summaryrefslogtreecommitdiff
path: root/chromium/media/cast/receiver/frame_receiver.cc
blob: 33a358335243a4fcb79612117a4ce5817ae3cf1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/cast/receiver/frame_receiver.h"

#include <algorithm>
#include <string>
#include <utility>

#include "base/big_endian.h"
#include "base/bind.h"
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"
#include "media/cast/cast_config.h"
#include "media/cast/cast_environment.h"
#include "media/cast/constants.h"
#include "media/cast/net/rtcp/rtcp_utility.h"

namespace {

const int kMinSchedulingDelayMs = 1;

media::cast::RtcpTimeData CreateRtcpTimeData(base::TimeTicks now) {
  media::cast::RtcpTimeData ret;
  ret.timestamp = now;
  media::cast::ConvertTimeTicksToNtp(now, &ret.ntp_seconds, &ret.ntp_fraction);
  return ret;
}

}  // namespace

namespace media {
namespace cast {

FrameReceiver::FrameReceiver(
    const scoped_refptr<CastEnvironment>& cast_environment,
    const FrameReceiverConfig& config,
    EventMediaType event_media_type,
    CastTransport* const transport)
    : cast_environment_(cast_environment),
      transport_(transport),
      packet_parser_(
          config.sender_ssrc,
          config.rtp_payload_type <= RtpPayloadType::AUDIO_LAST ? 127 : 96),
      stats_(cast_environment->Clock()),
      event_media_type_(event_media_type),
      event_subscriber_(kReceiverRtcpEventHistorySize, event_media_type),
      rtp_timebase_(config.rtp_timebase),
      target_playout_delay_(
          base::TimeDelta::FromMilliseconds(config.rtp_max_delay_ms)),
      expected_frame_duration_(
          base::TimeDelta::FromSecondsD(1.0 / config.target_frame_rate)),
      reports_are_scheduled_(false),
      framer_(cast_environment->Clock(),
              this,
              config.sender_ssrc,
              true,
              static_cast<int>(config.rtp_max_delay_ms *
                               config.target_frame_rate / 1000)),
      rtcp_(cast_environment_->Clock(),
            config.receiver_ssrc,
            config.sender_ssrc),
      is_waiting_for_consecutive_frame_(false),
      lip_sync_drift_(ClockDriftSmoother::GetDefaultTimeConstant()) {
  transport_->AddValidRtpReceiver(config.sender_ssrc, config.receiver_ssrc);
  DCHECK_GT(config.rtp_max_delay_ms, 0);
  DCHECK_GT(config.target_frame_rate, 0);
  decryptor_.Initialize(config.aes_key, config.aes_iv_mask);
  cast_environment_->logger()->Subscribe(&event_subscriber_);
}

FrameReceiver::~FrameReceiver() {
  DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
  cast_environment_->logger()->Unsubscribe(&event_subscriber_);
}

void FrameReceiver::RequestEncodedFrame(ReceiveEncodedFrameCallback callback) {
  DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
  frame_request_queue_.push_back(std::move(callback));
  EmitAvailableEncodedFrames();
}

bool FrameReceiver::ProcessPacket(std::unique_ptr<Packet> packet) {
  DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));

  if (IsRtcpPacket(&packet->front(), packet->size())) {
    rtcp_.IncomingRtcpPacket(&packet->front(), packet->size());
  } else {
    RtpCastHeader rtp_header;
    const uint8_t* payload_data;
    size_t payload_size;
    if (!packet_parser_.ParsePacket(&packet->front(),
                                    packet->size(),
                                    &rtp_header,
                                    &payload_data,
                                    &payload_size)) {
      return false;
    }

    ProcessParsedPacket(rtp_header, payload_data, payload_size);
    stats_.UpdateStatistics(rtp_header, rtp_timebase_);
  }

  if (!reports_are_scheduled_) {
    ScheduleNextRtcpReport();
    ScheduleNextCastMessage();
    reports_are_scheduled_ = true;
  }

  return true;
}

base::WeakPtr<FrameReceiver> FrameReceiver::AsWeakPtr() {
  return weak_factory_.GetWeakPtr();
}

void FrameReceiver::ProcessParsedPacket(const RtpCastHeader& rtp_header,
                                        const uint8_t* payload_data,
                                        size_t payload_size) {
  DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));

