summaryrefslogtreecommitdiff
path: root/chromium/media/capture/content/video_capture_oracle.cc
blob: 44906bc3e2663f96c7487f1b31528e8ededd21ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/capture/content/video_capture_oracle.h"

#include <algorithm>
#include <limits>
#include <utility>

#include "base/callback.h"
#include "base/compiler_specific.h"
#include "base/format_macros.h"
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/stringprintf.h"

namespace media {

namespace {

// When a non-compositor event arrives after animation has halted, this
// controls how much time must elapse before deciding to allow a capture.
constexpr auto kAnimationHaltPeriodBeforeCaptureAllowed =
    base::Milliseconds(250);

// When estimating frame durations, this is the hard upper-bound on the
// estimate.
constexpr auto kUpperBoundsDurationEstimate = base::Seconds(1);

// The half-life of data points provided to the accumulator used when evaluating
// the recent utilization of the buffer pool.  This value is based on a
// simulation, and reacts quickly to change to avoid depleting the buffer pool
// (which would cause hard frame drops).
constexpr auto kBufferUtilizationEvaluationInterval = base::Milliseconds(200);

// The half-life of data points provided to the accumulator used when evaluating
// the recent resource utilization of the consumer.  The trade-off made here is
// reaction time versus over-reacting to outlier data points.
constexpr auto kConsumerCapabilityEvaluationInterval = base::Seconds(1);

// The maximum amount of time that may elapse without a feedback update.  Any
// longer, and currently-accumulated feedback is not considered recent enough to
// base decisions off of.  This prevents changes to the capture size when there
// is an unexpected pause in events.
constexpr auto kMaxTimeSinceLastFeedbackUpdate = base::Seconds(1);

// The amount of additional time, since content animation was last detected, to
// continue being extra-careful about increasing the capture size.  This is used
// to prevent breif periods of non-animating content from throwing off the
// heuristics that decide whether to increase the capture size.
constexpr auto kDebouncingPeriodForAnimatedContent = base::Seconds(3);

// When content is animating, this is the length of time the system must be
// contiguously under-utilized before increasing the capture size.
constexpr auto kProvingPeriodForAnimatedContent = base::Seconds(30);

// Given the amount of time between frames, compare to the expected amount of
// time between frames at |frame_rate| and return the fractional difference.
double FractionFromExpectedFrameRate(base::TimeDelta delta, int frame_rate) {
  DCHECK_GT(frame_rate, 0);
  const base::TimeDelta expected_delta = base::Seconds(1) / frame_rate;
  return (delta - expected_delta) / expected_delta;
}

// Returns the next-higher TimeTicks value.
base::TimeTicks JustAfter(base::TimeTicks t) {
  return t + base::Microseconds(1);
}

}  // anonymous namespace

// static
constexpr base::TimeDelta VideoCaptureOracle::kDefaultMinCapturePeriod;

// static
constexpr base::TimeDelta VideoCaptureOracle::kDefaultMinSizeChangePeriod;

VideoCaptureOracle::VideoCaptureOracle(bool enable_auto_throttling)
    : capture_size_throttling_mode_(
          enable_auto_throttling ? kThrottlingEnabled : kThrottlingDisabled),
      min_size_change_period_(kDefaultMinSizeChangePeriod),
      next_frame_number_(0),
      last_successfully_delivered_frame_number_(-1),
      num_frames_pending_(0),
      smoothing_sampler_(kDefaultMinCapturePeriod),
      content_sampler_(kDefaultMinCapturePeriod),
      min_capture_period_(kDefaultMinCapturePeriod),
      buffer_pool_utilization_(kBufferUtilizationEvaluationInterval),
      estimated_capable_area_(kConsumerCapabilityEvaluationInterval) {
  VLOG(1) << "Capture size auto-throttling is now "
          << (enable_auto_throttling ? "enabled." : "disabled.");
}

VideoCaptureOracle::~VideoCaptureOracle() = default;

void VideoCaptureOracle::SetMinCapturePeriod(base::TimeDelta period) {
  DCHECK_GT(period, base::TimeDelta());

  min_capture_period_ = period;
  smoothing_sampler_.SetMinCapturePeriod(period);
  content_sampler_.SetMinCapturePeriod(period);
}

void VideoCaptureOracle::SetCaptureSizeConstraints(
    const gfx::Size& min_size,
    const gfx::Size& max_size,
    bool use_fixed_aspect_ratio) {
  resolution_chooser_.SetConstraints(min_size, max_size,
                                     use_fixed_aspect_ratio);
}

void VideoCaptureOracle::SetAutoThrottlingEnabled(bool enabled) {
  const bool was_enabled =
      (capture_size_throttling_mode_ != kThrottlingDisabled);
  if (was_enabled == enabled)
    return;
  capture_size_throttling_mode_ =
      enabled ? kThrottlingEnabled : kThrottlingDisabled;
  VLOG(1) << "Capture size auto-throttling is now "
          << (enabled ? "enabled." : "disabled.");

