summaryrefslogtreecommitdiff
path: root/chromium/media/audio/win/audio_low_latency_input_win.cc
blob: a5e5daf3ce7e9f848af5fa7b5df613af10e96e03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/audio/win/audio_low_latency_input_win.h"

#include <objbase.h>
#include <propkey.h>
#include <windows.devices.enumeration.h>
#include <windows.media.devices.h>

#include <algorithm>
#include <cmath>
#include <memory>
#include <utility>

#include "base/logging.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/stl_util.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/trace_event/trace_event.h"
#include "base/win/core_winrt_util.h"
#include "base/win/scoped_propvariant.h"
#include "base/win/scoped_variant.h"
#include "base/win/vector.h"
#include "base/win/windows_version.h"
#include "media/audio/audio_device_description.h"
#include "media/audio/audio_features.h"
#include "media/audio/win/avrt_wrapper_win.h"
#include "media/audio/win/core_audio_util_win.h"
#include "media/base/audio_block_fifo.h"
#include "media/base/audio_bus.h"
#include "media/base/audio_timestamp_helper.h"
#include "media/base/channel_layout.h"
#include "media/base/limits.h"
#include "media/base/media_switches.h"

using ABI::Windows::Foundation::Collections::IVectorView;
using ABI::Windows::Media::Devices::IMediaDeviceStatics;
using ABI::Windows::Media::Effects::IAudioCaptureEffectsManager;
using ABI::Windows::Media::Effects::IAudioEffectsManagerStatics;
using base::win::GetActivationFactory;
using base::win::ScopedCoMem;
using base::win::ScopedCOMInitializer;
using base::win::ScopedHString;
using Microsoft::WRL::ComPtr;

namespace media {

namespace {

constexpr char kUwpDeviceIdPrefix[] = "\\\\?\\SWD#MMDEVAPI#";

constexpr uint32_t KSAUDIO_SPEAKER_UNSUPPORTED = 0;

// Converts a COM error into a human-readable string.
std::string ErrorToString(HRESULT hresult) {
  return CoreAudioUtil::ErrorToString(hresult);
}

// Errors when initializing the audio client related to the audio format. Split
// by whether we're using format conversion or not. Used for reporting stats -
// do not renumber entries.
enum FormatRelatedInitError {
  kUnsupportedFormat = 0,
  kUnsupportedFormatWithFormatConversion = 1,
  kInvalidArgument = 2,
  kInvalidArgumentWithFormatConversion = 3,
  kCount
};

bool IsSupportedFormatForConversion(WAVEFORMATEXTENSIBLE* format_ex) {
  WAVEFORMATEX* format = &format_ex->Format;
  if (format->nSamplesPerSec < limits::kMinSampleRate ||
      format->nSamplesPerSec > limits::kMaxSampleRate) {
    return false;
  }

  switch (format->wBitsPerSample) {
    case 8:
    case 16:
    case 32:
      break;
    default:
      return false;
  }

  if (GuessChannelLayout(format->nChannels) == CHANNEL_LAYOUT_UNSUPPORTED) {
    LOG(ERROR) << "Hardware configuration not supported for audio conversion";
    return false;
  }

  return true;
}

// Converts ChannelLayout to Microsoft's channel configuration but only discrete
// and up to stereo is supported currently. All other multi-channel layouts
// return KSAUDIO_SPEAKER_UNSUPPORTED.
ChannelConfig ChannelLayoutToChannelConfig(ChannelLayout layout) {
  switch (layout) {
    case CHANNEL_LAYOUT_DISCRETE:
      return KSAUDIO_SPEAKER_DIRECTOUT;
    case CHANNEL_LAYOUT_MONO:
      return KSAUDIO_SPEAKER_MONO;
    case CHANNEL_LAYOUT_STEREO:
      return KSAUDIO_SPEAKER_STEREO;
    default:
      LOG(WARNING) << "Unsupported channel layout: " << layout;
      // KSAUDIO_SPEAKER_UNSUPPORTED equals 0 and corresponds to "no specific
      // channel order".
      return KSAUDIO_SPEAKER_UNSUPPORTED;
  }
}

