summaryrefslogtreecommitdiff
path: root/chromium/media/filters/source_buffer_stream_unittest.cc
blob: 5e78090671e7e267d41176e7be72be0013e299ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/filters/source_buffer_stream.h"

#include <stddef.h>
#include <stdint.h>
#include <string>
#include <vector>

#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/test/scoped_feature_list.h"
#include "media/base/data_buffer.h"
#include "media/base/decoder_buffer.h"
#include "media/base/media_log.h"
#include "media/base/media_switches.h"
#include "media/base/media_util.h"
#include "media/base/mock_media_log.h"
#include "media/base/test_helpers.h"
#include "media/base/text_track_config.h"
#include "media/base/timestamp_constants.h"
#include "media/base/webvtt_util.h"
#include "media/filters/source_buffer_range.h"
#include "testing/gtest/include/gtest/gtest.h"

using ::testing::HasSubstr;
using ::testing::InSequence;
using ::testing::StrictMock;

namespace {

enum class TimeGranularity { kMicrosecond, kMillisecond };

}  // namespace

namespace media {

typedef StreamParser::BufferQueue BufferQueue;

static const int kDefaultFramesPerSecond = 30;
static const int kDefaultKeyframesPerSecond = 6;
static const uint8_t kDataA = 0x11;
static const uint8_t kDataB = 0x33;
static const int kDataSize = 1;

// Matchers for verifying common media log entry strings.
MATCHER_P(ContainsTrackBufferExhaustionSkipLog, skip_milliseconds, "") {
  return CONTAINS_STRING(arg,
                         "Media append that overlapped current playback "
                         "position may cause time gap in playing VIDEO stream "
                         "because the next keyframe is " +
                             base::NumberToString(skip_milliseconds) +
                             "ms beyond last overlapped frame. Media may "
                             "appear temporarily frozen.");
}

#define EXPECT_STATUS_FOR_STREAM_OP(status_suffix, operation) \
  { EXPECT_EQ(SourceBufferStreamStatus::status_suffix, stream_->operation); }

class SourceBufferStreamTest : public testing::Test {
 protected:
  SourceBufferStreamTest() {
    video_config_ = TestVideoConfig::Normal();
    SetStreamInfo(kDefaultFramesPerSecond, kDefaultKeyframesPerSecond);
    ResetStream<>(video_config_);
  }

  template <typename ConfigT>
  void ResetStream(const ConfigT& config) {
    stream_.reset(new SourceBufferStream(config, &media_log_));
  }

  void SetMemoryLimit(size_t buffers_of_data) {
    stream_->set_memory_limit(buffers_of_data * kDataSize);
  }

  void SetStreamInfo(int frames_per_second, int keyframes_per_second) {
    frames_per_second_ = frames_per_second;
    keyframes_per_second_ = keyframes_per_second;
    frame_duration_ = ConvertToFrameDuration(frames_per_second);
  }

  void SetTextStream() {
    video_config_ = TestVideoConfig::Invalid();
    TextTrackConfig config(kTextSubtitles, "", "", "");
    ResetStream<>(config);
    SetStreamInfo(2, 2);
  }

  void SetAudioStream() {
    video_config_ = TestVideoConfig::Invalid();
    audio_config_.Initialize(kCodecVorbis, kSampleFormatPlanarF32,
                             CHANNEL_LAYOUT_STEREO, 1000, EmptyExtraData(),
                             Unencrypted(), base::TimeDelta(), 0);
    ResetStream<>(audio_config_);

    // Equivalent to 2ms per frame.
    SetStreamInfo(500, 500);
  }

  void NewCodedFrameGroupAppend(int starting_position, int number_of_buffers) {
    AppendBuffers(starting_position, number_of_buffers, true,
                  base::TimeDelta(), true, &kDataA, kDataSize);
  }

  void NewCodedFrameGroupAppend(int starting_position,
                                int number_of_buffers,
                                const uint8_t* data) {
    AppendBuffers(starting_position, number_of_buffers, true,
                  base::TimeDelta(), true, data, kDataSize);
  }

  void NewCodedFrameGroupAppend_OffsetFirstBuffer(
      int starting_position,
      int number_of_buffers,
      base::TimeDelta first_buffer_offset) {
    AppendBuffers(starting_position, number_of_buffers, true,
                  first_buffer_offset, true, &kDataA, kDataSize);
  }

  void NewCodedFrameGroupAppend_ExpectFailure(int starting_position,
                                              int number_of_buffers) {
    AppendBuffers(starting_position, number_of_buffers, true,
                  base::TimeDelta(), false, &kDataA, kDataSize);
  }

  void AppendBuffers(int starting_position, int number_of_buffers) {
    AppendBuffers(starting_position, number_of_buffers, false,
                  base::TimeDelta(), true, &kDataA, kDataSize);
  }

  void AppendBuffers(int starting_position,
                     int number_of_buffers,
                     const uint8_t* data) {
    AppendBuffers(starting_position, number_of_buffers, false,
                  base::TimeDelta(), true, data, kDataSize);
  }

  void NewCodedFrameGroupAppend(const std::string& buffers_to_append) {
    AppendBuffers(buffers_to_append, true, kNoTimestamp, false, true);
  }

  void NewCodedFrameGroupAppend(base::TimeDelta start_timestamp,
                                const std::string& buffers_to_append) {
    AppendBuffers(buffers_to_append, true, start_timestamp, false, true);
  }

  void AppendBuffers(const std::string& buffers_to_append) {
    AppendBuffers(buffers_to_append, false, kNoTimestamp, false, true);
  }

  void NewCodedFrameGroupAppendOneByOne(const std::string& buffers_to_append) {
    AppendBuffers(buffers_to_append, true, kNoTimestamp, true, true);
  }

  void AppendBuffersOneByOne(const std::string& buffers_to_append) {
    AppendBuffers(buffers_to_append, false, kNoTimestamp, true, true);
  }

  void NewCodedFrameGroupAppend_ExpectFailure(
      const std::string& buffers_to_append) {
    AppendBuffers(buffers_to_append, true, kNoTimestamp, false, false);
  }

  void AppendBuffers_ExpectFailure(const std::string& buffers_to_append) {
    AppendBuffers(buffers_to_append, false, kNoTimestamp, false, false);
  }

  void Seek(int position) { stream_->Seek(position * frame_duration_); }

  void SeekToTimestampMs(int64_t timestamp_ms) {
    stream_->Seek(base::TimeDelta::FromMilliseconds(timestamp_ms));
  }

  bool GarbageCollect(base::TimeDelta media_time, int new_data_size) {
    return stream_->GarbageCollectIfNeeded(media_time, new_data_size);
  }

  bool GarbageCollectWithPlaybackAtBuffer(int position, int new_data_buffers) {
    return GarbageCollect(position * frame_duration_,
                          new_data_buffers * kDataSize);
  }

  void RemoveInMs(int start, int end, int duration) {
    Remove(base::TimeDelta::FromMilliseconds(start),
           base::TimeDelta::FromMilliseconds(end),
           base::TimeDelta::FromMilliseconds(duration));
  }

  void Remove(base::TimeDelta start, base::TimeDelta end,
              base::TimeDelta duration) {
    stream_->Remove(start, end, duration);
  }

  void SignalStartOfCodedFrameGroup(base::TimeDelta start_timestamp) {
    stream_->OnStartOfCodedFrameGroup(start_timestamp);
  }

  int GetRemovalRangeInMs(int start, int end, int bytes_to_free,
                          int* removal_end) {
    base::TimeDelta removal_end_timestamp =
        base::TimeDelta::FromMilliseconds(*removal_end);
    int bytes_removed =
        stream_->GetRemovalRange(base::TimeDelta::FromMilliseconds(start),
                                 base::TimeDelta::FromMilliseconds(end),
                                 bytes_to_free, &removal_end_timestamp);
    *removal_end = removal_end_timestamp.InMilliseconds();
    return bytes_removed;
  }

  void CheckExpectedRanges(const std::string& expected) {
    Ranges<base::TimeDelta> r = stream_->GetBufferedTime();

    std::stringstream ss;
    ss << "{ ";
    for (size_t i = 0; i < r.size(); ++i) {
      int64_t start = (r.start(i) / frame_duration_);
      int64_t end = (r.end(i) / frame_duration_) - 1;
      ss << "[" << start << "," << end << ") ";
    }
    ss << "}";
    EXPECT_EQ(expected, ss.str());
  }

  void CheckExpectedRangesByTimestamp(
      const std::string& expected,
      TimeGranularity granularity = TimeGranularity::kMillisecond) {
    Ranges<base::TimeDelta> r = stream_->GetBufferedTime();

    std::stringstream ss;
    ss << "{ ";
    for (size_t i = 0; i < r.size(); ++i) {
      int64_t start = r.start(i).InMicroseconds();
      int64_t end = r.end(i).InMicroseconds();
      if (granularity == TimeGranularity::kMillisecond) {
        start /= base::Time::kMicrosecondsPerMillisecond;
        end /= base::Time::kMicrosecondsPerMillisecond;
      }
      ss << "[" << start << "," << end << ") ";
    }
    ss << "}";
    EXPECT_EQ(expected, ss.str());
  }

  void CheckExpectedRangeEndTimes(const std::string& expected) {
    std::stringstream ss;
    ss << "{ ";
    for (const auto& r : stream_->ranges_) {
      base::TimeDelta highest_pts = r->GetEndTimestamp();
      base::TimeDelta end_time = r->GetBufferedEndTimestamp();
      ss << "<" << highest_pts.InMilliseconds() << ","
         << end_time.InMilliseconds() << "> ";
    }
    ss << "}";
    EXPECT_EQ(expected, ss.str());
  }

  void CheckIsNextInPTSSequenceWithFirstRange(int64_t pts_in_ms,
                                              bool expectation) {
    ASSERT_GE(stream_->ranges_.size(), 1u);
    const auto& range_ptr = *(stream_->ranges_.begin());
    EXPECT_EQ(expectation, range_ptr->IsNextInPresentationSequence(
                               base::TimeDelta::FromMilliseconds(pts_in_ms)));
  }

  void CheckExpectedBuffers(
      int starting_position, int ending_position) {
    CheckExpectedBuffers(starting_position, ending_position, false, NULL, 0);
  }

  void CheckExpectedBuffers(
      int starting_position, int ending_position, bool expect_keyframe) {
    CheckExpectedBuffers(starting_position, ending_position, expect_keyframe,
                         NULL, 0);
  }

  void CheckExpectedBuffers(int starting_position,
                            int ending_position,
                            const uint8_t* data) {
    CheckExpectedBuffers(starting_position, ending_position, false, data,
                         kDataSize);
  }

  void CheckExpectedBuffers(int starting_position,
                            int ending_position,
                            const uint8_t* data,
                            bool expect_keyframe) {
    CheckExpectedBuffers(starting_position, ending_position, expect_keyframe,
                         data, kDataSize);
  }

  void CheckExpectedBuffers(int starting_position,
                            int ending_position,
                            bool expect_keyframe,
                            const uint8_t* expected_data,
                            int expected_size) {
    int current_position = starting_position;
    for (; current_position <= ending_position; current_position++) {
      scoped_refptr<StreamParserBuffer> buffer;
      SourceBufferStreamStatus status = stream_->GetNextBuffer(&buffer);
      EXPECT_NE(status, SourceBufferStreamStatus::kConfigChange);
      if (status != SourceBufferStreamStatus::kSuccess)
        break;

      if (expect_keyframe && current_position == starting_position)
        EXPECT_TRUE(buffer->is_key_frame());

      if (expected_data) {
        const uint8_t* actual_data = buffer->data();
        const int actual_size = buffer->data_size();
        EXPECT_EQ(expected_size, actual_size);
        for (int i = 0; i < std::min(actual_size, expected_size); i++) {
          EXPECT_EQ(expected_data[i], actual_data[i]);
        }
      }

      EXPECT_EQ(buffer->GetDecodeTimestamp() / frame_duration_,
                current_position);
    }

    EXPECT_EQ(ending_position + 1, current_position);
  }

  void CheckExpectedBuffers(
      const std::string& expected,
      TimeGranularity granularity = TimeGranularity::kMillisecond) {
    std::vector<std::string> timestamps = base::SplitString(
        expected, " ", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
    std::stringstream ss;
    const SourceBufferStreamType type = stream_->GetType();
    for (size_t i = 0; i < timestamps.size(); i++) {
      scoped_refptr<StreamParserBuffer> buffer;
      SourceBufferStreamStatus status = stream_->GetNextBuffer(&buffer);

      if (i > 0)
        ss << " ";

      if (status == SourceBufferStreamStatus::kConfigChange) {
        switch (type) {
          case SourceBufferStreamType::kVideo:
            stream_->GetCurrentVideoDecoderConfig();
            break;
          case SourceBufferStreamType::kAudio:
            stream_->GetCurrentAudioDecoderConfig();
            break;
          case SourceBufferStreamType::kText:
            stream_->GetCurrentTextTrackConfig();
            break;
        }

        EXPECT_EQ("C", timestamps[i]);
        ss << "C";
        continue;
      }

      EXPECT_EQ(SourceBufferStreamStatus::kSuccess, status);
      if (status != SourceBufferStreamStatus::kSuccess)
        break;

      if (granularity == TimeGranularity::kMillisecond)
        ss << buffer->timestamp().InMilliseconds();
      else
        ss << buffer->timestamp().InMicroseconds();

      if (buffer->GetDecodeTimestamp() !=
          DecodeTimestamp::FromPresentationTime(buffer->timestamp())) {
        if (granularity == TimeGranularity::kMillisecond)
          ss << "|" << buffer->GetDecodeTimestamp().InMilliseconds();
        else
          ss << "|" << buffer->GetDecodeTimestamp().InMicroseconds();
      }

      // Check duration if expected timestamp contains it.
      if (timestamps[i].find('D') != std::string::npos) {
        ss << "D" << buffer->duration().InMilliseconds();
      }

      // Check duration estimation if expected timestamp contains it.
      if (timestamps[i].find('E') != std::string::npos &&
          buffer->is_duration_estimated()) {
        ss << "E";
      }

      // Handle preroll buffers.
      if (base::EndsWith(timestamps[i], "P", base::CompareCase::SENSITIVE)) {
        ASSERT_TRUE(buffer->is_key_frame());
        scoped_refptr<StreamParserBuffer> preroll_buffer;
        preroll_buffer.swap(buffer);

        // When a preroll buffer is encountered we should be able to request one
        // more buffer.  The first buffer should match the timestamp and config
        // of the second buffer, except that its discard_padding() should be its
        // duration.
        EXPECT_STATUS_FOR_STREAM_OP(kSuccess, GetNextBuffer(&buffer));
        ASSERT_EQ(buffer->GetConfigId(), preroll_buffer->GetConfigId());
        ASSERT_EQ(buffer->track_id(), preroll_buffer->track_id());
        ASSERT_EQ(buffer->timestamp(), preroll_buffer->timestamp());
        ASSERT_EQ(buffer->GetDecodeTimestamp(),
                  preroll_buffer->GetDecodeTimestamp());
        ASSERT_EQ(kInfiniteDuration, preroll_buffer->discard_padding().first);
        ASSERT_EQ(base::TimeDelta(), preroll_buffer->discard_padding().second);
        ASSERT_TRUE(buffer->is_key_frame());

        ss << "P";
      } else if (buffer->is_key_frame()) {
        ss << "K";
      }
    }
    EXPECT_EQ(expected, ss.str());
  }

  void CheckNoNextBuffer() {
    scoped_refptr<StreamParserBuffer> buffer;
    EXPECT_STATUS_FOR_STREAM_OP(kNeedBuffer, GetNextBuffer(&buffer));
  }

  void CheckEOSReached() {
    scoped_refptr<StreamParserBuffer> buffer;
    EXPECT_STATUS_FOR_STREAM_OP(kEndOfStream, GetNextBuffer(&buffer));
  }

  void CheckVideoConfig(const VideoDecoderConfig& config) {
    const VideoDecoderConfig& actual = stream_->GetCurrentVideoDecoderConfig();
    EXPECT_TRUE(actual.Matches(config))
        << "Expected: " << config.AsHumanReadableString()
        << "\nActual: " << actual.AsHumanReadableString();
  }

  void CheckAudioConfig(const AudioDecoderConfig& config) {
    const AudioDecoderConfig& actual = stream_->GetCurrentAudioDecoderConfig();
    EXPECT_TRUE(actual.Matches(config))
        << "Expected: " << config.AsHumanReadableString()
        << "\nActual: " << actual.AsHumanReadableString();
  }

  base::TimeDelta frame_duration() const { return frame_duration_; }

  StrictMock<MockMediaLog> media_log_;
  std::unique_ptr<SourceBufferStream> stream_;

  VideoDecoderConfig video_config_;
  AudioDecoderConfig audio_config_;

 private:
  DemuxerStream::Type GetStreamType() {
    switch (stream_->GetType()) {
      case SourceBufferStreamType::kAudio:
        return DemuxerStream::AUDIO;
      case SourceBufferStreamType::kVideo:
        return DemuxerStream::VIDEO;
      case SourceBufferStreamType::kText:
        return DemuxerStream::TEXT;
      default:
        NOTREACHED();
        return DemuxerStream::UNKNOWN;
    }
  }

  base::TimeDelta ConvertToFrameDuration(int frames_per_second) {
    return base::TimeDelta::FromMicroseconds(
        base::Time::kMicrosecondsPerSecond / frames_per_second);
  }

  void AppendBuffers(int starting_position,
                     int number_of_buffers,
                     bool begin_coded_frame_group,
                     base::TimeDelta first_buffer_offset,
                     bool expect_success,
                     const uint8_t* data,
                     int size) {
    if (begin_coded_frame_group) {
      stream_->OnStartOfCodedFrameGroup(starting_position * frame_duration_);
    }

    int keyframe_interval = frames_per_second_ / keyframes_per_second_;

    BufferQueue queue;
    for (int i = 0; i < number_of_buffers; i++) {
      int position = starting_position + i;
      bool is_keyframe = position % keyframe_interval == 0;
      // Track ID is meaningless to these tests.
      scoped_refptr<StreamParserBuffer> buffer = StreamParserBuffer::CopyFrom(
          data, size, is_keyframe, GetStreamType(), 0);
      base::TimeDelta timestamp = frame_duration_ * position;

      if (i == 0)
        timestamp += first_buffer_offset;
      buffer->SetDecodeTimestamp(
          DecodeTimestamp::FromPresentationTime(timestamp));

      // Simulate an IBB...BBP pattern in which all B-frames reference both
      // the I- and P-frames. For a GOP with playback order 12345, this would
      // result in a decode timestamp order of 15234.
      base::TimeDelta presentation_timestamp;
      if (is_keyframe) {
        presentation_timestamp = timestamp;
      } else if ((position - 1) % keyframe_interval == 0) {
        // This is the P-frame (first frame following the I-frame)
        presentation_timestamp =
            (timestamp + frame_duration_ * (keyframe_interval - 2));
      } else {
        presentation_timestamp = timestamp - frame_duration_;
      }
      buffer->set_timestamp(presentation_timestamp);
      buffer->set_duration(frame_duration_);

      queue.push_back(buffer);
    }
    if (!queue.empty())
      EXPECT_EQ(expect_success, stream_->Append(queue));
  }

  void UpdateLastBufferDuration(DecodeTimestamp current_dts,
                                BufferQueue* buffers) {
    if (buffers->empty() || buffers->back()->duration() > base::TimeDelta())
      return;

    DecodeTimestamp last_dts = buffers->back()->GetDecodeTimestamp();
    DCHECK(current_dts >= last_dts);
    buffers->back()->set_duration(current_dts - last_dts);
  }

  // StringToBufferQueue() allows for the generation of StreamParserBuffers from
  // coded strings of timestamps separated by spaces.
  //
  // Supported syntax (options must be in this order):
  // pp[u][|dd[u]][Dzz][E][P][K]
  //
  // pp:
  // Generates a StreamParserBuffer with decode and presentation timestamp xx.
  // E.g., "0 1 2 3".
  // pp is interpreted as milliseconds, unless suffixed with "u", in which case
  // pp is interpreted as microseconds.
  //
  // pp|dd:
  // Generates a StreamParserBuffer with presentation timestamp pp and decode
  // timestamp dd. E.g., "0|0 3|1 1|2 2|3". dd is interpreted as milliseconds,
  // unless suffixed with "u", in which case dd is interpreted as microseconds.
  //
  // Dzz[u]
  // Explicitly describe the duration of the buffer. zz specifies the duration
  // in milliseconds (or in microseconds if suffixed with "u"). If the duration
  // isn't specified with this syntax, the duration is derived using the
  // timestamp delta between this buffer and the next buffer. If not specified,
  // the final buffer will simply copy the duration of the previous buffer. If
  // the queue only contains 1 buffer then the duration must be explicitly
  // specified with this format.
  // E.g. "0D10 10D20"
  //
  // E:
  // Indicates that the buffer should be marked as containing an *estimated*
  // duration. E.g., "0D20E 20 25E 30"
  //
  // P:
  // Indicates the buffer with will also have a preroll buffer
  // associated with it. The preroll buffer will just be dummy data.
  // E.g. "0P 5 10"
  //
  // K:
  // Indicates the buffer is a keyframe. E.g., "0K 1|2K 2|4D2K 6 8".
  BufferQueue StringToBufferQueue(const std::string& buffers_to_append) {
    std::vector<std::string> timestamps = base::SplitString(
        buffers_to_append, " ", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);

    CHECK_GT(timestamps.size(), 0u);

    BufferQueue buffers;
    for (size_t i = 0; i < timestamps.size(); i++) {
      bool is_keyframe = false;
      bool has_preroll = false;
      bool is_duration_estimated = false;

      if (base::EndsWith(timestamps[i], "K", base::CompareCase::SENSITIVE)) {
        is_keyframe = true;
        // Remove the "K" off of the token.
        timestamps[i] = timestamps[i].substr(0, timestamps[i].length() - 1);
      }
      // Handle preroll buffers.
      if (base::EndsWith(timestamps[i], "P", base::CompareCase::SENSITIVE)) {
        is_keyframe = true;
        has_preroll = true;
        // Remove the "P" off of the token.
        timestamps[i] = timestamps[i].substr(0, timestamps[i].length() - 1);
      }

      if (base::EndsWith(timestamps[i], "E", base::CompareCase::SENSITIVE)) {
        is_duration_estimated = true;
        // Remove the "E" off of the token.
        timestamps[i] = timestamps[i].substr(0, timestamps[i].length() - 1);
      }

      int duration_in_us = -1;
      size_t duration_pos = timestamps[i].find('D');
      if (duration_pos != std::string::npos) {
        bool is_duration_us = false;  // Default to millisecond interpretation.
        if (base::EndsWith(timestamps[i], "u", base::CompareCase::SENSITIVE)) {
          is_duration_us = true;
          timestamps[i] = timestamps[i].substr(0, timestamps[i].length() - 1);
        }
        CHECK(base::StringToInt(timestamps[i].substr(duration_pos + 1),
                                &duration_in_us));
        if (!is_duration_us)
          duration_in_us *= base::Time::kMicrosecondsPerMillisecond;
        timestamps[i] = timestamps[i].substr(0, duration_pos);
      }

      std::vector<std::string> buffer_timestamp_strings = base::SplitString(
          timestamps[i], "|", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);

      if (buffer_timestamp_strings.size() == 1)
        buffer_timestamp_strings.push_back(buffer_timestamp_strings[0]);

      CHECK_EQ(2u, buffer_timestamp_strings.size());

      std::vector<base::TimeDelta> buffer_timestamps;

      // Parse PTS, then DTS into TimeDeltas.
      for (size_t j = 0; j < 2; ++j) {
        int us = 0;
        bool is_us = false;  // Default to millisecond interpretation.

        if (base::EndsWith(buffer_timestamp_strings[j], "u",
                           base::CompareCase::SENSITIVE)) {
          is_us = true;
          buffer_timestamp_strings[j] = buffer_timestamp_strings[j].substr(
              0, buffer_timestamp_strings[j].length() - 1);
        }
        CHECK(base::StringToInt(buffer_timestamp_strings[j], &us));
        if (!is_us)
          us *= base::Time::kMicrosecondsPerMillisecond;

        buffer_timestamps.push_back(base::TimeDelta::FromMicroseconds(us));
      }

      // Create buffer. Track ID is meaningless to these tests
      scoped_refptr<StreamParserBuffer> buffer = StreamParserBuffer::CopyFrom(
          &kDataA, kDataSize, is_keyframe, GetStreamType(), 0);
      buffer->set_timestamp(buffer_timestamps[0]);
      if (is_duration_estimated)
        buffer->set_is_duration_estimated(true);

      if (buffer_timestamps[1] != buffer_timestamps[0]) {
        buffer->SetDecodeTimestamp(
            DecodeTimestamp::FromPresentationTime(buffer_timestamps[1]));
      }

      if (duration_in_us >= 0)
        buffer->set_duration(base::TimeDelta::FromMicroseconds(duration_in_us));

      // Simulate preroll buffers by just generating another buffer and sticking
      // it as the preroll.
      if (has_preroll) {
        scoped_refptr<StreamParserBuffer> preroll_buffer =
            StreamParserBuffer::CopyFrom(&kDataA, kDataSize, is_keyframe,
                                         GetStreamType(), 0);
        preroll_buffer->set_duration(frame_duration_);
        buffer->SetPrerollBuffer(preroll_buffer);
      }

      UpdateLastBufferDuration(buffer->GetDecodeTimestamp(), &buffers);
      buffers.push_back(buffer);
    }

    // If the last buffer doesn't have a duration, assume it is the
    // same as the second to last buffer.
    if (buffers.size() >= 2 && buffers.back()->duration() == kNoTimestamp) {
      buffers.back()->set_duration(
          buffers[buffers.size() - 2]->duration());
    }

    return buffers;
  }

  void AppendBuffers(const std::string& buffers_to_append,
                     bool start_new_coded_frame_group,
                     base::TimeDelta coded_frame_group_start_timestamp,
                     bool one_by_one,
                     bool expect_success) {
    BufferQueue buffers = StringToBufferQueue(buffers_to_append);

    if (start_new_coded_frame_group) {
      base::TimeDelta start_timestamp = coded_frame_group_start_timestamp;

      base::TimeDelta buffers_start_timestamp = buffers[0]->timestamp();

      if (start_timestamp == kNoTimestamp)
        start_timestamp = buffers_start_timestamp;
      else
        ASSERT_TRUE(start_timestamp <= buffers_start_timestamp);

      stream_->OnStartOfCodedFrameGroup(start_timestamp);
    }

    if (!one_by_one) {
      EXPECT_EQ(expect_success, stream_->Append(buffers));
      return;
    }

    // Append each buffer one by one.
    for (size_t i = 0; i < buffers.size(); i++) {
      BufferQueue wrapper;
      wrapper.push_back(buffers[i]);
      EXPECT_TRUE(stream_->Append(wrapper));
    }
  }

  int frames_per_second_;
  int keyframes_per_second_;
  base::TimeDelta frame_duration_;
  DISALLOW_COPY_AND_ASSIGN(SourceBufferStreamTest);
};

TEST_F(SourceBufferStreamTest, Append_SingleRange) {
  // Append 15 buffers at positions 0 through 14.
  NewCodedFrameGroupAppend(0, 15);

  // Check expected range.
  CheckExpectedRanges("{ [0,14) }");
  // Check buffers in range.
  Seek(0);
  CheckExpectedBuffers(0, 14);
}

TEST_F(SourceBufferStreamTest, Append_SingleRange_OneBufferAtATime) {
  // Append 15 buffers starting at position 0, one buffer at a time.
  NewCodedFrameGroupAppend(0, 1);
  for (int i = 1; i < 15; i++)
    AppendBuffers(i, 1);

  // Check expected range.
  CheckExpectedRanges("{ [0,14) }");
  // Check buffers in range.
  Seek(0);
  CheckExpectedBuffers(0, 14);
}

TEST_F(SourceBufferStreamTest, Append_DisjointRanges) {
  // Append 5 buffers at positions 0 through 4.
  NewCodedFrameGroupAppend(0, 5);

  // Append 10 buffers at positions 15 through 24.
  NewCodedFrameGroupAppend(15, 10);

  // Check expected ranges.
  CheckExpectedRanges("{ [0,4) [15,24) }");
  // Check buffers in ranges.
  Seek(0);
  CheckExpectedBuffers(0, 4);
  Seek(15);
  CheckExpectedBuffers(15, 24);
}

TEST_F(SourceBufferStreamTest, Append_AdjacentRanges) {
  // Append 10 buffers at positions 0 through 9.
  NewCodedFrameGroupAppend(0, 10);

  // Append 11 buffers at positions 15 through 25.
  NewCodedFrameGroupAppend(15, 11);

  // Append 5 buffers at positions 10 through 14 to bridge the gap.
  NewCodedFrameGroupAppend(10, 5);

  // Check expected range.
  CheckExpectedRanges("{ [0,25) }");
  // Check buffers in range.
  Seek(0);
  CheckExpectedBuffers(0, 25);
}

TEST_F(SourceBufferStreamTest, Complete_Overlap) {
  // Append 5 buffers at positions 5 through 9.
  NewCodedFrameGroupAppend(5, 5);