  // When not auto-throttling, have the CaptureResolutionChooser target the max
  // resolution within constraints.
  if (!enabled)
    resolution_chooser_.SetTargetFrameArea(std::numeric_limits<int>::max());

  if (next_frame_number_ > 0)
    CommitCaptureSizeAndReset(GetFrameTimestamp(next_frame_number_ - 1));
}

void VideoCaptureOracle::SetSourceSize(const gfx::Size& source_size) {
  resolution_chooser_.SetSourceSize(source_size);
  // If the |resolution_chooser_| computed a new capture size, that will become
  // visible via a future call to ObserveEventAndDecideCapture().
  source_size_change_time_ = (next_frame_number_ == 0) ?
      base::TimeTicks() : GetFrameTimestamp(next_frame_number_ - 1);
}

bool VideoCaptureOracle::ObserveEventAndDecideCapture(
    Event event,
    const gfx::Rect& damage_rect,
    base::TimeTicks event_time) {
  DCHECK_GE(event, 0);
  DCHECK_LT(event, kNumEvents);
  if (event_time < last_event_time_[event]) {
    LOG(WARNING) << "Event time is not monotonically non-decreasing.  "
                 << "Deciding not to capture this frame.";
    return false;
  }
  last_event_time_[event] = event_time;

  bool should_sample = false;
  duration_of_next_frame_ = base::TimeDelta();
  switch (event) {
    // Refresh demands get the same priority as compositor updates.
    case kRefreshDemand:
      [[fallthrough]];

    case kCompositorUpdate: {
      smoothing_sampler_.ConsiderPresentationEvent(event_time);
      const bool had_proposal = content_sampler_.HasProposal();
      content_sampler_.ConsiderPresentationEvent(damage_rect, event_time);
      if (content_sampler_.HasProposal()) {
        VLOG_IF(1, !had_proposal) << "Content sampler now detects animation.";
        should_sample = content_sampler_.ShouldSample();
        if (should_sample) {
          event_time = content_sampler_.frame_timestamp();
          duration_of_next_frame_ = content_sampler_.sampling_period();
        }
        last_time_animation_was_detected_ = event_time;
      } else {
        VLOG_IF(1, had_proposal) << "Content sampler detects animation ended.";
        should_sample = smoothing_sampler_.ShouldSample();
      }
      break;
    }

    case kRefreshRequest:
      // Only allow non-compositor samplings when content has not recently been
      // animating, and only if there are no samplings currently in progress.
      if (num_frames_pending_ == 0) {
        if (!content_sampler_.HasProposal() ||
            ((event_time - last_time_animation_was_detected_) >
             kAnimationHaltPeriodBeforeCaptureAllowed)) {
          smoothing_sampler_.ConsiderPresentationEvent(event_time);
          should_sample = smoothing_sampler_.ShouldSample();
        }
      }
      break;

    case kNumEvents:
      NOTREACHED();
      break;
  }

  if (!should_sample)
    return false;

  // If the exact duration of the next frame has not been determined, estimate
  // it using the difference between the current and last frame.
  if (duration_of_next_frame_.is_zero()) {
    if (next_frame_number_ > 0) {
      duration_of_next_frame_ =
          event_time - GetFrameTimestamp(next_frame_number_ - 1);
    }
    duration_of_next_frame_ = std::max(
        std::min(duration_of_next_frame_, kUpperBoundsDurationEstimate),
        min_capture_period());
  }

  // Update |capture_size_| and reset all feedback signal accumulators if
  // either: 1) this is the first frame; or 2) |resolution_chooser_| has an
  // updated capture size and sufficient time has passed since the last size
  // change.
  if (next_frame_number_ == 0) {
    CommitCaptureSizeAndReset(event_time - duration_of_next_frame_);
  } else if (capture_size_ != resolution_chooser_.capture_size()) {
    const base::TimeDelta time_since_last_change =
        event_time - buffer_pool_utilization_.reset_time();
    if (time_since_last_change >= min_size_change_period_ ||
        capture_size_throttling_mode_ != kThrottlingActive) {
      // Unless autothrottling has become active resolution should be changed
      // ASAP.
      CommitCaptureSizeAndReset(GetFrameTimestamp(next_frame_number_ - 1));
    }
  }

