summaryrefslogtreecommitdiff
path: root/chromium/media/audio/win/audio_low_latency_output_win.cc
blob: 68a9652e05385eceda808ce3e4107c0cd0750145 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/audio/win/audio_low_latency_output_win.h"

#include <Functiondiscoverykeys_devpkey.h>
#include <audiopolicy.h>
#include <inttypes.h>
#include <objbase.h>

#include <climits>
#include <memory>

#include "base/callback.h"
#include "base/command_line.h"
#include "base/cxx17_backports.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "base/win/scoped_propvariant.h"
#include "media/audio/audio_device_description.h"
#include "media/audio/win/audio_manager_win.h"
#include "media/audio/win/audio_session_event_listener_win.h"
#include "media/audio/win/avrt_wrapper_win.h"
#include "media/audio/win/core_audio_util_win.h"
#include "media/base/audio_sample_types.h"
#include "media/base/bind_to_current_loop.h"
#include "media/base/limits.h"
#include "media/base/media_switches.h"

using base::win::ScopedCoMem;
using base::win::ScopedCOMInitializer;

namespace media {

namespace {

constexpr char kOpenFailureHistogram[] = "Media.Audio.Output.Win.OpenError";
constexpr char kStartFailureHistogram[] = "Media.Audio.Output.Win.StartError";
constexpr char kStopFailureHistogram[] = "Media.Audio.Output.Win.StopError";
constexpr char kRunFailureHistogram[] = "Media.Audio.Output.Win.RunError";
constexpr char kRenderFailureHistogram[] = "Media.Audio.Output.Win.RenderError";

void RecordAudioFailure(const char* histogram, HRESULT hr) {
  base::UmaHistogramSparse(histogram, hr);
}

// Converts a COM error into a human-readable string.
std::string ErrorToString(HRESULT hresult) {
  return CoreAudioUtil::ErrorToString(hresult);
}

const char* RoleToString(const ERole role) {
  switch (role) {
    case eConsole:
      return "Console";
    case eMultimedia:
      return "Multimedia";
    case eCommunications:
      return "Communications";
    default:
      return "Unsupported";
  }
}

}  // namespace

// static
AUDCLNT_SHAREMODE
WASAPIAudioOutputStream::GetShareMode() {
  const base::CommandLine* cmd_line = base::CommandLine::ForCurrentProcess();
  if (cmd_line->HasSwitch(switches::kEnableExclusiveAudio))
    return AUDCLNT_SHAREMODE_EXCLUSIVE;
  return AUDCLNT_SHAREMODE_SHARED;
}

WASAPIAudioOutputStream::WASAPIAudioOutputStream(
    AudioManagerWin* manager,
    const std::string& device_id,
    const AudioParameters& params,
    ERole device_role,
    AudioManager::LogCallback log_callback)
    : creating_thread_id_(base::PlatformThread::CurrentId()),
      manager_(manager),
      format_(),
      opened_(false),
      volume_(1.0),
      packet_size_frames_(0),
      requested_iaudioclient3_buffer_size_(0),
      packet_size_bytes_(0),
      endpoint_buffer_size_frames_(0),
      device_id_(device_id),
      device_role_(device_role),
      share_mode_(GetShareMode()),
      num_written_frames_(0),
      source_(nullptr),
      log_callback_(std::move(log_callback)) {
  DCHECK(manager_);

  // The empty string is used to indicate a default device and the
  // |device_role_| member controls whether that's the default or default
  // communications device.
  DCHECK_NE(device_id_, AudioDeviceDescription::kDefaultDeviceId);
  DCHECK_NE(device_id_, AudioDeviceDescription::kCommunicationsDeviceId);

  SendLogMessage("%s({device_id=%s}, {params=[%s]}, {role=%s})", __func__,
                 device_id.c_str(), params.AsHumanReadableString().c_str(),
                 RoleToString(device_role));

  // Load the Avrt DLL if not already loaded. Required to support MMCSS.
  bool avrt_init = avrt::Initialize();
  if (!avrt_init)
    SendLogMessage("%s => (WARNING: failed to load Avrt.dll)", __func__);

  audio_bus_ = AudioBus::Create(params);

  // Set up the desired render format specified by the client. We use the
  // WAVE_FORMAT_EXTENSIBLE structure to ensure that multiple channel ordering
  // and high precision data can be supported.