  // Append 15 buffers at positions 0 through 14.
  NewCodedFrameGroupAppend(0, 15);

  // Check expected range.
  CheckExpectedRanges("{ [0,14) }");
  // Check buffers in range.
  Seek(0);
  CheckExpectedBuffers(0, 14);
}

TEST_F(SourceBufferStreamTest,
       Complete_Overlap_AfterGroupTimestampAndBeforeFirstBufferTimestamp) {
  // Append a coded frame group with a start timestamp of 0, but the first
  // buffer starts at 30ms. This can happen in muxed content where the
  // audio starts before the first frame.
  NewCodedFrameGroupAppend(base::TimeDelta::FromMilliseconds(0),
                           "30K 60K 90K 120K");

  CheckExpectedRangesByTimestamp("{ [0,150) }");

  // Completely overlap the old buffers, with a coded frame group that starts
  // after the old coded frame group start timestamp, but before the timestamp
  // of the first buffer in the coded frame group.
  NewCodedFrameGroupAppend("20K 50K 80K 110D10K");

  // Verify that the buffered ranges are updated properly and we don't crash.
  CheckExpectedRangesByTimestamp("{ [0,150) }");

  SeekToTimestampMs(0);
  CheckExpectedBuffers("20K 50K 80K 110K 120K");
}

TEST_F(SourceBufferStreamTest, Complete_Overlap_EdgeCase) {
  // Make each frame a keyframe so that it's okay to overlap frames at any point
  // (instead of needing to respect keyframe boundaries).
  SetStreamInfo(30, 30);

  // Append 6 buffers at positions 6 through 11.
  NewCodedFrameGroupAppend(6, 6);

  // Append 8 buffers at positions 5 through 12.
  NewCodedFrameGroupAppend(5, 8);

  // Check expected range.
  CheckExpectedRanges("{ [5,12) }");
  // Check buffers in range.
  Seek(5);
  CheckExpectedBuffers(5, 12);
}

TEST_F(SourceBufferStreamTest, Start_Overlap) {
  // Append 10 buffers at positions 5 through 14.
  NewCodedFrameGroupAppend(5, 5);

  // Append 6 buffers at positions 10 through 15.
  NewCodedFrameGroupAppend(10, 6);

  // Check expected range.
  CheckExpectedRanges("{ [5,15) }");
  // Check buffers in range.
  Seek(5);
  CheckExpectedBuffers(5, 15);
}

TEST_F(SourceBufferStreamTest, End_Overlap) {
  // Append 10 buffers at positions 10 through 19.
  NewCodedFrameGroupAppend(10, 10);

  // Append 10 buffers at positions 5 through 14.
  NewCodedFrameGroupAppend(5, 10);

  // Check expected range.
  CheckExpectedRanges("{ [5,19) }");
  // Check buffers in range.
  Seek(5);
  CheckExpectedBuffers(5, 19);
}

// Using position based test API:
// DTS  :  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
// PTS  :  0  4  1  2  3  5  9  6  7  8 10 14 11 12 13 15 19 16 17 18 20
// old  :                                A  a  a  a  a  A  a  a  a  a
// new  :                 B  b  b  b  b  B  b  b
// after:                 B  b  b  b  b  B  b  b        A  a  a  a  a
TEST_F(SourceBufferStreamTest, End_Overlap_Several) {
  // Append 10 buffers at positions 10 through 19 (DTS and PTS).
  NewCodedFrameGroupAppend(10, 10, &kDataA);

  // Append 8 buffers at positions 5 through 12 (DTS); 5 through 14 (PTS) with
  // partial second GOP.
  NewCodedFrameGroupAppend(5, 8, &kDataB);

  // Check expected ranges: stream should not have kept buffers at DTS 13,14;
  // PTS 12,13 because the keyframe on which they depended (10, PTS=DTS) was
  // overwritten. Note that partial second GOP of B includes PTS [10,14), DTS
  // [10,12). These are continuous with the overlapped original range's next GOP
  // at (15, PTS=DTS).
  // Unlike the rest of the position based test API used in this case, these
  // range expectation strings are the actual timestamps (divided by
  // frame_duration_).
  CheckExpectedRanges("{ [5,19) }");

  // Check buffers in range.
  Seek(5);
  CheckExpectedBuffers(5, 12, &kDataB);
  // No seek is necessary (1 continuous range).
  CheckExpectedBuffers(15, 19, &kDataA);
  CheckNoNextBuffer();
}

// Test an end overlap edge case where a single buffer overlaps the
// beginning of a range.
// old  : 0K   30   60   90   120K  150
// new  : 0K
// after: 0K                  120K  150
// track:
TEST_F(SourceBufferStreamTest, End_Overlap_SingleBuffer) {
  // Seek to start of stream.
  SeekToTimestampMs(0);

  NewCodedFrameGroupAppend("0K 30 60 90 120K 150");
  CheckExpectedRangesByTimestamp("{ [0,180) }");

  NewCodedFrameGroupAppend("0D30K");
  CheckExpectedRangesByTimestamp("{ [0,180) }");

  CheckExpectedBuffers("0K 120K 150");
  CheckNoNextBuffer();
}

// Using position based test API:
// DTS  :  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// PTS  :  0 4 1 2 3 5 9 6 7 8 0 4 1 2 3 5 9 6 7 8 0 4 1 2 3 5 9 6 7 8 0
// old  :            A a                 A a                 A a
// new  :  B b b b b B b b b b B b b b b B b b b b B b b b b B b b b b
// after == new
TEST_F(SourceBufferStreamTest, Complete_Overlap_Several) {
  // Append 2 buffers at positions 5 through 6 (DTS); 5 through 9 (PTS) partial
  // GOP.
  NewCodedFrameGroupAppend(5, 2, &kDataA);

  // Append 2 buffers at positions 15 through 16 (DTS); 15 through 19 (PTS)
  // partial GOP.
  NewCodedFrameGroupAppend(15, 2, &kDataA);

  // Append 2 buffers at positions 25 through 26 (DTS); 25 through 29 (PTS)
  // partial GOP.
  NewCodedFrameGroupAppend(25, 2, &kDataA);

  // Check expected ranges.  Unlike the rest of the position based test API used
  // in this case, these range expectation strings are the actual timestamps
  // (divided by frame_duration_).
  CheckExpectedRanges("{ [5,9) [15,19) [25,29) }");

  // Append buffers at positions 0 through 29 (DTS and PTS).
  NewCodedFrameGroupAppend(0, 30, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,29) }");
  // Check buffers in range.
  Seek(0);
  CheckExpectedBuffers(0, 29, &kDataB);
}

// Using position based test API:
// DTS:0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
// PTS:0 4 1 2 3 5 9 6 7 8 0 4 1 2 3 5 9 6 7 8 0 4 1 2 3 5 9 6 7 8 0 4 1 2 3 5 9
// old:          A a                 A a                 A a                 A a
// new:B b b b b B b b b b B b b b b B b b b b B b b b b B b b b b B b b b b
TEST_F(SourceBufferStreamTest, Complete_Overlap_Several_Then_Merge) {
  // Append 2 buffers at positions 5 through 6 (DTS); 5 through 9 (PTS) partial
  // GOP.
  NewCodedFrameGroupAppend(5, 2, &kDataA);

  // Append 2 buffers at positions 10 through 11 (DTS); 15 through 19 (PTS)
  // partial GOP.
  NewCodedFrameGroupAppend(15, 2, &kDataA);

  // Append 2 buffers at positions 25 through 26 (DTS); 25 through 29 (PTS)
  // partial GOP.
  NewCodedFrameGroupAppend(25, 2, &kDataA);

  // Append 2 buffers at positions 35 through 36 (DTS); 35 through 39 (PTS)
  // partial GOP.
  NewCodedFrameGroupAppend(35, 2, &kDataA);

  // Append buffers at positions 0 through 34 (DTS and PTS).
  NewCodedFrameGroupAppend(0, 35, &kDataB);

  // Check expected ranges.  Unlike the rest of the position based test API used
  // in this case, these range expectation strings are the actual timestamps
  // (divided by frame_duration_).
  CheckExpectedRanges("{ [0,39) }");

  // Check buffers in range.
  Seek(0);
  CheckExpectedBuffers(0, 34, &kDataB);
  CheckExpectedBuffers(35, 36, &kDataA);
}

TEST_F(SourceBufferStreamTest, Complete_Overlap_Selected) {
  // Append 10 buffers at positions 5 through 14.
  NewCodedFrameGroupAppend(5, 10, &kDataA);

  // Seek to buffer at position 5.
  Seek(5);

  // Replace old data with new data.
  NewCodedFrameGroupAppend(5, 10, &kDataB);

  // Check ranges are correct.
  CheckExpectedRanges("{ [5,14) }");

  // Check that data has been replaced with new data.
  CheckExpectedBuffers(5, 14, &kDataB);
}

// This test is testing that a client can append data to SourceBufferStream that
// overlaps the range from which the client is currently grabbing buffers. We
// would expect that the SourceBufferStream would return old data until it hits
// the keyframe of the new data, after which it will return the new data.
TEST_F(SourceBufferStreamTest, Complete_Overlap_Selected_TrackBuffer) {
  // Append 10 buffers at positions 5 through 14.
  NewCodedFrameGroupAppend(5, 10, &kDataA);

  // Seek to buffer at position 5 and get next buffer.
  Seek(5);
  CheckExpectedBuffers(5, 5, &kDataA);

  // Do a complete overlap by appending 20 buffers at positions 0 through 19.
  NewCodedFrameGroupAppend(0, 20, &kDataB);

  // Check range is correct.
  CheckExpectedRanges("{ [0,19) }");

  // Expect old data up until next keyframe in new data.
  CheckExpectedBuffers(6, 9, &kDataA);
  CheckExpectedBuffers(10, 10, &kDataB, true);

  // Expect rest of data to be new.
  CheckExpectedBuffers(11, 19, &kDataB);

  // Seek back to beginning; all data should be new.
  Seek(0);
  CheckExpectedBuffers(0, 19, &kDataB);

  // Check range continues to be correct.
  CheckExpectedRanges("{ [0,19) }");
}

TEST_F(SourceBufferStreamTest, Complete_Overlap_Selected_EdgeCase) {
  // Append 10 buffers at positions 5 through 14.
  NewCodedFrameGroupAppend(5, 10, &kDataA);

  // Seek to buffer at position 5 and get next buffer.
  Seek(5);
  CheckExpectedBuffers(5, 5, &kDataA);

  // Replace existing data with new data.
  NewCodedFrameGroupAppend(5, 10, &kDataB);

  // Check ranges are correct.
  CheckExpectedRanges("{ [5,14) }");

  // Expect old data up until next keyframe in new data.
  CheckExpectedBuffers(6, 9, &kDataA);
  CheckExpectedBuffers(10, 10, &kDataB, true);

  // Expect rest of data to be new.
  CheckExpectedBuffers(11, 14, &kDataB);

  // Seek back to beginning; all data should be new.
  Seek(5);
  CheckExpectedBuffers(5, 14, &kDataB);

  // Check range continues to be correct.
  CheckExpectedRanges("{ [5,14) }");
}

TEST_F(SourceBufferStreamTest, Complete_Overlap_Selected_Multiple) {
  static const uint8_t kDataC = 0x55;
  static const uint8_t kDataD = 0x77;

  // Append 5 buffers at positions 5 through 9.
  NewCodedFrameGroupAppend(5, 5, &kDataA);

  // Seek to buffer at position 5 and get next buffer.
  Seek(5);
  CheckExpectedBuffers(5, 5, &kDataA);

  // Replace existing data with new data.
  NewCodedFrameGroupAppend(5, 5, &kDataB);

  // Then replace it again with different data.
  NewCodedFrameGroupAppend(5, 5, &kDataC);

  // Now append 5 new buffers at positions 10 through 14.
  NewCodedFrameGroupAppend(10, 5, &kDataC);

  // Now replace all the data entirely.
  NewCodedFrameGroupAppend(5, 10, &kDataD);

  // Expect buffers 6 through 9 to be DataA, and the remaining
  // buffers to be kDataD.
  CheckExpectedBuffers(6, 9, &kDataA);
  CheckExpectedBuffers(10, 14, &kDataD);

  // At this point we cannot fulfill request.
  CheckNoNextBuffer();

  // Seek back to beginning; all data should be new.
  Seek(5);
  CheckExpectedBuffers(5, 14, &kDataD);
}

TEST_F(SourceBufferStreamTest, Start_Overlap_Selected) {
  // Append 10 buffers at positions 0 through 9.
  NewCodedFrameGroupAppend(0, 10, &kDataA);

  // Seek to position 5, then add buffers to overlap data at that position.
  Seek(5);
  NewCodedFrameGroupAppend(5, 10, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,14) }");

  // Because we seeked to a keyframe, the next buffers should all be new data.
  CheckExpectedBuffers(5, 14, &kDataB);

  // Make sure all data is correct.
  Seek(0);
  CheckExpectedBuffers(0, 4, &kDataA);
  CheckExpectedBuffers(5, 14, &kDataB);
}

TEST_F(SourceBufferStreamTest, Start_Overlap_Selected_TrackBuffer) {
  // Append 15 buffers at positions 0 through 14.
  NewCodedFrameGroupAppend(0, 15, &kDataA);

  // Seek to 10 and get buffer.
  Seek(10);
  CheckExpectedBuffers(10, 10, &kDataA);

  // Now append 10 buffers of new data at positions 10 through 19.
  NewCodedFrameGroupAppend(10, 10, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,19) }");

  // The next 4 buffers should be a from the old buffer, followed by a keyframe
  // from the new data.
  CheckExpectedBuffers(11, 14, &kDataA);
  CheckExpectedBuffers(15, 15, &kDataB, true);

  // The rest of the buffers should be new data.
  CheckExpectedBuffers(16, 19, &kDataB);

  // Now seek to the beginning; positions 0 through 9 should be the original
  // data, positions 10 through 19 should be the new data.
  Seek(0);
  CheckExpectedBuffers(0, 9, &kDataA);
  CheckExpectedBuffers(10, 19, &kDataB);

  // Make sure range is still correct.
  CheckExpectedRanges("{ [0,19) }");
}

TEST_F(SourceBufferStreamTest, Start_Overlap_Selected_EdgeCase) {
  // Append 10 buffers at positions 5 through 14.
  NewCodedFrameGroupAppend(5, 10, &kDataA);

  Seek(10);
  CheckExpectedBuffers(10, 10, &kDataA);

  // Now replace the last 5 buffers with new data.
  NewCodedFrameGroupAppend(10, 5, &kDataB);

  // The next 4 buffers should be the origial data, held in the track buffer.
  CheckExpectedBuffers(11, 14, &kDataA);

  // The next buffer is at position 15, so we should fail to fulfill the
  // request.
  CheckNoNextBuffer();

  // Now append data at 15 through 19 and check to make sure it's correct.
  NewCodedFrameGroupAppend(15, 5, &kDataB);
  CheckExpectedBuffers(15, 19, &kDataB);

  // Seek to beginning of buffered range and check buffers.
  Seek(5);
  CheckExpectedBuffers(5, 9, &kDataA);
  CheckExpectedBuffers(10, 19, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [5,19) }");
}

// This test covers the case where new buffers end-overlap an existing, selected
// range, and the next buffer is a keyframe that's being overlapped by new
// buffers.
// index:  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// old  :           *A*a a a a A a a a a
// new  :  B b b b b B b b b b
// after:  B b b b b*B*b b b b A a a a a
TEST_F(SourceBufferStreamTest, End_Overlap_Selected) {
  // Append 10 buffers at positions 5 through 14.
  NewCodedFrameGroupAppend(5, 10, &kDataA);

  // Seek to position 5.
  Seek(5);

  // Now append 10 buffers at positions 0 through 9.
  NewCodedFrameGroupAppend(0, 10, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,14) }");

  // Because we seeked to a keyframe, the next buffers should be new.
  CheckExpectedBuffers(5, 9, &kDataB);

  // Make sure all data is correct.
  Seek(0);
  CheckExpectedBuffers(0, 9, &kDataB);
  CheckExpectedBuffers(10, 14, &kDataA);
}

// This test covers the case where new buffers end-overlap an existing, selected
// range, and the next buffer in the range is after the newly appended buffers.
//
// index:  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// old  :           |A a a a a A a a*a*a|
// new  :  B b b b b B b b b b
// after: |B b b b b B b b b b A a a*a*a|
TEST_F(SourceBufferStreamTest, End_Overlap_Selected_AfterEndOfNew_1) {
  // Append 10 buffers at positions 5 through 14.
  NewCodedFrameGroupAppend(5, 10, &kDataA);

  // Seek to position 10, then move to position 13.
  Seek(10);
  CheckExpectedBuffers(10, 12, &kDataA);

  // Now append 10 buffers at positions 0 through 9.
  NewCodedFrameGroupAppend(0, 10, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,14) }");

  // Make sure rest of data is as expected.
  CheckExpectedBuffers(13, 14, &kDataA);

  // Make sure all data is correct.
  Seek(0);
  CheckExpectedBuffers(0, 9, &kDataB);
  CheckExpectedBuffers(10, 14, &kDataA);
}

// Using position based test API:
// This test covers the case where new buffers end-overlap an existing, selected
// range, and the next buffer in the range is after the newly appended buffers.
//
// DTS  :  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// PTS  :  0 4 1 2 3 5 9 6 7 8 0 4 1 2 3 5 9 6 7 8 0
// old  :            A a a a a A a a*a*a
// new  :  B b b b b B b b
// after:  B b b b b B b b     A a a*a*a
TEST_F(SourceBufferStreamTest, End_Overlap_Selected_AfterEndOfNew_2) {
  // Append 10 buffers at positions 5 through 14 (DTS and PTS, 2 full GOPs)
  NewCodedFrameGroupAppend(5, 10, &kDataA);

  // Seek to position 10, then move to position 13.
  Seek(10);
  CheckExpectedBuffers(10, 12, &kDataA);

  // Now append 8 buffers at positions 0 through 7 (DTS); 0 through 9 (PTS) with
  // partial second GOP.
  NewCodedFrameGroupAppend(0, 8, &kDataB);

  // Check expected ranges: stream should not have kept buffers at DTS 8,9;
  // PTS 7,8 because the keyframe on which they depended (5, PTS=DTS) was
  // overwritten. Note that partial second GOP of B includes PTS [5,9), DTS
  // [5,7). These are continuous with the overlapped original range's next GOP
  // at (10, PTS=DTS).
  // Unlike the rest of the position based test API used in this case, these
  // range expectation strings are the actual timestamps (divided by
  // frame_duration_).
  CheckExpectedRanges("{ [0,14) }");

  // Make sure rest of data is as expected.
  CheckExpectedBuffers(13, 14, &kDataA);

  // Make sure all data is correct.
  Seek(0);
  CheckExpectedBuffers(0, 7, &kDataB);
  // No seek should be necessary (1 continuous range).
  CheckExpectedBuffers(10, 14, &kDataA);
  CheckNoNextBuffer();
}

// Using position based test API:
// This test covers the case where new buffers end-overlap an existing, selected
// range, and the next buffer in the range is after the newly appended buffers.
//
// DTS  :  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// PTS  :  0 4 1 2 3 5 9 6 7 8 0 4 1 2 3 5 9 6 7 8 0
// old  :            A a a*a*a A a a a a
// new  :  B b b b b B b b
// after:  B b b b b B b b     A a a a a
// track:                  a a
TEST_F(SourceBufferStreamTest, End_Overlap_Selected_AfterEndOfNew_3) {
  // Append 10 buffers at positions 5 through 14 (DTS and PTS, 2 full GOPs)
  NewCodedFrameGroupAppend(5, 10, &kDataA);

  // Seek to position 5, then move to position 8.
  Seek(5);
  CheckExpectedBuffers(5, 7, &kDataA);

  // Now append 8 buffers at positions 0 through 7 (DTS); 0 through 9 (PTS) with
  // partial second GOP.
  NewCodedFrameGroupAppend(0, 8, &kDataB);

  // Check expected ranges: stream should not have kept buffers at DTS 8,9;
  // PTS 7,8 because the keyframe on which they depended (5, PTS=DTS) was
  // overwritten. However, they were in the GOP being read from, so were put
  // into the track buffer. Note that partial second GOP of B includes PTS
  // [5,9), DTS [5,7). These are continuous with the overlapped original range's
  // next GOP at (10, PTS=DTS).
  // Unlike the rest of the position based test API used in this case, these
  // range expectation strings are the actual timestamps (divided by
  // frame_duration_).
  CheckExpectedRanges("{ [0,14) }");

  // Check for data in the track buffer.
  CheckExpectedBuffers(8, 9, &kDataA);
  // The buffer immediately after the track buffer should be a keyframe.
  CheckExpectedBuffers(10, 10, &kDataA, true);

  // Make sure all data is correct.
  Seek(0);
  CheckExpectedBuffers(0, 7, &kDataB);
  // No seek should be necessary (1 continuous range).
  CheckExpectedBuffers(10, 14, &kDataA);
  CheckNoNextBuffer();
}

// This test covers the case where new buffers end-overlap an existing, selected
// range, and the next buffer in the range is overlapped by the new buffers.
//
// index:  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// old  :           |A a a*a*a A a a a a|
// new  :  B b b b b B b b b b
// after: |B b b b b B b b b b A a a a a|
// track:                 |a a|
TEST_F(SourceBufferStreamTest, End_Overlap_Selected_OverlappedByNew_1) {
  // Append 10 buffers at positions 5 through 14.
  NewCodedFrameGroupAppend(5, 10, &kDataA);

  // Seek to position 5, then move to position 8.
  Seek(5);
  CheckExpectedBuffers(5, 7, &kDataA);

  // Now append 10 buffers at positions 0 through 9.
  NewCodedFrameGroupAppend(0, 10, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,14) }");

  // Check for data in the track buffer.
  CheckExpectedBuffers(8, 9, &kDataA);
  // The buffer immediately after the track buffer should be a keyframe.
  CheckExpectedBuffers(10, 10, &kDataA, true);

  // Make sure all data is correct.
  Seek(0);
  CheckExpectedBuffers(0, 9, &kDataB);
  CheckExpectedBuffers(10, 14, &kDataA);
}

// Using position based test API:
// This test covers the case where new buffers end-overlap an existing, selected
// range, and the next buffer in the range is overlapped by the new buffers.
//
// DTS  :  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// PTS  :  0 4 1 2 3 5 9 6 7 8 0 4 1 2 3 5 9 6 7 8 0
// old  :            A*a*a a a A a a a a
// new  :  B b b b b B b
// after:  B b b b b B b       A a a a a
// track:              a a a a
TEST_F(SourceBufferStreamTest, End_Overlap_Selected_OverlappedByNew_2) {
  // Append 10 buffers at positions 5 through 14 (PTS and DTS, 2 full GOPs).
  NewCodedFrameGroupAppend(5, 10, &kDataA);

  // Seek to position 5, then move to position 6.
  Seek(5);
  CheckExpectedBuffers(5, 5, &kDataA);

  // Now append 7 buffers at positions 0 through 6 (DTS); 0 through 9 (PTS) with
  // partial second GOP.
  NewCodedFrameGroupAppend(0, 7, &kDataB);

  // Check expected ranges: stream should not have kept buffers at DTS 7,8,9;
  // PTS 6,7,8 because the keyframe on which they depended (5, PTS=DTS) was
  // overwritten. However, they were in the GOP being read from, so were put
  // into the track buffer. Note that partial second GOP of B includes PTS
  // [5,9), DTS [5,6). These are continuous with the overlapped original range's
  // next GOP at (10, PTS=DTS).
  // Unlike the rest of the position based test API used in this case, these
  // range expectation strings are the actual timestamps (divided by
  // frame_duration_).
  CheckExpectedRanges("{ [0,14) }");

  // Check for data in the track buffer.
  CheckExpectedBuffers(6, 9, &kDataA);
  // The buffer immediately after the track buffer should be a keyframe.
  CheckExpectedBuffers(10, 10, &kDataA, true);

  // Make sure all data is correct.
  Seek(0);
  CheckExpectedBuffers(0, 6, &kDataB);
  // No seek should be necessary (1 continuous range).
  CheckExpectedBuffers(10, 14, &kDataA);
  CheckNoNextBuffer();
}

// Using position based test API:
// This test covers the case where new buffers end-overlap an existing, selected
// range, and the next buffer in the range is overlapped by the new buffers.
// In this particular case, the next keyframe after the track buffer is in the
// range with the new buffers.
//
// DTS  :  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// PTS  :  0 4 1 2 3 5 9 6 7 8 0 4 1 2 3 5 9 6 7 8 0
// old  :            A*a*a a a A a a a a A a a a a
// new  :  B b b b b B b b b b B
// after:  B b b b b B b b b b B         A a a a a
// track:              a a a a
TEST_F(SourceBufferStreamTest, End_Overlap_Selected_OverlappedByNew_3) {
  // Append 15 buffers at positions 5 through 19 (PTS and DTS, 3 full GOPs).
  NewCodedFrameGroupAppend(5, 15, &kDataA);

  // Seek to position 5, then move to position 6.
  Seek(5);
  CheckExpectedBuffers(5, 5, &kDataA);

  // Now append 11 buffers at positions 0 through 10 (PTS and DTS, 2 full GOPs
  // and just the keyframe of a third GOP).
  NewCodedFrameGroupAppend(0, 11, &kDataB);

  // Check expected ranges: stream should not have kept buffers at 11-14 (DTS
  // and PTS) because the keyframe on which they depended (10, PTS=DTS) was
  // overwritten. The GOP being read from was overwritten, so track buffer
  // should contain DTS 6-9 (PTS 9,6,7,8). Note that the partial third GOP of B
  // includes (10, PTS=DTS). This partial GOP is continuous with the overlapped
  // original range's next GOP at (15, PTS=DTS).
  // Unlike the rest of the position based test API used in this case, these
  // range expectation strings are the actual timestamps (divided by
  // frame_duration_).
  CheckExpectedRanges("{ [0,19) }");

  // Check for data in the track buffer.
  CheckExpectedBuffers(6, 9, &kDataA);
  // The buffer immediately after the track buffer should be a keyframe
  // from the new data.
  CheckExpectedBuffers(10, 10, &kDataB, true);

  // Make sure all data is correct.
  Seek(0);
  CheckExpectedBuffers(0, 10, &kDataB);
  // No seek should be necessary (1 continuous range).
  CheckExpectedBuffers(15, 19, &kDataA);
}

// This test covers the case where new buffers end-overlap an existing, selected
// range, and there is no keyframe after the end of the new buffers.
// index:  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// old  :           |A*a*a a a|
// new  :  B b b b b B
// after: |B b b b b B|
// track:             |a a a a|
TEST_F(SourceBufferStreamTest, End_Overlap_Selected_NoKeyframeAfterNew) {
  // Append 5 buffers at positions 5 through 9.
  NewCodedFrameGroupAppend(5, 5, &kDataA);

  // Seek to position 5, then move to position 6.
  Seek(5);
  CheckExpectedBuffers(5, 5, &kDataA);

  // Now append 6 buffers at positions 0 through 5.
  NewCodedFrameGroupAppend(0, 6, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,5) }");

  // Check for data in the track buffer.
  CheckExpectedBuffers(6, 9, &kDataA);

  // Now there's no data to fulfill the request.
  CheckNoNextBuffer();

  // Let's fill in the gap, buffers 6 through 10.
  AppendBuffers(6, 5, &kDataB);

  // We should be able to get the next buffer.
  CheckExpectedBuffers(10, 10, &kDataB);
}

// Using position based test API:
// This test covers the case where new buffers end-overlap an existing, selected
// range, and there is no keyframe after the end of the new buffers, then more
// buffers end-overlap the beginning.
// DTS  :  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// PTS :   0 4 1 2 3 5 9 6 7 8 0 4 1 2 3 5 9 6 7 8 0
// old  :                      A a a a a A*a*
// new  :            B b b b b B b b b b B
// after:            B b b b b B b b b b B
// new  :  A a a a a A
// after:  A a a a a A         B b b b b B
// track:                                  a
// new  :                                B b b b b B
// after:  A a a a a A         B b b b b B b b b b B
TEST_F(SourceBufferStreamTest, End_Overlap_Selected_NoKeyframeAfterNew2) {
  // Append 7 buffers at positions 10 through 16 (DTS); 10 through 19 (PTS) with
  // a partial second GOP.
  NewCodedFrameGroupAppend(10, 7, &kDataA);

  // Seek to position 15, then move to position 16.
  Seek(15);
  CheckExpectedBuffers(15, 15, &kDataA);

  // Now append 11 buffers at positions 5 through 15 (PTS and DTS), 2 full GOPs
  // and just the keyframe of a third GOP.
  NewCodedFrameGroupAppend(5, 11, &kDataB);

  // Check expected ranges: stream should not have kept buffer at DTS 16, PTS 19
  // because the keyframe it depended on (15, PTS=DTS) was overwritten.
  // The GOP being read from was overwritten, so track buffer
  // should contain DTS 16, PTS 19.
  // Unlike the rest of the position based test API used in this case,
  // CheckExpectedRanges() uses expectation strings containing actual timestamps
  // (divided by frame_duration_).
  CheckExpectedRanges("{ [5,15) }");