  SetFrameTimestamp(next_frame_number_, event_time);
  return true;
}

void VideoCaptureOracle::RecordCapture(double pool_utilization) {
  DCHECK(std::isfinite(pool_utilization) && pool_utilization >= 0.0);

  smoothing_sampler_.RecordSample();
  const base::TimeTicks timestamp = GetFrameTimestamp(next_frame_number_);
  content_sampler_.RecordSample(timestamp);

  if (capture_size_throttling_mode_ == kThrottlingActive) {
    buffer_pool_utilization_.Update(pool_utilization, timestamp);
    AnalyzeAndAdjust(timestamp);
  }

  num_frames_pending_++;
  next_frame_number_++;
}

void VideoCaptureOracle::RecordWillNotCapture(double pool_utilization) {
  VLOG(1) << "Client rejects proposal to capture frame (at #"
          << next_frame_number_ << ").";

  if (capture_size_throttling_mode_ == kThrottlingActive) {
    DCHECK(std::isfinite(pool_utilization) && pool_utilization >= 0.0);
    const base::TimeTicks timestamp = GetFrameTimestamp(next_frame_number_);
    buffer_pool_utilization_.Update(pool_utilization, timestamp);
    AnalyzeAndAdjust(timestamp);
  }

  // Note: Do not advance |next_frame_number_| since it will be re-used for the
  // next capture proposal.
}

bool VideoCaptureOracle::CompleteCapture(int frame_number,
                                         bool capture_was_successful,
                                         base::TimeTicks* frame_timestamp) {
  num_frames_pending_--;
  DCHECK_GE(num_frames_pending_, 0);

  // Drop frame if previously delivered frame number is higher.
  if (last_successfully_delivered_frame_number_ > frame_number) {
    LOG_IF(WARNING, capture_was_successful)
        << "Out of order frame delivery detected (have #" << frame_number
        << ", last was #" << last_successfully_delivered_frame_number_
        << ").  Dropping frame.";
    return false;
  }

  if (!IsFrameInRecentHistory(frame_number)) {
    LOG(WARNING) << "Very old capture being ignored: frame #" << frame_number;
    return false;
  }

  if (!capture_was_successful) {
    VLOG(2) << "Capture of frame #" << frame_number << " was not successful.";
    return false;
  }

  DCHECK_NE(last_successfully_delivered_frame_number_, frame_number);
  last_successfully_delivered_frame_number_ = frame_number;

  *frame_timestamp = GetFrameTimestamp(frame_number);

  // If enabled, log a measurement of how this frame timestamp has incremented
  // in relation to an ideal increment.
  if (VLOG_IS_ON(3) && frame_number > 0) {
    const base::TimeDelta delta =
        *frame_timestamp - GetFrameTimestamp(frame_number - 1);
    if (content_sampler_.HasProposal()) {
      const double estimated_frame_rate =
          1000000.0 / content_sampler_.detected_period().InMicroseconds();
      const int rounded_frame_rate =
          static_cast<int>(estimated_frame_rate + 0.5);
      VLOG_STREAM(3) << base::StringPrintf(
          "Captured #%d: delta=%" PRId64
          " usec"
          ", now locked into {%s}, %+0.1f%% slower than %d FPS",
          frame_number, delta.InMicroseconds(),
          content_sampler_.detected_region().ToString().c_str(),
          100.0 * FractionFromExpectedFrameRate(delta, rounded_frame_rate),
          rounded_frame_rate);
    } else {
      VLOG_STREAM(3) << base::StringPrintf(
          "Captured #%d: delta=%" PRId64
          " usec"
          ", d/30fps=%+0.1f%%, d/25fps=%+0.1f%%, d/24fps=%+0.1f%%",
          frame_number, delta.InMicroseconds(),
          100.0 * FractionFromExpectedFrameRate(delta, 30),
          100.0 * FractionFromExpectedFrameRate(delta, 25),
          100.0 * FractionFromExpectedFrameRate(delta, 24));
    }
  }

  return true;
}

void VideoCaptureOracle::CancelAllCaptures() {
  // The following is the desired behavior:
  //
  //   for (int i = num_frames_pending_; i > 0; --i) {
  //     CompleteCapture(next_frame_number_ - i, false, nullptr);
  //     --num_frames_pending_;
  //   }
  //
  // ...which simplifies to:
  num_frames_pending_ = 0;
}

void VideoCaptureOracle::RecordConsumerFeedback(
    int frame_number,
    const media::VideoCaptureFeedback& feedback) {
  // Max frame-rate constraint.

