(temporal_indices.back(), temporal_index);
  else
    EXPECT_EQ(temporal_indices.back(), temporal_index);
  temporal_indices.push_back(temporal_index);
  if (spatial_index != num_spatial_layers - 1)
    return;
  // Check if the temporal layer structures in all spatial layers are identical.
  // Spatial index monotonically increases module |num_spatial_layers|.
  for (size_t i = 0; i < num_spatial_layers - 1; ++i)
    EXPECT_EQ(temporal_indices_[i], temporal_indices_[i + 1]);
  constexpr size_t kTemporalLayerCycle = 4u;
  constexpr size_t kSVCLayerCycle = kTemporalLayerCycle;
  if (temporal_indices.size() % kSVCLayerCycle == 0) {
    std::vector<size_t> count(num_temporal_layers, 0u);
    for (const uint8_t index : temporal_indices) {
      ASSERT_LE(index, num_temporal_layers);
      count[index]++;
    }
    // The number of frames in a higher temporal layer is not less than one in a
    // lower temporal layer.
    EXPECT_TRUE(std::is_sorted(count.begin(), count.end()));
  }
}

void VP9SVCLayersTest::VerifyRefFrames(
    const Vp9FrameHeader& frame_hdr,
    const Vp9Metadata& metadata,
    const std::array<bool, kVp9NumRefsPerFrame>& ref_frames_used,
    const Vp9ReferenceFrameVector& ref_frames,
    const size_t num_spatial_layers,
    const bool key_pic) {
  const uint8_t temporal_index = metadata.temporal_idx;
  const uint8_t spatial_index = metadata.spatial_idx;
  if (frame_hdr.IsKeyframe()) {
    EXPECT_EQ(frame_hdr.refresh_frame_flags, 0xff);
    EXPECT_FALSE(base::Contains(ref_frames_used, true));
    EXPECT_EQ(temporal_index, 0u);
    EXPECT_EQ(spatial_index, 0u);
    EXPECT_EQ(metadata.referenced_by_upper_spatial_layers,
              num_spatial_layers > 1);
    EXPECT_FALSE(metadata.reference_lower_spatial_layers);
    EXPECT_TRUE(metadata.p_diffs.empty());
    EXPECT_EQ(metadata.spatial_layer_resolutions,
              GetDefaultSVCResolutions(num_spatial_layers));
    return;
  }

  // Six slots at most in the reference pool are used in spatial/temporal layer
  // encoding. Additionally, non-keyframe must reference some frames.
  // |ref_frames_used| must be {true, false, false} because here is,
  // 1. if the frame is in key picture, it references one lower spatial layer,
  // 2. otherwise the frame doesn't reference other spatial layers and thus
  // references only one frame in the same spatial layer based on the current
  // reference pattern.
  constexpr std::array<bool, kVp9NumRefsPerFrame> kExpectedRefFramesUsed = {
      true, false, false};
  EXPECT_EQ(frame_hdr.refresh_frame_flags & ~(0b111111u), 0u);
  EXPECT_EQ(ref_frames_used, kExpectedRefFramesUsed);
  EXPECT_EQ(metadata.inter_pic_predicted, !metadata.p_diffs.empty());
  EXPECT_EQ(metadata.inter_pic_predicted, !key_pic);
  if (key_pic) {
    EXPECT_TRUE(metadata.reference_lower_spatial_layers);
    EXPECT_EQ(metadata.referenced_by_upper_spatial_layers,
              spatial_index + 1 != num_spatial_layers);
  } else {
    EXPECT_FALSE(metadata.referenced_by_upper_spatial_layers);
    EXPECT_FALSE(metadata.reference_lower_spatial_layers);
  }