  const base::TimeTicks now = cast_environment_->Clock()->NowTicks();

  frame_id_to_rtp_timestamp_[rtp_header.frame_id.lower_8_bits()] =
      rtp_header.rtp_timestamp;

  std::unique_ptr<PacketEvent> receive_event(new PacketEvent());
  receive_event->timestamp = now;
  receive_event->type = PACKET_RECEIVED;
  receive_event->media_type = event_media_type_;
  receive_event->rtp_timestamp = rtp_header.rtp_timestamp;
  receive_event->frame_id = rtp_header.frame_id;
  receive_event->packet_id = rtp_header.packet_id;
  receive_event->max_packet_id = rtp_header.max_packet_id;
  receive_event->size = base::checked_cast<uint32_t>(payload_size);
  cast_environment_->logger()->DispatchPacketEvent(std::move(receive_event));

  bool duplicate = false;
  const bool complete =
      framer_.InsertPacket(payload_data, payload_size, rtp_header, &duplicate);

  // Duplicate packets are ignored.
  if (duplicate)
    return;

  // Update lip-sync values upon receiving the first packet of each frame, or if
  // they have never been set yet.
  if (rtp_header.packet_id == 0 || lip_sync_reference_time_.is_null()) {
    RtpTimeTicks fresh_sync_rtp;
    base::TimeTicks fresh_sync_reference;
    if (!rtcp_.GetLatestLipSyncTimes(&fresh_sync_rtp, &fresh_sync_reference)) {
      // HACK: The sender should have provided Sender Reports before the first
      // frame was sent.  However, the spec does not currently require this.
      // Therefore, when the data is missing, the local clock is used to
      // generate reference timestamps.
      VLOG(2) << "Lip sync info missing.  Falling-back to local clock.";
      fresh_sync_rtp = rtp_header.rtp_timestamp;
      fresh_sync_reference = now;
    }
    // |lip_sync_reference_time_| is always incremented according to the time
    // delta computed from the difference in RTP timestamps.  Then,
    // |lip_sync_drift_| accounts for clock drift and also smoothes-out any
    // sudden/discontinuous shifts in the series of reference time values.
    if (lip_sync_reference_time_.is_null()) {
      lip_sync_reference_time_ = fresh_sync_reference;
    } else {
      // Note: It's okay for the conversion ToTimeDelta() to be approximate
      // because |lip_sync_drift_| will account for accumulated errors.
      lip_sync_reference_time_ +=
          (fresh_sync_rtp - lip_sync_rtp_timestamp_).ToTimeDelta(rtp_timebase_);
    }
    lip_sync_rtp_timestamp_ = fresh_sync_rtp;
    lip_sync_drift_.Update(
        now, fresh_sync_reference - lip_sync_reference_time_);
  }

  // Another frame is complete from a non-duplicate packet.  Attempt to emit
  // more frames to satisfy enqueued requests.
  if (complete)
    EmitAvailableEncodedFrames();
}

void FrameReceiver::CastFeedback(const RtcpCastMessage& cast_message) {
  DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));

  base::TimeTicks now = cast_environment_->Clock()->NowTicks();
  RtpTimeTicks rtp_timestamp =
      frame_id_to_rtp_timestamp_[cast_message.ack_frame_id.lower_8_bits()];

  std::unique_ptr<FrameEvent> ack_sent_event(new FrameEvent());
  ack_sent_event->timestamp = now;
  ack_sent_event->type = FRAME_ACK_SENT;
  ack_sent_event->media_type = event_media_type_;
  ack_sent_event->rtp_timestamp = rtp_timestamp;
  ack_sent_event->frame_id = cast_message.ack_frame_id;
  cast_environment_->logger()->DispatchFrameEvent(std::move(ack_sent_event));