const char* StreamOpenResultToString(
    WASAPIAudioInputStream::StreamOpenResult result) {
  switch (result) {
    case WASAPIAudioInputStream::OPEN_RESULT_OK:
      return "OK";
    case WASAPIAudioInputStream::OPEN_RESULT_CREATE_INSTANCE:
      return "CREATE_INSTANCE";
    case WASAPIAudioInputStream::OPEN_RESULT_NO_ENDPOINT:
      return "NO_ENDPOINT";
    case WASAPIAudioInputStream::OPEN_RESULT_NO_STATE:
      return "NO_STATE";
    case WASAPIAudioInputStream::OPEN_RESULT_DEVICE_NOT_ACTIVE:
      return "DEVICE_NOT_ACTIVE";
    case WASAPIAudioInputStream::OPEN_RESULT_ACTIVATION_FAILED:
      return "ACTIVATION_FAILED";
    case WASAPIAudioInputStream::OPEN_RESULT_FORMAT_NOT_SUPPORTED:
      return "FORMAT_NOT_SUPPORTED";
    case WASAPIAudioInputStream::OPEN_RESULT_AUDIO_CLIENT_INIT_FAILED:
      return "AUDIO_CLIENT_INIT_FAILED";
    case WASAPIAudioInputStream::OPEN_RESULT_GET_BUFFER_SIZE_FAILED:
      return "GET_BUFFER_SIZE_FAILED";
    case WASAPIAudioInputStream::OPEN_RESULT_LOOPBACK_ACTIVATE_FAILED:
      return "LOOPBACK_ACTIVATE_FAILED";
    case WASAPIAudioInputStream::OPEN_RESULT_LOOPBACK_INIT_FAILED:
      return "LOOPBACK_INIT_FAILED";
    case WASAPIAudioInputStream::OPEN_RESULT_SET_EVENT_HANDLE:
      return "SET_EVENT_HANDLE";
    case WASAPIAudioInputStream::OPEN_RESULT_NO_CAPTURE_CLIENT:
      return "NO_CAPTURE_CLIENT";
    case WASAPIAudioInputStream::OPEN_RESULT_NO_AUDIO_VOLUME:
      return "NO_AUDIO_VOLUME";
    case WASAPIAudioInputStream::OPEN_RESULT_OK_WITH_RESAMPLING:
      return "OK_WITH_RESAMPLING";
  }
  return "UNKNOWN";
}

const char* EffectTypeToString(
    ABI::Windows::Media::Effects::AudioEffectType type) {
  switch (type) {
    case ABI::Windows::Media::Effects::AudioEffectType_Other:
      return "Other/None";
    case ABI::Windows::Media::Effects::AudioEffectType_AcousticEchoCancellation:
      return "AcousticEchoCancellation";
    case ABI::Windows::Media::Effects::AudioEffectType_NoiseSuppression:
      return "NoiseSuppression";
    case ABI::Windows::Media::Effects::AudioEffectType_AutomaticGainControl:
      return "AutomaticGainControl";
    case ABI::Windows::Media::Effects::AudioEffectType_BeamForming:
      return "BeamForming";
    case ABI::Windows::Media::Effects::AudioEffectType_ConstantToneRemoval:
      return "ConstantToneRemoval";
    case ABI::Windows::Media::Effects::AudioEffectType_Equalizer:
      return "Equalizer";
    case ABI::Windows::Media::Effects::AudioEffectType_LoudnessEqualizer:
      return "LoudnessEqualizer";
    case ABI::Windows::Media::Effects::AudioEffectType_BassBoost:
      return "BassBoost";
    case ABI::Windows::Media::Effects::AudioEffectType_VirtualSurround:
      return "VirtualSurround";
    case ABI::Windows::Media::Effects::AudioEffectType_VirtualHeadphones:
      return "VirtualHeadphones";
    case ABI::Windows::Media::Effects::AudioEffectType_SpeakerFill:
      return "SpeakerFill";
    case ABI::Windows::Media::Effects::AudioEffectType_RoomCorrection:
      return "RoomCorrection";
    case ABI::Windows::Media::Effects::AudioEffectType_BassManagement:
      return "BassManagement";
    case ABI::Windows::Media::Effects::AudioEffectType_EnvironmentalEffects:
      return "EnvironmentalEffects";
    case ABI::Windows::Media::Effects::AudioEffectType_SpeakerProtection:
      return "SpeakerProtection";
    case ABI::Windows::Media::Effects::AudioEffectType_SpeakerCompensation:
      return "SpeakerCompensation";
    case ABI::Windows::Media::Effects::AudioEffectType_DynamicRangeCompression:
      return "DynamicRangeCompression";
  }
  return "Unknown";
}