  // Begin with the WAVEFORMATEX structure that specifies the basic format.
  WAVEFORMATEX* format = &format_.Format;
  format->wFormatTag = WAVE_FORMAT_EXTENSIBLE;
  format->nChannels = params.channels();
  format->nSamplesPerSec = params.sample_rate();
  format->wBitsPerSample = sizeof(float) * 8;
  format->nBlockAlign = (format->wBitsPerSample / 8) * format->nChannels;
  format->nAvgBytesPerSec = format->nSamplesPerSec * format->nBlockAlign;
  format->cbSize = sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX);

  // Add the parts which are unique to WAVE_FORMAT_EXTENSIBLE.
  format_.Samples.wValidBitsPerSample = format->wBitsPerSample;
  format_.dwChannelMask = CoreAudioUtil::GetChannelConfig(device_id, eRender);
  format_.SubFormat = KSDATAFORMAT_SUBTYPE_IEEE_FLOAT;
  SendLogMessage("%s => (audio engine format=[%s])", __func__,
                 CoreAudioUtil::WaveFormatToString(&format_).c_str());

  // Store size (in different units) of audio packets which we expect to
  // get from the audio endpoint device in each render event.
  packet_size_frames_ = params.frames_per_buffer();
  packet_size_bytes_ = params.GetBytesPerBuffer(kSampleFormatF32);
  SendLogMessage("%s => (packet size=[%zu bytes/%zu audio frames/%.3f ms])",
                 __func__, packet_size_bytes_, packet_size_frames_,
                 params.GetBufferDuration().InMillisecondsF());

  AudioParameters::HardwareCapabilities hardware_capabilities =
      params.hardware_capabilities().value_or(
          AudioParameters::HardwareCapabilities());

  // Only request an explicit buffer size if we are requesting the minimum
  // supported by the hardware, everything else uses the older IAudioClient API.
  if (params.frames_per_buffer() ==
      hardware_capabilities.min_frames_per_buffer) {
    requested_iaudioclient3_buffer_size_ =
        hardware_capabilities.min_frames_per_buffer;
  }

  // All events are auto-reset events and non-signaled initially.

  // Create the event which the audio engine will signal each time
  // a buffer becomes ready to be processed by the client.
  audio_samples_render_event_.Set(CreateEvent(nullptr, FALSE, FALSE, nullptr));
  DCHECK(audio_samples_render_event_.IsValid());

  // Create the event which will be set in Stop() when capturing shall stop.
  stop_render_event_.Set(CreateEvent(nullptr, FALSE, FALSE, nullptr));
  DCHECK(stop_render_event_.IsValid());
}

WASAPIAudioOutputStream::~WASAPIAudioOutputStream() {
  DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
}

bool WASAPIAudioOutputStream::Open() {
  DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
  SendLogMessage("%s([opened=%s])", __func__, opened_ ? "true" : "false");
  if (opened_)
    return true;

  DCHECK(!audio_client_.Get());
  DCHECK(!audio_render_client_.Get());

  const bool communications_device =
      device_id_.empty() ? (device_role_ == eCommunications) : false;

  Microsoft::WRL::ComPtr<IAudioClient> audio_client(
      CoreAudioUtil::CreateClient(device_id_, eRender, device_role_));
  if (!audio_client.Get()) {
    RecordAudioFailure(kOpenFailureHistogram, GetLastError());
    SendLogMessage("%s => (ERROR: CAU::CreateClient failed)", __func__);
    return false;
  }

  // Extra sanity to ensure that the provided device format is still valid.
  if (!CoreAudioUtil::IsFormatSupported(audio_client.Get(), share_mode_,
                                        &format_)) {
    RecordAudioFailure(kOpenFailureHistogram, GetLastError());
    SendLogMessage("%s => (ERROR: CAU::IsFormatSupported failed)", __func__);
    return false;
  }

  HRESULT hr = S_FALSE;
  if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
    // Initialize the audio stream between the client and the device in shared
    // mode and using event-driven buffer handling.
    hr = CoreAudioUtil::SharedModeInitialize(
        audio_client.Get(), &format_, audio_samples_render_event_.Get(),
        requested_iaudioclient3_buffer_size_, &endpoint_buffer_size_frames_,
        communications_device ? &kCommunicationsSessionId : nullptr);
    if (FAILED(hr)) {
      RecordAudioFailure(kOpenFailureHistogram, hr);
      SendLogMessage("%s => (ERROR: IAudioClient::SharedModeInitialize=[%s])",
                     __func__, ErrorToString(hr).c_str());
      return false;
    }