  // Now do another end-overlap. Append one full GOP plus keyframe of 2nd. Note
  // that this new keyframe at (5, PTS=DTS) is continuous with the overlapped
  // range's next GOP (B) at (10, PTS=DTS).
  NewCodedFrameGroupAppend(0, 6, &kDataA);
  CheckExpectedRanges("{ [0,15) }");

  // Check for data in the track buffer.
  CheckExpectedBuffers(16, 16, &kDataA);

  // Now there's no data to fulfill the request.
  CheckNoNextBuffer();

  // Add data to the end of the range in the position just read from the track
  // buffer. The stream should not be able to fulfill the next read
  // until we've added a keyframe continuous beyond this point.
  NewCodedFrameGroupAppend(15, 1, &kDataB);
  CheckNoNextBuffer();
  for (int i = 16; i <= 19; i++) {
    AppendBuffers(i, 1, &kDataB);
    CheckNoNextBuffer();
  }

  // Now append a keyframe at PTS=DTS=20.
  AppendBuffers(20, 1, &kDataB);

  // The buffer at position 16 (PTS 19) in track buffer is adjacent to the next
  // keyframe, so no warning should be emitted on that track buffer exhaustion.
  // We should be able to get the next buffer (no longer from the track buffer).
  CheckExpectedBuffers(20, 20, &kDataB, true);
  CheckNoNextBuffer();

  // Make sure all data is correct.
  CheckExpectedRanges("{ [0,20) }");
  Seek(0);
  CheckExpectedBuffers(0, 5, &kDataA);
  // No seek should be necessary (1 continuous range).
  CheckExpectedBuffers(10, 20, &kDataB);
  CheckNoNextBuffer();
}

// This test covers the case where new buffers end-overlap an existing, selected
// range, and the next keyframe in a separate range.
// index:  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// old  :           |A*a*a a a|         |A a a a a|
// new  :  B b b b b B
// after: |B b b b b B|                 |A a a a a|
// track:             |a a a a|
TEST_F(SourceBufferStreamTest, End_Overlap_Selected_NoKeyframeAfterNew3) {
  // Append 5 buffers at positions 5 through 9.
  NewCodedFrameGroupAppend(5, 5, &kDataA);

  // Append 5 buffers at positions 15 through 19.
  NewCodedFrameGroupAppend(15, 5, &kDataA);

  // Check expected range.
  CheckExpectedRanges("{ [5,9) [15,19) }");

  // Seek to position 5, then move to position 6.
  Seek(5);
  CheckExpectedBuffers(5, 5, &kDataA);

  // Now append 6 buffers at positions 0 through 5.
  NewCodedFrameGroupAppend(0, 6, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,5) [15,19) }");

  // Check for data in the track buffer.
  CheckExpectedBuffers(6, 9, &kDataA);

  // Now there's no data to fulfill the request.
  CheckNoNextBuffer();

  // Let's fill in the gap, buffers 6 through 14.
  AppendBuffers(6, 9, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,19) }");

  // We should be able to get the next buffer.
  CheckExpectedBuffers(10, 14, &kDataB);

  // We should be able to get the next buffer.
  CheckExpectedBuffers(15, 19, &kDataA);
}

// This test covers the case when new buffers overlap the middle of a selected
// range. This tests the case when there is precise overlap of an existing GOP,
// and the next buffer is a keyframe.
// index:  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// old  :  A a a a a*A*a a a a A a a a a
// new  :            B b b b b
// after:  A a a a a*B*b b b b A a a a a
TEST_F(SourceBufferStreamTest, Middle_Overlap_Selected_1) {
  // Append 15 buffers at positions 0 through 14.
  NewCodedFrameGroupAppend(0, 15, &kDataA);

  // Seek to position 5.
  Seek(5);

  // Now append 5 buffers at positions 5 through 9.
  NewCodedFrameGroupAppend(5, 5, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,14) }");

  // Check for next data; should be new data.
  CheckExpectedBuffers(5, 9, &kDataB);

  // Make sure all data is correct.
  Seek(0);
  CheckExpectedBuffers(0, 4, &kDataA);
  CheckExpectedBuffers(5, 9, &kDataB);
  CheckExpectedBuffers(10, 14, &kDataA);
  CheckNoNextBuffer();
}

// This test covers the case when new buffers overlap the middle of a selected
// range. This tests the case when there is precise overlap of an existing GOP,
// and the next buffer is a non-keyframe in a GOP after the new buffers.
// index:  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// old  :  A a a a a A a a a a A*a*a a a
// new  :            B b b b b
// after:  A a a a a B b b b b A*a*a a a
TEST_F(SourceBufferStreamTest, Middle_Overlap_Selected_2) {
  // Append 15 buffers at positions 0 through 14.
  NewCodedFrameGroupAppend(0, 15, &kDataA);

  // Seek to 10 then move to position 11.
  Seek(10);
  CheckExpectedBuffers(10, 10, &kDataA);

  // Now append 5 buffers at positions 5 through 9.
  NewCodedFrameGroupAppend(5, 5, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,14) }");

  // Make sure data is correct.
  CheckExpectedBuffers(11, 14, &kDataA);
  CheckNoNextBuffer();
  Seek(0);
  CheckExpectedBuffers(0, 4, &kDataA);
  CheckExpectedBuffers(5, 9, &kDataB);
  CheckExpectedBuffers(10, 14, &kDataA);
  CheckNoNextBuffer();
}

// This test covers the case when new buffers overlap the middle of a selected
// range. This tests the case when only a partial GOP is appended, that append
// is merged into the overlapped range, and the next buffer is before the new
// buffers.
// index:  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// old  :  A a*a*a a A a a a a A a a a a
// new  :            B
// after:  A a*a*a a B         A a a a a
TEST_F(SourceBufferStreamTest, Middle_Overlap_Selected_3) {
  // Append 15 buffers at positions 0 through 14.
  NewCodedFrameGroupAppend(0, 15, &kDataA);

  // Seek to beginning then move to position 2.
  Seek(0);
  CheckExpectedBuffers(0, 1, &kDataA);

  // Now append 1 buffer at position 5 (just the keyframe of a GOP).
  NewCodedFrameGroupAppend(5, 1, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,14) }");

  // Make sure data is correct.
  CheckExpectedBuffers(2, 4, &kDataA);
  CheckExpectedBuffers(5, 5, &kDataB);
  // No seek should be necessary (1 continuous range).
  CheckExpectedBuffers(10, 14, &kDataA);
  CheckNoNextBuffer();

  // Seek to the beginning and recheck data in case track buffer erroneously
  // became involved.
  Seek(0);
  CheckExpectedBuffers(0, 4, &kDataA);
  CheckExpectedBuffers(5, 5, &kDataB);
  CheckExpectedBuffers(10, 14, &kDataA);
  CheckNoNextBuffer();
}

// This test covers the case when new buffers overlap the middle of a selected
// range. This tests the case when only a partial GOP is appended, and the next
// buffer is after the new buffers, and comes from the track buffer until the
// next GOP in the original buffers.
// index:  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// old  :  A a a a a A a a*a*a A a a a a
// new  :            B
// after:  A a a a a B         A a a a a
// track:                  a a
TEST_F(SourceBufferStreamTest, Middle_Overlap_Selected_4) {
  // Append 15 buffers at positions 0 through 14.
  NewCodedFrameGroupAppend(0, 15, &kDataA);

  // Seek to 5 then move to position 8.
  Seek(5);
  CheckExpectedBuffers(5, 7, &kDataA);

  // Now append 1 buffer at position 5.
  NewCodedFrameGroupAppend(5, 1, &kDataB);

  // Check expected range.
  CheckExpectedRanges("{ [0,14) }");

  // Buffers 8 and 9 should be in the track buffer.
  CheckExpectedBuffers(8, 9, &kDataA);

  // The buffer immediately after the track buffer should be a keyframe.
  CheckExpectedBuffers(10, 10, &kDataA, true);

  // Make sure all data is correct.
  Seek(0);
  CheckExpectedBuffers(0, 4, &kDataA);
  CheckExpectedBuffers(5, 5, &kDataB);
  // No seek should be necessary (1 continuous range).
  CheckExpectedBuffers(10, 14, &kDataA);
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, Overlap_OneByOne) {
  // Append 5 buffers starting at 10ms, 30ms apart.
  NewCodedFrameGroupAppendOneByOne("10K 40 70 100 130");

  // The range ends at 160, accounting for the last buffer's duration.
  CheckExpectedRangesByTimestamp("{ [10,160) }");

  // Overlap with 10 buffers starting at the beginning, appended one at a
  // time.
  NewCodedFrameGroupAppend(0, 1, &kDataB);
  for (int i = 1; i < 10; i++)
    AppendBuffers(i, 1, &kDataB);

  // All data should be replaced.
  Seek(0);
  CheckExpectedRanges("{ [0,9) }");
  CheckExpectedBuffers(0, 9, &kDataB);
}

TEST_F(SourceBufferStreamTest, Overlap_OneByOne_DeleteGroup) {
  NewCodedFrameGroupAppendOneByOne("10K 40 70 100 130K");
  CheckExpectedRangesByTimestamp("{ [10,160) }");

  // Seek to 130ms.
  SeekToTimestampMs(130);

  // Overlap with a new coded frame group from 0 to 130ms.
  NewCodedFrameGroupAppendOneByOne("0K 120D10");

  // Next buffer should still be 130ms.
  CheckExpectedBuffers("130K");

  // Check the final buffers is correct.
  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K 120 130K");
}

TEST_F(SourceBufferStreamTest, Overlap_OneByOne_BetweenCodedFrameGroups) {
  // Append 5 buffers starting at 110ms, 30ms apart.
  NewCodedFrameGroupAppendOneByOne("110K 140 170 200 230");
  CheckExpectedRangesByTimestamp("{ [110,260) }");

  // Now append 2 coded frame groups from 0ms to 210ms, 30ms apart. Note that
  // the
  // old keyframe 110ms falls in between these two groups.
  NewCodedFrameGroupAppendOneByOne("0K 30 60 90");
  NewCodedFrameGroupAppendOneByOne("120K 150 180 210");
  CheckExpectedRangesByTimestamp("{ [0,240) }");

  // Check the final buffers is correct; the keyframe at 110ms should be
  // deleted.
  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K 30 60 90 120K 150 180 210");
}

// old  :   10K  40  *70*  100K  125  130K
// new  : 0K   30   60   90   120K
// after: 0K   30   60   90  *120K*   130K
TEST_F(SourceBufferStreamTest, Overlap_OneByOne_TrackBuffer) {
  EXPECT_MEDIA_LOG(ContainsTrackBufferExhaustionSkipLog(50));

  NewCodedFrameGroupAppendOneByOne("10K 40 70 100K 125 130D30K");
  CheckExpectedRangesByTimestamp("{ [10,160) }");

  // Seek to 70ms.
  SeekToTimestampMs(70);
  CheckExpectedBuffers("10K 40");

  // Overlap with a new coded frame group from 0 to 130ms.
  NewCodedFrameGroupAppendOneByOne("0K 30 60 90 120D10K");
  CheckExpectedRangesByTimestamp("{ [0,160) }");

  // Should return frame 70ms from the track buffer, then switch
  // to the new data at 120K, then switch back to the old data at 130K. The
  // frame at 125ms that depended on keyframe 100ms should have been deleted.
  CheckExpectedBuffers("70 120K 130K");

  // Check the final result: should not include data from the track buffer.
  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K 30 60 90 120K 130K");
}

// Overlap the next keyframe after the end of the track buffer with a new
// keyframe.
// old  :   10K  40  *70*  100K  125  130K
// new  : 0K   30   60   90   120K
// after: 0K   30   60   90  *120K*   130K
// track:             70
// new  :                     110K    130
// after: 0K   30   60   90  *110K*   130
TEST_F(SourceBufferStreamTest, Overlap_OneByOne_TrackBuffer2) {
  EXPECT_MEDIA_LOG(ContainsTrackBufferExhaustionSkipLog(40));

  NewCodedFrameGroupAppendOneByOne("10K 40 70 100K 125 130D30K");
  CheckExpectedRangesByTimestamp("{ [10,160) }");

  // Seek to 70ms.
  SeekToTimestampMs(70);
  CheckExpectedBuffers("10K 40");

  // Overlap with a new coded frame group from 0 to 120ms; 70ms and 100ms go in
  // track
  // buffer.
  NewCodedFrameGroupAppendOneByOne("0K 30 60 90 120D10K");
  CheckExpectedRangesByTimestamp("{ [0,160) }");

  // Now overlap the keyframe at 120ms.
  NewCodedFrameGroupAppendOneByOne("110K 130");

  // Should return frame 70ms from the track buffer. Then it should
  // return the keyframe after the track buffer, which is at 110ms.
  CheckExpectedBuffers("70 110K 130");
}

// Overlap the next keyframe after the end of the track buffer without a
// new keyframe.
// old  :   10K  40  *70*  100K  125  130K
// new  : 0K   30   60   90   120K
// after: 0K   30   60   90  *120K*   130K
// track:             70
// new  :        50K   80   110          140
// after: 0K   30   50K   80   110   140 * (waiting for keyframe)
// track:             70
TEST_F(SourceBufferStreamTest, Overlap_OneByOne_TrackBuffer3) {
  EXPECT_MEDIA_LOG(ContainsTrackBufferExhaustionSkipLog(80));

  NewCodedFrameGroupAppendOneByOne("10K 40 70 100K 125 130D30K");
  CheckExpectedRangesByTimestamp("{ [10,160) }");

  // Seek to 70ms.
  SeekToTimestampMs(70);
  CheckExpectedBuffers("10K 40");

  // Overlap with a new coded frame group from 0 to 120ms; 70ms goes in track
  // buffer.
  NewCodedFrameGroupAppendOneByOne("0K 30 60 90 120D10K");
  CheckExpectedRangesByTimestamp("{ [0,160) }");

  // Now overlap the keyframe at 120ms and 130ms.
  NewCodedFrameGroupAppendOneByOne("50K 80 110 140");
  CheckExpectedRangesByTimestamp("{ [0,170) }");

  // Should have all the buffers from the track buffer, then stall.
  CheckExpectedBuffers("70");
  CheckNoNextBuffer();

  // Appending a keyframe should fulfill the read.
  AppendBuffersOneByOne("150D30K");
  CheckExpectedBuffers("150K");
  CheckNoNextBuffer();
}

// Overlap the next keyframe after the end of the track buffer with a keyframe
// that comes before the end of the track buffer.
// old  :   10K  40  *70*  100K  125  130K
// new  : 0K   30   60   90   120K
// after: 0K   30   60   90  *120K*   130K
// track:             70
// new  :              80K  110          140
// after: 0K   30   60   *80K*  110   140
// track:               70
TEST_F(SourceBufferStreamTest, Overlap_OneByOne_TrackBuffer4) {
  NewCodedFrameGroupAppendOneByOne("10K 40 70 100K 125 130D30K");
  CheckExpectedRangesByTimestamp("{ [10,160) }");

  // Seek to 70ms.
  SeekToTimestampMs(70);
  CheckExpectedBuffers("10K 40");

  // Overlap with a new coded frame group from 0 to 120ms; 70ms and 100ms go in
  // track
  // buffer.
  NewCodedFrameGroupAppendOneByOne("0K 30 60 90 120D10K");
  CheckExpectedRangesByTimestamp("{ [0,160) }");

  // Now append a keyframe at 80ms.
  NewCodedFrameGroupAppendOneByOne("80K 110 140");

  CheckExpectedBuffers("70 80K 110 140");
  CheckNoNextBuffer();
}

// Overlap the next keyframe after the end of the track buffer with a keyframe
// that comes before the end of the track buffer, when the selected stream was
// waiting for the next keyframe.
// old  :   10K  40  *70*  100K
// new  : 0K   30   60   90   120
// after: 0K   30   60   90   120 * (waiting for keyframe)
// track:             70
// new  :              80K  110          140
// after: 0K   30   60   *80K*  110   140
// track:               70
TEST_F(SourceBufferStreamTest, Overlap_OneByOne_TrackBuffer5) {
  NewCodedFrameGroupAppendOneByOne("10K 40 70 100K");
  CheckExpectedRangesByTimestamp("{ [10,130) }");

  // Seek to 70ms.
  SeekToTimestampMs(70);
  CheckExpectedBuffers("10K 40");

  // Overlap with a new coded frame group from 0 to 120ms; 70ms goes in track
  // buffer.
  NewCodedFrameGroupAppendOneByOne("0K 30 60 90 120");
  CheckExpectedRangesByTimestamp("{ [0,150) }");

  // Now append a keyframe at 80ms.
  NewCodedFrameGroupAppendOneByOne("80K 110 140");

  CheckExpectedBuffers("70 80K 110 140");
  CheckNoNextBuffer();
}

// Test that appending to a different range while there is data in
// the track buffer doesn't affect the selected range or track buffer state.
// old  :   10K  40  *70*  100K  125  130K ... 200K 230
// new  : 0K   30   60   90   120K
// after: 0K   30   60   90  *120K*   130K ... 200K 230
// track:             70
// old  : 0K   30   60   90  *120K*   130K ... 200K 230
// new  :                                               260K 290
// after: 0K   30   60   90  *120K*   130K ... 200K 230 260K 290
// track:             70
TEST_F(SourceBufferStreamTest, Overlap_OneByOne_TrackBuffer6) {
  EXPECT_MEDIA_LOG(ContainsTrackBufferExhaustionSkipLog(50));

  NewCodedFrameGroupAppendOneByOne("10K 40 70 100K 125 130D30K");
  NewCodedFrameGroupAppendOneByOne("200K 230");
  CheckExpectedRangesByTimestamp("{ [10,160) [200,260) }");

  // Seek to 70ms.
  SeekToTimestampMs(70);
  CheckExpectedBuffers("10K 40");

  // Overlap with a new coded frame group from 0 to 120ms.
  NewCodedFrameGroupAppendOneByOne("0K 30 60 90 120D10K");
  CheckExpectedRangesByTimestamp("{ [0,160) [200,260) }");

  // Verify that 70 gets read out of the track buffer.
  CheckExpectedBuffers("70");

  // Append more data to the unselected range.
  NewCodedFrameGroupAppendOneByOne("260K 290");
  CheckExpectedRangesByTimestamp("{ [0,160) [200,320) }");

  CheckExpectedBuffers("120K 130K");
  CheckNoNextBuffer();

  // Check the final result: should not include data from the track buffer.
  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K 30 60 90 120K 130K");
  CheckNoNextBuffer();
}

// Test that overlap-appending with a GOP that begins with time of next track
// buffer frame drops that track buffer frame and buffers the new GOP correctly.
// append :    10K   40    70     100
// read the first two buffers
// after  :    10K   40   *70*    100
//
// append : 0K    30    60    90    120
// after  : 0K    30    60    90    120
// track  :               *70*    100
//
// read the buffer at 70ms from track
// after  : 0K    30    60    90    120
// track  :                      *100*
//
// append :                       100K   130
// after  : 0K    30    60    90 *100K*  130
// track  : (empty)
// 100K, not 100, should be the next buffer read.
TEST_F(SourceBufferStreamTest,
       Overlap_That_Prunes_All_of_Previous_TrackBuffer) {
  NewCodedFrameGroupAppend("10K 40 70 100");
  CheckExpectedRangesByTimestamp("{ [10,130) }");

  // Seek to 70ms.
  SeekToTimestampMs(70);
  CheckExpectedBuffers("10K 40");

  // Overlap with a new coded frame group from 0 to 120ms, leaving the original
  // nonkeyframes at 70ms and 100ms in the track buffer.
  NewCodedFrameGroupAppend("0K 30 60 90 120");
  CheckExpectedRangesByTimestamp("{ [0,150) }");

  // Verify that 70 gets read out of the track buffer, leaving the nonkeyframe
  // at 100ms in the track buffer.
  CheckExpectedBuffers("70");

  // Overlap with a coded frame group having a keyframe at 100ms. This should
  // clear the track buffer and serve that keyframe, not the original
  // nonkeyframe at time 100ms on the next read call.
  NewCodedFrameGroupAppend("100K 130");
  CheckExpectedRangesByTimestamp("{ [0,160) }");
  CheckExpectedBuffers("100K 130");
  CheckNoNextBuffer();

  // Check the final result: should not include data from the track buffer.
  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K 30 60 90 100K 130");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, Seek_Keyframe) {
  // Append 6 buffers at positions 0 through 5.
  NewCodedFrameGroupAppend(0, 6);

  // Seek to beginning.
  Seek(0);
  CheckExpectedBuffers(0, 5, true);
}

TEST_F(SourceBufferStreamTest, Seek_NonKeyframe) {
  // Append 15 buffers at positions 0 through 14.
  NewCodedFrameGroupAppend(0, 15);

  // Seek to buffer at position 13.
  Seek(13);

  // Expect seeking back to the nearest keyframe.
  CheckExpectedBuffers(10, 14, true);

  // Seek to buffer at position 3.
  Seek(3);

  // Expect seeking back to the nearest keyframe.
  CheckExpectedBuffers(0, 3, true);
}

TEST_F(SourceBufferStreamTest, Seek_NotBuffered) {
  // Seek to beginning.
  SeekToTimestampMs(0);

  // Try to get buffer; nothing's appended.
  CheckNoNextBuffer();

  // Append 1 buffer at time 0, duration 10ms.
  NewCodedFrameGroupAppend("0D10K");

  // Confirm we can read it back.
  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K");

  // Try to get buffer out of range.
  SeekToTimestampMs(10);
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, Seek_InBetweenTimestamps) {
  // Append 10 buffers at positions 0 through 9.
  NewCodedFrameGroupAppend(0, 10);

  base::TimeDelta bump = frame_duration() / 4;
  CHECK(bump > base::TimeDelta());

  // Seek to buffer a little after position 5.
  stream_->Seek(5 * frame_duration() + bump);
  CheckExpectedBuffers(5, 5, true);

  // Seek to buffer a little before position 5.
  stream_->Seek(5 * frame_duration() - bump);
  CheckExpectedBuffers(0, 0, true);
}

// This test will do a complete overlap of an existing range in order to add
// buffers to the track buffers. Then the test does a seek to another part of
// the stream. The SourceBufferStream should clear its internal track buffer in
// response to the Seek().
TEST_F(SourceBufferStreamTest, Seek_After_TrackBuffer_Filled) {
  // Append 10 buffers at positions 5 through 14.
  NewCodedFrameGroupAppend(5, 10, &kDataA);

  // Seek to buffer at position 5 and get next buffer.
  Seek(5);
  CheckExpectedBuffers(5, 5, &kDataA);

  // Do a complete overlap by appending 20 buffers at positions 0 through 19.
  NewCodedFrameGroupAppend(0, 20, &kDataB);

  // Check range is correct.
  CheckExpectedRanges("{ [0,19) }");

  // Seek to beginning; all data should be new.
  Seek(0);
  CheckExpectedBuffers(0, 19, &kDataB);

  // Check range continues to be correct.
  CheckExpectedRanges("{ [0,19) }");
}

TEST_F(SourceBufferStreamTest, Seek_StartOfGroup) {
  base::TimeDelta bump = frame_duration() / 4;
  CHECK(bump > base::TimeDelta());

  // Append 5 buffers at position (5 + |bump|) through 9, where the coded frame
  // group begins at position 5.
  Seek(5);
  NewCodedFrameGroupAppend_OffsetFirstBuffer(5, 5, bump);
  scoped_refptr<StreamParserBuffer> buffer;

  // GetNextBuffer() should return the next buffer at position (5 + |bump|).
  EXPECT_STATUS_FOR_STREAM_OP(kSuccess, GetNextBuffer(&buffer));
  EXPECT_EQ(buffer->GetDecodeTimestamp(),
            DecodeTimestamp::FromPresentationTime(5 * frame_duration() + bump));

  // Check rest of buffers.
  CheckExpectedBuffers(6, 9);

  // Seek to position 15.
  Seek(15);

  // Append 5 buffers at positions (15 + |bump|) through 19, where the coded
  // frame group begins at 15.
  NewCodedFrameGroupAppend_OffsetFirstBuffer(15, 5, bump);

  // GetNextBuffer() should return the next buffer at position (15 + |bump|).
  EXPECT_STATUS_FOR_STREAM_OP(kSuccess, GetNextBuffer(&buffer));
  EXPECT_EQ(buffer->GetDecodeTimestamp(), DecodeTimestamp::FromPresentationTime(
      15 * frame_duration() + bump));

  // Check rest of buffers.
  CheckExpectedBuffers(16, 19);
}

TEST_F(SourceBufferStreamTest, Seek_BeforeStartOfGroup) {
  // Append 10 buffers at positions 5 through 14.
  NewCodedFrameGroupAppend(5, 10);

  // Seek to a time before the first buffer in the range.
  Seek(0);

  // Should return buffers from the beginning of the range.
  CheckExpectedBuffers(5, 14);
}

TEST_F(SourceBufferStreamTest, OldSeekPoint_CompleteOverlap) {
  // Append 5 buffers at positions 0 through 4.
  NewCodedFrameGroupAppend(0, 4);

  // Append 5 buffers at positions 10 through 14, and seek to the beginning of
  // this range.
  NewCodedFrameGroupAppend(10, 5);
  Seek(10);

  // Now seek to the beginning of the first range.
  Seek(0);

  // Completely overlap the old seek point.
  NewCodedFrameGroupAppend(5, 15);

  // The GetNextBuffer() call should respect the 2nd seek point.
  CheckExpectedBuffers(0, 0);
}

TEST_F(SourceBufferStreamTest, OldSeekPoint_CompleteOverlap_Pending) {
  // Append 2 buffers at positions 0 through 1.
  NewCodedFrameGroupAppend(0, 2);

  // Append 5 buffers at positions 15 through 19 and seek to beginning of the
  // range.
  NewCodedFrameGroupAppend(15, 5);
  Seek(15);

  // Now seek position 5.
  Seek(5);

  // Completely overlap the old seek point.
  NewCodedFrameGroupAppend(10, 15);

  // The seek at position 5 should still be pending.
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, OldSeekPoint_MiddleOverlap) {
  // Append 1 buffer at position 0, duration 10ms.
  NewCodedFrameGroupAppend("0D10K");

  // Append 3 IPBBB GOPs starting at 50ms.
  NewCodedFrameGroupAppend(
      "50K 90|60 60|70 70|80 80|90 "
      "100K 140|110 110|120 120|130 130|140 "
      "150K 190|160 160|170 170|180 180|190");
  SeekToTimestampMs(150);

  // Now seek to the beginning of the stream.
  SeekToTimestampMs(0);

  // Overlap the middle of the last range with a partial GOP, just a keyframe.
  NewCodedFrameGroupAppend("100D10K");
  CheckExpectedRangesByTimestamp("{ [0,10) [50,200) }");

  // The GetNextBuffer() call should respect the 2nd seek point.
  CheckExpectedBuffers("0K");
  CheckNoNextBuffer();

  // Check the data in the second range.
  SeekToTimestampMs(50);
  CheckExpectedBuffers(
      "50K 90|60 60|70 70|80 80|90 100K 150K 190|160 160|170 170|180 180|190");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, OldSeekPoint_MiddleOverlap_Pending) {
  // Append 1 buffer at position 0, duration 10ms.
  NewCodedFrameGroupAppend("0D10K");

  // Append 3 IPBBB GOPs starting at 50ms. Then seek to 150ms.
  NewCodedFrameGroupAppend(
      "50K 90|60 60|70 70|80 80|90 "
      "100K 140|110 110|120 120|130 130|140 "
      "150K 190|160 160|170 170|180 180|190");
  SeekToTimestampMs(150);

  // Now seek to unbuffered time 20ms.
  SeekToTimestampMs(20);

  // Overlap the middle of the last range with a partial GOP, just a keyframe.
  NewCodedFrameGroupAppend("100D10K");
  CheckExpectedRangesByTimestamp("{ [0,10) [50,200) }");

  // The seek to 20ms should still be pending.
  CheckNoNextBuffer();

  // Check the data in both ranges.
  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K");
  CheckNoNextBuffer();
  SeekToTimestampMs(50);
  CheckExpectedBuffers(
      "50K 90|60 60|70 70|80 80|90 100K 150K 190|160 160|170 170|180 180|190");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, OldSeekPoint_StartOverlap) {
  // Append 2 buffers at positions 0 through 1.
  NewCodedFrameGroupAppend(0, 2);

  // Append 15 buffers at positions 5 through 19 and seek to position 15.
  NewCodedFrameGroupAppend(5, 15);
  Seek(15);

  // Now seek to the beginning of the stream.
  Seek(0);

  // Start overlap the old seek point.
  NewCodedFrameGroupAppend(10, 10);

  // The GetNextBuffer() call should respect the 2nd seek point.
  CheckExpectedBuffers(0, 0);
}

TEST_F(SourceBufferStreamTest, OldSeekPoint_StartOverlap_Pending) {
  // Append 2 buffers at positions 0 through 1.
  NewCodedFrameGroupAppend(0, 2);

  // Append 15 buffers at positions 10 through 24 and seek to position 20.
  NewCodedFrameGroupAppend(10, 15);
  Seek(20);