bool VariantBoolToBool(VARIANT_BOOL var_bool) {
  switch (var_bool) {
    case VARIANT_TRUE:
      return true;
    case VARIANT_FALSE:
      return false;
  }
  LOG(ERROR) << "Invalid VARIANT_BOOL type";
  return false;
}

std::string GetOpenLogString(WASAPIAudioInputStream::StreamOpenResult result,
                             HRESULT hr,
                             WAVEFORMATEXTENSIBLE input_format,
                             WAVEFORMATEX output_format) {
  return base::StringPrintf(
      "WAIS::Open => (ERROR: result=%s, hresult=%#lx, input_format=[%s], "
      "output_format=[%s])",
      StreamOpenResultToString(result), hr,
      CoreAudioUtil::WaveFormatToString(&input_format).c_str(),
      CoreAudioUtil::WaveFormatToString(&output_format).c_str());
}

bool InitializeUWPSupport() {
  // Place the actual body of the initialization in a lambda and store the
  // result as a static since we don't expect this result to change between
  // runs.
  static const bool initialization_result = []() {
    // Windows.Media.Effects and Windows.Media.Devices requires Windows 10 build
    // 10.0.10240.0.
    if (base::win::GetVersion() < base::win::Version::WIN10) {
      DLOG(WARNING) << "AudioCaptureEffectsManager requires Windows 10";
      return false;
    }
    DCHECK_GE(base::win::OSInfo::GetInstance()->version_number().build, 10240);

    // Provide access to Core WinRT/UWP functions and load all required HSTRING
    // functions available from Win8 and onwards. ScopedHString is a wrapper
    // around an HSTRING and it requires certain functions that need to be
    // delayloaded to avoid breaking Chrome on Windows 7.
    if (!(base::win::ResolveCoreWinRTDelayload() &&
          base::win::ScopedHString::ResolveCoreWinRTStringDelayload())) {
      // Failed loading functions from combase.dll.
      DLOG(WARNING) << "Failed to initialize WinRT/UWP";
      return false;
    }
    return true;
  }();

  return initialization_result;
}

}  // namespace

WASAPIAudioInputStream::WASAPIAudioInputStream(
    AudioManagerWin* manager,
    const AudioParameters& params,
    const std::string& device_id,
    AudioManager::LogCallback log_callback)
    : manager_(manager),
      device_id_(device_id),
      log_callback_(std::move(log_callback)) {
  DCHECK(manager_);
  DCHECK(!device_id_.empty());
  DCHECK(!log_callback_.is_null());
  DCHECK_LE(params.channels(), 2);
  DCHECK(params.channel_layout() == CHANNEL_LAYOUT_MONO ||
         params.channel_layout() == CHANNEL_LAYOUT_STEREO ||
         params.channel_layout() == CHANNEL_LAYOUT_DISCRETE);
  SendLogMessage("%s({device_id=%s}, {params=[%s]})", __func__,
                 device_id.c_str(), params.AsHumanReadableString().c_str());