    REFERENCE_TIME device_period = 0;
    if (FAILED(CoreAudioUtil::GetDevicePeriod(
            audio_client.Get(), AUDCLNT_SHAREMODE_SHARED, &device_period))) {
      RecordAudioFailure(kOpenFailureHistogram, GetLastError());
      return false;
    }

    const int preferred_frames_per_buffer = static_cast<int>(
        format_.Format.nSamplesPerSec *
            CoreAudioUtil::ReferenceTimeToTimeDelta(device_period)
                .InSecondsF() +
        0.5);
    SendLogMessage("%s => (preferred_frames_per_buffer=[%d audio frames])",
                   __func__, preferred_frames_per_buffer);

    // Packet size should always be an even divisor of the device period for
    // best performance; things will still work otherwise, but may glitch for a
    // couple of reasons.
    //
    // The first reason is if/when repeated RenderAudioFromSource() hit the
    // shared memory boundary between the renderer and the browser.  The next
    // audio buffer is always requested after the current request is consumed.
    // With back-to-back calls the round-trip may not be fast enough and thus
    // audio will glitch as we fail to deliver audio in a timely manner.
    //
    // The second reason is event wakeup efficiency.  We may have too few or too
    // many frames to fill the output buffer requested by WASAPI.  If too few,
    // we'll refuse the render event and wait until more output space is
    // available.  If we have too many frames, we'll only partially fill and
    // wait for the next render event.  In either case certain remainders may
    // leave us unable to fulfill the request in a timely manner, thus glitches.
    //
    // Log a warning in these cases so we can help users in the field.
    // Examples: 48kHz => 960 % 480, 44.1kHz => 896 % 448 or 882 % 441.
    if (preferred_frames_per_buffer % packet_size_frames_) {
      SendLogMessage(
          "%s => (WARNING: Using output audio with a non-optimal buffer size)",
          __func__);
    }
  } else {
    SendLogMessage(
        "%s => (WARNING: Using exclusive mode can lead to bad performance)",
        __func__);
    // TODO(henrika): break out to CoreAudioUtil::ExclusiveModeInitialize()
    // when removing the enable-exclusive-audio flag.
    hr = ExclusiveModeInitialization(audio_client.Get(),
                                     audio_samples_render_event_.Get(),
                                     &endpoint_buffer_size_frames_);
    if (FAILED(hr))
      return false;

    // The buffer scheme for exclusive mode streams is not designed for max
    // flexibility. We only allow a "perfect match" between the packet size set
    // by the user and the actual endpoint buffer size.
    if (endpoint_buffer_size_frames_ != packet_size_frames_) {
      LOG(ERROR) << "Bailing out due to non-perfect timing.";
      return false;
    }
  }

  // Create an IAudioRenderClient client for an initialized IAudioClient.
  // The IAudioRenderClient interface enables us to write output data to
  // a rendering endpoint buffer.
  Microsoft::WRL::ComPtr<IAudioRenderClient> audio_render_client =
      CoreAudioUtil::CreateRenderClient(audio_client.Get());
  if (!audio_render_client.Get()) {
    RecordAudioFailure(kOpenFailureHistogram, GetLastError());
    SendLogMessage("%s => (ERROR: CAU::CreateRenderClient failed)", __func__);
    return false;
  }

  // Store valid COM interfaces.
  audio_client_ = audio_client;
  audio_render_client_ = audio_render_client;

  hr = audio_client_->GetService(IID_PPV_ARGS(&audio_clock_));
  if (FAILED(hr)) {
    RecordAudioFailure(kOpenFailureHistogram, hr);
    SendLogMessage("%s => (ERROR: IAudioClient::GetService(IAudioClock)=[%s])",
                   __func__, ErrorToString(hr).c_str());
    return false;
  }

  session_listener_ = std::make_unique<AudioSessionEventListener>(
      audio_client_.Get(), BindToCurrentLoop(base::BindOnce(
                               &WASAPIAudioOutputStream::OnDeviceChanged,
                               weak_factory_.GetWeakPtr())));

  opened_ = true;
  return true;
}

void WASAPIAudioOutputStream::Start(AudioSourceCallback* callback) {
  DVLOG(1) << "WASAPIAudioOutputStream::Start()";
  DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
  CHECK(callback);
  CHECK(opened_);
  SendLogMessage("%s([opened=%s, started=%s])", __func__,
                 opened_ ? "true" : "false", render_thread_ ? "true" : "false");

  if (render_thread_) {
    CHECK_EQ(callback, source_);
    return;
  }

  // Since a device change may occur between Open() and Start() we need to
  // signal the change once we have a |callback|. It's okay if this ends up
  // being delivered multiple times.
  if (device_changed_) {
    callback->OnError(AudioSourceCallback::ErrorType::kDeviceChange);
    return;
  }