  // Check that the current frame doesn't reference upper layer frames.
  const uint8_t index = frame_hdr.ref_frame_idx[0];
  scoped_refptr<VP9Picture> ref_frame = ref_frames.GetFrame(index);
  ASSERT_TRUE(!!ref_frame);
  const auto& ref_metadata = ref_frame->metadata_for_encoding;
  ASSERT_TRUE(ref_metadata.has_value());
  const size_t ref_temporal_index = ref_metadata->temporal_idx;
  EXPECT_LE(ref_temporal_index, temporal_index);
  const uint8_t ref_spatial_index = ref_metadata->spatial_idx;
  EXPECT_LE(ref_spatial_index, spatial_index);
  // In key picture, upper spatial layers must refer the lower spatial layer.
  // Or referenced frames must be in the same spatial layer.
  if (key_pic)
    EXPECT_EQ(ref_spatial_index, spatial_index - 1);
  else
    EXPECT_EQ(ref_spatial_index, spatial_index);
}

// This test verifies the bitrate check in MaybeUpdateActiveLayer().
TEST_F(VP9SVCLayersTest, MaybeUpdateActiveLayer) {
  constexpr size_t kNumSpatialLayers = 3;
  constexpr size_t kNumTemporalLayers = 3;
  const std::vector<VP9SVCLayers::SpatialLayer> spatial_layers =
      GetDefaultSVCLayers(kNumSpatialLayers, kNumTemporalLayers);
  VP9SVCLayers svc_layers(spatial_layers);

  // Set Default bitrate allocation.
  int layer_rate = 1;
  VideoBitrateAllocation allocation;
  for (size_t sid = 0; sid < VideoBitrateAllocation::kMaxSpatialLayers; ++sid) {
    for (size_t tid = 0; tid < VideoBitrateAllocation::kMaxTemporalLayers;
         ++tid) {
      allocation.SetBitrate(sid, tid, layer_rate++);
    }
  }
  DCHECK_LT(kNumSpatialLayers, VideoBitrateAllocation::kMaxSpatialLayers);
  DCHECK_LT(kNumTemporalLayers, VideoBitrateAllocation::kMaxTemporalLayers);
  EXPECT_FALSE(svc_layers.MaybeUpdateActiveLayer(&allocation));

  // Set unsupported temporal layer bitrate to 0.
  for (size_t sid = 0; sid < VideoBitrateAllocation::kMaxSpatialLayers; ++sid) {
    for (size_t tid = kNumTemporalLayers;
         tid < VideoBitrateAllocation::kMaxTemporalLayers; ++tid) {
      allocation.SetBitrate(sid, tid, 0);
    }
  }
  EXPECT_FALSE(svc_layers.MaybeUpdateActiveLayer(&allocation));

  // Set unsupported spatial layer bitrate to 0.
  for (size_t sid = kNumSpatialLayers;
       sid < VideoBitrateAllocation::kMaxSpatialLayers; ++sid) {
    for (size_t tid = 0; tid < VideoBitrateAllocation::kMaxTemporalLayers;
         ++tid) {
      allocation.SetBitrate(sid, tid, 0);
    }
  }
  EXPECT_TRUE(svc_layers.MaybeUpdateActiveLayer(&allocation));

  // Set lower temporal layer bitrate to zero, e.g. {0, 2, 3}.
  allocation.SetBitrate(/*spatial_index=*/0, /*temporal_index=*/0, 0);
  EXPECT_FALSE(svc_layers.MaybeUpdateActiveLayer(&allocation));

  allocation.SetBitrate(/*spatial_index=*/0, /*temporal_index=*/0, 1);
  // Set upper temporal layer bitrate to 0, e.g. {1, 2, 0}.
  allocation.SetBitrate(/*spatial_index=*/0, /*temporal_index=*/2, 0);
  EXPECT_FALSE(svc_layers.MaybeUpdateActiveLayer(&allocation));