  base::TimeDelta period;
  if (std::isfinite(feedback.max_framerate_fps) &&
      feedback.max_framerate_fps > 0.0) {
    period =
        std::max(min_capture_period_, base::Hertz(feedback.max_framerate_fps));
  } else {
    period = min_capture_period_;
  }
  smoothing_sampler_.SetMinCapturePeriod(period);
  content_sampler_.SetMinCapturePeriod(period);

  // Max pixels constraint. Only respected if auto-throttling is off because
  // consumers could just rescale the image.

  if (capture_size_throttling_mode_ != kThrottlingActive) {
    int limit;
    if (feedback.max_pixels < std::numeric_limits<int>::max()) {
      // +1 so that |FindSmallerFrameSize| could return exact |max_pixels| size.
      limit = feedback.max_pixels + 1;
    } else {
      limit = std::numeric_limits<int>::max();
    }
    int area = resolution_chooser_.FindSmallerFrameSize(limit, 1).GetArea();
    resolution_chooser_.SetTargetFrameArea(area);
  }

  // resource_utilization feedback.

  if (capture_size_throttling_mode_ == kThrottlingDisabled)
    return;

  if (!std::isfinite(feedback.resource_utilization)) {
    LOG(DFATAL) << "Non-finite utilization provided by consumer for frame #"
                << frame_number << ": " << feedback.resource_utilization;
    return;
  }
  if (feedback.resource_utilization <= 0.0)
    return;  // Non-positive values are normal, meaning N/A.

  if (capture_size_throttling_mode_ != kThrottlingActive) {
    VLOG(1) << "Received consumer feedback at frame #" << frame_number
            << "; activating capture size auto-throttling.";
    capture_size_throttling_mode_ = kThrottlingActive;
  }

  if (!IsFrameInRecentHistory(frame_number)) {
    VLOG(1) << "Very old frame feedback being ignored: frame #" << frame_number;
    return;
  }
  const base::TimeTicks timestamp = GetFrameTimestamp(frame_number);

  // Translate the utilization metric to be in terms of the capable frame area
  // and update the feedback accumulators.  Research suggests utilization is at
  // most linearly proportional to area, and typically is sublinear.  Either
  // way, the end-to-end system should converge to the right place using the
  // more-conservative assumption (linear).
  const int area_at_full_utilization = base::saturated_cast<int>(
      capture_size_.GetArea() / feedback.resource_utilization);
  estimated_capable_area_.Update(area_at_full_utilization, timestamp);
}

void VideoCaptureOracle::SetMinSizeChangePeriod(base::TimeDelta period) {
  min_size_change_period_ = period;
}

gfx::Size VideoCaptureOracle::capture_size() const {
  return capture_size_;
}

// static
const char* VideoCaptureOracle::EventAsString(Event event) {
  switch (event) {
    case kCompositorUpdate:
      return "compositor";
    case kRefreshRequest:
      return "refresh";
    case kRefreshDemand:
      return "demand";
    case kNumEvents:
      break;
  }
  NOTREACHED();
  return "unknown";
}

base::TimeTicks VideoCaptureOracle::GetFrameTimestamp(int frame_number) const {
  DCHECK(IsFrameInRecentHistory(frame_number));
  return frame_timestamps_[frame_number % kMaxFrameTimestamps];
}

void VideoCaptureOracle::SetFrameTimestamp(int frame_number,
                                           base::TimeTicks timestamp) {
  DCHECK(IsFrameInRecentHistory(frame_number));
  frame_timestamps_[frame_number % kMaxFrameTimestamps] = timestamp;
}

NOINLINE bool VideoCaptureOracle::IsFrameInRecentHistory(
    int frame_number) const {
  // Adding (next_frame_number_ >= 0) helps the compiler deduce that there
  // is no possibility of overflow here. NOINLINE is also required to ensure the
  // compiler can make this deduction (some compilers fail to otherwise...).
  return (frame_number >= 0 && next_frame_number_ >= 0 &&
          frame_number <= next_frame_number_ &&
          (next_frame_number_ - frame_number) < kMaxFrameTimestamps);
}

void VideoCaptureOracle::CommitCaptureSizeAndReset(
    base::TimeTicks last_frame_time) {
  capture_size_ = resolution_chooser_.capture_size();
  VLOG(2) << "Now proposing a capture size of " << capture_size_.ToString();

