summaryrefslogtreecommitdiff
path: root/chromium/media/capture/video/chromeos/local_gpu_memory_buffer_manager.cc
blob: 020ca137016d409bfd0f7448a517623571fa7747 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/capture/video/chromeos/local_gpu_memory_buffer_manager.h"

#include <drm_fourcc.h>
#include <xf86drm.h>
#include <memory>

namespace media {

namespace {

const int32_t kDrmNumNodes = 64;
const int32_t kMinNodeNumber = 128;

gbm_device* CreateGbmDevice() {
  int fd;
  int32_t min_node = kMinNodeNumber;
  int32_t max_node = kMinNodeNumber + kDrmNumNodes;
  struct gbm_device* gbm = nullptr;

  for (int i = min_node; i < max_node; i++) {
    fd = drmOpenRender(i);
    if (fd < 0) {
      continue;
    }

    drmVersionPtr version = drmGetVersion(fd);
    if (!strcmp("vgem", version->name)) {
      drmFreeVersion(version);
      close(fd);
      continue;
    }

    gbm = gbm_create_device(fd);
    if (!gbm) {
      drmFreeVersion(version);
      close(fd);
      continue;
    }

    VLOG(1) << "Opened gbm device on render node " << version->name;
    drmFreeVersion(version);
    return gbm;
  }

  return nullptr;
}

uint32_t GetDrmFormat(gfx::BufferFormat gfx_format) {
  switch (gfx_format) {
    case gfx::BufferFormat::R_8:
      return DRM_FORMAT_R8;
    case gfx::BufferFormat::YUV_420_BIPLANAR:
      return DRM_FORMAT_NV12;
    // Add more formats when needed.
    default:
      return 0;
  }
}

class GpuMemoryBufferImplGbm : public gfx::GpuMemoryBuffer {
 public:
  GpuMemoryBufferImplGbm(gfx::BufferFormat format, gbm_bo* buffer_object)
      : format_(format), buffer_object_(buffer_object), mapped_(false) {
    handle_.type = gfx::NATIVE_PIXMAP;
    // Set a dummy id since this is for testing only.
    handle_.id = gfx::GpuMemoryBufferId(0);
    handle_.native_pixmap_handle.fds.push_back(
        base::FileDescriptor(gbm_bo_get_fd(buffer_object), false));
    for (size_t i = 0; i < gbm_bo_get_num_planes(buffer_object); ++i) {
      handle_.native_pixmap_handle.planes.push_back(
          gfx::NativePixmapPlane(gbm_bo_get_plane_stride(buffer_object, i),
                                 gbm_bo_get_plane_offset(buffer_object, i),
                                 gbm_bo_get_plane_size(buffer_object, i)));
    }
  }

  ~GpuMemoryBufferImplGbm() override {
    if (mapped_) {
      Unmap();
    }
    close(gbm_bo_get_fd(buffer_object_));
    gbm_bo_destroy(buffer_object_);
  }

  bool Map() override {
    if (mapped_) {
      return true;
    }
    size_t num_planes = gbm_bo_get_num_planes(buffer_object_);
    uint32_t stride;
    mapped_planes_.resize(num_planes);
    for (size_t i = 0; i < num_planes; ++i) {
      void* mapped_data;
      void* addr =
          gbm_bo_map(buffer_object_, 0, 0, gbm_bo_get_width(buffer_object_),
                     gbm_bo_get_height(buffer_object_),
                     GBM_BO_TRANSFER_READ_WRITE, &stride, &mapped_data, i);
      if (!addr) {
        LOG(ERROR) << "Failed to map GpuMemoryBufferImplGbm plane " << i;
        Unmap();
        return false;
      }
      mapped_planes_[i].addr = addr;
      mapped_planes_[i].mapped_data = mapped_data;
    }
    mapped_ = true;
    return true;
  };

  void* memory(size_t plane) override {
    if (!mapped_) {
      LOG(ERROR) << "Buffer is not mapped";
      return nullptr;
    }
    if (plane > mapped_planes_.size()) {
      LOG(ERROR) << "Invalid plane: " << plane;
      return nullptr;
    }
    return mapped_planes_[plane].addr;
  }