  // Load the Avrt DLL if not already loaded. Required to support MMCSS.
  bool avrt_init = avrt::Initialize();
  if (!avrt_init)
    SendLogMessage("%s => (WARNING: failed to load Avrt.dll)", __func__);

  const SampleFormat kSampleFormat = kSampleFormatS16;

  // The clients asks for an input stream specified by |params|. Start by
  // setting up an input device format according to the same specification.
  // If all goes well during the upcoming initialization, this format will not
  // change. However, under some circumstances, minor changes can be required
  // to fit the current input audio device. If so, a FIFO and/or and audio
  // converter might be needed to ensure that the output format of this stream
  // matches what the client asks for.
  WAVEFORMATEX* format = &input_format_.Format;
  format->wFormatTag = WAVE_FORMAT_EXTENSIBLE;
  format->nChannels = params.channels();
  format->nSamplesPerSec = params.sample_rate();
  format->wBitsPerSample = SampleFormatToBitsPerChannel(kSampleFormat);
  format->nBlockAlign = (format->wBitsPerSample / 8) * format->nChannels;
  format->nAvgBytesPerSec = format->nSamplesPerSec * format->nBlockAlign;

  // Add the parts which are unique to WAVE_FORMAT_EXTENSIBLE which can be
  // required in combination with e.g. multi-channel microphone arrays.
  format->cbSize = sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX);
  input_format_.Samples.wValidBitsPerSample = format->wBitsPerSample;
  input_format_.dwChannelMask =
      ChannelLayoutToChannelConfig(params.channel_layout());
  input_format_.SubFormat = KSDATAFORMAT_SUBTYPE_PCM;
  SendLogMessage("%s => (audio engine format=[%s])", __func__,
                 CoreAudioUtil::WaveFormatToString(&input_format_).c_str());

  // Set up the fixed output format based on |params|. Will not be changed and
  // does not required an extended wave format structure since any multi-channel
  // input will be converted to stereo.
  output_format_.wFormatTag = WAVE_FORMAT_PCM;
  output_format_.nChannels = format->nChannels;
  output_format_.nSamplesPerSec = format->nSamplesPerSec;
  output_format_.wBitsPerSample = format->wBitsPerSample;
  output_format_.nBlockAlign = format->nBlockAlign;
  output_format_.nAvgBytesPerSec = format->nAvgBytesPerSec;
  output_format_.cbSize = 0;
  SendLogMessage("%s => (audio sink format=[%s])", __func__,
                 CoreAudioUtil::WaveFormatToString(&output_format_).c_str());

  // Size in bytes of each audio frame.
  frame_size_bytes_ = format->nBlockAlign;

  // Store size of audio packets which we expect to get from the audio
  // endpoint device in each capture event.
  packet_size_bytes_ = params.GetBytesPerBuffer(kSampleFormat);
  packet_size_frames_ = packet_size_bytes_ / format->nBlockAlign;
  SendLogMessage(
      "%s => (packet size=[%zu bytes/%zu audio frames/%.3f milliseconds])",
      __func__, packet_size_bytes_, packet_size_frames_,
      params.GetBufferDuration().InMillisecondsF());

  // All events are auto-reset events and non-signaled initially.

  // Create the event which the audio engine will signal each time
  // a buffer becomes ready to be processed by the client.
  audio_samples_ready_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
  DCHECK(audio_samples_ready_event_.IsValid());

  // Create the event which will be set in Stop() when capturing shall stop.
  stop_capture_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
  DCHECK(stop_capture_event_.IsValid());
}

WASAPIAudioInputStream::~WASAPIAudioInputStream() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
}

bool WASAPIAudioInputStream::Open() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  SendLogMessage("%s([opened=%s])", __func__, opened_ ? "true" : "false");
  if (opened_) {
    return false;
  }

  // Obtain a reference to the IMMDevice interface of the capturing device with
  // the specified unique identifier or role which was set at construction.
  HRESULT hr = SetCaptureDevice();
  if (FAILED(hr)) {
    ReportOpenResult(hr);
    return false;
  }