  // Ensure that the endpoint buffer is prepared with silence. Also serves as
  // a sanity check for the IAudioClient and IAudioRenderClient which may have
  // been invalidated by Windows since the last Stop() call.
  //
  // While technically we only need to retry when WASAPI tells us the device has
  // been invalidated (AUDCLNT_E_DEVICE_INVALIDATED), we retry for all errors
  // for simplicity and due to large sites like YouTube reporting high success
  // rates with a simple retry upon detection of an audio output error.
  if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
    if (!CoreAudioUtil::FillRenderEndpointBufferWithSilence(
            audio_client_.Get(), audio_render_client_.Get())) {
      // Failed to prepare endpoint buffers with silence. Attempting recovery
      // with a new IAudioClient and IAudioRenderClient."
      SendLogMessage(
          "%s => (WARNING: CAU::FillRenderEndpointBufferWithSilence failed)",
          __func__);
      opened_ = false;
      audio_client_.Reset();
      audio_render_client_.Reset();
      if (!Open() || !CoreAudioUtil::FillRenderEndpointBufferWithSilence(
                         audio_client_.Get(), audio_render_client_.Get())) {
        RecordAudioFailure(kStartFailureHistogram, GetLastError());
        SendLogMessage("%s => (ERROR: Recovery attempt failed)", __func__);
        callback->OnError(AudioSourceCallback::ErrorType::kUnknown);
        return;
      }
    }
  }

  source_ = callback;
  num_written_frames_ = endpoint_buffer_size_frames_;
  last_position_ = 0;
  last_qpc_position_ = 0;

  // Create and start the thread that will drive the rendering by waiting for
  // render events.
  render_thread_ = std::make_unique<base::DelegateSimpleThread>(
      this, "wasapi_render_thread",
      base::SimpleThread::Options(base::ThreadPriority::REALTIME_AUDIO));
  render_thread_->Start();
  if (!render_thread_->HasBeenStarted()) {
    RecordAudioFailure(kStartFailureHistogram, GetLastError());
    SendLogMessage("%s => (ERROR: Failed to start \"wasapi_render_thread\")",
                   __func__);
    StopThread();
    callback->OnError(AudioSourceCallback::ErrorType::kUnknown);
    return;
  }

  // Start streaming data between the endpoint buffer and the audio engine.
  HRESULT hr = audio_client_->Start();
  if (FAILED(hr)) {
    RecordAudioFailure(kStartFailureHistogram, hr);
    SendLogMessage("%s => (ERROR: IAudioClient::Start=[%s])", __func__,
                   ErrorToString(hr).c_str());
    StopThread();
    callback->OnError(AudioSourceCallback::ErrorType::kUnknown);
  }
}

void WASAPIAudioOutputStream::Stop() {
  DVLOG(1) << "WASAPIAudioOutputStream::Stop()";
  DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
  SendLogMessage("%s([started=%s])", __func__,
                 render_thread_ ? "true" : "false");

  if (!render_thread_)
    return;

  // Stop output audio streaming.
  HRESULT hr = audio_client_->Stop();
  if (FAILED(hr)) {
    RecordAudioFailure(kStopFailureHistogram, hr);
    SendLogMessage("%s => (ERROR: IAudioClient::Stop=[%s])", __func__,
                   ErrorToString(hr).c_str());
    source_->OnError(AudioSourceCallback::ErrorType::kUnknown);
  }

  // Make a local copy of |source_| since StopThread() will clear it.
  AudioSourceCallback* callback = source_;
  StopThread();

  // Flush all pending data and reset the audio clock stream position to 0.
  hr = audio_client_->Reset();
  if (FAILED(hr)) {
    RecordAudioFailure(kStopFailureHistogram, hr);
    SendLogMessage("%s => (ERROR: IAudioClient::Reset=[%s])", __func__,
                   ErrorToString(hr).c_str());
    callback->OnError(AudioSourceCallback::ErrorType::kUnknown);
  }

  ReportAndResetStats();