  // Now seek to position 5.
  Seek(5);

  // Start overlap the old seek point.
  NewCodedFrameGroupAppend(15, 10);

  // The seek at time 0 should still be pending.
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, OldSeekPoint_EndOverlap) {
  // Append 5 buffers at positions 0 through 4.
  NewCodedFrameGroupAppend(0, 4);

  // Append 15 buffers at positions 10 through 24 and seek to start of range.
  NewCodedFrameGroupAppend(10, 15);
  Seek(10);

  // Now seek to the beginning of the stream.
  Seek(0);

  // End overlap the old seek point.
  NewCodedFrameGroupAppend(5, 10);

  // The GetNextBuffer() call should respect the 2nd seek point.
  CheckExpectedBuffers(0, 0);
}

TEST_F(SourceBufferStreamTest, OldSeekPoint_EndOverlap_Pending) {
  // Append 2 buffers at positions 0 through 1.
  NewCodedFrameGroupAppend(0, 2);

  // Append 15 buffers at positions 15 through 29 and seek to start of range.
  NewCodedFrameGroupAppend(15, 15);
  Seek(15);

  // Now seek to position 5
  Seek(5);

  // End overlap the old seek point.
  NewCodedFrameGroupAppend(10, 10);

  // The seek at time 5 should still be pending.
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, GetNextBuffer_AfterMerges) {
  // Append 5 buffers at positions 10 through 14.
  NewCodedFrameGroupAppend(10, 5);

  // Seek to buffer at position 12.
  Seek(12);

  // Append 5 buffers at positions 5 through 9.
  NewCodedFrameGroupAppend(5, 5);

  // Make sure ranges are merged.
  CheckExpectedRanges("{ [5,14) }");

  // Make sure the next buffer is correct.
  CheckExpectedBuffers(10, 10);

  // Append 5 buffers at positions 15 through 19.
  NewCodedFrameGroupAppend(15, 5);
  CheckExpectedRanges("{ [5,19) }");

  // Make sure the remaining next buffers are correct.
  CheckExpectedBuffers(11, 14);
}

TEST_F(SourceBufferStreamTest, GetNextBuffer_ExhaustThenAppend) {
  // Append 4 buffers at positions 0 through 3.
  NewCodedFrameGroupAppend(0, 4);

  // Seek to buffer at position 0 and get all buffers.
  Seek(0);
  CheckExpectedBuffers(0, 3);

  // Next buffer is at position 4, so should not be able to fulfill request.
  CheckNoNextBuffer();

  // Append 2 buffers at positions 4 through 5.
  AppendBuffers(4, 2);
  CheckExpectedBuffers(4, 5);
}

// This test covers the case where new buffers start-overlap a range whose next
// buffer is not buffered.
TEST_F(SourceBufferStreamTest, GetNextBuffer_ExhaustThenStartOverlap) {
  // Append 10 buffers at positions 0 through 9 and exhaust the buffers.
  NewCodedFrameGroupAppend(0, 10, &kDataA);
  Seek(0);
  CheckExpectedBuffers(0, 9, &kDataA);

  // Next buffer is at position 10, so should not be able to fulfill request.
  CheckNoNextBuffer();

  // Append 6 buffers at positons 5 through 10. This is to test that doing a
  // start-overlap successfully fulfills the read at position 10, even though
  // position 10 was unbuffered.
  NewCodedFrameGroupAppend(5, 6, &kDataB);
  CheckExpectedBuffers(10, 10, &kDataB);

  // Then add 5 buffers from positions 11 though 15.
  AppendBuffers(11, 5, &kDataB);

  // Check the next 4 buffers are correct, which also effectively seeks to
  // position 15.
  CheckExpectedBuffers(11, 14, &kDataB);

  // Replace the next buffer at position 15 with another start overlap.
  NewCodedFrameGroupAppend(15, 2, &kDataA);
  CheckExpectedBuffers(15, 16, &kDataA);
}

// Tests a start overlap that occurs right at the timestamp of the last output
// buffer that was returned by GetNextBuffer(). This test verifies that
// GetNextBuffer() skips to second GOP in the newly appended data instead
// of returning two buffers with the same timestamp.
TEST_F(SourceBufferStreamTest, GetNextBuffer_ExhaustThenStartOverlap2) {
  NewCodedFrameGroupAppend("0K 30 60 90 120");

  Seek(0);
  CheckExpectedBuffers("0K 30 60 90 120");
  CheckNoNextBuffer();

  // Append a keyframe with the same timestamp as the last buffer output.
  NewCodedFrameGroupAppend("120D30K");
  CheckNoNextBuffer();

  // Append the rest of the coded frame group and make sure that buffers are
  // returned from the first GOP after 120.
  AppendBuffers("150 180 210K 240");
  CheckExpectedBuffers("210K 240");

  // Seek to the beginning and verify the contents of the source buffer.
  Seek(0);
  CheckExpectedBuffers("0K 30 60 90 120K 150 180 210K 240");
  CheckNoNextBuffer();
}

// This test covers the case where new buffers completely overlap a range
// whose next buffer is not buffered.
TEST_F(SourceBufferStreamTest, GetNextBuffer_ExhaustThenCompleteOverlap) {
  // Append 5 buffers at positions 10 through 14 and exhaust the buffers.
  NewCodedFrameGroupAppend(10, 5, &kDataA);
  Seek(10);
  CheckExpectedBuffers(10, 14, &kDataA);

  // Next buffer is at position 15, so should not be able to fulfill request.
  CheckNoNextBuffer();

  // Do a complete overlap and test that this successfully fulfills the read
  // at position 15.
  NewCodedFrameGroupAppend(5, 11, &kDataB);
  CheckExpectedBuffers(15, 15, &kDataB);

  // Then add 5 buffers from positions 16 though 20.
  AppendBuffers(16, 5, &kDataB);

  // Check the next 4 buffers are correct, which also effectively seeks to
  // position 20.
  CheckExpectedBuffers(16, 19, &kDataB);

  // Do a complete overlap and replace the buffer at position 20.
  NewCodedFrameGroupAppend(0, 21, &kDataA);
  CheckExpectedBuffers(20, 20, &kDataA);
}

// This test covers the case where a range is stalled waiting for its next
// buffer, then an end-overlap causes the end of the range to be deleted.
TEST_F(SourceBufferStreamTest, GetNextBuffer_ExhaustThenEndOverlap) {
  // Append 5 buffers at positions 10 through 14 and exhaust the buffers.
  NewCodedFrameGroupAppend(10, 5, &kDataA);
  Seek(10);
  CheckExpectedBuffers(10, 14, &kDataA);
  CheckExpectedRanges("{ [10,14) }");

  // Next buffer is at position 15, so should not be able to fulfill request.
  CheckNoNextBuffer();

  // Do an end overlap that causes the latter half of the range to be deleted.
  NewCodedFrameGroupAppend(5, 6, &kDataB);
  CheckNoNextBuffer();
  CheckExpectedRanges("{ [5,10) }");

  // Fill in the gap. Getting the next buffer should still stall at position 15.
  for (int i = 11; i <= 14; i++) {
    AppendBuffers(i, 1, &kDataB);
    CheckNoNextBuffer();
  }

  // Append the buffer at position 15 and check to make sure all is correct.
  AppendBuffers(15, 1);
  CheckExpectedBuffers(15, 15);
  CheckExpectedRanges("{ [5,15) }");
}

// This test is testing the "next buffer" logic after a complete overlap. In
// this scenario, when the track buffer is exhausted, there is no buffered data
// to fulfill the request. The SourceBufferStream should be able to fulfill the
// request when the data is later appended, and should not lose track of the
// "next buffer" position.
TEST_F(SourceBufferStreamTest, GetNextBuffer_Overlap_Selected_Complete) {
  // Append 5 buffers at positions 5 through 9.
  NewCodedFrameGroupAppend(5, 5, &kDataA);

  // Seek to buffer at position 5 and get next buffer.
  Seek(5);
  CheckExpectedBuffers(5, 5, &kDataA);

  // Replace existing data with new data.
  NewCodedFrameGroupAppend(5, 5, &kDataB);

  // Expect old data up until next keyframe in new data.
  CheckExpectedBuffers(6, 9, &kDataA);

  // Next buffer is at position 10, so should not be able to fulfill the
  // request.
  CheckNoNextBuffer();

  // Now add 5 new buffers at positions 10 through 14.
  AppendBuffers(10, 5, &kDataB);
  CheckExpectedBuffers(10, 14, &kDataB);
}

TEST_F(SourceBufferStreamTest, PresentationTimestampIndependence) {
  // Append 20 buffers at position 0.
  NewCodedFrameGroupAppend(0, 20);
  Seek(0);

  int last_keyframe_idx = -1;
  base::TimeDelta last_keyframe_presentation_timestamp;
  base::TimeDelta last_p_frame_presentation_timestamp;

  // Check for IBB...BBP pattern.
  for (int i = 0; i < 20; i++) {
    scoped_refptr<StreamParserBuffer> buffer;
    EXPECT_STATUS_FOR_STREAM_OP(kSuccess, GetNextBuffer(&buffer));

    if (buffer->is_key_frame()) {
      EXPECT_EQ(DecodeTimestamp::FromPresentationTime(buffer->timestamp()),
                buffer->GetDecodeTimestamp());
      last_keyframe_idx = i;
      last_keyframe_presentation_timestamp = buffer->timestamp();
    } else if (i == last_keyframe_idx + 1) {
      ASSERT_NE(last_keyframe_idx, -1);
      last_p_frame_presentation_timestamp = buffer->timestamp();
      EXPECT_LT(last_keyframe_presentation_timestamp,
                last_p_frame_presentation_timestamp);
    } else {
      EXPECT_GT(buffer->timestamp(), last_keyframe_presentation_timestamp);
      EXPECT_LT(buffer->timestamp(), last_p_frame_presentation_timestamp);
      EXPECT_LT(DecodeTimestamp::FromPresentationTime(buffer->timestamp()),
                buffer->GetDecodeTimestamp());
    }
  }
}

TEST_F(SourceBufferStreamTest, GarbageCollection_DeleteFront) {
  // Set memory limit to 20 buffers.
  SetMemoryLimit(20);

  // Append 20 buffers at positions 0 through 19.
  NewCodedFrameGroupAppend(0, 1, &kDataA);
  for (int i = 1; i < 20; i++)
    AppendBuffers(i, 1, &kDataA);

  // GC should be a no-op, since we are just under memory limit.
  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(0, 0));
  CheckExpectedRanges("{ [0,19) }");
  Seek(0);
  CheckExpectedBuffers(0, 19, &kDataA);

  // Seek to the middle of the stream.
  Seek(10);

  // We are about to append 5 new buffers and current playback position is 10,
  // so the GC algorithm should be able to delete some old data from the front.
  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(10, 5));
  CheckExpectedRanges("{ [5,19) }");

  // Append 5 buffers to the end of the stream.
  AppendBuffers(20, 5, &kDataA);
  CheckExpectedRanges("{ [5,24) }");

  CheckExpectedBuffers(10, 24, &kDataA);
  Seek(5);
  CheckExpectedBuffers(5, 9, &kDataA);
}

TEST_F(SourceBufferStreamTest,
       GarbageCollection_DeleteFront_PreserveSeekedGOP) {
  // Set memory limit to 15 buffers.
  SetMemoryLimit(15);

  NewCodedFrameGroupAppend("0K 10 20 30 40 50K 60 70 80 90");
  NewCodedFrameGroupAppend("1000K 1010 1020 1030 1040");

  // GC should be a no-op, since we are just under memory limit.
  EXPECT_TRUE(GarbageCollect(base::TimeDelta(), 0));
  CheckExpectedRangesByTimestamp("{ [0,100) [1000,1050) }");

  // Seek to the near the end of the first range
  SeekToTimestampMs(95);

  // We are about to append 7 new buffers and current playback position is at
  // the end of the last GOP in the first range, so the GC algorithm should be
  // able to delete some old data from the front, but must not collect the last
  // GOP in that first range. Neither can it collect the last appended GOP
  // (which is the entire second range), so GC should return false since it
  // couldn't collect enough.
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(95), 7));
  CheckExpectedRangesByTimestamp("{ [50,100) [1000,1050) }");
}

TEST_F(SourceBufferStreamTest, GarbageCollection_DeleteFrontGOPsAtATime) {
  // Set memory limit to 20 buffers.
  SetMemoryLimit(20);

  // Append 20 buffers at positions 0 through 19.
  NewCodedFrameGroupAppend(0, 20, &kDataA);

  // Seek to position 10.
  Seek(10);
  CheckExpectedRanges("{ [0,19) }");

  // Add one buffer to put the memory over the cap.
  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(10, 1));
  AppendBuffers(20, 1, &kDataA);

  // GC should have deleted the first 5 buffers so that the range still begins
  // with a keyframe.
  CheckExpectedRanges("{ [5,20) }");
  CheckExpectedBuffers(10, 20, &kDataA);
  Seek(5);
  CheckExpectedBuffers(5, 9, &kDataA);
}

TEST_F(SourceBufferStreamTest, GarbageCollection_DeleteBack) {
  // Set memory limit to 5 buffers.
  SetMemoryLimit(5);

  // Append 5 buffers at positions 15 through 19.
  NewCodedFrameGroupAppend(15, 5, &kDataA);
  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(0, 0));

  // Append 5 buffers at positions 0 through 4.
  NewCodedFrameGroupAppend(0, 5, &kDataA);
  CheckExpectedRanges("{ [0,4) [15,19) }");

  // Seek to position 0.
  Seek(0);
  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(0, 0));
  // Should leave the first 5 buffers from 0 to 4.
  CheckExpectedRanges("{ [0,4) }");
  CheckExpectedBuffers(0, 4, &kDataA);
}

TEST_F(SourceBufferStreamTest, GarbageCollection_DeleteFrontAndBack) {
  // Set memory limit to 3 buffers.
  SetMemoryLimit(3);

  // Seek to position 15.
  Seek(15);

  // Append 40 buffers at positions 0 through 39.
  NewCodedFrameGroupAppend(0, 40, &kDataA);
  // GC will try to keep data between current playback position and last append
  // position. This will ensure that the last append position is 19 and will
  // allow GC algorithm to collect data outside of the range [15,19)
  NewCodedFrameGroupAppend(15, 5, &kDataA);
  CheckExpectedRanges("{ [0,39) }");

  // Should leave the GOP containing the current playback position 15 and the
  // last append position 19. GC returns false, since we are still above limit.
  EXPECT_FALSE(GarbageCollectWithPlaybackAtBuffer(15, 0));
  CheckExpectedRanges("{ [15,19) }");
  CheckExpectedBuffers(15, 19, &kDataA);
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, GarbageCollection_DeleteSeveralRanges) {
  // Append 5 buffers at positions 0 through 4.
  NewCodedFrameGroupAppend(0, 5);

  // Append 5 buffers at positions 10 through 14.
  NewCodedFrameGroupAppend(10, 5);

  // Append 5 buffers at positions 20 through 24.
  NewCodedFrameGroupAppend(20, 5);

  // Append 5 buffers at positions 40 through 44.
  NewCodedFrameGroupAppend(40, 5);

  CheckExpectedRanges("{ [0,4) [10,14) [20,24) [40,44) }");

  // Seek to position 20.
  Seek(20);
  CheckExpectedBuffers(20, 20);

  // Set memory limit to 1 buffer.
  SetMemoryLimit(1);

  // Append 5 buffers at positions 30 through 34.
  NewCodedFrameGroupAppend(30, 5);

  // We will have more than 1 buffer left, GC will fail
  EXPECT_FALSE(GarbageCollectWithPlaybackAtBuffer(20, 0));

  // Should have deleted all buffer ranges before the current buffer and after
  // last GOP
  CheckExpectedRanges("{ [20,24) [30,34) }");
  CheckExpectedBuffers(21, 24);
  CheckNoNextBuffer();

  // Continue appending into the last range to make sure it didn't break.
  AppendBuffers(35, 10);
  EXPECT_FALSE(GarbageCollectWithPlaybackAtBuffer(20, 0));
  // Should save everything between read head and last appended
  CheckExpectedRanges("{ [20,24) [30,44) }");

  // Make sure appending before and after the ranges didn't somehow break.
  SetMemoryLimit(100);
  NewCodedFrameGroupAppend(0, 10);
  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(20, 0));
  CheckExpectedRanges("{ [0,9) [20,24) [30,44) }");
  Seek(0);
  CheckExpectedBuffers(0, 9);

  NewCodedFrameGroupAppend(90, 10);
  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(0, 0));
  CheckExpectedRanges("{ [0,9) [20,24) [30,44) [90,99) }");
  Seek(30);
  CheckExpectedBuffers(30, 44);
  CheckNoNextBuffer();
  Seek(90);
  CheckExpectedBuffers(90, 99);
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, GarbageCollection_DeleteAfterLastAppend) {
  // Set memory limit to 10 buffers.
  SetMemoryLimit(10);

  // Append 1 GOP starting at 310ms, 30ms apart.
  NewCodedFrameGroupAppend("310K 340 370");

  // Append 2 GOPs starting at 490ms, 30ms apart.
  NewCodedFrameGroupAppend("490K 520 550 580K 610 640");

  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(0, 0));

  CheckExpectedRangesByTimestamp("{ [310,400) [490,670) }");

  // Seek to the GOP at 580ms.
  SeekToTimestampMs(580);

  // Append 2 GOPs before the existing ranges.
  // So the ranges before GC are "{ [100,280) [310,400) [490,670) }".
  NewCodedFrameGroupAppend("100K 130 160 190K 220 250K");

  EXPECT_TRUE(GarbageCollect(base::TimeDelta::FromMilliseconds(580), 0));

  // Should save the newly appended GOPs.
  CheckExpectedRangesByTimestamp("{ [100,280) [580,670) }");
}

TEST_F(SourceBufferStreamTest, GarbageCollection_DeleteAfterLastAppendMerged) {
  // Set memory limit to 10 buffers.
  SetMemoryLimit(10);

  // Append 3 GOPs starting at 400ms, 30ms apart.
  NewCodedFrameGroupAppend("400K 430 460 490K 520 550 580K 610 640");

  // Seek to the GOP at 580ms.
  SeekToTimestampMs(580);

  // Append 2 GOPs starting at 220ms, and they will be merged with the existing
  // range.  So the range before GC is "{ [220,670) }".
  NewCodedFrameGroupAppend("220K 250 280 310K 340 370");

  EXPECT_TRUE(GarbageCollect(base::TimeDelta::FromMilliseconds(580), 0));

  // Should save the newly appended GOPs.
  CheckExpectedRangesByTimestamp("{ [220,400) [580,670) }");
}

TEST_F(SourceBufferStreamTest, GarbageCollection_NoSeek) {
  // Set memory limit to 20 buffers.
  SetMemoryLimit(20);

  // Append 25 buffers at positions 0 through 24.
  NewCodedFrameGroupAppend(0, 25, &kDataA);

  // If playback is still in the first GOP (starting at 0), GC should fail.
  EXPECT_FALSE(GarbageCollectWithPlaybackAtBuffer(2, 0));
  CheckExpectedRanges("{ [0,24) }");

  // As soon as playback position moves past the first GOP, it should be removed
  // and after removing the first GOP we are under memory limit.
  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(5, 0));
  CheckExpectedRanges("{ [5,24) }");
  CheckNoNextBuffer();
  Seek(5);
  CheckExpectedBuffers(5, 24, &kDataA);
}

TEST_F(SourceBufferStreamTest, GarbageCollection_PendingSeek) {
  // Append 10 buffers at positions 0 through 9.
  NewCodedFrameGroupAppend(0, 10, &kDataA);

  // Append 5 buffers at positions 25 through 29.
  NewCodedFrameGroupAppend(25, 5, &kDataA);

  // Seek to position 15.
  Seek(15);
  CheckNoNextBuffer();
  CheckExpectedRanges("{ [0,9) [25,29) }");

  // Set memory limit to 5 buffers.
  SetMemoryLimit(5);

  // Append 5 buffers as positions 30 to 34 to trigger GC.
  AppendBuffers(30, 5, &kDataA);

  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(30, 0));

  // The current algorithm will delete from the beginning until the memory is
  // under cap.
  CheckExpectedRanges("{ [30,34) }");

  // Expand memory limit again so that GC won't be triggered.
  SetMemoryLimit(100);

  // Append data to fulfill seek.
  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(30, 5));
  NewCodedFrameGroupAppend(15, 5, &kDataA);

  // Check to make sure all is well.
  CheckExpectedRanges("{ [15,19) [30,34) }");
  CheckExpectedBuffers(15, 19, &kDataA);
  Seek(30);
  CheckExpectedBuffers(30, 34, &kDataA);
}

TEST_F(SourceBufferStreamTest, GarbageCollection_NeedsMoreData) {
  // Set memory limit to 15 buffers.
  SetMemoryLimit(15);

  // Append 10 buffers at positions 0 through 9.
  NewCodedFrameGroupAppend(0, 10, &kDataA);

  // Advance next buffer position to 10.
  Seek(0);
  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(0, 0));
  CheckExpectedBuffers(0, 9, &kDataA);
  CheckNoNextBuffer();

  // Append 20 buffers at positions 15 through 34.
  NewCodedFrameGroupAppend(15, 20, &kDataA);
  CheckExpectedRanges("{ [0,9) [15,34) }");

  // GC should save the keyframe before the next buffer position and the data
  // closest to the next buffer position. It will also save all buffers from
  // next buffer to the last GOP appended, which overflows limit and leads to
  // failure.
  EXPECT_FALSE(GarbageCollectWithPlaybackAtBuffer(5, 0));
  CheckExpectedRanges("{ [5,9) [15,34) }");

  // Now fulfill the seek at position 10. This will make GC delete the data
  // before position 10 to keep it within cap.
  NewCodedFrameGroupAppend(10, 5, &kDataA);
  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(10, 0));
  CheckExpectedRanges("{ [10,24) }");
  CheckExpectedBuffers(10, 24, &kDataA);
}

// Using position based test API:
// DTS  :  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
// PTS  :  0 4 1 2 3 5 9 6 7 8 0 4 1 2 3 5 9 6 7 8 0 4 1 2 3
// old  :  A a a a a A a a a a A a a a a*A*a a
//       -- Garbage Collect --
// after:                                A a a
//       -- Read one buffer --
// after:                                A*a*a
// new  :  B b b b b B b b b b B b b b b B b b b b
// track:                                 *a*a
//       -- Garbage Collect --
// after:                                B b b b b
// track:                                 *a*a
//       -- Read 2 buffers -> exhausts track buffer
// after:                                B b b b b
//       (awaiting next keyframe after GOP at position 15)
// new  :                                         *B*b b b b
// after:                                B b b b b*B*b b b b
//       -- Garbage Collect --
// after:                                         *B*b b b b
TEST_F(SourceBufferStreamTest, GarbageCollection_TrackBuffer) {
  // Set memory limit to 3 buffers.
  SetMemoryLimit(3);

  // Seek to position 15.
  Seek(15);

  // Append 18 buffers at positions 0 through 17 (DTS), 0 through 19 (PTS) with
  // partial 4th GOP.
  NewCodedFrameGroupAppend(0, 18, &kDataA);

  EXPECT_TRUE(GarbageCollectWithPlaybackAtBuffer(15, 0));

  // GC should leave GOP containing seek position (15,16,17 DTS; 15,19,16 PTS).
  // Unlike the rest of the position based test API used in this case,
  // CheckExpectedRanges() uses expectation strings containing actual timestamps
  // (divided by frame_duration_).
  CheckExpectedRanges("{ [15,19) }");

  // Move next buffer position to 16.
  CheckExpectedBuffers(15, 15, &kDataA);

  // Completely overlap the existing buffers with 4 full GOPs (0-19, PTS and
  // DTS).
  NewCodedFrameGroupAppend(0, 20, &kDataB);

  // Final GOP [15,19) contains 5 buffers, which is more than memory limit of
  // 3 buffers set at the beginning of the test, so GC will fail.
  EXPECT_FALSE(GarbageCollectWithPlaybackAtBuffer(15, 0));

  // Because buffers 16,17 (DTS), 19,16 (PTS) are not keyframes, they are moved
  // to the track buffer upon overlap. The source buffer (i.e. not the track
  // buffer) is now waiting for the next keyframe beyond GOP that survived GC.
  CheckExpectedRanges("{ [15,19) }");     // Source buffer
  CheckExpectedBuffers(16, 17, &kDataA);  // Exhaust the track buffer
  CheckNoNextBuffer();  // Confirms the source buffer is awaiting next keyframe.

  // Now add a 5-frame GOP  at position 20-24 (PTS and DTS).
  AppendBuffers(20, 5, &kDataB);

  // 5 buffers in final GOP, GC will fail
  EXPECT_FALSE(GarbageCollectWithPlaybackAtBuffer(20, 0));

  // Should garbage collect such that there are 5 frames remaining, starting at
  // the keyframe.
  CheckExpectedRanges("{ [20,24) }");

  // The buffer at position 16 (PTS 19) in track buffer was adjacent
  // to the next keyframe (PTS=DTS=20), so no warning should be emitted on that
  // track buffer exhaustion even though the last frame read out of track buffer
  // before exhaustion was position 17 (PTS 16).
  CheckExpectedBuffers(20, 24, &kDataB);
  CheckNoNextBuffer();
}

// Test GC preserves data starting at first GOP containing playback position.
TEST_F(SourceBufferStreamTest, GarbageCollection_SaveDataAtPlaybackPosition) {
  // Set memory limit to 30 buffers = 1 second of data.
  SetMemoryLimit(30);
  // And append 300 buffers = 10 seconds of data.
  NewCodedFrameGroupAppend(0, 300, &kDataA);
  CheckExpectedRanges("{ [0,299) }");

  // Playback position at 0, all data must be preserved.
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(0), 0));
  CheckExpectedRanges("{ [0,299) }");

  // Playback position at 1 sec, the first second of data [0,29) should be
  // collected, since we are way over memory limit.
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(1000), 0));
  CheckExpectedRanges("{ [30,299) }");

  // Playback position at 1.1 sec, no new data can be collected, since the
  // playback position is still in the first GOP of buffered data.
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(1100), 0));
  CheckExpectedRanges("{ [30,299) }");

  // Playback position at 5.166 sec, just at the very end of GOP corresponding
  // to buffer range 150-155, which should be preserved.
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(5166), 0));
  CheckExpectedRanges("{ [150,299) }");

  // Playback position at 5.167 sec, just past the end of GOP corresponding to
  // buffer range 150-155, it should be garbage collected now.
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(5167), 0));
  CheckExpectedRanges("{ [155,299) }");

  // Playback at 9.0 sec, we can now successfully collect all data except the
  // last second and we are back under memory limit of 30 buffers, so GCIfNeeded
  // should return true.
  EXPECT_TRUE(GarbageCollect(base::TimeDelta::FromMilliseconds(9000), 0));
  CheckExpectedRanges("{ [270,299) }");

  // Playback at 9.999 sec, GC succeeds, since we are under memory limit even
  // without removing any data.
  EXPECT_TRUE(GarbageCollect(base::TimeDelta::FromMilliseconds(9999), 0));
  CheckExpectedRanges("{ [270,299) }");

  // Playback at 15 sec, this should never happen during regular playback in
  // browser, since this position has no data buffered, but it should still
  // cause no problems to GC algorithm, so test it just in case.
  EXPECT_TRUE(GarbageCollect(base::TimeDelta::FromMilliseconds(15000), 0));
  CheckExpectedRanges("{ [270,299) }");
}

// Test saving the last GOP appended when this GOP is the only GOP in its range.
TEST_F(SourceBufferStreamTest, GarbageCollection_SaveAppendGOP) {
  // Set memory limit to 3 and make sure the 4-byte GOP is not garbage
  // collected.
  SetMemoryLimit(3);
  NewCodedFrameGroupAppend("0K 30 60 90");
  EXPECT_FALSE(GarbageCollectWithPlaybackAtBuffer(0, 0));
  CheckExpectedRangesByTimestamp("{ [0,120) }");

  // Make sure you can continue appending data to this GOP; again, GC should not
  // wipe out anything.
  AppendBuffers("120D30");
  EXPECT_FALSE(GarbageCollectWithPlaybackAtBuffer(0, 0));
  CheckExpectedRangesByTimestamp("{ [0,150) }");

  // Append a 2nd range after this without triggering GC.
  NewCodedFrameGroupAppend("200K 230 260 290K 320 350");
  CheckExpectedRangesByTimestamp("{ [0,150) [200,380) }");

  // Seek to 290ms.
  SeekToTimestampMs(290);

  // Now append a GOP in a separate range after the selected range and trigger
  // GC. Because it is after 290ms, this tests that the GOP is saved when
  // deleting from the back.
  NewCodedFrameGroupAppend("500K 530 560 590");
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(290), 0));

  // Should save GOPs between 290ms and the last GOP appended.
  CheckExpectedRangesByTimestamp("{ [290,380) [500,620) }");

  // Continue appending to this GOP after GC.
  AppendBuffers("620D30");
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(290), 0));
  CheckExpectedRangesByTimestamp("{ [290,380) [500,650) }");
}