  void Unmap() override {
    for (size_t i = 0; i < mapped_planes_.size(); ++i) {
      if (mapped_planes_[i].addr) {
        gbm_bo_unmap(buffer_object_, mapped_planes_[i].mapped_data);
        mapped_planes_[i].addr = nullptr;
        mapped_planes_[i].mapped_data = nullptr;
      }
    }
    mapped_planes_.clear();
    mapped_ = false;
  }

  gfx::Size GetSize() const override {
    return gfx::Size(gbm_bo_get_width(buffer_object_),
                     gbm_bo_get_height(buffer_object_));
  }

  gfx::BufferFormat GetFormat() const override { return format_; }

  int stride(size_t plane) const override {
    return gbm_bo_get_plane_stride(buffer_object_, plane);
  }

  void SetColorSpace(const gfx::ColorSpace& color_space) override {}

  gfx::GpuMemoryBufferId GetId() const override { return handle_.id; }

  gfx::GpuMemoryBufferHandle GetHandle() const override { return handle_; }

  ClientBuffer AsClientBuffer() override {
    return reinterpret_cast<ClientBuffer>(this);
  }

 private:
  struct MappedPlane {
    void* addr;
    void* mapped_data;
  };

  gfx::BufferFormat format_;
  gbm_bo* buffer_object_;
  gfx::GpuMemoryBufferHandle handle_;
  bool mapped_;
  std::vector<MappedPlane> mapped_planes_;
  DISALLOW_IMPLICIT_CONSTRUCTORS(GpuMemoryBufferImplGbm);
};

}  // namespace

LocalGpuMemoryBufferManager::LocalGpuMemoryBufferManager()
    : gbm_device_(CreateGbmDevice()) {}

LocalGpuMemoryBufferManager::~LocalGpuMemoryBufferManager() {
  if (gbm_device_) {
    close(gbm_device_get_fd(gbm_device_));
    gbm_device_destroy(gbm_device_);
  }
}

std::unique_ptr<gfx::GpuMemoryBuffer>
LocalGpuMemoryBufferManager::CreateGpuMemoryBuffer(
    const gfx::Size& size,
    gfx::BufferFormat format,
    gfx::BufferUsage usage,
    gpu::SurfaceHandle surface_handle) {
  if (usage != gfx::BufferUsage::SCANOUT_CAMERA_READ_WRITE &&
      usage != gfx::BufferUsage::CAMERA_AND_CPU_READ_WRITE) {
    LOG(ERROR) << "Unsupported gfx::BufferUsage" << static_cast<int>(usage);
    return std::unique_ptr<gfx::GpuMemoryBuffer>();
  }
  if (!gbm_device_) {
    LOG(ERROR) << "Invalid GBM device";
    return std::unique_ptr<gfx::GpuMemoryBuffer>();
  }

  uint32_t drm_format = GetDrmFormat(format);
  uint32_t camera_gbm_usage =
      GBM_BO_USE_LINEAR | GBM_BO_USE_CAMERA_READ | GBM_BO_USE_CAMERA_WRITE;
  if (!drm_format) {
    LOG(ERROR) << "Unable to convert gfx::BufferFormat "
               << static_cast<int>(format) << " to DRM format";
    return std::unique_ptr<gfx::GpuMemoryBuffer>();
  }

  if (!gbm_device_is_format_supported(gbm_device_, drm_format,
                                      camera_gbm_usage)) {
    return std::unique_ptr<gfx::GpuMemoryBuffer>();
  }

  gbm_bo* buffer_object = gbm_bo_create(
      gbm_device_, size.width(), size.height(), drm_format, camera_gbm_usage);
  if (!buffer_object) {
    LOG(ERROR) << "Failed to create GBM buffer object";
    return std::unique_ptr<gfx::GpuMemoryBuffer>();
  }

  return std::make_unique<GpuMemoryBufferImplGbm>(format, buffer_object);
}

void LocalGpuMemoryBufferManager::SetDestructionSyncToken(
    gfx::GpuMemoryBuffer* buffer,
    const gpu::SyncToken& sync_token) {}

}  // namespace media