  // Extra safety check to ensure that the buffers are cleared.
  // If the buffers are not cleared correctly, the next call to Start()
  // would fail with AUDCLNT_E_BUFFER_ERROR at IAudioRenderClient::GetBuffer().
  // This check is is only needed for shared-mode streams.
  if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
    UINT32 num_queued_frames = 0;
    audio_client_->GetCurrentPadding(&num_queued_frames);
    DCHECK_EQ(0u, num_queued_frames);
    if (num_queued_frames > 0) {
      SendLogMessage("%s => (WARNING: Buffers are not cleared correctly)",
                     __func__);
    }
  }
}

void WASAPIAudioOutputStream::Close() {
  DVLOG(1) << "WASAPIAudioOutputStream::Close()";
  DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
  SendLogMessage("%s()", __func__);

  session_listener_.reset();

  // It is valid to call Close() before calling open or Start().
  // It is also valid to call Close() after Start() has been called.
  Stop();

  // Inform the audio manager that we have been closed. This will cause our
  // destruction.
  manager_->ReleaseOutputStream(this);
}

// This stream is always used with sub second buffer sizes, where it's
// sufficient to simply always flush upon Start().
void WASAPIAudioOutputStream::Flush() {}

void WASAPIAudioOutputStream::SetVolume(double volume) {
  SendLogMessage("%s({volume=%.2f})", __func__, volume);
  float volume_float = static_cast<float>(volume);
  if (volume_float < 0.0f || volume_float > 1.0f) {
    return;
  }
  volume_ = volume_float;
}

void WASAPIAudioOutputStream::GetVolume(double* volume) {
  *volume = static_cast<double>(volume_);
}

void WASAPIAudioOutputStream::SendLogMessage(const char* format, ...) {
  if (log_callback_.is_null())
    return;
  va_list args;
  va_start(args, format);
  log_callback_.Run("WAOS::" + base::StringPrintV(format, args) +
                    base::StringPrintf(" [this=0x%" PRIXPTR "]",
                                       reinterpret_cast<uintptr_t>(this)));
  va_end(args);
}

void WASAPIAudioOutputStream::Run() {
  ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA);

  // Enable MMCSS to ensure that this thread receives prioritized access to
  // CPU resources.
  DWORD task_index = 0;
  HANDLE mm_task = avrt::AvSetMmThreadCharacteristics(L"Pro Audio",
                                                      &task_index);
  bool mmcss_is_ok =
      (mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL));
  if (!mmcss_is_ok) {
    // Failed to enable MMCSS on this thread. It is not fatal but can lead
    // to reduced QoS at high load.
    DWORD err = GetLastError();
    LOG(ERROR) << "WAOS::" << __func__
               << " => (ERROR: Failed to enable MMCSS (error code=" << err
               << "))";
  }

  HRESULT hr = S_FALSE;

  bool playing = true;
  bool error = false;
  HANDLE wait_array[] = { stop_render_event_.Get(),
                          audio_samples_render_event_.Get() };
  UINT64 device_frequency = 0;

  // The device frequency is the frequency generated by the hardware clock in
  // the audio device. The GetFrequency() method reports a constant frequency.
  hr = audio_clock_->GetFrequency(&device_frequency);
  error = FAILED(hr);
  if (error) {
    RecordAudioFailure(kRunFailureHistogram, hr);
    LOG(ERROR) << "WAOS::" << __func__
               << " => (ERROR: IAudioClock::GetFrequency=["
               << ErrorToString(hr).c_str() << "])";
  }

  // Keep rendering audio until the stop event or the stream-switch event
  // is signaled. An error event can also break the main thread loop.
  while (playing && !error) {
    // Wait for a close-down event, stream-switch event or a new render event.
    DWORD wait_result = WaitForMultipleObjects(base::size(wait_array),
                                               wait_array, FALSE, INFINITE);

    switch (wait_result) {
      case WAIT_OBJECT_0 + 0:
        // |stop_render_event_| has been set.
        playing = false;
        break;
      case WAIT_OBJECT_0 + 1:
        // |audio_samples_render_event_| has been set.
        error = !RenderAudioFromSource(device_frequency);
        break;
      default:
        error = true;
        break;
    }
  }

  if (playing && error) {
    RecordAudioFailure(kRunFailureHistogram, GetLastError());
    LOG(ERROR) << "WAOS::" << __func__
               << " => (ERROR: WASAPI rendering failed)";

    // Stop audio rendering since something has gone wrong in our main thread
    // loop. Note that, we are still in a "started" state, hence a Stop() call
    // is required to join the thread properly.
    audio_client_->Stop();