// Test saving the last GOP appended when this GOP is in the middle of a
// non-selected range.
TEST_F(SourceBufferStreamTest, GarbageCollection_SaveAppendGOP_Middle) {
  // Append 3 GOPs starting at 0ms, 30ms apart.
  NewCodedFrameGroupAppend("0K 30 60 90K 120 150 180K 210 240");
  CheckExpectedRangesByTimestamp("{ [0,270) }");

  // Now set the memory limit to 1 and overlap the middle of the range with a
  // new GOP.
  SetMemoryLimit(1);
  NewCodedFrameGroupAppend("80K 110 140");

  // This whole GOP should be saved after GC, which will fail due to GOP being
  // larger than 1 buffer
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(80), 0));
  CheckExpectedRangesByTimestamp("{ [80,170) }");
  // We should still be able to continue appending data to GOP
  AppendBuffers("170D30");
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(80), 0));
  CheckExpectedRangesByTimestamp("{ [80,200) }");

  // Append a 2nd range after this range, without triggering GC.
  NewCodedFrameGroupAppend("400K 430 460 490K 520 550 580K 610 640");
  CheckExpectedRangesByTimestamp("{ [80,200) [400,670) }");

  // Seek to 80ms to make the first range the selected range.
  SeekToTimestampMs(80);

  // Now append a GOP in the middle of the second range and trigger GC. Because
  // it is after the selected range, this tests that the GOP is saved when
  // deleting from the back.
  NewCodedFrameGroupAppend("500K 530 560 590");
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(80), 0));

  // Should save the GOPs between the seek point and GOP that was last appended
  CheckExpectedRangesByTimestamp("{ [80,200) [400,620) }");

  // Continue appending to this GOP after GC.
  AppendBuffers("620D30");
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(80), 0));
  CheckExpectedRangesByTimestamp("{ [80,200) [400,650) }");
}

// Test saving the last GOP appended when the GOP containing the next buffer is
// adjacent to the last GOP appended.
TEST_F(SourceBufferStreamTest, GarbageCollection_SaveAppendGOP_Selected1) {
  // Append 3 GOPs at 0ms, 90ms, and 180ms.
  NewCodedFrameGroupAppend("0K 30 60 90K 120 150 180K 210 240");
  CheckExpectedRangesByTimestamp("{ [0,270) }");

  // Seek to the GOP at 90ms.
  SeekToTimestampMs(90);

  // Set the memory limit to 1, then overlap the GOP at 0.
  SetMemoryLimit(1);
  NewCodedFrameGroupAppend("0K 30 60");

  // GC should save the GOP at 0ms and 90ms, and will fail since GOP larger
  // than 1 buffer
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(90), 0));
  CheckExpectedRangesByTimestamp("{ [0,180) }");

  // Seek to 0 and check all buffers.
  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K 30 60 90K 120 150");
  CheckNoNextBuffer();

  // Now seek back to 90ms and append a GOP at 180ms.
  SeekToTimestampMs(90);
  NewCodedFrameGroupAppend("180K 210 240");

  // Should save the GOP at 90ms and the GOP at 180ms.
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(90), 0));
  CheckExpectedRangesByTimestamp("{ [90,270) }");
  CheckExpectedBuffers("90K 120 150 180K 210 240");
  CheckNoNextBuffer();
}

// Test saving the last GOP appended when it is at the beginning or end of the
// selected range. This tests when the last GOP appended is before or after the
// GOP containing the next buffer, but not directly adjacent to this GOP.
TEST_F(SourceBufferStreamTest, GarbageCollection_SaveAppendGOP_Selected2) {
  // Append 4 GOPs starting at positions 0ms, 90ms, 180ms, 270ms.
  NewCodedFrameGroupAppend("0K 30 60 90K 120 150 180K 210 240 270K 300 330");
  CheckExpectedRangesByTimestamp("{ [0,360) }");

  // Seek to the last GOP at 270ms.
  SeekToTimestampMs(270);

  // Set the memory limit to 1, then overlap the GOP at 90ms.
  SetMemoryLimit(1);
  NewCodedFrameGroupAppend("90K 120 150");

  // GC will save data in the range where the most recent append has happened
  // [0; 180) and the range where the next read position is [270;360)
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(270), 0));
  CheckExpectedRangesByTimestamp("{ [0,180) [270,360) }");

  // Add 3 GOPs to the end of the selected range at 360ms, 450ms, and 540ms.
  NewCodedFrameGroupAppend("360K 390 420 450K 480 510 540K 570 600");
  CheckExpectedRangesByTimestamp("{ [0,180) [270,630) }");

  // Overlap the GOP at 450ms and garbage collect to test deleting from the
  // back.
  NewCodedFrameGroupAppend("450K 480 510");
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(270), 0));

  // Should save GOPs from GOP at 270ms to GOP at 450ms.
  CheckExpectedRangesByTimestamp("{ [270,540) }");
}

// Test saving the last GOP appended when it is the same as the GOP containing
// the next buffer.
TEST_F(SourceBufferStreamTest, GarbageCollection_SaveAppendGOP_Selected3) {
  // Seek to start of stream.
  SeekToTimestampMs(0);

  // Append 3 GOPs starting at 0ms, 90ms, 180ms.
  NewCodedFrameGroupAppend("0K 30 60 90K 120 150 180K 210 240");
  CheckExpectedRangesByTimestamp("{ [0,270) }");

  // Set the memory limit to 1 then begin appending the start of a GOP starting
  // at 0ms.
  SetMemoryLimit(1);
  NewCodedFrameGroupAppend("0K 30");

  // GC should save the newly appended GOP, which is also the next GOP that
  // will be returned from the seek request.
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(0), 0));
  CheckExpectedRangesByTimestamp("{ [0,60) }");

  // Check the buffers in the range.
  CheckExpectedBuffers("0K 30");
  CheckNoNextBuffer();

  // Continue appending to this buffer.
  AppendBuffers("60 90");

  // GC should still save the rest of this GOP and should be able to fulfill
  // the read.
  EXPECT_FALSE(GarbageCollect(base::TimeDelta::FromMilliseconds(0), 0));
  CheckExpectedRangesByTimestamp("{ [0,120) }");
  CheckExpectedBuffers("60 90");
  CheckNoNextBuffer();
}

// Test the performance of garbage collection.
TEST_F(SourceBufferStreamTest, GarbageCollection_Performance) {
  // Force |keyframes_per_second_| to be equal to kDefaultFramesPerSecond.
  SetStreamInfo(kDefaultFramesPerSecond, kDefaultFramesPerSecond);

  const int kBuffersToKeep = 1000;
  SetMemoryLimit(kBuffersToKeep);

  int buffers_appended = 0;

  NewCodedFrameGroupAppend(0, kBuffersToKeep);
  buffers_appended += kBuffersToKeep;

  const int kBuffersToAppend = 1000;
  const int kGarbageCollections = 3;
  for (int i = 0; i < kGarbageCollections; ++i) {
    AppendBuffers(buffers_appended, kBuffersToAppend);
    buffers_appended += kBuffersToAppend;
  }
}

TEST_F(SourceBufferStreamTest, GarbageCollection_MediaTimeAfterLastAppendTime) {
  // Set memory limit to 10 buffers.
  SetMemoryLimit(10);

  // Append 12 buffers. The duration of the last buffer is 30
  NewCodedFrameGroupAppend("0K 30 60 90 120K 150 180 210K 240 270 300K 330D30");
  CheckExpectedRangesByTimestamp("{ [0,360) }");

  // Do a garbage collection with the media time higher than the timestamp of
  // the last appended buffer (330), but still within buffered ranges, taking
  // into account the duration of the last frame (timestamp of the last frame is
  // 330, duration is 30, so the latest valid buffered position is 330+30=360).
  EXPECT_TRUE(GarbageCollect(base::TimeDelta::FromMilliseconds(360), 0));

  // GC should collect one GOP from the front to bring us back under memory
  // limit of 10 buffers.
  CheckExpectedRangesByTimestamp("{ [120,360) }");
}

TEST_F(SourceBufferStreamTest,
       GarbageCollection_MediaTimeOutsideOfStreamBufferedRange) {
  // Set memory limit to 10 buffers.
  SetMemoryLimit(10);

  // Append 12 buffers.
  NewCodedFrameGroupAppend("0K 30 60 90 120K 150 180 210K 240 270 300K 330");
  CheckExpectedRangesByTimestamp("{ [0,360) }");

  // Seek in order to set the stream read position to 330 an ensure that the
  // stream selects the buffered range.
  SeekToTimestampMs(330);

  // Do a garbage collection with the media time outside the buffered ranges
  // (this might happen when there's both audio and video streams, audio stream
  // buffered range is longer than the video stream buffered range, since
  // media::Pipeline uses audio stream as a time source in that case, it might
  // return a media_time that is slightly outside of video buffered range). In
  // those cases the GC algorithm should clamp the media_time value to the
  // buffered ranges to work correctly (see crbug.com/563292).
  EXPECT_TRUE(GarbageCollect(base::TimeDelta::FromMilliseconds(361), 0));

  // GC should collect one GOP from the front to bring us back under memory
  // limit of 10 buffers.
  CheckExpectedRangesByTimestamp("{ [120,360) }");
}

TEST_F(SourceBufferStreamTest, GetRemovalRange_BytesToFree) {
  // Append 2 GOPs starting at 300ms, 30ms apart.
  NewCodedFrameGroupAppend("300K 330 360 390K 420 450");

  // Append 2 GOPs starting at 600ms, 30ms apart.
  NewCodedFrameGroupAppend("600K 630 660 690K 720 750");

  // Append 2 GOPs starting at 900ms, 30ms apart.
  NewCodedFrameGroupAppend("900K 930 960 990K 1020 1050");

  CheckExpectedRangesByTimestamp("{ [300,480) [600,780) [900,1080) }");

  int remove_range_end = -1;
  int bytes_removed = -1;

  // Size 0.
  bytes_removed = GetRemovalRangeInMs(300, 1080, 0, &remove_range_end);
  EXPECT_EQ(-1, remove_range_end);
  EXPECT_EQ(0, bytes_removed);

  // Smaller than the size of GOP.
  bytes_removed = GetRemovalRangeInMs(300, 1080, 1, &remove_range_end);
  EXPECT_EQ(390, remove_range_end);
  // Remove as the size of GOP.
  EXPECT_EQ(3, bytes_removed);

  // The same size with a GOP.
  bytes_removed = GetRemovalRangeInMs(300, 1080, 3, &remove_range_end);
  EXPECT_EQ(390, remove_range_end);
  EXPECT_EQ(3, bytes_removed);

  // The same size with a range.
  bytes_removed = GetRemovalRangeInMs(300, 1080, 6, &remove_range_end);
  EXPECT_EQ(480, remove_range_end);
  EXPECT_EQ(6, bytes_removed);

  // A frame larger than a range.
  bytes_removed = GetRemovalRangeInMs(300, 1080, 7, &remove_range_end);
  EXPECT_EQ(690, remove_range_end);
  EXPECT_EQ(9, bytes_removed);

  // The same size with two ranges.
  bytes_removed = GetRemovalRangeInMs(300, 1080, 12, &remove_range_end);
  EXPECT_EQ(780, remove_range_end);
  EXPECT_EQ(12, bytes_removed);

  // Larger than two ranges.
  bytes_removed = GetRemovalRangeInMs(300, 1080, 14, &remove_range_end);
  EXPECT_EQ(990, remove_range_end);
  EXPECT_EQ(15, bytes_removed);

  // The same size with the whole ranges.
  bytes_removed = GetRemovalRangeInMs(300, 1080, 18, &remove_range_end);
  EXPECT_EQ(1080, remove_range_end);
  EXPECT_EQ(18, bytes_removed);

  // Larger than the whole ranges.
  bytes_removed = GetRemovalRangeInMs(300, 1080, 20, &remove_range_end);
  EXPECT_EQ(1080, remove_range_end);
  EXPECT_EQ(18, bytes_removed);
}

TEST_F(SourceBufferStreamTest, GetRemovalRange_Range) {
  // Append 2 GOPs starting at 300ms, 30ms apart.
  NewCodedFrameGroupAppend("300K 330 360 390K 420 450");

  // Append 2 GOPs starting at 600ms, 30ms apart.
  NewCodedFrameGroupAppend("600K 630 660 690K 720 750");

  // Append 2 GOPs starting at 900ms, 30ms apart.
  NewCodedFrameGroupAppend("900K 930 960 990K 1020 1050");

  CheckExpectedRangesByTimestamp("{ [300,480) [600,780) [900,1080) }");

  int remove_range_end = -1;
  int bytes_removed = -1;

  // Within a GOP and no keyframe.
  bytes_removed = GetRemovalRangeInMs(630, 660, 20, &remove_range_end);
  EXPECT_EQ(-1, remove_range_end);
  EXPECT_EQ(0, bytes_removed);

  // Across a GOP and no keyframe.
  bytes_removed = GetRemovalRangeInMs(630, 750, 20, &remove_range_end);
  EXPECT_EQ(-1, remove_range_end);
  EXPECT_EQ(0, bytes_removed);

  // The same size with a range.
  bytes_removed = GetRemovalRangeInMs(600, 780, 20, &remove_range_end);
  EXPECT_EQ(780, remove_range_end);
  EXPECT_EQ(6, bytes_removed);

  // One frame larger than a range.
  bytes_removed = GetRemovalRangeInMs(570, 810, 20, &remove_range_end);
  EXPECT_EQ(780, remove_range_end);
  EXPECT_EQ(6, bytes_removed);

  // Facing the other ranges.
  bytes_removed = GetRemovalRangeInMs(480, 900, 20, &remove_range_end);
  EXPECT_EQ(780, remove_range_end);
  EXPECT_EQ(6, bytes_removed);

  // In the midle of the other ranges, but not including any GOP.
  bytes_removed = GetRemovalRangeInMs(420, 960, 20, &remove_range_end);
  EXPECT_EQ(780, remove_range_end);
  EXPECT_EQ(6, bytes_removed);

  // In the middle of the other ranges.
  bytes_removed = GetRemovalRangeInMs(390, 990, 20, &remove_range_end);
  EXPECT_EQ(990, remove_range_end);
  EXPECT_EQ(12, bytes_removed);

  // A frame smaller than the whole ranges.
  bytes_removed = GetRemovalRangeInMs(330, 1050, 20, &remove_range_end);
  EXPECT_EQ(990, remove_range_end);
  EXPECT_EQ(12, bytes_removed);

  // The same with the whole ranges.
  bytes_removed = GetRemovalRangeInMs(300, 1080, 20, &remove_range_end);
  EXPECT_EQ(1080, remove_range_end);
  EXPECT_EQ(18, bytes_removed);

  // Larger than the whole ranges.
  bytes_removed = GetRemovalRangeInMs(270, 1110, 20, &remove_range_end);
  EXPECT_EQ(1080, remove_range_end);
  EXPECT_EQ(18, bytes_removed);
}

TEST_F(SourceBufferStreamTest, ConfigChange_Basic) {
  VideoDecoderConfig new_config = TestVideoConfig::Large();
  ASSERT_FALSE(new_config.Matches(video_config_));

  Seek(0);
  CheckVideoConfig(video_config_);

  // Append 5 buffers at positions 0 through 4
  NewCodedFrameGroupAppend(0, 5, &kDataA);

  CheckVideoConfig(video_config_);

  // Signal a config change.
  stream_->UpdateVideoConfig(new_config, false);

  // Make sure updating the config doesn't change anything since new_config
  // should not be associated with the buffer GetNextBuffer() will return.
  CheckVideoConfig(video_config_);

  // Append 5 buffers at positions 5 through 9.
  NewCodedFrameGroupAppend(5, 5, &kDataB);

  // Consume the buffers associated with the initial config.
  scoped_refptr<StreamParserBuffer> buffer;
  for (int i = 0; i < 5; i++) {
    EXPECT_STATUS_FOR_STREAM_OP(kSuccess, GetNextBuffer(&buffer));
    CheckVideoConfig(video_config_);
  }

  // Verify the next attempt to get a buffer will signal that a config change
  // has happened.
  EXPECT_STATUS_FOR_STREAM_OP(kConfigChange, GetNextBuffer(&buffer));

  // Verify that the new config is now returned.
  CheckVideoConfig(new_config);

  // Consume the remaining buffers associated with the new config.
  for (int i = 0; i < 5; i++) {
    CheckVideoConfig(new_config);
    EXPECT_STATUS_FOR_STREAM_OP(kSuccess, GetNextBuffer(&buffer));
  }
}

TEST_F(SourceBufferStreamTest, ConfigChange_Seek) {
  scoped_refptr<StreamParserBuffer> buffer;
  VideoDecoderConfig new_config = TestVideoConfig::Large();

  Seek(0);
  NewCodedFrameGroupAppend(0, 5, &kDataA);
  stream_->UpdateVideoConfig(new_config, false);
  NewCodedFrameGroupAppend(5, 5, &kDataB);

  // Seek to the start of the buffers with the new config and make sure a
  // config change is signalled.
  CheckVideoConfig(video_config_);
  Seek(5);
  CheckVideoConfig(video_config_);
  EXPECT_STATUS_FOR_STREAM_OP(kConfigChange, GetNextBuffer(&buffer));
  CheckVideoConfig(new_config);
  CheckExpectedBuffers(5, 9, &kDataB);


  // Seek to the start which has a different config. Don't fetch any buffers and
  // seek back to buffers with the current config. Make sure a config change
  // isn't signalled in this case.
  CheckVideoConfig(new_config);
  Seek(0);
  Seek(7);
  CheckExpectedBuffers(5, 9, &kDataB);


  // Seek to the start and make sure a config change is signalled.
  CheckVideoConfig(new_config);
  Seek(0);
  CheckVideoConfig(new_config);
  EXPECT_STATUS_FOR_STREAM_OP(kConfigChange, GetNextBuffer(&buffer));
  CheckVideoConfig(video_config_);
  CheckExpectedBuffers(0, 4, &kDataA);
}

TEST_F(SourceBufferStreamTest, SetExplicitDuration) {
  // Append 3 discontinuous partial GOPs.
  NewCodedFrameGroupAppend("50K 90|60");
  NewCodedFrameGroupAppend("150K 190|160");
  NewCodedFrameGroupAppend("250K 290|260");

  CheckExpectedRangesByTimestamp("{ [50,100) [150,200) [250,300) }");

  // Set duration to be 80ms. Truncates the buffered data after 80ms.
  stream_->OnSetDuration(base::TimeDelta::FromMilliseconds(80));

  // The simulated P-frame at PTS 90ms should have been
  // removed by the duration truncation. Only the frame at PTS 50ms should
  // remain.
  CheckExpectedRangesByTimestamp("{ [50,60) }");

  // Adding data past the previous duration should still work.
  NewCodedFrameGroupAppend("0D50K 50 100K");
  CheckExpectedRangesByTimestamp("{ [0,150) }");
}

TEST_F(SourceBufferStreamTest, SetExplicitDuration_EdgeCase) {
  // Append 10 buffers at positions 10 through 19.
  NewCodedFrameGroupAppend(10, 10);

  // Append 5 buffers at positions 25 through 29.
  NewCodedFrameGroupAppend(25, 5);

  // Check expected ranges.
  CheckExpectedRanges("{ [10,19) [25,29) }");

  // Set duration to be right before buffer 25.
  stream_->OnSetDuration(frame_duration() * 25);

  // Should truncate the last range.
  CheckExpectedRanges("{ [10,19) }");
}

TEST_F(SourceBufferStreamTest, SetExplicitDuration_EdgeCase2) {
  // This test requires specific relative proportions for fudge room, append
  // size, and duration truncation amounts. See details at:
  // https://codereview.chromium.org/2385423002

  // Append buffers with first buffer establishing max_inter_buffer_distance
  // of 5 ms. This translates to a fudge room (2 x max_interbuffer_distance) of
  // 10 ms.
  NewCodedFrameGroupAppend("0K 5K 9D4K");
  CheckExpectedRangesByTimestamp("{ [0,13) }");

  // Trim off last 2 buffers, totaling 8 ms. Notably less than the current fudge
  // room of 10 ms.
  stream_->OnSetDuration(base::TimeDelta::FromMilliseconds(5));

  // Verify truncation.
  CheckExpectedRangesByTimestamp("{ [0,5) }");

  // Append new buffers just beyond the fudge-room allowance of 10ms.
  AppendBuffers("11K 15K");

  // Verify new append creates a gap.
  CheckExpectedRangesByTimestamp("{ [0,5) [11,19) }");
}

TEST_F(SourceBufferStreamTest, RemoveWithinFudgeRoom) {
  // This test requires specific relative proportions for fudge room, append
  // size, and removal amounts. See details at:
  // https://codereview.chromium.org/2385423002

  // Append buffers with first buffer establishing max_inter_buffer_distance
  // of 5 ms. This translates to a fudge room (2 x max_interbuffer_distance) of
  // 10 ms.
  NewCodedFrameGroupAppend("0K 5K 9D4K");
  CheckExpectedRangesByTimestamp("{ [0,13) }");

  // Trim off last 2 buffers, totaling 8 ms. Notably less than the current fudge
  // room of 10 ms.
  RemoveInMs(5, 13, 13);

  // Verify removal.
  CheckExpectedRangesByTimestamp("{ [0,5) }");

  // Append new buffers just beyond the fudge-room allowance of 10ms.
  AppendBuffers("11K 15K");

  // Verify new append creates a gap.
  CheckExpectedRangesByTimestamp("{ [0,5) [11,19) }");
}

TEST_F(SourceBufferStreamTest, SetExplicitDuration_DeletePartialRange) {
  // Append IPBBB GOPs into 3 discontinuous ranges.
  NewCodedFrameGroupAppend("0K 40|10 10|20 20|30 30|40");
  NewCodedFrameGroupAppend(
      "100K 140|110 110|120 120|130 130|140 "
      "150K 190|160 160|170 170|180 180|190");
  NewCodedFrameGroupAppend("250K 290|260 260|270 270|280 280|290");

  // Check expected ranges.
  CheckExpectedRangesByTimestamp("{ [0,50) [100,200) [250,300) }");

  stream_->OnSetDuration(base::TimeDelta::FromMilliseconds(140));

  // The B-frames at PTS 110-130 were in the GOP in decode order after
  // the simulated P-frame at PTS 140 which was truncated, so those B-frames
  // are also removed.
  CheckExpectedRangesByTimestamp("{ [0,50) [100,110) }");
}

TEST_F(SourceBufferStreamTest, SetExplicitDuration_DeleteSelectedRange) {
  // Append 3 discontinuous partial GOPs.
  NewCodedFrameGroupAppend("50K 90|60");
  NewCodedFrameGroupAppend("150K 190|160");
  NewCodedFrameGroupAppend("250K 290|260");

  CheckExpectedRangesByTimestamp("{ [50,100) [150,200) [250,300) }");

  SeekToTimestampMs(150);

  // Set duration to 50ms.
  stream_->OnSetDuration(base::TimeDelta::FromMilliseconds(50));

  // Expect everything to be deleted, and should not have next buffer anymore.
  CheckNoNextBuffer();
  CheckExpectedRangesByTimestamp("{ }");

  // Appending data 0ms through 250ms should not fulfill the seek.
  // (If the duration is set to be something smaller than the current seek
  // point, which had been 150ms, then the seek point is reset and the
  // SourceBufferStream waits for a new seek request. Therefore even if the data
  // is re-appended, it should not fulfill the old seek.)
  NewCodedFrameGroupAppend("0K 50K 100K 150K 200K");
  CheckNoNextBuffer();
  CheckExpectedRangesByTimestamp("{ [0,250) }");
}

TEST_F(SourceBufferStreamTest, SetExplicitDuration_DeletePartialSelectedRange) {
  // Append 5 buffers at positions 0 through 4.
  NewCodedFrameGroupAppend(0, 5);

  // Append 20 buffers at positions 10 through 29.
  NewCodedFrameGroupAppend(10, 20);

  // Check expected ranges.
  CheckExpectedRanges("{ [0,4) [10,29) }");

  // Seek to position 10.
  Seek(10);

  // Set duration to be between buffers 24 and 25.
  stream_->OnSetDuration(frame_duration() * 25);

  // Should truncate the data after 24.
  CheckExpectedRanges("{ [0,4) [10,24) }");

  // The seek position should not be lost.
  CheckExpectedBuffers(10, 10);

  // Now set the duration immediately after buffer 10.
  stream_->OnSetDuration(frame_duration() * 11);

  // Seek position should be reset.
  CheckNoNextBuffer();
  CheckExpectedRanges("{ [0,4) [10,10) }");
}

// Test the case where duration is set while the stream parser buffers
// already start passing the data to decoding pipeline. Selected range,
// when invalidated by getting truncated, should be updated to NULL
// accordingly so that successive append operations keep working.
TEST_F(SourceBufferStreamTest, SetExplicitDuration_UpdateSelectedRange) {
  // Seek to start of stream.
  SeekToTimestampMs(0);

  NewCodedFrameGroupAppend("0K 30 60 90");

  // Read out the first few buffers.
  CheckExpectedBuffers("0K 30");

  // Set duration to be right before buffer 1.
  stream_->OnSetDuration(base::TimeDelta::FromMilliseconds(60));

  // Verify that there is no next buffer.
  CheckNoNextBuffer();

  // We should be able to append new buffers at this point.
  NewCodedFrameGroupAppend("120K 150");

  CheckExpectedRangesByTimestamp("{ [0,60) [120,180) }");
}

TEST_F(SourceBufferStreamTest,
       SetExplicitDuration_AfterGroupTimestampAndBeforeFirstBufferTimestamp) {
  NewCodedFrameGroupAppend("0K 30K 60K");

  // Append a coded frame group with a start timestamp of 200, but the first
  // buffer starts at 230ms. This can happen in muxed content where the
  // audio starts before the first frame.
  NewCodedFrameGroupAppend(base::TimeDelta::FromMilliseconds(200),
                           "230K 260K 290K 320K");

  NewCodedFrameGroupAppend("400K 430K 460K");

  CheckExpectedRangesByTimestamp("{ [0,90) [200,350) [400,490) }");

  stream_->OnSetDuration(base::TimeDelta::FromMilliseconds(120));

  // Verify that the buffered ranges are updated properly and we don't crash.
  CheckExpectedRangesByTimestamp("{ [0,90) }");
}

TEST_F(SourceBufferStreamTest, SetExplicitDuration_MarkEOS) {
  // Append 1 full and 1 partial GOP: IPBBBIPBB
  NewCodedFrameGroupAppend(
      "0K 40|10 10|20 20|30 30|40 "
      "50K 90|60 60|70 70|80");

  CheckExpectedRangesByTimestamp("{ [0,100) }");

  SeekToTimestampMs(50);

  // Set duration to be before the seeked to position.
  // This will result in truncation of the selected range and a reset
  // of NextBufferPosition.
  stream_->OnSetDuration(base::TimeDelta::FromMilliseconds(40));

  // The P-frame at PTS 40ms was removed, so its dependent B-frames at PTS 10-30
  // were also removed.
  CheckExpectedRangesByTimestamp("{ [0,10) }");

  // Mark EOS reached.
  stream_->MarkEndOfStream();

  // Expect EOS to be reached.
  CheckEOSReached();
}

TEST_F(SourceBufferStreamTest, SetExplicitDuration_MarkEOS_IsSeekPending) {
  // Append 1 full and 1 partial GOP: IPBBBIPBB
  NewCodedFrameGroupAppend(
      "0K 40|10 10|20 20|30 30|40 "
      "50K 90|60 60|70 70|80");

  CheckExpectedRangesByTimestamp("{ [0,100) }");

  // Seek to 100ms will result in a pending seek.
  SeekToTimestampMs(100);

  // Set duration to be before the seeked to position.
  // This will result in truncation of the selected range and a reset
  // of NextBufferPosition.
  stream_->OnSetDuration(base::TimeDelta::FromMilliseconds(40));

  // The P-frame at PTS 40ms was removed, so its dependent B-frames at PTS 10-30
  // were also removed.
  CheckExpectedRangesByTimestamp("{ [0,10) }");

  EXPECT_TRUE(stream_->IsSeekPending());
  // Mark EOS reached.
  stream_->MarkEndOfStream();
  EXPECT_FALSE(stream_->IsSeekPending());
}

// Test the case were the current playback position is at the end of the
// buffered data and several overlaps occur.
TEST_F(SourceBufferStreamTest, OverlapWhileWaitingForMoreData) {
  // Seek to start of stream.
  SeekToTimestampMs(0);

  NewCodedFrameGroupAppend("0K 30 60 90 120K 150");
  CheckExpectedRangesByTimestamp("{ [0,180) }");

  // Read all the buffered data.
  CheckExpectedBuffers("0K 30 60 90 120K 150");
  CheckNoNextBuffer();

  // Append data over the current GOP so that a keyframe is needed before
  // playback can continue from the current position.
  NewCodedFrameGroupAppend("120K 150");
  CheckExpectedRangesByTimestamp("{ [0,180) }");

  // Append buffers that replace the first GOP with a partial GOP.
  NewCodedFrameGroupAppend("0K 30");
  CheckExpectedRangesByTimestamp("{ [0,180) }");

  // Append buffers that complete that partial GOP.
  AppendBuffers("60 90");
  CheckExpectedRangesByTimestamp("{ [0,180) }");