  // Check if raw audio processing is supported for the selected capture device.
  raw_processing_supported_ = RawProcessingSupported();

  if (raw_processing_supported_ &&
      !AudioDeviceDescription::IsLoopbackDevice(device_id_) &&
      InitializeUWPSupport()) {
    // Retrieve a unique identifier of the selected audio device but in a
    // format which can be used by UWP (or Core WinRT) APIs. It can then be
    // utilized in combination with the Windows.Media.Effects UWP API to
    // discover the audio processing chain on a device.
    std::string uwp_device_id = GetUWPDeviceId();
    if (!uwp_device_id.empty()) {
      // For the selected device, generate two lists of enabled audio effects
      // and store them in |default_effect_types_| and |raw_effect_types_|.
      // Default corresponds to "Normal audio signal processing" and Raw is for
      // "Minimal audio signal processing". These two lists are used for UMA
      // stats when the stream is closed.
      GetAudioCaptureEffects(uwp_device_id);
    }
  }

  // Obtain an IAudioClient interface which enables us to create and initialize
  // an audio stream between an audio application and the audio engine.
  hr = endpoint_device_->Activate(__uuidof(IAudioClient), CLSCTX_ALL, nullptr,
                                  &audio_client_);
  if (FAILED(hr)) {
    open_result_ = OPEN_RESULT_ACTIVATION_FAILED;
    ReportOpenResult(hr);
    return false;
  }

#ifndef NDEBUG
  // Retrieve the stream format which the audio engine uses for its internal
  // processing/mixing of shared-mode streams. This function call is for
  // diagnostic purposes only and only in debug mode.
  hr = GetAudioEngineStreamFormat();
#endif

  // Attempt to enable communications category and raw capture mode on the audio
  // stream. Ignoring return value since the method logs its own error messages
  // and it should be OK to continue opening the stream even after a failure.
  if (base::FeatureList::IsEnabled(media::kWasapiRawAudioCapture) &&
      raw_processing_supported_ &&
      !AudioDeviceDescription::IsLoopbackDevice(device_id_)) {
    SetCommunicationsCategoryAndRawCaptureMode();
  }

  // Verify that the selected audio endpoint supports the specified format
  // set during construction and using the specified client properties.
  hr = S_OK;
  if (!DesiredFormatIsSupported(&hr)) {
    open_result_ = OPEN_RESULT_FORMAT_NOT_SUPPORTED;
    ReportOpenResult(hr);
    return false;
  }

  // Initialize the audio stream between the client and the device using
  // shared mode and a lowest possible glitch-free latency.
  hr = InitializeAudioEngine();
  if (SUCCEEDED(hr) && converter_)
    open_result_ = OPEN_RESULT_OK_WITH_RESAMPLING;
  ReportOpenResult(hr);  // Report before we assign a value to |opened_|.
  opened_ = SUCCEEDED(hr);

  return opened_;
}

void WASAPIAudioInputStream::Start(AudioInputCallback* callback) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  DCHECK(callback);
  SendLogMessage("%s([opened=%s, started=%s])", __func__,
                 opened_ ? "true" : "false", started_ ? "true" : "false");
  if (!opened_)
    return;

  if (started_)
    return;

  // Check if the master volume level of the opened audio session is set to
  // zero and store the information for a UMA histogram generated in Stop().
  // Valid volume levels are in the range 0.0 to 1.0.
  // See http://crbug.com/1014443 for details why this is needed.
  if (GetVolume() == 0.0) {
    SendLogMessage("%s => (WARNING: Input audio session starts at zero volume)",
                   __func__);
    audio_session_starts_at_zero_volume_ = true;
  }

  if (device_id_ == AudioDeviceDescription::kLoopbackWithMuteDeviceId &&
      system_audio_volume_) {
    BOOL muted = false;
    system_audio_volume_->GetMute(&muted);

    // If the system audio is muted at the time of capturing, then no need to
    // mute it again, and later we do not unmute system audio when stopping
    // capturing.
    if (!muted) {
      system_audio_volume_->SetMute(true, nullptr);
      mute_done_ = true;
    }
  }