    // Notify clients that something has gone wrong and that this stream should
    // be destroyed instead of reused in the future.
    source_->OnError(AudioSourceCallback::ErrorType::kUnknown);
  }

  // Disable MMCSS.
  if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) {
    LOG(WARNING) << "WAOS::" << __func__
                 << " => (WARNING: Failed to disable MMCSS)";
  }
}

bool WASAPIAudioOutputStream::RenderAudioFromSource(UINT64 device_frequency) {
  TRACE_EVENT0("audio", "RenderAudioFromSource");

  HRESULT hr = S_FALSE;
  UINT32 num_queued_frames = 0;
  uint8_t* audio_data = nullptr;

  // Contains how much new data we can write to the buffer without
  // the risk of overwriting previously written data that the audio
  // engine has not yet read from the buffer.
  size_t num_available_frames = 0;

  if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
    // Get the padding value which represents the amount of rendering
    // data that is queued up to play in the endpoint buffer.
    hr = audio_client_->GetCurrentPadding(&num_queued_frames);
    num_available_frames =
        endpoint_buffer_size_frames_ - num_queued_frames;
    if (FAILED(hr)) {
      RecordAudioFailure(kRenderFailureHistogram, hr);
      LOG(ERROR) << "WAOS::" << __func__
                 << " => (ERROR: IAudioClient::GetCurrentPadding=["
                 << ErrorToString(hr).c_str() << "])";
      return false;
    }
  } else {
    // While the stream is running, the system alternately sends one
    // buffer or the other to the client. This form of double buffering
    // is referred to as "ping-ponging". Each time the client receives
    // a buffer from the system (triggers this event) the client must
    // process the entire buffer. Calls to the GetCurrentPadding method
    // are unnecessary because the packet size must always equal the
    // buffer size. In contrast to the shared mode buffering scheme,
    // the latency for an event-driven, exclusive-mode stream depends
    // directly on the buffer size.
    num_available_frames = endpoint_buffer_size_frames_;
  }

  // Check if there is enough available space to fit the packet size
  // specified by the client.  If not, wait until a future callback.
  if (num_available_frames < packet_size_frames_)
    return true;

  // Derive the number of packets we need to get from the client to fill up the
  // available area in the endpoint buffer.  Well-behaved (> Vista) clients and
  // exclusive mode streams should generally have a |num_packets| value of 1.
  //
  // Vista clients are not able to maintain reliable callbacks, so the endpoint
  // buffer may exhaust itself such that back-to-back callbacks are occasionally
  // necessary to avoid glitches.  In such cases we have no choice but to issue
  // back-to-back reads and pray that the browser side has enough data cached or
  // that the render can fulfill the read before we glitch anyways.
  //
  // API documentation does not guarantee that even on Win7+ clients we won't
  // need to fill more than a period size worth of buffers; but in practice this
  // appears to be infrequent.
  //
  // See http://crbug.com/524947.
  const size_t num_packets = num_available_frames / packet_size_frames_;
  for (size_t n = 0; n < num_packets; ++n) {
    // Grab all available space in the rendering endpoint buffer
    // into which the client can write a data packet.
    hr = audio_render_client_->GetBuffer(packet_size_frames_,
                                         &audio_data);
    if (FAILED(hr)) {
      RecordAudioFailure(kRenderFailureHistogram, hr);
      LOG(ERROR) << "WAOS::" << __func__
                 << " => (ERROR: IAudioRenderClient::GetBuffer=["
                 << ErrorToString(hr).c_str() << "])";
      return false;
    }

    // Derive the audio delay which corresponds to the delay between
    // a render event and the time when the first audio sample in a
    // packet is played out through the speaker. This delay value
    // can typically be utilized by an acoustic echo-control (AEC)
    // unit at the render side.
    UINT64 position = 0;
    UINT64 qpc_position = 0;
    base::TimeDelta delay;
    base::TimeTicks delay_timestamp;
    hr = audio_clock_->GetPosition(&position, &qpc_position);
    if (SUCCEEDED(hr)) {
      // Number of frames already played out through the speaker.
      const uint64_t played_out_frames =
          format_.Format.nSamplesPerSec * position / device_frequency;