  // Verify that we still don't have a next buffer.
  CheckNoNextBuffer();

  // Add more data to the end and verify that this new data is read correctly.
  NewCodedFrameGroupAppend("180K 210");
  CheckExpectedRangesByTimestamp("{ [0,240) }");
  CheckExpectedBuffers("180K 210");
  CheckNoNextBuffer();
}

// Verify that a single coded frame at the current read position unblocks the
// read even if the frame is buffered after the previously read position is
// removed.
TEST_F(SourceBufferStreamTest, AfterRemove_SingleFrameRange_Unblocks_Read) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30 60 90D30");
  CheckExpectedRangesByTimestamp("{ [0,120) }");
  CheckExpectedBuffers("0K 30 60 90");
  CheckNoNextBuffer();

  RemoveInMs(0, 120, 120);
  CheckExpectedRangesByTimestamp("{ }");
  NewCodedFrameGroupAppend("120D30K");
  CheckExpectedRangesByTimestamp("{ [120,150) }");
  CheckExpectedBuffers("120K");
  CheckNoNextBuffer();
}

// Verify that multiple short (relative to max-inter-buffer-distance * 2) coded
// frames at the current read position unblock the read even if the frames are
// buffered after the previously read position is removed.
TEST_F(SourceBufferStreamTest, AfterRemove_TinyFrames_Unblock_Read_1) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30 60 90D30");
  CheckExpectedRangesByTimestamp("{ [0,120) }");
  CheckExpectedBuffers("0K 30 60 90");
  CheckNoNextBuffer();

  RemoveInMs(0, 120, 120);
  CheckExpectedRangesByTimestamp("{ }");
  NewCodedFrameGroupAppend("120D1K 121D1");
  CheckExpectedRangesByTimestamp("{ [120,122) }");
  CheckExpectedBuffers("120K 121");
  CheckNoNextBuffer();
}

// Verify that multiple short (relative to max-inter-buffer-distance * 2) coded
// frames starting at the fudge room boundary unblock the read even if the
// frames are buffered after the previously read position is removed.
TEST_F(SourceBufferStreamTest, AfterRemove_TinyFrames_Unblock_Read_2) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30 60 90D30");
  CheckExpectedRangesByTimestamp("{ [0,120) }");
  CheckExpectedBuffers("0K 30 60 90");
  CheckNoNextBuffer();

  RemoveInMs(0, 120, 120);
  CheckExpectedRangesByTimestamp("{ }");
  NewCodedFrameGroupAppend("150D1K 151D1");
  CheckExpectedRangesByTimestamp("{ [150,152) }");
  CheckExpectedBuffers("150K 151");
  CheckNoNextBuffer();
}

// Verify that coded frames starting after the fudge room boundary do not
// unblock the read when buffered after the previously read position is removed.
TEST_F(SourceBufferStreamTest, AfterRemove_BeyondFudge_Stalled) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30 60 90D30");
  CheckExpectedRangesByTimestamp("{ [0,120) }");
  CheckExpectedBuffers("0K 30 60 90");
  CheckNoNextBuffer();

  RemoveInMs(0, 120, 120);
  CheckExpectedRangesByTimestamp("{ }");
  NewCodedFrameGroupAppend("151D1K 152D1");
  CheckExpectedRangesByTimestamp("{ [151,153) }");
  CheckNoNextBuffer();
}

// Verify that non-keyframes with the same timestamp in the same
// append are handled correctly.
TEST_F(SourceBufferStreamTest, SameTimestamp_Video_SingleAppend) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30 30 60 90 120K 150");
  CheckExpectedBuffers("0K 30 30 60 90 120K 150");
}

// Verify that a non-keyframe followed by a keyframe with the same timestamp
// is allowed.
TEST_F(SourceBufferStreamTest, SameTimestamp_Video_SingleAppend2) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30 30K 60");
  CheckExpectedBuffers("0K 30 30K 60");
}

// Verify that non-keyframes with the same timestamp can occur
// in different appends.
TEST_F(SourceBufferStreamTest, SameTimestamp_Video_TwoAppends) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30D0");
  AppendBuffers("30 60 90 120K 150");
  CheckExpectedBuffers("0K 30 30 60 90 120K 150");
}

// Verify that a non-keyframe followed by a keyframe with the same timestamp
// is allowed.
TEST_F(SourceBufferStreamTest, SameTimestamp_Video_TwoAppends2) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30D0");
  AppendBuffers("30K 60");
  CheckExpectedBuffers("0K 30 30K 60");
}

// Verify that a keyframe followed by a non-keyframe with the same timestamp
// is allowed.
TEST_F(SourceBufferStreamTest, SameTimestamp_VideoKeyFrame_TwoAppends) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30D0K");
  AppendBuffers("30 60");
  CheckExpectedBuffers("0K 30K 30 60");
}

TEST_F(SourceBufferStreamTest, SameTimestamp_VideoKeyFrame_SingleAppend) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30K 30 60");
  CheckExpectedBuffers("0K 30K 30 60");
}

TEST_F(SourceBufferStreamTest, SameTimestamp_Video_Overlap_1) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30 60 60 90 120K 150");

  NewCodedFrameGroupAppend("60K 91 121K 151");
  CheckExpectedBuffers("0K 30 60K 91 121K 151");
}

TEST_F(SourceBufferStreamTest, SameTimestamp_Video_Overlap_2) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30 60 60 90 120K 150");
  NewCodedFrameGroupAppend("0K 30 61");
  CheckExpectedBuffers("0K 30 61 120K 150");
}

TEST_F(SourceBufferStreamTest, SameTimestamp_Video_Overlap_3) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 20 40 60 80 100K 101 102 103K");
  NewCodedFrameGroupAppend("0K 20 40 60 80 90D0");
  CheckExpectedBuffers("0K 20 40 60 80 90 100K 101 102 103K");
  AppendBuffers("90 110K 150");
  Seek(0);
  CheckExpectedBuffers("0K 20 40 60 80 90 90 110K 150");
  CheckNoNextBuffer();
  CheckExpectedRangesByTimestamp("{ [0,190) }");
}

// Test all the valid same timestamp cases for audio.
TEST_F(SourceBufferStreamTest, SameTimestamp_Audio) {
  AudioDecoderConfig config(kCodecMP3, kSampleFormatF32, CHANNEL_LAYOUT_STEREO,
                            44100, EmptyExtraData(), Unencrypted());
  ResetStream<>(config);
  Seek(0);
  NewCodedFrameGroupAppend("0K 0K 30K 30K");
  CheckExpectedBuffers("0K 0K 30K 30K");
}

// If seeking past any existing range and the seek is pending
// because no data has been provided for that position,
// the stream position can be considered as the end of stream.
TEST_F(SourceBufferStreamTest, EndSelected_During_PendingSeek) {
  // Append 15 buffers at positions 0 through 14.
  NewCodedFrameGroupAppend(0, 15);

  Seek(20);
  EXPECT_TRUE(stream_->IsSeekPending());
  stream_->MarkEndOfStream();
  EXPECT_FALSE(stream_->IsSeekPending());
}

// If there is a pending seek between 2 existing ranges,
// the end of the stream has not been reached.
TEST_F(SourceBufferStreamTest, EndNotSelected_During_PendingSeek) {
  // Append:
  // - 10 buffers at positions 0 through 9.
  // - 10 buffers at positions 30 through 39
  NewCodedFrameGroupAppend(0, 10);
  NewCodedFrameGroupAppend(30, 10);

  Seek(20);
  EXPECT_TRUE(stream_->IsSeekPending());
  stream_->MarkEndOfStream();
  EXPECT_TRUE(stream_->IsSeekPending());
}

// Removing exact start & end of a range.
TEST_F(SourceBufferStreamTest, Remove_WholeRange1) {
  Seek(0);
  NewCodedFrameGroupAppend("10K 40 70K 100 130K");
  CheckExpectedRangesByTimestamp("{ [10,160) }");
  RemoveInMs(10, 160, 160);
  CheckExpectedRangesByTimestamp("{ }");
}

// Removal range starts before range and ends exactly at end.
TEST_F(SourceBufferStreamTest, Remove_WholeRange2) {
  Seek(0);
  NewCodedFrameGroupAppend("10K 40 70K 100 130K");
  CheckExpectedRangesByTimestamp("{ [10,160) }");
  RemoveInMs(0, 160, 160);
  CheckExpectedRangesByTimestamp("{ }");
}

// Removal range starts at the start of a range and ends beyond the
// range end.
TEST_F(SourceBufferStreamTest, Remove_WholeRange3) {
  Seek(0);
  NewCodedFrameGroupAppend("10K 40 70K 100 130K");
  CheckExpectedRangesByTimestamp("{ [10,160) }");
  RemoveInMs(10, 200, 200);
  CheckExpectedRangesByTimestamp("{ }");
}

// Removal range starts before range start and ends after the range end.
TEST_F(SourceBufferStreamTest, Remove_WholeRange4) {
  Seek(0);
  NewCodedFrameGroupAppend("10K 40 70K 100 130K");
  CheckExpectedRangesByTimestamp("{ [10,160) }");
  RemoveInMs(0, 200, 200);
  CheckExpectedRangesByTimestamp("{ }");
}

// Removes multiple ranges.
TEST_F(SourceBufferStreamTest, Remove_WholeRange5) {
  Seek(0);
  NewCodedFrameGroupAppend("10K 40 70K 100 130K");
  NewCodedFrameGroupAppend("1000K 1030 1060K 1090 1120K");
  NewCodedFrameGroupAppend("2000K 2030 2060K 2090 2120K");
  CheckExpectedRangesByTimestamp("{ [10,160) [1000,1150) [2000,2150) }");
  RemoveInMs(10, 3000, 3000);
  CheckExpectedRangesByTimestamp("{ }");
}

// Verifies a [0-infinity) range removes everything.
TEST_F(SourceBufferStreamTest, Remove_ZeroToInfinity) {
  Seek(0);
  NewCodedFrameGroupAppend("10K 40 70K 100 130K");
  NewCodedFrameGroupAppend("1000K 1030 1060K 1090 1120K");
  NewCodedFrameGroupAppend("2000K 2030 2060K 2090 2120K");
  CheckExpectedRangesByTimestamp("{ [10,160) [1000,1150) [2000,2150) }");
  Remove(base::TimeDelta(), kInfiniteDuration, kInfiniteDuration);
  CheckExpectedRangesByTimestamp("{ }");
}

// Removal range starts at the beginning of the range and ends in the
// middle of the range. This test verifies that full GOPs are removed.
TEST_F(SourceBufferStreamTest, Remove_Partial1) {
  Seek(0);
  NewCodedFrameGroupAppend("10K 40 70K 100 130K");
  NewCodedFrameGroupAppend("1000K 1030 1060K 1090 1120K");
  CheckExpectedRangesByTimestamp("{ [10,160) [1000,1150) }");
  RemoveInMs(0, 80, 2200);
  CheckExpectedRangesByTimestamp("{ [130,160) [1000,1150) }");
}

// Removal range starts in the middle of a range and ends at the exact
// end of the range.
TEST_F(SourceBufferStreamTest, Remove_Partial2) {
  Seek(0);
  NewCodedFrameGroupAppend("10K 40 70K 100 130K");
  NewCodedFrameGroupAppend("1000K 1030 1060K 1090 1120K");
  CheckExpectedRangesByTimestamp("{ [10,160) [1000,1150) }");
  RemoveInMs(40, 160, 2200);
  CheckExpectedRangesByTimestamp("{ [10,40) [1000,1150) }");
}

// Removal range starts and ends within a range.
TEST_F(SourceBufferStreamTest, Remove_Partial3) {
  Seek(0);
  NewCodedFrameGroupAppend("10K 40 70K 100 130K");
  NewCodedFrameGroupAppend("1000K 1030 1060K 1090 1120K");
  CheckExpectedRangesByTimestamp("{ [10,160) [1000,1150) }");
  RemoveInMs(40, 120, 2200);
  CheckExpectedRangesByTimestamp("{ [10,40) [130,160) [1000,1150) }");
}

// Removal range starts in the middle of one range and ends in the
// middle of another range.
TEST_F(SourceBufferStreamTest, Remove_Partial4) {
  Seek(0);
  NewCodedFrameGroupAppend("10K 40 70K 100 130K");
  NewCodedFrameGroupAppend("1000K 1030 1060K 1090 1120K");
  NewCodedFrameGroupAppend("2000K 2030 2060K 2090 2120K");
  CheckExpectedRangesByTimestamp("{ [10,160) [1000,1150) [2000,2150) }");
  RemoveInMs(40, 2030, 2200);
  CheckExpectedRangesByTimestamp("{ [10,40) [2060,2150) }");
}

// Test behavior when the current position is removed and new buffers
// are appended over the removal range.
TEST_F(SourceBufferStreamTest, Remove_CurrentPosition) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30 60 90K 120 150 180K 210 240 270K 300 330");
  CheckExpectedRangesByTimestamp("{ [0,360) }");
  CheckExpectedBuffers("0K 30 60 90K 120");

  // Remove a range that includes the next buffer (i.e., 150).
  RemoveInMs(150, 210, 360);
  CheckExpectedRangesByTimestamp("{ [0,150) [270,360) }");

  // Verify that no next buffer is returned.
  CheckNoNextBuffer();

  // Append some buffers to fill the gap that was created.
  NewCodedFrameGroupAppend("120K 150 180 210K 240");
  CheckExpectedRangesByTimestamp("{ [0,360) }");

  // Verify that buffers resume at the next keyframe after the
  // current position.
  CheckExpectedBuffers("210K 240 270K 300 330");
}

// Test behavior when buffers in the selected range before the current position
// are removed.
TEST_F(SourceBufferStreamTest, Remove_BeforeCurrentPosition) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30 60 90K 120 150 180K 210 240 270K 300 330");
  CheckExpectedRangesByTimestamp("{ [0,360) }");
  CheckExpectedBuffers("0K 30 60 90K 120");

  // Remove a range that is before the current playback position.
  RemoveInMs(0, 90, 360);
  CheckExpectedRangesByTimestamp("{ [90,360) }");

  CheckExpectedBuffers("150 180K 210 240 270K 300 330");
}

// Test removing the preliminary portion for the current coded frame group being
// appended.
TEST_F(SourceBufferStreamTest, Remove_MidGroup) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30 60 90 120K 150 180 210");
  CheckExpectedRangesByTimestamp("{ [0,240) }");

  // Partially replace the first GOP, then read its keyframe.
  NewCodedFrameGroupAppend("0K 30");
  CheckExpectedBuffers("0K");

  CheckExpectedRangesByTimestamp("{ [0,240) }");

  // Remove the partial GOP that we're in the middle of reading.
  RemoveInMs(0, 60, 240);

  // Verify that there is no next buffer since it was removed and the remaining
  // buffered range is beyond the current position.
  CheckNoNextBuffer();
  CheckExpectedRangesByTimestamp("{ [120,240) }");

  // Continue appending frames for the current GOP.
  AppendBuffers("60 90");

  // Verify that the non-keyframes are not added.
  CheckExpectedRangesByTimestamp("{ [120,240) }");

  // Finish the previous GOP and start the next one.
  AppendBuffers("120 150K 180");

  // Verify that new GOP replaces the existing GOP.
  CheckExpectedRangesByTimestamp("{ [150,210) }");
  SeekToTimestampMs(150);
  CheckExpectedBuffers("150K 180");
  CheckNoNextBuffer();
}

// Test removing the current GOP being appended, while not removing
// the entire range the GOP belongs to.
TEST_F(SourceBufferStreamTest, Remove_GOPBeingAppended) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 30 60 90 120K 150 180");
  CheckExpectedRangesByTimestamp("{ [0,210) }");

  // Remove the current GOP being appended.
  RemoveInMs(120, 150, 240);
  CheckExpectedRangesByTimestamp("{ [0,120) }");

  // Continue appending the current GOP and the next one.
  AppendBuffers("210 240K 270 300");

  // Verify that the non-keyframe in the previous GOP does
  // not effect any existing ranges and a new range is started at the
  // beginning of the next GOP.
  CheckExpectedRangesByTimestamp("{ [0,120) [240,330) }");

  // Verify the buffers in the ranges.
  CheckExpectedBuffers("0K 30 60 90");
  CheckNoNextBuffer();
  SeekToTimestampMs(240);
  CheckExpectedBuffers("240K 270 300");
}

TEST_F(SourceBufferStreamTest, Remove_WholeGOPBeingAppended) {
  SeekToTimestampMs(1000);
  NewCodedFrameGroupAppend("1000K 1030 1060 1090");
  CheckExpectedRangesByTimestamp("{ [1000,1120) }");

  // Remove the keyframe of the current GOP being appended.
  RemoveInMs(1000, 1030, 1120);
  CheckExpectedRangesByTimestamp("{ }");

  // Continue appending the current GOP.
  AppendBuffers("1210 1240");

  CheckExpectedRangesByTimestamp("{ }");

  // Append the beginning of the next GOP.
  AppendBuffers("1270K 1300");

  // Verify that the new range is started at the
  // beginning of the next GOP.
  CheckExpectedRangesByTimestamp("{ [1270,1330) }");

  // Verify the buffers in the ranges.
  CheckNoNextBuffer();
  SeekToTimestampMs(1270);
  CheckExpectedBuffers("1270K 1300");
}

TEST_F(SourceBufferStreamTest,
       Remove_PreviousAppendDestroyedAndOverwriteExistingRange) {
  SeekToTimestampMs(90);

  NewCodedFrameGroupAppend("90K 120 150");
  CheckExpectedRangesByTimestamp("{ [90,180) }");

  // Append a coded frame group before the previously appended data.
  NewCodedFrameGroupAppend("0K 30 60");

  // Verify that the ranges get merged.
  CheckExpectedRangesByTimestamp("{ [0,180) }");

  // Remove the data from the last append.
  RemoveInMs(0, 90, 360);
  CheckExpectedRangesByTimestamp("{ [90,180) }");

  // Append a new coded frame group that follows the removed group and
  // starts at the beginning of the range left over from the
  // remove.
  NewCodedFrameGroupAppend("90K 121 151");
  CheckExpectedBuffers("90K 121 151");
}

TEST_F(SourceBufferStreamTest, Remove_GapAtBeginningOfGroup) {
  Seek(0);

  // Append a coded frame group that has a gap at the beginning of it.
  NewCodedFrameGroupAppend(base::TimeDelta::FromMilliseconds(0),
                           "30K 60 90 120K 150");
  CheckExpectedRangesByTimestamp("{ [0,180) }");

  // Remove the gap that doesn't contain any buffers.
  RemoveInMs(0, 10, 180);
  CheckExpectedRangesByTimestamp("{ [10,180) }");

  // Verify we still get the first buffer still since only part of
  // the gap was removed.
  // TODO(acolwell/wolenetz): Consider not returning a buffer at this
  // point since the current seek position has been explicitly
  // removed but didn't happen to remove any buffers.
  // http://crbug.com/384016
  CheckExpectedBuffers("30K");

  // Remove a range that includes the first GOP.
  RemoveInMs(0, 60, 180);

  // Verify that no buffer is returned because the current buffer
  // position has been removed.
  CheckNoNextBuffer();

  CheckExpectedRangesByTimestamp("{ [120,180) }");
}

TEST_F(SourceBufferStreamTest,
       OverlappingAppendRangeMembership_OneMicrosecond_Video) {
  NewCodedFrameGroupAppend("10D20K");
  CheckExpectedRangesByTimestamp("{ [10000,30000) }",
                                 TimeGranularity::kMicrosecond);

  // Append a buffer 1 microsecond earlier, with estimated duration.
  NewCodedFrameGroupAppend("9999uD20EK");
  CheckExpectedRangesByTimestamp("{ [9999,30000) }",
                                 TimeGranularity::kMicrosecond);

  // Append that same buffer again, but without any discontinuity signalled / no
  // new coded frame group.
  AppendBuffers("9999uD20EK");
  CheckExpectedRangesByTimestamp("{ [9999,30000) }",
                                 TimeGranularity::kMicrosecond);

  Seek(0);
  CheckExpectedBuffers("9999K 9999K 10000K", TimeGranularity::kMicrosecond);
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest,
       OverlappingAppendRangeMembership_TwoMicroseconds_Video) {
  NewCodedFrameGroupAppend("10D20K");
  CheckExpectedRangesByTimestamp("{ [10000,30000) }",
                                 TimeGranularity::kMicrosecond);

  // Append an exactly abutting buffer 2us earlier.
  NewCodedFrameGroupAppend("9998uD20EK");
  CheckExpectedRangesByTimestamp("{ [9998,30000) }",
                                 TimeGranularity::kMicrosecond);

  // Append that same buffer again, but without any discontinuity signalled / no
  // new coded frame group.
  AppendBuffers("9998uD20EK");
  CheckExpectedRangesByTimestamp("{ [9998,30000) }",
                                 TimeGranularity::kMicrosecond);

  Seek(0);
  CheckExpectedBuffers("9998K 9998K 10000K", TimeGranularity::kMicrosecond);
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, Text_Append_SingleRange) {
  SetTextStream();
  NewCodedFrameGroupAppend("0K 500K 1000K");
  CheckExpectedRangesByTimestamp("{ [0,1500) }");

  Seek(0);
  CheckExpectedBuffers("0K 500K 1000K");
}

TEST_F(SourceBufferStreamTest, Text_Append_DisjointAfter) {
  SetTextStream();
  NewCodedFrameGroupAppend("0K 500K 1000K");
  CheckExpectedRangesByTimestamp("{ [0,1500) }");
  NewCodedFrameGroupAppend("3000K 3500K 4000K");
  CheckExpectedRangesByTimestamp("{ [0,4500) }");

  Seek(0);
  CheckExpectedBuffers("0K 500K 1000K 3000K 3500K 4000K");
}

TEST_F(SourceBufferStreamTest, Text_Append_DisjointBefore) {
  SetTextStream();
  NewCodedFrameGroupAppend("3000K 3500K 4000K");
  CheckExpectedRangesByTimestamp("{ [3000,4500) }");
  NewCodedFrameGroupAppend("0K 500K 1000K");
  CheckExpectedRangesByTimestamp("{ [0,4500) }");

  Seek(0);
  CheckExpectedBuffers("0K 500K 1000K 3000K 3500K 4000K");
}

TEST_F(SourceBufferStreamTest, Text_CompleteOverlap) {
  SetTextStream();
  NewCodedFrameGroupAppend("3000K 3500K 4000K");
  CheckExpectedRangesByTimestamp("{ [3000,4500) }");
  NewCodedFrameGroupAppend(
      "0K 501K 1001K 1501K 2001K 2501K "
      "3001K 3501K 4001K 4501K 5001K");
  CheckExpectedRangesByTimestamp("{ [0,5501) }");

  Seek(0);
  CheckExpectedBuffers("0K 501K 1001K 1501K 2001K 2501K "
                       "3001K 3501K 4001K 4501K 5001K");
}

TEST_F(SourceBufferStreamTest, Text_OverlapAfter) {
  SetTextStream();
  NewCodedFrameGroupAppend("0K 500K 1000K 1500K 2000K");
  CheckExpectedRangesByTimestamp("{ [0,2500) }");
  NewCodedFrameGroupAppend("1499K 2001K 2501K 3001K");
  CheckExpectedRangesByTimestamp("{ [0,3501) }");

  Seek(0);
  CheckExpectedBuffers("0K 500K 1000K 1499K 2001K 2501K 3001K");
}

TEST_F(SourceBufferStreamTest, Text_OverlapBefore) {
  SetTextStream();
  NewCodedFrameGroupAppend("1500K 2000K 2500K 3000K 3500K");
  CheckExpectedRangesByTimestamp("{ [1500,4000) }");
  NewCodedFrameGroupAppend("0K 501K 1001K 1501K 2001K");
  CheckExpectedRangesByTimestamp("{ [0,4000) }");

  Seek(0);
  CheckExpectedBuffers("0K 501K 1001K 1501K 2001K 3000K 3500K");
}

TEST_F(SourceBufferStreamTest, Audio_SpliceTrimmingForOverlap) {
  SetAudioStream();
  Seek(0);
  NewCodedFrameGroupAppend("0K 2K 4K 6K 8K 10K 12K");
  CheckExpectedRangesByTimestamp("{ [0,14) }");
  // Note that duration  of frame at time 10 is verified to be 2 ms.
  CheckExpectedBuffers("0K 2K 4K 6K 8K 10D2K 12K");
  CheckNoNextBuffer();

  // Append new group with front slightly overlapping existing buffer at 10ms.
  EXPECT_MEDIA_LOG(TrimmedSpliceOverlap(11000, 10000, 1000));
  NewCodedFrameGroupAppend("11K 13K 15K 17K");

  // Cross-fade splicing is no longer implemented. Instead we should expect
  // wholly overlapped buffers to be removed (12K). If a buffer is partially
  // overlapped (e.g. last millisecond of 10K), the existing buffer should be
  // trimmed to perfectly abut the newly appended buffers.
  Seek(0);

  CheckExpectedRangesByTimestamp("{ [0,19) }");
  CheckExpectedBuffers("0K 2K 4K 6K 8K 10D1K 11D2K 13K 15K 17K");
  CheckNoNextBuffer();
}

// Test that a splice is not created if an end timestamp and start timestamp
// perfectly overlap.
TEST_F(SourceBufferStreamTest, Audio_SpliceFrame_NoSplice) {
  SetAudioStream();
  Seek(0);

  // Add 10 frames across 2 *non-overlapping* appends.
  NewCodedFrameGroupAppend("0K 2K 4K 6K 8K 10K");
  NewCodedFrameGroupAppend("12K 14K 16K 18K");

  // Manually inspect the buffers at the no-splice boundary to verify duration
  // and lack of discard padding (set when splicing).
  scoped_refptr<StreamParserBuffer> buffer;
  const DecoderBuffer::DiscardPadding kEmptyDiscardPadding;
  for (int i = 0; i < 10; i++) {
    // Verify buffer timestamps and durations are preserved and no buffers have
    // discard padding (indicating no splice trimming).
    EXPECT_STATUS_FOR_STREAM_OP(kSuccess, GetNextBuffer(&buffer));
    EXPECT_EQ(base::TimeDelta::FromMilliseconds(i * 2), buffer->timestamp());
    EXPECT_EQ(base::TimeDelta::FromMilliseconds(2), buffer->duration());
    EXPECT_EQ(kEmptyDiscardPadding, buffer->discard_padding());
  }

  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, Audio_NoSpliceForBadOverlap) {
  SetAudioStream();
  Seek(0);

  // Add 2 frames with matching PTS and ov, where the duration of the first
  // frame suggests that it overlaps the second frame. The overlap is within a
  // coded frame group (bad content), so no splicing is expected.
  NewCodedFrameGroupAppend("0D10K 0D10K");
  CheckExpectedRangesByTimestamp("{ [0,10) }");
  CheckExpectedBuffers("0D10K 0D10K");
  CheckNoNextBuffer();

  Seek(0);

  // Add a new frame in a separate coded frame group that falls into the
  // overlap of the two existing frames. Splicing should not be performed since
  // the content is poorly muxed. We can't know which frame to splice when the
  // content is already messed up.
  EXPECT_MEDIA_LOG(NoSpliceForBadMux(2, 2000));
  NewCodedFrameGroupAppend("2D10K");
  CheckExpectedRangesByTimestamp("{ [0,12) }");
  CheckExpectedBuffers("0D10K 0D10K 2D10K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, Audio_NoSpliceForEstimatedDuration) {
  SetAudioStream();
  Seek(0);

  // Append two buffers, the latter having estimated duration.
  NewCodedFrameGroupAppend("0D10K 10D10EK");
  CheckExpectedRangesByTimestamp("{ [0,20) }");
  CheckExpectedBuffers("0D10K 10D10EK");
  CheckNoNextBuffer();

  Seek(0);

  // Add a new frame in a separate coded frame group that falls in the middle of
  // the second buffer. In spite of the overlap, no splice should be performed
  // due to the overlapped buffer having estimated duration.
  NewCodedFrameGroupAppend("15D10K");
  CheckExpectedRangesByTimestamp("{ [0,25) }");
  CheckExpectedBuffers("0D10K 10D10EK 15D10K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, Audio_SpliceTrimming_ExistingTrimming) {
  const base::TimeDelta kDuration = base::TimeDelta::FromMilliseconds(4);
  const base::TimeDelta kNoDiscard = base::TimeDelta();
  const bool is_keyframe = true;

  SetAudioStream();
  Seek(0);

  // Make two BufferQueues with a mix of buffers containing start/end discard.
  // Buffer PTS and duration have been adjusted to reflect discard. A_buffers
  // will be appended first, then B_buffers. The start of B will overlap A
  // to generate a splice.
  BufferQueue A_buffers;
  BufferQueue B_buffers;

  // Buffer A1: PTS = 0, front discard = 2ms, duration = 2ms.
  scoped_refptr<StreamParserBuffer> bufferA1 = StreamParserBuffer::CopyFrom(
      &kDataA, kDataSize, is_keyframe, DemuxerStream::AUDIO, 0);
  bufferA1->set_timestamp(base::TimeDelta::FromMilliseconds(0));
  bufferA1->set_duration(kDuration / 2);
  const DecoderBuffer::DiscardPadding discardA1 =
      std::make_pair(kDuration / 2, kNoDiscard);
  bufferA1->set_discard_padding(discardA1);
  A_buffers.push_back(bufferA1);