  allocation.SetBitrate(/*spatial_index=*/0, /*temporal_index=*/2, 3);
  // Deactivate SL0 and SL1 and verify the new bitrate allocation.
  constexpr int kNumDeactivatedLowerSpatialLayer = 2;
  VideoBitrateAllocation new_allocation = allocation;
  for (size_t sid = 0; sid < kNumDeactivatedLowerSpatialLayer; ++sid) {
    for (size_t tid = 0; tid < kNumTemporalLayers; ++tid)
      new_allocation.SetBitrate(sid, tid, 0);
  }
  EXPECT_TRUE(svc_layers.MaybeUpdateActiveLayer(&new_allocation));
  for (size_t sid = 0; sid < kNumSpatialLayers; ++sid) {
    for (size_t tid = 0; tid < kNumTemporalLayers; ++tid) {
      if (sid + kNumDeactivatedLowerSpatialLayer <
          VideoBitrateAllocation::kMaxSpatialLayers)
        EXPECT_EQ(new_allocation.GetBitrateBps(sid, tid),
                  allocation.GetBitrateBps(
                      sid + kNumDeactivatedLowerSpatialLayer, tid));
      else
        EXPECT_EQ(new_allocation.GetBitrateBps(sid, tid), 0);
    }
  }

  // Deactivate SL2 and verify the new bitrate allocation.
  new_allocation = allocation;
  constexpr int kNumActiveSpatialLayer = 2;
  for (size_t tid = 0; tid < kNumTemporalLayers; ++tid)
    new_allocation.SetBitrate(/*spatial_index=*/2, tid, 0);
  EXPECT_TRUE(svc_layers.MaybeUpdateActiveLayer(&new_allocation));
  for (size_t sid = 0; sid < kNumSpatialLayers; ++sid) {
    for (size_t tid = 0; tid < kNumTemporalLayers; ++tid) {
      if (sid < kNumActiveSpatialLayer)
        EXPECT_EQ(new_allocation.GetBitrateBps(sid, tid),
                  allocation.GetBitrateBps(sid, tid));
      else
        EXPECT_EQ(new_allocation.GetBitrateBps(sid, tid), 0);
    }
  }
}

TEST_P(VP9SVCLayersTest, ) {
  const size_t num_spatial_layers = ::testing::get<0>(GetParam());
  const size_t num_temporal_layers = ::testing::get<1>(GetParam());

  const std::vector<VP9SVCLayers::SpatialLayer> spatial_layers =
      GetDefaultSVCLayers(num_spatial_layers, num_temporal_layers);
  VP9SVCLayers svc_layers(spatial_layers);

  constexpr size_t kNumFramesToEncode = 32;
  Vp9ReferenceFrameVector ref_frames;
  constexpr size_t kKeyFrameInterval = 10;
  for (size_t frame_num = 0; frame_num < kNumFramesToEncode; ++frame_num) {
    // True iff the picture in the bottom spatial layer is key frame.
    bool key_pic = false;
    for (size_t sid = 0; sid < num_spatial_layers; ++sid) {
      scoped_refptr<VP9Picture> picture(new VP9Picture);
      picture->frame_hdr = std::make_unique<Vp9FrameHeader>();
      const bool keyframe = svc_layers.UpdateEncodeJob(
          /*is_key_frame_requested=*/false, kKeyFrameInterval);
      picture->frame_hdr->frame_type =
          keyframe ? Vp9FrameHeader::KEYFRAME : Vp9FrameHeader::INTERFRAME;
      if (sid == 0)
        key_pic = keyframe;
      std::array<bool, kVp9NumRefsPerFrame> ref_frames_used;
      svc_layers.FillUsedRefFramesAndMetadata(picture.get(), &ref_frames_used);
      ASSERT_TRUE(picture->metadata_for_encoding.has_value());
      VerifyRefFrames(*picture->frame_hdr, *picture->metadata_for_encoding,
                      ref_frames_used, ref_frames, num_spatial_layers, key_pic);
      VerifySVCStructure(key_pic, num_temporal_layers, num_spatial_layers,
                         *picture->metadata_for_encoding);
      ref_frames.Refresh(picture);
    }
  }
}

// std::make_tuple(num_spatial_layers, num_temporal_layers)
INSTANTIATE_TEST_SUITE_P(,
                         VP9SVCLayersTest,
                         ::testing::Values(std::make_tuple(1, 2),
                                           std::make_tuple(1, 3),
                                           std::make_tuple(2, 1),
                                           std::make_tuple(2, 2),
                                           std::make_tuple(2, 3),
                                           std::make_tuple(3, 1),
                                           std::make_tuple(3, 2),
                                           std::make_tuple(3, 3)));

}  // namespace media