  DCHECK(!sink_);
  sink_ = callback;

  // Starts periodic AGC microphone measurements if the AGC has been enabled
  // using SetAutomaticGainControl().
  StartAgc();

  // Create and start the thread that will drive the capturing by waiting for
  // capture events.
  DCHECK(!capture_thread_.get());
  capture_thread_.reset(new base::DelegateSimpleThread(
      this, "wasapi_capture_thread",
      base::SimpleThread::Options(base::ThreadPriority::REALTIME_AUDIO)));
  capture_thread_->Start();

  // Start streaming data between the endpoint buffer and the audio engine.
  HRESULT hr = audio_client_->Start();
  if (FAILED(hr)) {
    SendLogMessage("%s => (ERROR: IAudioClient::Start=[%s])", __func__,
                   ErrorToString(hr).c_str());
  }

  if (SUCCEEDED(hr) && audio_render_client_for_loopback_.Get()) {
    hr = audio_render_client_for_loopback_->Start();
    if (FAILED(hr))
      SendLogMessage("%s => (ERROR: IAudioClient::Start=[%s] (loopback))",
                     __func__, ErrorToString(hr).c_str());
  }

  started_ = SUCCEEDED(hr);
}

void WASAPIAudioInputStream::Stop() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  SendLogMessage("%s([started=%s])", __func__, started_ ? "true" : "false");
  if (!started_)
    return;

  // Only upload UMA histogram for the case when AGC is enabled, i.e., for
  // WebRTC based audio input streams.
  const bool add_uma_histogram = GetAutomaticGainControl();

  // We have muted system audio for capturing, so we need to unmute it when
  // capturing stops.
  if (device_id_ == AudioDeviceDescription::kLoopbackWithMuteDeviceId &&
      mute_done_) {
    DCHECK(system_audio_volume_);
    if (system_audio_volume_) {
      system_audio_volume_->SetMute(false, nullptr);
      mute_done_ = false;
    }
  }

  // Stops periodic AGC microphone measurements.
  StopAgc();

  // Shut down the capture thread.
  if (stop_capture_event_.IsValid()) {
    SetEvent(stop_capture_event_.Get());
  }

  // Stop the input audio streaming.
  HRESULT hr = audio_client_->Stop();
  if (FAILED(hr)) {
    SendLogMessage("%s => (ERROR: IAudioClient::Stop=[%s])", __func__,
                   ErrorToString(hr).c_str());
  }

  // Wait until the thread completes and perform cleanup.
  if (capture_thread_) {
    SetEvent(stop_capture_event_.Get());
    capture_thread_->Join();
    capture_thread_.reset();
  }

  // Upload UMA histogram to track down possible issue that can lead to a
  // "no audio" state. See http://crbug.com/1014443.
  if (add_uma_histogram) {
    base::UmaHistogramBoolean("Media.Audio.InputVolumeStartsAtZeroWin",
                              audio_session_starts_at_zero_volume_);
    audio_session_starts_at_zero_volume_ = false;
  }

  started_ = false;
  sink_ = nullptr;
}

void WASAPIAudioInputStream::Close() {
  SendLogMessage("%s()", __func__);
  // It is valid to call Close() before calling open or Start().
  // It is also valid to call Close() after Start() has been called.
  Stop();

  // Only upload UMA histogram for the case when AGC is enabled, i.e., for
  // WebRTC based audio input streams.
  if (GetAutomaticGainControl()) {
    // Upload UMA histogram to track if the capture device supported raw audio
    // capture or not. See https://crbug.com/1133643.
    base::UmaHistogramBoolean("Media.Audio.RawProcessingSupportedWin",
                              raw_processing_supported_);

    for (auto const& type : default_effect_types_) {
      base::UmaHistogramSparse("Media.Audio.Capture.Win.DefaultEffectType",
                               type);
      SendLogMessage("%s => (Media.Audio.Capture.Win.DefaultEffectType=%s)",
                     __func__, EffectTypeToString(type));
    }

    for (auto const& type : raw_effect_types_) {
      base::UmaHistogramSparse("Media.Audio.Capture.Win.RawEffectType", type);
      SendLogMessage("%s => (Media.Audio.Capture.Win.RawEffectType=%s)",
                     __func__, EffectTypeToString(type));
    }
  }

  if (converter_)
    converter_->RemoveInput(this);