  // Buffer A2: PTS = 2, end discard = 2ms, duration = 2ms.
  scoped_refptr<StreamParserBuffer> bufferA2 = StreamParserBuffer::CopyFrom(
      &kDataA, kDataSize, is_keyframe, DemuxerStream::AUDIO, 0);
  bufferA2->set_timestamp(base::TimeDelta::FromMilliseconds(2));
  bufferA2->set_duration(kDuration / 2);
  const DecoderBuffer::DiscardPadding discardA2 =
      std::make_pair(kNoDiscard, kDuration / 2);
  bufferA2->set_discard_padding(discardA2);
  A_buffers.push_back(bufferA2);

  // Buffer B1: PTS = 3, front discard = 2ms, duration = 2ms.
  scoped_refptr<StreamParserBuffer> bufferB1 = StreamParserBuffer::CopyFrom(
      &kDataA, kDataSize, is_keyframe, DemuxerStream::AUDIO, 0);
  bufferB1->set_timestamp(base::TimeDelta::FromMilliseconds(3));
  bufferB1->set_duration(kDuration / 2);
  const DecoderBuffer::DiscardPadding discardB1 =
      std::make_pair(kDuration / 2, kNoDiscard);
  bufferB1->set_discard_padding(discardB1);
  B_buffers.push_back(bufferB1);

  // Buffer B2: PTS = 5, no discard padding, duration = 4ms.
  scoped_refptr<StreamParserBuffer> bufferB2 = StreamParserBuffer::CopyFrom(
      &kDataA, kDataSize, is_keyframe, DemuxerStream::AUDIO, 0);
  bufferB2->set_timestamp(base::TimeDelta::FromMilliseconds(5));
  bufferB2->set_duration(kDuration);
  B_buffers.push_back(bufferB2);

  // Append buffers, trigger splice trimming.
  stream_->OnStartOfCodedFrameGroup(bufferA1->timestamp());
  stream_->Append(A_buffers);
  EXPECT_MEDIA_LOG(TrimmedSpliceOverlap(3000, 2000, 1000));
  stream_->Append(B_buffers);

  // Verify buffers.
  scoped_refptr<StreamParserBuffer> read_buffer;

  // Buffer A1 was not spliced, should be unchanged.
  EXPECT_STATUS_FOR_STREAM_OP(kSuccess, GetNextBuffer(&read_buffer));
  EXPECT_EQ(base::TimeDelta::FromMilliseconds(0), read_buffer->timestamp());
  EXPECT_EQ(kDuration / 2, read_buffer->duration());
  EXPECT_EQ(discardA1, read_buffer->discard_padding());

  // Buffer A2 was overlapped by buffer B1 1ms. Splice trimming should trim A2's
  // duration and increase its discard padding by 1ms.
  const base::TimeDelta overlap = base::TimeDelta::FromMilliseconds(1);
  EXPECT_STATUS_FOR_STREAM_OP(kSuccess, GetNextBuffer(&read_buffer));
  EXPECT_EQ(base::TimeDelta::FromMilliseconds(2), read_buffer->timestamp());
  EXPECT_EQ((kDuration / 2) - overlap, read_buffer->duration());
  const DecoderBuffer::DiscardPadding overlap_discard =
      std::make_pair(discardA2.first, discardA2.second + overlap);
  EXPECT_EQ(overlap_discard, read_buffer->discard_padding());

  // Buffer B1 is overlapping A2, but B1 should be unchanged - splice trimming
  // only modifies the earlier buffer (A1).
  EXPECT_STATUS_FOR_STREAM_OP(kSuccess, GetNextBuffer(&read_buffer));
  EXPECT_EQ(base::TimeDelta::FromMilliseconds(3), read_buffer->timestamp());
  EXPECT_EQ(kDuration / 2, read_buffer->duration());
  EXPECT_EQ(discardB1, read_buffer->discard_padding());

  // Buffer B2 is not spliced, should be unchanged.
  EXPECT_STATUS_FOR_STREAM_OP(kSuccess, GetNextBuffer(&read_buffer));
  EXPECT_EQ(base::TimeDelta::FromMilliseconds(5), read_buffer->timestamp());
  EXPECT_EQ(kDuration, read_buffer->duration());
  EXPECT_EQ(std::make_pair(kNoDiscard, kNoDiscard),
            read_buffer->discard_padding());

  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, Audio_SpliceFrame_NoMillisecondSplices) {
  EXPECT_MEDIA_LOG(SkippingSpliceTooLittleOverlap(1250, 250));

  video_config_ = TestVideoConfig::Invalid();
  audio_config_.Initialize(kCodecVorbis, kSampleFormatPlanarF32,
                           CHANNEL_LAYOUT_STEREO, 4000, EmptyExtraData(),
                           Unencrypted(), base::TimeDelta(), 0);
  ResetStream<>(audio_config_);
  // Equivalent to 0.5ms per frame.
  SetStreamInfo(2000, 2000);
  Seek(0);

  // Append four buffers with a 0.5ms duration each.
  NewCodedFrameGroupAppend(0, 4);
  CheckExpectedRangesByTimestamp("{ [0,2) }");

  // Overlap the range [0, 2) with [1.25, 2); this results in an overlap of
  // 0.25ms between the original buffer at time 1.0 and the new buffer at time
  // 1.25.
  NewCodedFrameGroupAppend_OffsetFirstBuffer(
      2, 2, base::TimeDelta::FromMillisecondsD(0.25));
  CheckExpectedRangesByTimestamp("{ [0,2) }");

  // A splice frame should not be generated since it requires at least 1ms of
  // data to crossfade.
  CheckExpectedBuffers("0K 0K 1K 1K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, Audio_PrerollFrame) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 3P 6K");
  CheckExpectedBuffers("0K 3P 6K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, Audio_ConfigChangeWithPreroll) {
  AudioDecoderConfig new_config(kCodecVorbis, kSampleFormatPlanarF32,
                                CHANNEL_LAYOUT_MONO, 2000, EmptyExtraData(),
                                Unencrypted());
  SetAudioStream();
  Seek(0);

  // Append some audio using the default configuration.
  CheckAudioConfig(audio_config_);
  NewCodedFrameGroupAppend("0K 3K 6K");

  // Update the configuration.
  stream_->UpdateAudioConfig(new_config, false);

  // We haven't read any buffers at this point, so the config for the next
  // buffer at time 0 should still be the original config.
  CheckAudioConfig(audio_config_);

  // Append new audio containing preroll and using the new config.
  EXPECT_MEDIA_LOG(TrimmedSpliceOverlap(7000, 6000, 2000));
  NewCodedFrameGroupAppend("7P 8K");

  // Check buffers from the first append.
  CheckExpectedBuffers("0K 3K 6K");

  // Verify the next attempt to get a buffer will signal that a config change
  // has happened.
  scoped_refptr<StreamParserBuffer> buffer;
  EXPECT_STATUS_FOR_STREAM_OP(kConfigChange, GetNextBuffer(&buffer));

  // Verify upcoming buffers will use the new config.
  CheckAudioConfig(new_config);

  // Check buffers from the second append, including preroll.
  // CheckExpectedBuffers("6P 7K 8K");
  CheckExpectedBuffers("7P 8K");

  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, Audio_Opus_SeekToJustBeforeRangeStart) {
  // Seek to a time within the fudge room of seekability to a buffered Opus
  // audio frame's range, but before the range's start. Use small seek_preroll
  // in case the associated logic to check same config in the preroll time
  // interval requires a nonzero seek_preroll value.
  video_config_ = TestVideoConfig::Invalid();
  audio_config_.Initialize(kCodecOpus, kSampleFormatPlanarF32,
                           CHANNEL_LAYOUT_STEREO, 1000, EmptyExtraData(),
                           Unencrypted(), base::TimeDelta::FromMilliseconds(10),
                           0);
  ResetStream<>(audio_config_);

  // Equivalent to 1s per frame.
  SetStreamInfo(1, 1);
  Seek(0);

  // Append a buffer at 1.5 seconds, with duration 1 second, increasing the
  // fudge room to 2 * 1 seconds. The pending seek to time 0 should be satisfied
  // with this buffer's range, because that seek time is within the fudge room
  // of 2.
  NewCodedFrameGroupAppend("1500D1000K");
  CheckExpectedRangesByTimestamp("{ [1500,2500) }");
  CheckExpectedBuffers("1500K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, BFrames) {
  Seek(0);
  NewCodedFrameGroupAppend("0K 120|30 30|60 60|90 90|120");
  CheckExpectedRangesByTimestamp("{ [0,150) }");

  CheckExpectedBuffers("0K 120|30 30|60 60|90 90|120");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, RemoveShouldAlwaysExcludeEnd) {
  NewCodedFrameGroupAppend("10D2K 12D2 14D2");
  CheckExpectedRangesByTimestamp("{ [10,16) }");

  // Start new coded frame group, appending KF to abut the start of previous
  // group.
  NewCodedFrameGroupAppend("0D10K");
  Seek(0);
  CheckExpectedRangesByTimestamp("{ [0,16) }");
  CheckExpectedBuffers("0K 10K 12 14");
  CheckNoNextBuffer();

  // Append another buffer with the same timestamp as the last KF. This triggers
  // special logic that allows two buffers to have the same timestamp. When
  // preparing for this new append, there is no reason to remove the later GOP
  // starting at timestamp 10. This verifies the fix for http://crbug.com/469325
  // where the decision *not* to remove the start of the overlapped range was
  // erroneously triggering buffers with a timestamp matching the end
  // of the append (and any later dependent frames) to be removed.
  AppendBuffers("0D10");
  Seek(0);
  CheckExpectedRangesByTimestamp("{ [0,16) }");
  CheckExpectedBuffers("0K 0 10K 12 14");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, RefinedDurationEstimates_BackOverlap) {
  // Append a few buffers, the last one having estimated duration.
  NewCodedFrameGroupAppend("0K 5 10 20D10E");
  CheckExpectedRangesByTimestamp("{ [0,30) }");
  Seek(0);
  CheckExpectedBuffers("0K 5 10 20D10E");
  CheckNoNextBuffer();

  // Append a buffer to the end that overlaps the *back* of the existing range.
  // This should trigger the estimated duration to be recomputed as a timestamp
  // delta.
  AppendBuffers("25D10");
  CheckExpectedRangesByTimestamp("{ [0,35) }");
  Seek(0);
  // The duration of the buffer at time 20 has changed from 10ms to 5ms.
  CheckExpectedBuffers("0K 5 10 20D5E 25");
  CheckNoNextBuffer();

  // If the last buffer is removed, the adjusted duration should remain at 5ms.
  RemoveInMs(25, 35, 35);
  CheckExpectedRangesByTimestamp("{ [0,25) }");
  Seek(0);
  CheckExpectedBuffers("0K 5 10 20D5E");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, RefinedDurationEstimates_FrontOverlap) {
  // Append a few buffers.
  NewCodedFrameGroupAppend("10K 15 20D5");
  CheckExpectedRangesByTimestamp("{ [10,25) }");
  SeekToTimestampMs(10);
  CheckExpectedBuffers("10K 15 20");
  CheckNoNextBuffer();

  // Append new buffers, where the last has estimated duration that overlaps the
  // *front* of the existing range. The overlap should trigger refinement of the
  // estimated duration from 7ms to 5ms.
  NewCodedFrameGroupAppend("0K 5D7E");
  CheckExpectedRangesByTimestamp("{ [0,25) }");
  Seek(0);
  CheckExpectedBuffers("0K 5D5E 10K 15 20");
  CheckNoNextBuffer();

  // If the overlapped buffer at timestamp 10 is removed, the adjusted duration
  // should remain adjusted.
  RemoveInMs(10, 20, 25);
  CheckExpectedRangesByTimestamp("{ [0,10) }");
  Seek(0);
  CheckExpectedBuffers("0K 5D5E");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, SeekToStartSatisfiedUpToThreshold) {
  NewCodedFrameGroupAppend("999K 1010 1020D10");
  CheckExpectedRangesByTimestamp("{ [999,1030) }");

  SeekToTimestampMs(0);
  CheckExpectedBuffers("999K 1010 1020D10");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, SeekToStartUnsatisfiedBeyondThreshold) {
  NewCodedFrameGroupAppend("1000K 1010 1020D10");
  CheckExpectedRangesByTimestamp("{ [1000,1030) }");

  SeekToTimestampMs(0);
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest,
       ReSeekToStartSatisfiedUpToThreshold_SameTimestamps) {
  // Append a few buffers.
  NewCodedFrameGroupAppend("999K 1010 1020D10");
  CheckExpectedRangesByTimestamp("{ [999,1030) }");

  // Don't read any buffers between Seek and Remove.
  SeekToTimestampMs(0);
  RemoveInMs(999, 1030, 1030);
  CheckExpectedRangesByTimestamp("{ }");
  CheckNoNextBuffer();

  // Append buffers at the original timestamps and verify no stall.
  NewCodedFrameGroupAppend("999K 1010 1020D10");
  CheckExpectedRangesByTimestamp("{ [999,1030) }");
  CheckExpectedBuffers("999K 1010 1020D10");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest,
       ReSeekToStartSatisfiedUpToThreshold_EarlierTimestamps) {
  // Append a few buffers.
  NewCodedFrameGroupAppend("999K 1010 1020D10");
  CheckExpectedRangesByTimestamp("{ [999,1030) }");

  // Don't read any buffers between Seek and Remove.
  SeekToTimestampMs(0);
  RemoveInMs(999, 1030, 1030);
  CheckExpectedRangesByTimestamp("{ }");
  CheckNoNextBuffer();

  // Append buffers before the original timestamps and verify no stall (the
  // re-seek to time 0 should still be satisfied with the new buffers).
  NewCodedFrameGroupAppend("500K 510 520D10");
  CheckExpectedRangesByTimestamp("{ [500,530) }");
  CheckExpectedBuffers("500K 510 520D10");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest,
       ReSeekToStartSatisfiedUpToThreshold_LaterTimestamps) {
  // Append a few buffers.
  NewCodedFrameGroupAppend("500K 510 520D10");
  CheckExpectedRangesByTimestamp("{ [500,530) }");

  // Don't read any buffers between Seek and Remove.
  SeekToTimestampMs(0);
  RemoveInMs(500, 530, 530);
  CheckExpectedRangesByTimestamp("{ }");
  CheckNoNextBuffer();

  // Append buffers beginning after original timestamps, but still below the
  // start threshold, and verify no stall (the re-seek to time 0 should still be
  // satisfied with the new buffers).
  NewCodedFrameGroupAppend("999K 1010 1020D10");
  CheckExpectedRangesByTimestamp("{ [999,1030) }");
  CheckExpectedBuffers("999K 1010 1020D10");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, ReSeekBeyondStartThreshold_SameTimestamps) {
  // Append a few buffers.
  NewCodedFrameGroupAppend("1000K 1010 1020D10");
  CheckExpectedRangesByTimestamp("{ [1000,1030) }");

  // Don't read any buffers between Seek and Remove.
  SeekToTimestampMs(1000);
  RemoveInMs(1000, 1030, 1030);
  CheckExpectedRangesByTimestamp("{ }");
  CheckNoNextBuffer();

  // Append buffers at the original timestamps and verify no stall.
  NewCodedFrameGroupAppend("1000K 1010 1020D10");
  CheckExpectedRangesByTimestamp("{ [1000,1030) }");
  CheckExpectedBuffers("1000K 1010 1020D10");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, ReSeekBeyondThreshold_EarlierTimestamps) {
  // Append a few buffers.
  NewCodedFrameGroupAppend("2000K 2010 2020D10");
  CheckExpectedRangesByTimestamp("{ [2000,2030) }");

  // Don't read any buffers between Seek and Remove.
  SeekToTimestampMs(2000);
  RemoveInMs(2000, 2030, 2030);
  CheckExpectedRangesByTimestamp("{ }");
  CheckNoNextBuffer();

  // Append buffers before the original timestamps and verify no stall (the
  // re-seek to time 2 seconds should still be satisfied with the new buffers
  // and should emit preroll from last keyframe).
  NewCodedFrameGroupAppend("1080K 1090 2000D10");
  CheckExpectedRangesByTimestamp("{ [1080,2010) }");
  CheckExpectedBuffers("1080K 1090 2000D10");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, ConfigChange_ReSeek) {
  // Append a few buffers, with a config change in the middle.
  VideoDecoderConfig new_config = TestVideoConfig::Large();
  NewCodedFrameGroupAppend("2000K 2010 2020D10");
  stream_->UpdateVideoConfig(new_config, false);
  NewCodedFrameGroupAppend("2030K 2040 2050D10");
  CheckExpectedRangesByTimestamp("{ [2000,2060) }");

  // Read the config change, but don't read any non-config-change buffer between
  // Seek and Remove.
  scoped_refptr<StreamParserBuffer> buffer;
  CheckVideoConfig(video_config_);
  SeekToTimestampMs(2030);
  CheckVideoConfig(video_config_);
  EXPECT_STATUS_FOR_STREAM_OP(kConfigChange, GetNextBuffer(&buffer));
  CheckVideoConfig(new_config);

  // Trigger the re-seek.
  RemoveInMs(2030, 2060, 2060);
  CheckExpectedRangesByTimestamp("{ [2000,2030) }");
  CheckNoNextBuffer();

  // Append buffers at the original timestamps and verify no stall or redundant
  // signalling of config change.
  NewCodedFrameGroupAppend("2030K 2040 2050D10");
  CheckVideoConfig(new_config);
  CheckExpectedRangesByTimestamp("{ [2000,2060) }");
  CheckExpectedBuffers("2030K 2040 2050D10");
  CheckNoNextBuffer();
  CheckVideoConfig(new_config);

  // Seek to the start of buffered and verify config changes and buffers.
  SeekToTimestampMs(2000);
  CheckVideoConfig(new_config);
  ASSERT_FALSE(new_config.Matches(video_config_));
  EXPECT_STATUS_FOR_STREAM_OP(kConfigChange, GetNextBuffer(&buffer));
  CheckVideoConfig(video_config_);
  CheckExpectedBuffers("2000K 2010 2020D10");
  CheckVideoConfig(video_config_);
  EXPECT_STATUS_FOR_STREAM_OP(kConfigChange, GetNextBuffer(&buffer));
  CheckVideoConfig(new_config);
  CheckExpectedBuffers("2030K 2040 2050D10");
  CheckNoNextBuffer();
  CheckVideoConfig(new_config);
}

TEST_F(SourceBufferStreamTest, TrackBuffer_ExhaustionWithSkipForward) {
  NewCodedFrameGroupAppend("0K 10 20 30 40");

  // Read the first 4 buffers, so next buffer is at time 40.
  Seek(0);
  CheckExpectedRangesByTimestamp("{ [0,50) }");
  CheckExpectedBuffers("0K 10 20 30");

  // Overlap-append, populating track buffer with timestamp 40 from original
  // append. Confirm there could be a large jump in time until the next key
  // frame after exhausting the track buffer.
  NewCodedFrameGroupAppend(
      "31K 41 51 61 71 81 91 101 111 121 "
      "131K 141");
  CheckExpectedRangesByTimestamp("{ [0,151) }");

  // Confirm the large jump occurs and warning log is generated.
  // If this test is changed, update
  // TrackBufferExhaustion_ImmediateNewTrackBuffer accordingly.
  EXPECT_MEDIA_LOG(ContainsTrackBufferExhaustionSkipLog(91));

  CheckExpectedBuffers("40 131K 141");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest,
       TrackBuffer_ExhaustionAndImmediateNewTrackBuffer) {
  NewCodedFrameGroupAppend("0K 10 20 30 40");

  // Read the first 4 buffers, so next buffer is at time 40.
  Seek(0);
  CheckExpectedRangesByTimestamp("{ [0,50) }");
  CheckExpectedBuffers("0K 10 20 30");

  // Overlap-append
  NewCodedFrameGroupAppend(
      "31K 41 51 61 71 81 91 101 111 121 "
      "131K 141");
  CheckExpectedRangesByTimestamp("{ [0,151) }");

  // Exhaust the track buffer, but don't read any of the overlapping append yet.
  CheckExpectedBuffers("40");

  // Selected range's next buffer is now the 131K buffer from the overlapping
  // append. (See TrackBuffer_ExhaustionWithSkipForward for that verification.)
  // Do another overlap-append to immediately create another track buffer and
  // verify both track buffer exhaustions skip forward and emit log warnings.
  NewCodedFrameGroupAppend(
      "22K 32 42 52 62 72 82 92 102 112 122K 132 142 152K 162");
  CheckExpectedRangesByTimestamp("{ [0,172) }");

  InSequence s;
  EXPECT_MEDIA_LOG(ContainsTrackBufferExhaustionSkipLog(91));
  EXPECT_MEDIA_LOG(ContainsTrackBufferExhaustionSkipLog(11));

  CheckExpectedBuffers("131K 141 152K 162");
  CheckNoNextBuffer();
}

TEST_F(
    SourceBufferStreamTest,
    AdjacentCodedFrameGroupContinuation_NoGapCreatedByTinyGapInGroupContinuation) {
  NewCodedFrameGroupAppend("0K 10 20K 30 40K 50D10");
  CheckExpectedRangesByTimestamp("{ [0,60) }");

  // Continue appending to the previously started coded frame group, albeit with
  // a tiny (1ms) gap. This gap should *NOT* produce a buffered range gap.
  AppendBuffers("61K 71D10");
  CheckExpectedRangesByTimestamp("{ [0,81) }");
}

TEST_F(SourceBufferStreamTest,
       AdjacentCodedFrameGroupContinuation_NoGapCreatedPrefixRemoved) {
  NewCodedFrameGroupAppend("0K 10 20K 30 40K 50D10");
  CheckExpectedRangesByTimestamp("{ [0,60) }");

  RemoveInMs(0, 35, 60);
  CheckExpectedRangesByTimestamp("{ [40,60) }");

  // Continue appending to the previously started coded frame group, albeit with
  // a tiny (1ms) gap. This gap should *NOT* produce a buffered range gap.
  AppendBuffers("61K 71D10");
  CheckExpectedRangesByTimestamp("{ [40,81) }");
}

TEST_F(SourceBufferStreamTest,
       AdjacentNewCodedFrameGroupContinuation_NoGapCreatedPrefixRemoved) {
  NewCodedFrameGroupAppend("0K 10 20K 30 40K 50D10");
  CheckExpectedRangesByTimestamp("{ [0,60) }");

  RemoveInMs(0, 35, 60);
  CheckExpectedRangesByTimestamp("{ [40,60) }");

  // Continue appending, with a new coded frame group, albeit with
  // a tiny (1ms) gap. This gap should *NOT* produce a buffered range gap.
  // This test demonstrates the "pre-relaxation" behavior, where a new "media
  // segment" (now a new "coded frame group") was signaled at every media
  // segment boundary.
  NewCodedFrameGroupAppend("61K 71D10");
  CheckExpectedRangesByTimestamp("{ [40,81) }");
}

TEST_F(SourceBufferStreamTest,
       StartCodedFrameGroup_RemoveThenAppendMoreMuchLater) {
  NewCodedFrameGroupAppend("1000K 1010 1020 1030K 1040 1050 1060K 1070 1080");
  NewCodedFrameGroupAppend("0K 10 20");
  CheckExpectedRangesByTimestamp("{ [0,30) [1000,1090) }");

  SignalStartOfCodedFrameGroup(base::TimeDelta::FromMilliseconds(1070));
  CheckExpectedRangesByTimestamp("{ [0,30) [1000,1090) }");

  RemoveInMs(1030, 1050, 1090);
  CheckExpectedRangesByTimestamp("{ [0,30) [1000,1030) [1060,1090) }");

  // We've signalled that we're about to do some appends to a coded frame group
  // which starts at time 1070ms. Note that the first frame, if any ever,
  // appended to this SourceBufferStream for that coded frame group must have a
  // decode timestamp >= 1070ms (it can be significantly in the future).
  // Regardless, that appended frame must be buffered into the same existing
  // range as current [1060,1090), since the new coded frame group's start of
  // 1070ms is within that range.
  AppendBuffers("2000K 2010");
  CheckExpectedRangesByTimestamp("{ [0,30) [1000,1030) [1060,2020) }");
  SeekToTimestampMs(1060);
  CheckExpectedBuffers("1060K 2000K 2010");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest,
       StartCodedFrameGroup_InExisting_AppendMuchLater) {
  NewCodedFrameGroupAppend("0K 10 20 30K 40 50");
  SignalStartOfCodedFrameGroup(base::TimeDelta::FromMilliseconds(45));
  CheckExpectedRangesByTimestamp("{ [0,60) }");

  AppendBuffers("2000K 2010");
  CheckExpectedRangesByTimestamp("{ [0,2020) }");
  Seek(0);
  CheckExpectedBuffers("0K 10 20 30K 40 2000K 2010");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest,
       StartCodedFrameGroup_InExisting_RemoveGOP_ThenAppend_1) {
  NewCodedFrameGroupAppend("0K 10 20 30K 40 50");
  SignalStartOfCodedFrameGroup(base::TimeDelta::FromMilliseconds(30));
  RemoveInMs(30, 60, 60);
  CheckExpectedRangesByTimestamp("{ [0,30) }");

  AppendBuffers("2000K 2010");
  CheckExpectedRangesByTimestamp("{ [0,2020) }");
  Seek(0);
  CheckExpectedBuffers("0K 10 20 2000K 2010");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest,
       StartCodedFrameGroup_InExisting_RemoveGOP_ThenAppend_2) {
  NewCodedFrameGroupAppend("0K 10 20 30K 40 50");
  // Though we signal 45ms, it's adjusted internally (due to detected overlap)
  // to be 40.001ms (which is just beyond the highest buffered timestamp at or
  // before 45ms) to help prevent potential discontinuity across the front of
  // the overlapping append.
  SignalStartOfCodedFrameGroup(base::TimeDelta::FromMilliseconds(45));
  RemoveInMs(30, 60, 60);
  CheckExpectedRangesByTimestamp("{ [0,30) }");

  AppendBuffers("2000K 2010");
  CheckExpectedRangesByTimestamp("{ [0,30) [40,2020) }");
  Seek(0);
  CheckExpectedBuffers("0K 10 20");
  CheckNoNextBuffer();
  SeekToTimestampMs(40);
  CheckExpectedBuffers("2000K 2010");
  CheckNoNextBuffer();
  SeekToTimestampMs(1000);
  CheckExpectedBuffers("2000K 2010");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest,
       StartCodedFrameGroup_InExisting_RemoveMostRecentAppend_ThenAppend_1) {
  NewCodedFrameGroupAppend("0K 10 20 30K 40 50");
  SignalStartOfCodedFrameGroup(base::TimeDelta::FromMilliseconds(45));
  RemoveInMs(50, 60, 60);
  CheckExpectedRangesByTimestamp("{ [0,50) }");

  AppendBuffers("2000K 2010");
  CheckExpectedRangesByTimestamp("{ [0,2020) }");
  Seek(0);
  CheckExpectedBuffers("0K 10 20 30K 40 2000K 2010");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest,
       StartCodedFrameGroup_InExisting_RemoveMostRecentAppend_ThenAppend_2) {
  NewCodedFrameGroupAppend("0K 10 20 30K 40 50");
  SignalStartOfCodedFrameGroup(base::TimeDelta::FromMilliseconds(50));
  RemoveInMs(50, 60, 60);
  CheckExpectedRangesByTimestamp("{ [0,50) }");

  AppendBuffers("2000K 2010");
  CheckExpectedRangesByTimestamp("{ [0,2020) }");
  Seek(0);
  CheckExpectedBuffers("0K 10 20 30K 40 2000K 2010");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, GetHighestPresentationTimestamp) {
  EXPECT_EQ(base::TimeDelta(), stream_->GetHighestPresentationTimestamp());

  NewCodedFrameGroupAppend("0K 10K");
  EXPECT_EQ(base::TimeDelta::FromMilliseconds(10),
            stream_->GetHighestPresentationTimestamp());

  RemoveInMs(0, 10, 20);
  EXPECT_EQ(base::TimeDelta::FromMilliseconds(10),
            stream_->GetHighestPresentationTimestamp());

  RemoveInMs(10, 20, 20);
  EXPECT_EQ(base::TimeDelta(), stream_->GetHighestPresentationTimestamp());

  NewCodedFrameGroupAppend("0K 10K");
  EXPECT_EQ(base::TimeDelta::FromMilliseconds(10),
            stream_->GetHighestPresentationTimestamp());

  RemoveInMs(10, 20, 20);
  EXPECT_EQ(base::TimeDelta(), stream_->GetHighestPresentationTimestamp());
}

TEST_F(SourceBufferStreamTest, GarbageCollectionUnderMemoryPressure) {
  SetMemoryLimit(16);
  NewCodedFrameGroupAppend("0K 1 2 3K 4 5 6K 7 8 9K 10 11 12K 13 14 15K");
  CheckExpectedRangesByTimestamp("{ [0,16) }");