  // Reset each short-term feedback accumulator with a stable-state starting
  // value.
  const base::TimeTicks ignore_before_time = JustAfter(last_frame_time);
  buffer_pool_utilization_.Reset(1.0, ignore_before_time);
  estimated_capable_area_.Reset(capture_size_.GetArea(), ignore_before_time);
}

void VideoCaptureOracle::AnalyzeAndAdjust(const base::TimeTicks analyze_time) {
  DCHECK(capture_size_throttling_mode_ == kThrottlingActive);

  const int decreased_area = AnalyzeForDecreasedArea(analyze_time);
  if (decreased_area > 0) {
    resolution_chooser_.SetTargetFrameArea(decreased_area);
    if (!emit_log_message_cb_.is_null()) {
      emit_log_message_cb_.Run(base::StringPrintf(
          "VFC: CaptureOracle - Decreasing resolution. "
          "buffer_utilization_: %lf "
          "estimated_cappable_area: %lf "
          "capture_size: %s ",
          buffer_pool_utilization_.current(), estimated_capable_area_.current(),
          capture_size_.ToString().c_str()));
    }
    return;
  }

  const int increased_area = AnalyzeForIncreasedArea(analyze_time);
  if (increased_area > 0) {
    resolution_chooser_.SetTargetFrameArea(increased_area);
    return;
  }

  // Explicitly set the target frame area to the current capture area.  This
  // cancels-out the results of a previous call to this method, where the
  // |resolution_chooser_| may have been instructed to increase or decrease the
  // capture size.  Conditions may have changed since then which indicate no
  // change should be committed (via CommitCaptureSizeAndReset()).
  resolution_chooser_.SetTargetFrameArea(capture_size_.GetArea());
}

int VideoCaptureOracle::AnalyzeForDecreasedArea(base::TimeTicks analyze_time) {
  const int current_area = capture_size_.GetArea();
  DCHECK_GT(current_area, 0);

  // Translate the recent-average buffer pool utilization to be in terms of
  // "capable number of pixels per frame," for an apples-to-apples comparison
  // below.
  int buffer_capable_area;
  if (HasSufficientRecentFeedback(buffer_pool_utilization_, analyze_time) &&
      buffer_pool_utilization_.current() > 1.0) {
    // This calculation is hand-wavy, but seems to work well in a variety of
    // situations.
    buffer_capable_area =
        static_cast<int>(current_area / buffer_pool_utilization_.current());
  } else {
    buffer_capable_area = current_area;
  }

  int consumer_capable_area;
  if (HasSufficientRecentFeedback(estimated_capable_area_, analyze_time)) {
    consumer_capable_area =
        base::saturated_cast<int>(estimated_capable_area_.current());
  } else {
    consumer_capable_area = current_area;
  }

  // If either of the "capable areas" is less than the current capture area,
  // decrease the capture area by AT LEAST one step.
  int decreased_area = -1;
  const int capable_area = std::min(buffer_capable_area, consumer_capable_area);
  if (capable_area < current_area) {
    decreased_area = std::min(
        capable_area,
        resolution_chooser_.FindSmallerFrameSize(current_area, 1).GetArea());
    VLOG_IF(2, !start_time_of_underutilization_.is_null())
        << "Contiguous period of under-utilization ends: "
           "System is suddenly over-utilized.";
    start_time_of_underutilization_ = base::TimeTicks();
    VLOG(2) << "Proposing a "
            << (100.0 * (current_area - decreased_area) / current_area)
            << "% decrease in capture area.  :-(";
  }

  // Always log the capability interpretations at verbose logging level 3.  At
  // level 2, only log when when proposing a decreased area.
  VLOG(decreased_area == -1 ? 3 : 2)
      << "Capability of pool=" << (100.0 * buffer_capable_area / current_area)
      << "%, consumer=" << (100.0 * consumer_capable_area / current_area)
      << '%';

  return decreased_area;
}

int VideoCaptureOracle::AnalyzeForIncreasedArea(base::TimeTicks analyze_time) {
  // Compute what one step up in capture size/area would be.  If the current
  // area is already at the maximum, no further analysis is necessary.
  const int current_area = capture_size_.GetArea();
  const int increased_area =
      resolution_chooser_.FindLargerFrameSize(current_area, 1).GetArea();
  if (increased_area <= current_area)
    return -1;