  ReceiverRtcpEventSubscriber::RtcpEvents rtcp_events;
  event_subscriber_.GetRtcpEventsWithRedundancy(&rtcp_events);
  SendRtcpReport(rtcp_.local_ssrc(), rtcp_.remote_ssrc(),
                 CreateRtcpTimeData(now), &cast_message, nullptr,
                 target_playout_delay_, &rtcp_events, nullptr);
}

void FrameReceiver::EmitAvailableEncodedFrames() {
  DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));

  while (!frame_request_queue_.empty()) {
    // Attempt to peek at the next completed frame from the |framer_|.
    // TODO(miu): We should only be peeking at the metadata, and not copying the
    // payload yet!  Or, at least, peek using a StringPiece instead of a copy.
    std::unique_ptr<EncodedFrame> encoded_frame(new EncodedFrame());
    bool is_consecutively_next_frame = false;
    bool have_multiple_complete_frames = false;
    if (!framer_.GetEncodedFrame(encoded_frame.get(),
                                 &is_consecutively_next_frame,
                                 &have_multiple_complete_frames)) {
      VLOG(1) << "Wait for more packets to produce a completed frame.";
      return;  // ProcessParsedPacket() will invoke this method in the future.
    }

    const base::TimeTicks now = cast_environment_->Clock()->NowTicks();
    const base::TimeTicks playout_time = GetPlayoutTime(*encoded_frame);

    // If we have multiple decodable frames, and the current frame is
    // too old, then skip it and decode the next frame instead.
    if (have_multiple_complete_frames && now > playout_time) {
      framer_.ReleaseFrame(encoded_frame->frame_id);
      continue;
    }

    // If |framer_| has a frame ready that is out of sequence, examine the
    // playout time to determine whether it's acceptable to continue, thereby
    // skipping one or more frames.  Skip if the missing frame wouldn't complete
    // playing before the start of playback of the available frame.
    if (!is_consecutively_next_frame) {
      // This assumes that decoding takes as long as playing, which might
      // not be true.
      const base::TimeTicks earliest_possible_end_time_of_missing_frame =
          now + expected_frame_duration_ * 2;
      if (earliest_possible_end_time_of_missing_frame < playout_time) {
        VLOG(1) << "Wait for next consecutive frame instead of skipping.";
        if (!is_waiting_for_consecutive_frame_) {
          is_waiting_for_consecutive_frame_ = true;
          cast_environment_->PostDelayedTask(
              CastEnvironment::MAIN, FROM_HERE,
              base::BindOnce(
                  &FrameReceiver::EmitAvailableEncodedFramesAfterWaiting,
                  AsWeakPtr()),
              playout_time - now);
        }
        return;
      }
    }

    // At this point, we have the complete next frame, or a decodable
    // frame from somewhere later in the stream, AND we have given up
    // on waiting for any frames in between, so now we can ACK the frame.
    framer_.AckFrame(encoded_frame->frame_id);

    // Decrypt the payload data in the frame, if crypto is being used.
    if (decryptor_.is_activated()) {
      std::string decrypted_data;
      if (!decryptor_.Decrypt(encoded_frame->frame_id,
                              encoded_frame->data,
                              &decrypted_data)) {
        // Decryption failed.  Give up on this frame.
        framer_.ReleaseFrame(encoded_frame->frame_id);
        continue;
      }
      encoded_frame->data.swap(decrypted_data);
    }

    // At this point, we have a decrypted EncodedFrame ready to be emitted.
    encoded_frame->reference_time = playout_time;
    framer_.ReleaseFrame(encoded_frame->frame_id);
    if (encoded_frame->new_playout_delay_ms) {
      target_playout_delay_ = base::TimeDelta::FromMilliseconds(
          encoded_frame->new_playout_delay_ms);
    }
    cast_environment_->PostTask(
        CastEnvironment::MAIN, FROM_HERE,
        base::BindOnce(&FrameReceiver::EmitOneFrame, AsWeakPtr(),
                       std::move(*frame_request_queue_.begin()),
                       std::move(encoded_frame)));
    frame_request_queue_.pop_front();
  }
}

void FrameReceiver::EmitAvailableEncodedFramesAfterWaiting() {
  DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
  DCHECK(is_waiting_for_consecutive_frame_);
  is_waiting_for_consecutive_frame_ = false;
  EmitAvailableEncodedFrames();
}

void FrameReceiver::EmitOneFrame(
    ReceiveEncodedFrameCallback callback,
    std::unique_ptr<EncodedFrame> encoded_frame) const {
  DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
  if (!callback.is_null())
    std::move(callback).Run(std::move(encoded_frame));
}