  // This feature is disabled by default, so by default memory pressure
  // notification takes no effect and the memory limits and won't remove
  // anything from buffered ranges, since we are under the limit of 20 bytes.
  stream_->OnMemoryPressure(
      base::TimeDelta::FromMilliseconds(0),
      base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_MODERATE, false);
  EXPECT_TRUE(GarbageCollect(base::TimeDelta::FromMilliseconds(8), 0));
  CheckExpectedRangesByTimestamp("{ [0,16) }");

  // Now enable the feature (on top of any overrides already in
  // |scoped_feature_list_|.)
  base::test::ScopedFeatureList scoped_feature_list;
  scoped_feature_list.InitAndEnableFeature(kMemoryPressureBasedSourceBufferGC);

  // Verify that effective MSE memory limit is reduced under memory pressure.
  stream_->OnMemoryPressure(
      base::TimeDelta::FromMilliseconds(0),
      base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_MODERATE, false);

  // Effective memory limit is now 8 buffers, but we still will not collect any
  // data between the current playback position 3 and last append position 15.
  EXPECT_TRUE(GarbageCollect(base::TimeDelta::FromMilliseconds(4), 0));
  CheckExpectedRangesByTimestamp("{ [3,16) }");

  // As playback proceeds further to time 9 we should be able to collect
  // enough data to bring us back under memory limit of 8 buffers.
  EXPECT_TRUE(GarbageCollect(base::TimeDelta::FromMilliseconds(9), 0));
  CheckExpectedRangesByTimestamp("{ [9,16) }");

  // If memory pressure becomes critical, the garbage collection algorithm
  // becomes even more aggressive and collects everything up to the current
  // playback position.
  stream_->OnMemoryPressure(
      base::TimeDelta::FromMilliseconds(0),
      base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_CRITICAL, false);
  EXPECT_TRUE(GarbageCollect(base::TimeDelta::FromMilliseconds(13), 0));
  CheckExpectedRangesByTimestamp("{ [12,16) }");

  // But even under critical memory pressure the MSE memory limit imposed by the
  // memory pressure is soft, i.e. we should be able to append more data
  // successfully up to the hard limit of 16 bytes.
  NewCodedFrameGroupAppend("16K 17 18 19 20 21 22 23 24 25 26 27");
  CheckExpectedRangesByTimestamp("{ [12,28) }");
  EXPECT_TRUE(GarbageCollect(base::TimeDelta::FromMilliseconds(13), 0));
  CheckExpectedRangesByTimestamp("{ [12,28) }");
}

TEST_F(SourceBufferStreamTest, InstantGarbageCollectionUnderMemoryPressure) {
  SetMemoryLimit(16);
  NewCodedFrameGroupAppend("0K 1 2 3K 4 5 6K 7 8 9K 10 11 12K 13 14 15K");
  CheckExpectedRangesByTimestamp("{ [0,16) }");

  // Verify that garbage collection happens immediately on critical memory
  // pressure notification, even without explicit GarbageCollect invocation,
  // when the immediate GC is allowed.
  // First, enable the feature (on top of any overrides already in
  // |scoped_feature_list_|.)
  base::test::ScopedFeatureList scoped_feature_list;
  scoped_feature_list.InitAndEnableFeature(kMemoryPressureBasedSourceBufferGC);
  stream_->OnMemoryPressure(
      base::TimeDelta::FromMilliseconds(7),
      base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_CRITICAL, true);
  CheckExpectedRangesByTimestamp("{ [6,16) }");
  stream_->OnMemoryPressure(
      base::TimeDelta::FromMilliseconds(9),
      base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_CRITICAL, true);
  CheckExpectedRangesByTimestamp("{ [9,16) }");
}

TEST_F(SourceBufferStreamTest, GCFromFrontThenExplicitRemoveFromMiddleToEnd) {
  // Attempts to exercise SourceBufferRange::GetBufferIndexAt() after its
  // |keyframe_map_index_base_| has been increased, and when there is a GOP
  // following the search timestamp.  GC followed by an explicit remove may
  // trigger that code path.
  SetMemoryLimit(10);

  // Append 3 IBPPP GOPs in one continuous range.
  NewCodedFrameGroupAppend(
      "0K 40|10 10|20 20|30 30|40 "
      "50K 90|60 60|70 70|80 80|90 "
      "100K 140|110 110|120 120|130 130|140");

  CheckExpectedRangesByTimestamp("{ [0,150) }");

  // Seek to the second GOP's keyframe to allow GC to collect all of the first
  // GOP (ostensibly increasing SourceBufferRange's |keyframe_map_index_base_|).
  SeekToTimestampMs(50);
  GarbageCollect(base::TimeDelta::FromMilliseconds(50), 0);
  CheckExpectedRangesByTimestamp("{ [50,150) }");

  // Remove from the middle of the first remaining GOP to the end of the range.
  RemoveInMs(60, 150, 150);
  CheckExpectedRangesByTimestamp("{ [50,60) }");
}

TEST_F(SourceBufferStreamTest, BFrames_WithoutEditList) {
  // Simulates B-frame content where MP4 edit lists are not used to shift PTS so
  // it matches DTS. From acolwell@chromium.org in https://crbug.com/398130
  Seek(0);
  NewCodedFrameGroupAppend(base::TimeDelta::FromMilliseconds(60),
                           "60|0K 180|30 90|60 120|90 150|120");
  CheckExpectedRangesByTimestamp("{ [60,210) }");
  CheckExpectedBuffers("60|0K 180|30 90|60 120|90 150|120");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, OverlapSameTimestampWithinSameGOP) {
  // We use distinct appends here to make sure the intended frame durations
  // are respected by the test helpers (which the OneByOne helper doesn't
  // respect always). We need granular appends of this GOP for at least the
  // append of PTS=DTS=30, below.
  NewCodedFrameGroupAppend("0|0D10K");
  AppendBuffers("30|10D0");
  AppendBuffers("20|20D10");

  // The following should *not* remove the PTS frame 30, above.
  AppendBuffers("30|30 40|40");
  Seek(0);
  CheckExpectedRangesByTimestamp("{ [0,50) }");
  CheckExpectedBuffers("0K 30|10 20 30 40");
}

struct VideoEndTimeCase {
  // Times in Milliseconds
  int64_t new_frame_pts;
  int64_t new_frame_duration;
  int64_t expected_highest_pts;
  int64_t expected_end_time;
};

TEST_F(SourceBufferStreamTest, VideoRangeEndTimeCases) {
  // With a basic range containing just a single keyframe [10,20), verify
  // various keyframe overlap append cases' results on the range end time.
  const VideoEndTimeCase kCases[] = {
      {0, 10, 10, 20},
      {20, 1, 20, 21},
      {15, 3, 15, 18},
      {15, 5, 15, 20},
      {15, 8, 15, 23},

      // Cases where the new frame removes the previous frame:
      {10, 3, 10, 13},
      {10, 10, 10, 20},
      {10, 13, 10, 23},
      {5, 8, 5, 13},
      {5, 15, 5, 20},
      {5, 20, 5, 25}};

  for (const auto& c : kCases) {
    RemoveInMs(0, 100, 100);
    NewCodedFrameGroupAppend("10D10K");
    CheckExpectedRangesByTimestamp("{ [10,20) }");
    CheckExpectedRangeEndTimes("{ <10,20> }");

    std::stringstream ss;
    ss << c.new_frame_pts << "D" << c.new_frame_duration << "K";
    DVLOG(1) << "Appending " << ss.str();
    NewCodedFrameGroupAppend(ss.str());

    std::stringstream expected;
    expected << "{ <" << c.expected_highest_pts << "," << c.expected_end_time
             << "> }";
    CheckExpectedRangeEndTimes(expected.str());
  }
}

struct AudioEndTimeCase {
  // Times in Milliseconds
  int64_t new_frame_pts;
  int64_t new_frame_duration;
  int64_t expected_highest_pts;
  int64_t expected_end_time;
  bool expect_splice;
};

TEST_F(SourceBufferStreamTest, AudioRangeEndTimeCases) {
  // With a basic range containing just a single keyframe [10,20), verify
  // various keyframe overlap append cases' results on the range end time.
  const AudioEndTimeCase kCases[] = {
      {0, 10, 10, 20, false},
      {20, 1, 20, 21, false},
      {15, 3, 15, 18, true},
      {15, 5, 15, 20, true},
      {15, 8, 15, 23, true},

      // Cases where the new frame removes the previous frame:
      {10, 3, 10, 13, false},
      {10, 10, 10, 20, false},
      {10, 13, 10, 23, false},
      {5, 8, 5, 13, false},
      {5, 15, 5, 20, false},
      {5, 20, 5, 25, false}};

  SetAudioStream();
  for (const auto& c : kCases) {
    InSequence s;

    RemoveInMs(0, 100, 100);
    NewCodedFrameGroupAppend("10D10K");
    CheckExpectedRangesByTimestamp("{ [10,20) }");
    CheckExpectedRangeEndTimes("{ <10,20> }");

    std::stringstream ss;
    ss << c.new_frame_pts << "D" << c.new_frame_duration << "K";
    if (c.expect_splice) {
      EXPECT_MEDIA_LOG(TrimmedSpliceOverlap(c.new_frame_pts * 1000, 10000,
                                            (20 - c.new_frame_pts) * 1000));
    }
    DVLOG(1) << "Appending " << ss.str();
    NewCodedFrameGroupAppend(ss.str());

    std::stringstream expected;
    expected << "{ <" << c.expected_highest_pts << "," << c.expected_end_time
             << "> }";
    CheckExpectedRangeEndTimes(expected.str());
  }
}

TEST_F(SourceBufferStreamTest, SameTimestampEstimatedDurations_Video) {
  // Start a coded frame group with a frame having a non-estimated duration.
  NewCodedFrameGroupAppend("10D10K");

  // In the same coded frame group, append a same-timestamp frame with estimated
  // duration smaller than the first frame. (This can happen at least if there
  // was an intervening init segment resetting the estimation logic.) This
  // second frame need not be a keyframe. We use a non-keyframe here to
  // differentiate the buffers in CheckExpectedBuffers(), below.
  AppendBuffers("10D9E");

  // The next append, which triggered https://crbug.com/761567, didn't need to
  // be with same timestamp as the earlier ones; it just needs to be in the same
  // buffered range.  Also, it doesn't need to be a keyframe, have an estimated
  // duration, nor be in the same coded frame group to trigger that issue.
  NewCodedFrameGroupAppend("11D10K");

  Seek(0);
  CheckExpectedRangesByTimestamp("{ [10,21) }");
  CheckExpectedRangeEndTimes("{ <11,21> }");
  CheckExpectedBuffers("10K 10 11K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, RangeIsNextInPTS_Simple) {
  // Append a simple GOP where DTS==PTS, perform basic PTS continuity checks.
  NewCodedFrameGroupAppend("10D10K");
  CheckIsNextInPTSSequenceWithFirstRange(9, false);
  CheckIsNextInPTSSequenceWithFirstRange(10, true);
  CheckIsNextInPTSSequenceWithFirstRange(20, true);
  CheckIsNextInPTSSequenceWithFirstRange(30, true);
  CheckIsNextInPTSSequenceWithFirstRange(31, false);
}

TEST_F(SourceBufferStreamTest, RangeIsNextInPTS_OutOfOrder) {
  // Append a GOP where DTS != PTS such that a timestamp used as DTS would not
  // be continuous, but used as PTS is, and verify PTS continuity.
  NewCodedFrameGroupAppend("1000|0K 1120|30 1030|60 1060|90 1090|120");
  CheckIsNextInPTSSequenceWithFirstRange(0, false);
  CheckIsNextInPTSSequenceWithFirstRange(30, false);
  CheckIsNextInPTSSequenceWithFirstRange(60, false);
  CheckIsNextInPTSSequenceWithFirstRange(90, false);
  CheckIsNextInPTSSequenceWithFirstRange(120, false);
  CheckIsNextInPTSSequenceWithFirstRange(150, false);
  CheckIsNextInPTSSequenceWithFirstRange(1000, false);
  CheckIsNextInPTSSequenceWithFirstRange(1030, false);
  CheckIsNextInPTSSequenceWithFirstRange(1060, false);
  CheckIsNextInPTSSequenceWithFirstRange(1090, false);
  CheckIsNextInPTSSequenceWithFirstRange(1119, false);
  CheckIsNextInPTSSequenceWithFirstRange(1120, true);
  CheckIsNextInPTSSequenceWithFirstRange(1150, true);
  CheckIsNextInPTSSequenceWithFirstRange(1180, true);
  CheckIsNextInPTSSequenceWithFirstRange(1181, false);
}

TEST_F(SourceBufferStreamTest, RangeCoalescenceOnFudgeRoomIncrease_1) {
  // Change the fudge room (by increasing frame duration) and verify coalescence
  // behavior.
  NewCodedFrameGroupAppend("0K 10K");
  NewCodedFrameGroupAppend("100K 110K");
  NewCodedFrameGroupAppend("500K 510K");
  CheckExpectedRangesByTimestamp("{ [0,20) [100,120) [500,520) }");

  // Increase the fudge room almost enough to merge the first two buffered
  // ranges.
  NewCodedFrameGroupAppend("1000D44K");
  CheckExpectedRangesByTimestamp("{ [0,20) [100,120) [500,520) [1000,1044) }");

  // Increase the fudge room again to merge the first two buffered ranges.
  NewCodedFrameGroupAppend("2000D45K");
  CheckExpectedRangesByTimestamp(
      "{ [0,120) [500,520) [1000,1044) [2000,2045) }");

  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K 10K 100K 110K");
  CheckNoNextBuffer();
  SeekToTimestampMs(500);
  CheckExpectedBuffers("500K 510K");
  CheckNoNextBuffer();
  SeekToTimestampMs(1000);
  CheckExpectedBuffers("1000K");
  CheckNoNextBuffer();
  SeekToTimestampMs(2000);
  CheckExpectedBuffers("2000K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, RangeCoalescenceOnFudgeRoomIncrease_2) {
  // Change the fudge room (by increasing frame duration) and verify coalescence
  // behavior.
  NewCodedFrameGroupAppend("0K 10K");
  NewCodedFrameGroupAppend("40K 50K 60K");
  CheckExpectedRangesByTimestamp("{ [0,20) [40,70) }");

  // Increase the fudge room to merge the first two buffered ranges.
  NewCodedFrameGroupAppend("1000D20K");
  CheckExpectedRangesByTimestamp("{ [0,70) [1000,1020) }");

  // Try to trigger unsorted ranges, as might occur if the first two buffered
  // ranges were not correctly coalesced.
  NewCodedFrameGroupAppend("45D10K");

  CheckExpectedRangesByTimestamp("{ [0,70) [1000,1020) }");
  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K 10K 40K 45K 60K");
  CheckNoNextBuffer();
  SeekToTimestampMs(1000);
  CheckExpectedBuffers("1000K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, NoRangeGapWhenIncrementallyOverlapped) {
  // Append 2 SAP-Type-1 GOPs continuous in DTS and PTS interval and with frame
  // durations and number of frames per GOP such that the first keyframe by
  // itself would not be considered "adjacent" to the second GOP by our fudge
  // room logic alone, but we now adjust the range start times occurring during
  // an overlap to enable overlap appends to remain continuous with the
  // remainder of the overlapped range, if any.  Then incrementally reappend
  // each frame of the first GOP.
  NewCodedFrameGroupAppend("0K 10 20 30 40 50K 60 70 80 90");
  Seek(0);
  CheckExpectedRangesByTimestamp("{ [0,100) }");
  CheckExpectedRangeEndTimes("{ <90,100> }");
  CheckExpectedBuffers("0K 10 20 30 40 50K 60 70 80 90");
  CheckNoNextBuffer();

  NewCodedFrameGroupAppend("0D10K");  // Replaces first GOP with 1 frame.
  Seek(0);
  CheckExpectedRangesByTimestamp("{ [0,100) }");
  CheckExpectedRangeEndTimes("{ <90,100> }");
  CheckExpectedBuffers("0K 50K 60 70 80 90");
  CheckNoNextBuffer();

  // Add more of the replacement GOP.
  AppendBuffers("10 20");
  Seek(0);
  CheckExpectedRangesByTimestamp("{ [0,100) }");
  CheckExpectedRangeEndTimes("{ <90,100> }");
  CheckExpectedBuffers("0K 10 20 50K 60 70 80 90");
  CheckNoNextBuffer();

  // Add more of the replacement GOP.
  AppendBuffers("30D10");
  Seek(0);
  CheckExpectedRangesByTimestamp("{ [0,100) }");
  CheckExpectedRangeEndTimes("{ <90,100> }");
  CheckExpectedBuffers("0K 10 20 30 50K 60 70 80 90");
  CheckNoNextBuffer();

  // Complete the replacement GOP.
  AppendBuffers("40D10");
  Seek(0);
  CheckExpectedRangesByTimestamp("{ [0,100) }");
  CheckExpectedRangeEndTimes("{ <90,100> }");
  CheckExpectedBuffers("0K 10 20 30 40 50K 60 70 80 90");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, AllowIncrementalAppendsToCoalesceRangeGap) {
  // Append a SAP-Type-1 GOP with a coded frame group start time far before the
  // timestamp of the first GOP (beyond any fudge room possible in this test).
  // This simulates one of multiple muxed tracks with jagged start times
  // following a discontinuity.
  // Then incrementally append a preceding SAP-Type-1 GOP with frames that
  // eventually are adjacent within fudge room of the first appended GOP's group
  // start time and observe the buffered range and demux gap coalesces. Finally,
  // incrementally append more frames of that preceding GOP to fill in the
  // timeline to abut the first appended GOP's keyframe timestamp and observe no
  // further buffered range change or discontinuity.
  NewCodedFrameGroupAppend(base::TimeDelta::FromMilliseconds(100), "150K 160");
  SeekToTimestampMs(100);
  CheckExpectedRangesByTimestamp("{ [100,170) }");
  CheckExpectedRangeEndTimes("{ <160,170> }");
  CheckExpectedBuffers("150K 160");
  CheckNoNextBuffer();

  NewCodedFrameGroupAppend("70D10K");
  SeekToTimestampMs(70);
  CheckExpectedRangesByTimestamp("{ [70,80) [100,170) }");
  CheckExpectedRangeEndTimes("{ <70,80> <160,170> }");
  CheckExpectedBuffers("70K");
  CheckNoNextBuffer();
  SeekToTimestampMs(100);
  CheckExpectedBuffers("150K 160");
  CheckNoNextBuffer();

  AppendBuffers("80D10");  // 80ms is just close enough to 100ms to coalesce.
  SeekToTimestampMs(70);
  CheckExpectedRangesByTimestamp("{ [70,170) }");
  CheckExpectedRangeEndTimes("{ <160,170> }");
  CheckExpectedBuffers("70K 80 150K 160");
  CheckNoNextBuffer();

  AppendBuffers("90D10");
  SeekToTimestampMs(70);
  CheckExpectedRangesByTimestamp("{ [70,170) }");
  CheckExpectedRangeEndTimes("{ <160,170> }");
  CheckExpectedBuffers("70K 80 90 150K 160");
  CheckNoNextBuffer();

  AppendBuffers("100 110 120");
  SeekToTimestampMs(70);
  CheckExpectedRangesByTimestamp("{ [70,170) }");
  CheckExpectedRangeEndTimes("{ <160,170> }");
  CheckExpectedBuffers("70K 80 90 100 110 120 150K 160");
  CheckNoNextBuffer();

  AppendBuffers("130D10");
  SeekToTimestampMs(70);
  CheckExpectedRangesByTimestamp("{ [70,170) }");
  CheckExpectedRangeEndTimes("{ <160,170> }");
  CheckExpectedBuffers("70K 80 90 100 110 120 130 150K 160");
  CheckNoNextBuffer();

  AppendBuffers("140D10");
  SeekToTimestampMs(70);
  CheckExpectedRangesByTimestamp("{ [70,170) }");
  CheckExpectedRangeEndTimes("{ <160,170> }");
  CheckExpectedBuffers("70K 80 90 100 110 120 130 140 150K 160");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, PreciselyOverlapLastAudioFrameAppended_1) {
  // Appends an audio frame, A, which is then immediately followed by a
  // subsequent frame, B. Then appends a new frame, C, which precisely overlaps
  // frame B, and verifies that there is exactly 1 buffered range resulting.
  SetAudioStream();

  // Frame A
  NewCodedFrameGroupAppend("0D10K");
  SeekToTimestampMs(0);
  CheckExpectedRangesByTimestamp("{ [0,10) }");
  CheckExpectedRangeEndTimes("{ <0,10> }");
  CheckExpectedBuffers("0K");
  CheckNoNextBuffer();

  // Frame B
  NewCodedFrameGroupAppend("10D10K");
  SeekToTimestampMs(0);
  CheckExpectedRangesByTimestamp("{ [0,20) }");
  CheckExpectedRangeEndTimes("{ <10,20> }");
  CheckExpectedBuffers("0K 10K");
  CheckNoNextBuffer();

  // Frame C.
  // Though DTS is continuous per MSE spec, FrameProcessor signals new CFG more
  // granularly, including in this case.
  NewCodedFrameGroupAppend("10D10K");

  SeekToTimestampMs(0);
  CheckExpectedRangesByTimestamp("{ [0,20) }");
  CheckExpectedRangeEndTimes("{ <10,20> }");
  CheckExpectedBuffers("0K 10K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, PreciselyOverlapLastAudioFrameAppended_2) {
  // Appends an audio frame, A, which is then splice-trim-truncated by a
  // subsequent frame, B. Then appends a new frame, C, which precisely overlaps
  // frame B, and verifies that there is exactly 1 buffered range resulting.
  SetAudioStream();

  // Frame A
  NewCodedFrameGroupAppend("0D100K");
  SeekToTimestampMs(0);
  CheckExpectedRangesByTimestamp("{ [0,100) }");
  CheckExpectedRangeEndTimes("{ <0,100> }");
  CheckExpectedBuffers("0K");
  CheckNoNextBuffer();

  // Frame B
  EXPECT_MEDIA_LOG(TrimmedSpliceOverlap(60000, 0, 40000));
  NewCodedFrameGroupAppend("60D10K");
  SeekToTimestampMs(0);
  CheckExpectedRangesByTimestamp("{ [0,70) }");
  CheckExpectedRangeEndTimes("{ <60,70> }");
  CheckExpectedBuffers("0K 60K");
  CheckNoNextBuffer();

  // Frame C.
  // Though DTS is continuous per MSE spec, FrameProcessor signals new CFG more
  // granularly, including in this case.
  NewCodedFrameGroupAppend("60D10K");

  SeekToTimestampMs(0);
  CheckExpectedRangesByTimestamp("{ [0,70) }");
  CheckExpectedRangeEndTimes("{ <60,70> }");
  CheckExpectedBuffers("0K 60K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, ZeroDurationBuffersThenIncreasingFudgeRoom) {
  // Appends some zero duration buffers to result in disjoint buffered ranges.
  // Verifies that increasing the fudge room allows those that become within
  // adjacency threshold to merge, including those for which the new fudge room
  // is well more than sufficient to let them be adjacent.
  SetAudioStream();

  NewCodedFrameGroupAppend("0uD0K");
  CheckExpectedRangesByTimestamp("{ [0,1) }", TimeGranularity::kMicrosecond);

  NewCodedFrameGroupAppend("1uD0K");
  CheckExpectedRangesByTimestamp("{ [0,2) }", TimeGranularity::kMicrosecond);

  // Initial fudge room allows for up to 2ms gap to coalesce.
  NewCodedFrameGroupAppend("5000uD0K");
  CheckExpectedRangesByTimestamp("{ [0,2) [5000,5001) }",
                                 TimeGranularity::kMicrosecond);
  NewCodedFrameGroupAppend("2002uD0K");
  CheckExpectedRangesByTimestamp("{ [0,2) [2002,2003) [5000,5001) }",
                                 TimeGranularity::kMicrosecond);

  // Grow the fudge room enough to coalesce the first two ranges.
  NewCodedFrameGroupAppend("8000uD1001uK");
  CheckExpectedRangesByTimestamp("{ [0,2003) [5000,5001) [8000,9001) }",
                                 TimeGranularity::kMicrosecond);

  // Append a buffer with duration 4ms, much larger than previous buffers. This
  // grows the fudge room to 8ms (2 * 4ms). Expect that the first three ranges
  // are retroactively merged due to being adjacent per the new, larger fudge
  // room.
  NewCodedFrameGroupAppend("100D4K");
  CheckExpectedRangesByTimestamp("{ [0,9001) [100000,104000) }",
                                 TimeGranularity::kMicrosecond);
  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K 1K 2002K 5000K 8000K",
                       TimeGranularity::kMicrosecond);
  CheckNoNextBuffer();
  SeekToTimestampMs(100);
  CheckExpectedBuffers("100K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, NonZeroDurationBuffersThenIncreasingFudgeRoom) {
  // Verifies that a single fudge room increase which merges more than 2
  // previously disjoint ranges in a row performs the merging correctly.
  NewCodedFrameGroupAppend("0D10K");
  NewCodedFrameGroupAppend("50D10K");
  NewCodedFrameGroupAppend("100D10K");
  NewCodedFrameGroupAppend("150D10K");
  NewCodedFrameGroupAppend("500D10K");
  CheckExpectedRangesByTimestamp(
      "{ [0,10) [50,60) [100,110) [150,160) [500,510) }");

  NewCodedFrameGroupAppend("600D30K");
  CheckExpectedRangesByTimestamp("{ [0,160) [500,510) [600,630) }");
  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K 50K 100K 150K");
  CheckNoNextBuffer();
  SeekToTimestampMs(500);
  CheckExpectedBuffers("500K");
  CheckNoNextBuffer();
  SeekToTimestampMs(600);
  CheckExpectedBuffers("600K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest, SapType2WithNonkeyframePtsInEarlierRange) {
  // Buffer a standalone GOP [0,10).
  NewCodedFrameGroupAppend("0D10K");
  CheckExpectedRangesByTimestamp("{ [0,10) }");

  // Following discontinuity (simulated by DTS gap, signalled by new coded frame
  // group with time beyond fudge room of [0,10)), buffer 2 new GOPs in a later
  // range: a SAP-2 GOP with a nonkeyframe with PTS belonging to the first
  // range, and a subsequent minimal GOP.
  NewCodedFrameGroupAppend("30D10K 1|40D10");
  CheckExpectedRangesByTimestamp("{ [0,10) [30,40) }");
  NewCodedFrameGroupAppend("40|50D10K");

  // Verify that there are two distinct ranges, and that the SAP-2 nonkeyframe
  // is buffered as part of the second range's first GOP.
  CheckExpectedRangesByTimestamp("{ [0,10) [30,50) }");

  SeekToTimestampMs(0);
  CheckExpectedBuffers("0K");
  CheckNoNextBuffer();
  SeekToTimestampMs(30);
  CheckExpectedBuffers("30K 1|40 40|50K");
  CheckNoNextBuffer();
}

TEST_F(SourceBufferStreamTest,
       MergeAllowedIfRangeEndTimeWithEstimatedDurationMatchesNextRangeStart) {
  // Tests the edge case where fudge room is not increased when an estimated
  // duration is increased due to overlap appends, causing two ranges to not be
  // within fudge room of each other (nor merged), yet abutting each other.
  // Append a GOP that has fudge room as its interval (e.g. 2 frames of same
  // duration >= minimum 1ms).
  NewCodedFrameGroupAppend("0D10K 10D10");
  CheckExpectedRangesByTimestamp("{ [0,20) }");

  // Trigger a DTS discontinuity so later 21ms append also is discontinuous and
  // retains 10ms*2 fudge room.
  NewCodedFrameGroupAppend("100D10K");
  CheckExpectedRangesByTimestamp("{ [0,20) [100,110) }");

  // Append another keyframe that starts within fudge room distance of the
  // non-keyframe in the GOP appended, above.
  NewCodedFrameGroupAppend("21D10K");
  CheckExpectedRangesByTimestamp("{ [0,31) [100,110) }");

  // Overlap-append the original GOP with a single estimated-duration keyframe.
  // Though its timestamp is not within fudge room of the next keyframe, that
  // next keyframe at time 21ms was in the overlapped range and is retained in
  // the result of the overlap append's range.
  NewCodedFrameGroupAppend("0D10EK");
  CheckExpectedRangesByTimestamp("{ [0,31) [100,110) }");

  // That new keyframe at time 0 now has derived estimated duration 21ms.  That
  // increased estimated duration did *not* increase the fudge room (which is
  // still 2 * 10ms = 20ms.) So the next line, which splices in a new frame at
  // time 21 causes the estimated keyframe at time 0 to not have a timestamp
  // within fudge room of the new range that starts right at 21ms, the same time
  // that ends the first buffered range, requiring CanAppendBuffersToEnd to
  // handle this scenario specifically.
  NewCodedFrameGroupAppend("21D10K");
  CheckExpectedRangesByTimestamp("{ [0,31) [100,110) }");

  SeekToTimestampMs(0);
  CheckExpectedBuffers("0D21EK 21D10K");
  CheckNoNextBuffer();
  SeekToTimestampMs(100);
  CheckExpectedBuffers("100D10K");
  CheckNoNextBuffer();
}

}  // namespace media