  ReportAndResetGlitchStats();

  // Inform the audio manager that we have been closed. This will cause our
  // destruction.
  manager_->ReleaseInputStream(this);
}

double WASAPIAudioInputStream::GetMaxVolume() {
  // Verify that Open() has been called successfully, to ensure that an audio
  // session exists and that an ISimpleAudioVolume interface has been created.
  DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
  if (!opened_)
    return 0.0;

  // The effective volume value is always in the range 0.0 to 1.0, hence
  // we can return a fixed value (=1.0) here.
  return 1.0;
}

void WASAPIAudioInputStream::SetVolume(double volume) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  DCHECK_GE(volume, 0.0);
  DCHECK_LE(volume, 1.0);
  SendLogMessage("%s({volume=%.2f} [opened=%s])", __func__, volume,
                 opened_ ? "true" : "false");
  if (!opened_)
    return;

  // Set a new master volume level. Valid volume levels are in the range
  // 0.0 to 1.0. Ignore volume-change events.
  HRESULT hr = simple_audio_volume_->SetMasterVolume(static_cast<float>(volume),
                                                     nullptr);
  if (FAILED(hr)) {
    SendLogMessage("%s => (ERROR: ISimpleAudioVolume::SetMasterVolume=[%s])",
                   __func__, ErrorToString(hr).c_str());
  }

  // Update the AGC volume level based on the last setting above. Note that,
  // the volume-level resolution is not infinite and it is therefore not
  // possible to assume that the volume provided as input parameter can be
  // used directly. Instead, a new query to the audio hardware is required.
  // This method does nothing if AGC is disabled.
  UpdateAgcVolume();
}

double WASAPIAudioInputStream::GetVolume() {
  DCHECK(opened_) << "Open() has not been called successfully";
  if (!opened_)
    return 0.0;

  // Retrieve the current volume level. The value is in the range 0.0 to 1.0.
  float level = 0.0f;
  HRESULT hr = simple_audio_volume_->GetMasterVolume(&level);
  if (FAILED(hr)) {
    SendLogMessage("%s => (ERROR: ISimpleAudioVolume::GetMasterVolume=[%s])",
                   __func__, ErrorToString(hr).c_str());
  }

  return static_cast<double>(level);
}

bool WASAPIAudioInputStream::IsMuted() {
  DCHECK(opened_) << "Open() has not been called successfully";
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  if (!opened_)
    return false;

  // Retrieves the current muting state for the audio session.
  BOOL is_muted = FALSE;
  HRESULT hr = simple_audio_volume_->GetMute(&is_muted);
  if (FAILED(hr)) {
    SendLogMessage("%s => (ERROR: ISimpleAudioVolume::GetMute=[%s])", __func__,
                   ErrorToString(hr).c_str());
  }

  return is_muted != FALSE;
}

void WASAPIAudioInputStream::SetOutputDeviceForAec(
    const std::string& output_device_id) {
  // Not supported. Do nothing.
}

void WASAPIAudioInputStream::SendLogMessage(const char* format, ...) {
  if (log_callback_.is_null())
    return;
  va_list args;
  va_start(args, format);
  std::string msg("WAIS::" + base::StringPrintV(format, args));
  log_callback_.Run(msg);
  DVLOG(1) << msg;
  va_end(args);
}

void WASAPIAudioInputStream::Run() {
  ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA);