      // Check for glitches. Records a glitch whenever the stream's position has
      // moved forward significantly less than the performance counter has. The
      // threshold is set to half the buffer size, to limit false positives.
      if (last_qpc_position_ != 0) {
        const int64_t buffer_duration_us = packet_size_frames_ *
                                           base::Time::kMicrosecondsPerSecond /
                                           format_.Format.nSamplesPerSec;

        const int64_t position_us =
            position * base::Time::kMicrosecondsPerSecond / device_frequency;
        const int64_t last_position_us = last_position_ *
                                         base::Time::kMicrosecondsPerSecond /
                                         device_frequency;
        // The QPC values are in 100 ns units.
        const int64_t qpc_position_us = qpc_position / 10;
        const int64_t last_qpc_position_us = last_qpc_position_ / 10;

        const int64_t position_diff_us = position_us - last_position_us;
        const int64_t qpc_position_diff_us =
            qpc_position_us - last_qpc_position_us;

        if (qpc_position_diff_us - position_diff_us > buffer_duration_us / 2) {
          ++num_glitches_detected_;

          base::TimeDelta glitch_duration =
              base::Microseconds(qpc_position_diff_us - position_diff_us);

          if (glitch_duration > largest_glitch_)
            largest_glitch_ = glitch_duration;

          cumulative_audio_lost_ += glitch_duration;
        }
      }

      last_position_ = position;
      last_qpc_position_ = qpc_position;

      // Number of frames that have been written to the buffer but not yet
      // played out.
      const uint64_t delay_frames = num_written_frames_ - played_out_frames;

      // Convert the delay from frames to time.
      delay =
          base::Microseconds(delay_frames * base::Time::kMicrosecondsPerSecond /
                             format_.Format.nSamplesPerSec);
      // Note: the obtained |qpc_position| value is in 100ns intervals and from
      // the same time origin as QPC. We can simply convert it into us dividing
      // by 10.0 since 10x100ns = 1us.
      delay_timestamp += base::Microseconds(qpc_position * 0.1);
    } else {
      RecordAudioFailure(kRenderFailureHistogram, hr);
      LOG(ERROR) << "WAOS::" << __func__
                 << " => (ERROR: IAudioClock::GetPosition=["
                 << ErrorToString(hr).c_str() << "])";
      // Use a delay of zero.
      delay_timestamp = base::TimeTicks::Now();
    }

    // Read a data packet from the registered client source and
    // deliver a delay estimate in the same callback to the client.

    int frames_filled =
        source_->OnMoreData(delay, delay_timestamp, 0, audio_bus_.get());
    uint32_t num_filled_bytes = frames_filled * format_.Format.nBlockAlign;
    DCHECK_LE(num_filled_bytes, packet_size_bytes_);

    audio_bus_->Scale(volume_);

    // We skip clipping since that occurs at the shared memory boundary.
    audio_bus_->ToInterleaved<Float32SampleTypeTraitsNoClip>(
        frames_filled, reinterpret_cast<float*>(audio_data));

    // Release the buffer space acquired in the GetBuffer() call.
    // Render silence if we were not able to fill up the buffer totally.
    DWORD flags = (num_filled_bytes < packet_size_bytes_) ?
        AUDCLNT_BUFFERFLAGS_SILENT : 0;
    audio_render_client_->ReleaseBuffer(packet_size_frames_, flags);

    num_written_frames_ += packet_size_frames_;
  }

  return true;
}

HRESULT WASAPIAudioOutputStream::ExclusiveModeInitialization(
    IAudioClient* client,
    HANDLE event_handle,
    uint32_t* endpoint_buffer_size) {
  DCHECK_EQ(share_mode_, AUDCLNT_SHAREMODE_EXCLUSIVE);

  float f = (1000.0 * packet_size_frames_) / format_.Format.nSamplesPerSec;
  REFERENCE_TIME requested_buffer_duration =
      static_cast<REFERENCE_TIME>(f * 10000.0 + 0.5);

  DWORD stream_flags = AUDCLNT_STREAMFLAGS_NOPERSIST;
  bool use_event =
      (event_handle != nullptr && event_handle != INVALID_HANDLE_VALUE);
  if (use_event)
    stream_flags |= AUDCLNT_STREAMFLAGS_EVENTCALLBACK;
  DVLOG(2) << "stream_flags: 0x" << std::hex << stream_flags;