  // Determine whether the buffer pool could handle an increase in area.
  if (!HasSufficientRecentFeedback(buffer_pool_utilization_, analyze_time))
    return -1;
  if (buffer_pool_utilization_.current() > 0.0) {
    const int buffer_capable_area = base::saturated_cast<int>(
        current_area / buffer_pool_utilization_.current());
    if (buffer_capable_area < increased_area) {
      VLOG_IF(2, !start_time_of_underutilization_.is_null())
          << "Contiguous period of under-utilization ends: "
             "Buffer pool is no longer under-utilized.";
      start_time_of_underutilization_ = base::TimeTicks();
      return -1;  // Buffer pool is not under-utilized.
    }
  }

  // Determine whether the consumer could handle an increase in area.
  if (HasSufficientRecentFeedback(estimated_capable_area_, analyze_time)) {
    if (estimated_capable_area_.current() < increased_area) {
      VLOG_IF(2, !start_time_of_underutilization_.is_null())
          << "Contiguous period of under-utilization ends: "
             "Consumer is no longer under-utilized.";
      start_time_of_underutilization_ = base::TimeTicks();
      return -1;  // Consumer is not under-utilized.
    }
  } else if (estimated_capable_area_.update_time() ==
             estimated_capable_area_.reset_time()) {
    // The consumer does not provide any feedback.  In this case, the consumer's
    // capability isn't a consideration.
  } else {
    // Consumer is providing feedback, but hasn't reported it recently.  Just in
    // case it's stalled, don't make things worse by increasing the capture
    // area.
    return -1;
  }

  // At this point, the system is currently under-utilized.  Reset the start
  // time if the system was not under-utilized when the last analysis was made.
  if (start_time_of_underutilization_.is_null())
    start_time_of_underutilization_ = analyze_time;

  // If the under-utilization started soon after the last source size change,
  // permit an immediate increase in the capture area.  This allows the system
  // to quickly step-up to an ideal point.
  if (start_time_of_underutilization_ - source_size_change_time_ <=
      GetExplorationPeriodAfterSourceSizeChange()) {
    VLOG(2) << "Proposing a "
            << (100.0 * (increased_area - current_area) / current_area)
            << "% increase in capture area after source size change.  :-)";
    return increased_area;
  }

  // While content is animating, require a "proving period" of contiguous
  // under-utilization before increasing the capture area.  This will mitigate
  // the risk of frames getting dropped when the data volume increases.
  if ((analyze_time - last_time_animation_was_detected_) <
      kDebouncingPeriodForAnimatedContent) {
    if ((analyze_time - start_time_of_underutilization_) <
        kProvingPeriodForAnimatedContent) {
      // Content is animating but the system needs to be under-utilized for a
      // longer period of time.
      return -1;
    } else {
      // Content is animating and the system has been contiguously
      // under-utilized for a good long time.
      VLOG(2) << "Proposing a *cautious* "
              << (100.0 * (increased_area - current_area) / current_area)
              << "% increase in capture area while content is animating.  :-)";
      // Reset the "proving period."
      start_time_of_underutilization_ = base::TimeTicks();
      return increased_area;
    }
  }

  // Content is not animating, so permit an immediate increase in the capture
  // area.  This allows the system to quickly improve the quality of
  // non-animating content (frame drops are not much of a concern).
  VLOG(2) << "Proposing a "
          << (100.0 * (increased_area - current_area) / current_area)
          << "% increase in capture area for non-animating content.  :-)";
  return increased_area;
}

base::TimeDelta
VideoCaptureOracle::GetExplorationPeriodAfterSourceSizeChange() {
  return 3 * min_size_change_period_;
}

bool VideoCaptureOracle::HasSufficientRecentFeedback(
    const FeedbackSignalAccumulator<base::TimeTicks>& accumulator,
    base::TimeTicks now) {
  const base::TimeDelta amount_of_history =
      accumulator.update_time() - accumulator.reset_time();
  return (amount_of_history >= min_size_change_period_) &&
         (now - accumulator.update_time() <= kMaxTimeSinceLastFeedbackUpdate);
}

void VideoCaptureOracle::SetLogCallback(
    base::RepeatingCallback<void(const std::string&)> emit_log_cb) {
  emit_log_message_cb_ = std::move(emit_log_cb);
}

}  // namespace media