base::TimeTicks FrameReceiver::GetPlayoutTime(const EncodedFrame& frame) const {
  base::TimeDelta target_playout_delay = target_playout_delay_;
  if (frame.new_playout_delay_ms) {
    target_playout_delay = base::TimeDelta::FromMilliseconds(
        frame.new_playout_delay_ms);
  }
  return lip_sync_reference_time_ + lip_sync_drift_.Current() +
         (frame.rtp_timestamp - lip_sync_rtp_timestamp_)
             .ToTimeDelta(rtp_timebase_) +
         target_playout_delay;
}

void FrameReceiver::ScheduleNextCastMessage() {
  DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
  base::TimeTicks send_time;
  framer_.TimeToSendNextCastMessage(&send_time);
  base::TimeDelta time_to_send =
      send_time - cast_environment_->Clock()->NowTicks();
  time_to_send = std::max(
      time_to_send, base::TimeDelta::FromMilliseconds(kMinSchedulingDelayMs));
  cast_environment_->PostDelayedTask(
      CastEnvironment::MAIN, FROM_HERE,
      base::BindOnce(&FrameReceiver::SendNextCastMessage, AsWeakPtr()),
      time_to_send);
}

void FrameReceiver::SendNextCastMessage() {
  DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
  framer_.SendCastMessage();  // Will only send a message if it is time.
  ScheduleNextCastMessage();
}

void FrameReceiver::ScheduleNextRtcpReport() {
  DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));

  cast_environment_->PostDelayedTask(
      CastEnvironment::MAIN, FROM_HERE,
      base::BindOnce(&FrameReceiver::SendNextRtcpReport, AsWeakPtr()),
      base::TimeDelta::FromMilliseconds(kRtcpReportIntervalMs));
}

void FrameReceiver::SendNextRtcpReport() {
  DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
  const base::TimeTicks now = cast_environment_->Clock()->NowTicks();
  RtpReceiverStatistics stats = stats_.GetStatistics();
  SendRtcpReport(rtcp_.local_ssrc(), rtcp_.remote_ssrc(),
                 CreateRtcpTimeData(now), nullptr, nullptr, base::TimeDelta(),
                 nullptr, &stats);
  ScheduleNextRtcpReport();
}

void FrameReceiver::SendRtcpReport(
    uint32_t rtp_receiver_ssrc,
    uint32_t rtp_sender_ssrc,
    const RtcpTimeData& time_data,
    const RtcpCastMessage* cast_message,
    const RtcpPliMessage* pli_message,
    base::TimeDelta target_delay,
    const ReceiverRtcpEventSubscriber::RtcpEvents* rtcp_events,
    const RtpReceiverStatistics* rtp_receiver_statistics) {
  transport_->InitializeRtpReceiverRtcpBuilder(rtp_receiver_ssrc, time_data);
  RtcpReportBlock report_block;
  if (rtp_receiver_statistics) {
    report_block.remote_ssrc = 0;  // Not needed to set send side.
    report_block.media_ssrc =
        rtp_sender_ssrc;  // SSRC of the RTP packet sender.
    report_block.fraction_lost = rtp_receiver_statistics->fraction_lost;
    report_block.cumulative_lost = rtp_receiver_statistics->cumulative_lost;
    report_block.extended_high_sequence_number =
        rtp_receiver_statistics->extended_high_sequence_number;
    report_block.jitter = rtp_receiver_statistics->jitter;
    report_block.last_sr = rtcp_.last_report_truncated_ntp();
    base::TimeTicks last_report_received_time =
        rtcp_.time_last_report_received();
    if (!last_report_received_time.is_null()) {
      uint32_t delay_seconds = 0;
      uint32_t delay_fraction = 0;
      base::TimeDelta delta = time_data.timestamp - last_report_received_time;
      ConvertTimeToFractions(delta.InMicroseconds(), &delay_seconds,
                             &delay_fraction);
      report_block.delay_since_last_sr =
          ConvertToNtpDiff(delay_seconds, delay_fraction);
    } else {
      report_block.delay_since_last_sr = 0;
    }
    transport_->AddRtpReceiverReport(report_block);
  }
  if (cast_message)
    transport_->AddCastFeedback(*cast_message, target_delay);
  if (pli_message)
    transport_->AddPli(*pli_message);
  if (rtcp_events)
    transport_->AddRtcpEvents(*rtcp_events);
  transport_->SendRtcpFromRtpReceiver();
}

}  // namespace cast
}  // namespace media