  // Initialize the audio stream between the client and the device.
  // For an exclusive-mode stream that uses event-driven buffering, the
  // caller must specify nonzero values for hnsPeriodicity and
  // hnsBufferDuration, and the values of these two parameters must be equal.
  // The Initialize method allocates two buffers for the stream. Each buffer
  // is equal in duration to the value of the hnsBufferDuration parameter.
  // Following the Initialize call for a rendering stream, the caller should
  // fill the first of the two buffers before starting the stream.
  HRESULT hr = S_FALSE;
  hr = client->Initialize(AUDCLNT_SHAREMODE_EXCLUSIVE, stream_flags,
                          requested_buffer_duration, requested_buffer_duration,
                          reinterpret_cast<WAVEFORMATEX*>(&format_), nullptr);
  if (FAILED(hr)) {
    if (hr == AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED) {
      LOG(ERROR) << "AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED";

      UINT32 aligned_buffer_size = 0;
      client->GetBufferSize(&aligned_buffer_size);
      DVLOG(1) << "Use aligned buffer size instead: " << aligned_buffer_size;

      // Calculate new aligned periodicity. Each unit of reference time
      // is 100 nanoseconds.
      REFERENCE_TIME aligned_buffer_duration = static_cast<REFERENCE_TIME>(
          (10000000.0 * aligned_buffer_size / format_.Format.nSamplesPerSec)
          + 0.5);

      // It is possible to re-activate and re-initialize the audio client
      // at this stage but we bail out with an error code instead and
      // combine it with a log message which informs about the suggested
      // aligned buffer size which should be used instead.
      DVLOG(1) << "aligned_buffer_duration: "
               << static_cast<double>(aligned_buffer_duration / 10000.0)
               << " [ms]";
    } else if (hr == AUDCLNT_E_INVALID_DEVICE_PERIOD) {
      // We will get this error if we try to use a smaller buffer size than
      // the minimum supported size (usually ~3ms on Windows 7).
      LOG(ERROR) << "AUDCLNT_E_INVALID_DEVICE_PERIOD";
    }
    return hr;
  }

  if (use_event) {
    hr = client->SetEventHandle(event_handle);
    if (FAILED(hr)) {
      DVLOG(1) << "IAudioClient::SetEventHandle: " << std::hex << hr;
      return hr;
    }
  }

  UINT32 buffer_size_in_frames = 0;
  hr = client->GetBufferSize(&buffer_size_in_frames);
  if (FAILED(hr)) {
    DVLOG(1) << "IAudioClient::GetBufferSize: " << std::hex << hr;
    return hr;
  }

  *endpoint_buffer_size = buffer_size_in_frames;
  DVLOG(2) << "endpoint buffer size: " << buffer_size_in_frames;
  return hr;
}

void WASAPIAudioOutputStream::StopThread() {
  if (render_thread_) {
    if (render_thread_->HasBeenStarted()) {
      // Wait until the thread completes and perform cleanup.
      SetEvent(stop_render_event_.Get());
      render_thread_->Join();
    }

    render_thread_.reset();

    // Ensure that we don't quit the main thread loop immediately next
    // time Start() is called.
    ResetEvent(stop_render_event_.Get());
  }

  source_ = nullptr;
}

void WASAPIAudioOutputStream::ReportAndResetStats() {
  // Even if there aren't any glitches, we want to record it to get a feel for
  // how often we get no glitches vs the alternative.
  UMA_HISTOGRAM_CUSTOM_COUNTS("Media.Audio.Render.Glitches",
                              num_glitches_detected_, 1, 999999, 100);
  // Don't record these unless there actually was a glitch, though.
  if (num_glitches_detected_ != 0) {
    UMA_HISTOGRAM_COUNTS_1M("Media.Audio.Render.LostFramesInMs",
                            cumulative_audio_lost_.InMilliseconds());
    UMA_HISTOGRAM_COUNTS_1M("Media.Audio.Render.LargestGlitchMs",
                            largest_glitch_.InMilliseconds());
  }
  SendLogMessage(
      "%s => (num_glitches_detected=[%d], cumulative_audio_lost=[%llu ms], "
      "largest_glitch=[%llu ms])",
      __func__, num_glitches_detected_, cumulative_audio_lost_.InMilliseconds(),
      largest_glitch_.InMilliseconds());
  num_glitches_detected_ = 0;
  cumulative_audio_lost_ = base::TimeDelta();
  largest_glitch_ = base::TimeDelta();
}

void WASAPIAudioOutputStream::OnDeviceChanged() {
  device_changed_ = true;
  if (source_)
    source_->OnError(AudioSourceCallback::ErrorType::kDeviceChange);
}

}  // namespace media