  // Enable MMCSS to ensure that this thread receives prioritized access to
  // CPU resources.
  DWORD task_index = 0;
  HANDLE mm_task =
      avrt::AvSetMmThreadCharacteristics(L"Pro Audio", &task_index);
  bool mmcss_is_ok =
      (mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL));
  if (!mmcss_is_ok) {
    // Failed to enable MMCSS on this thread. It is not fatal but can lead
    // to reduced QoS at high load.
    DWORD err = GetLastError();
    LOG(ERROR) << "WAIS::" << __func__
               << " => (ERROR: Failed to enable MMCSS (error code=" << err
               << "))";
  }

  // Allocate a buffer with a size that enables us to take care of cases like:
  // 1) The recorded buffer size is smaller, or does not match exactly with,
  //    the selected packet size used in each callback.
  // 2) The selected buffer size is larger than the recorded buffer size in
  //    each event.
  // In the case where no resampling is required, a single buffer should be
  // enough but in case we get buffers that don't match exactly, we'll go with
  // two. Same applies if we need to resample and the buffer ratio is perfect.
  // However if the buffer ratio is imperfect, we will need 3 buffers to safely
  // be able to buffer up data in cases where a conversion requires two audio
  // buffers (and we need to be able to write to the third one).
  size_t capture_buffer_size =
      std::max(2 * endpoint_buffer_size_frames_ * frame_size_bytes_,
               2 * packet_size_frames_ * frame_size_bytes_);
  int buffers_required = capture_buffer_size / packet_size_bytes_;
  if (converter_ && imperfect_buffer_size_conversion_)
    ++buffers_required;

  DCHECK(!fifo_);
  fifo_.reset(new AudioBlockFifo(input_format_.Format.nChannels,
                                 packet_size_frames_, buffers_required));
  DVLOG(1) << "AudioBlockFifo buffer count: " << buffers_required;

  bool recording = true;
  bool error = false;
  HANDLE wait_array[2] = {stop_capture_event_.Get(),
                          audio_samples_ready_event_.Get()};

  while (recording && !error) {
    // Wait for a close-down event or a new capture event.
    DWORD wait_result = WaitForMultipleObjects(2, wait_array, FALSE, INFINITE);
    switch (wait_result) {
      case WAIT_OBJECT_0 + 0:
        // |stop_capture_event_| has been set.
        recording = false;
        break;
      case WAIT_OBJECT_0 + 1:
        // |audio_samples_ready_event_| has been set.
        PullCaptureDataAndPushToSink();
        break;
      case WAIT_FAILED:
      default:
        error = true;
        break;
    }
  }

  if (recording && error) {
    // TODO(henrika): perhaps it worth improving the cleanup here by e.g.
    // stopping the audio client, joining the thread etc.?
    NOTREACHED() << "WASAPI capturing failed with error code "
                 << GetLastError();
  }

  // Disable MMCSS.
  if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) {
    PLOG(WARNING) << "Failed to disable MMCSS";
  }

  fifo_.reset();
}

void WASAPIAudioInputStream::PullCaptureDataAndPushToSink() {
  TRACE_EVENT1("audio", "WASAPIAudioInputStream::PullCaptureDataAndPushToSink",
               "sample rate", input_format_.Format.nSamplesPerSec);

  UINT64 last_device_position = 0;

  // Pull data from the capture endpoint buffer until it's empty or an error
  // occurs.
  while (true) {
    BYTE* data_ptr = nullptr;
    UINT32 num_frames_to_read = 0;
    DWORD flags = 0;
    UINT64 device_position = 0;

    // Note: The units on this are 100ns intervals. Both GetBuffer() and
    // GetPosition() will handle the translation from the QPC value, so we just
    // need to convert from 100ns units into us. Which is just dividing by 10.0
    // since 10x100ns = 1us.
    UINT64 capture_time_100ns = 0;

    // Retrieve the amount of data in the capture endpoint buffer, replace it
    // with silence if required, create callbacks for each packet and store
    // non-delivered data for the next event.
    HRESULT hr =
        audio_capture_client_->GetBuffer(&data_ptr, &num_frames_to_read, &flags,
                                         &device_position, &capture_time_100ns);
    if (hr == AUDCLNT_S_BUFFER_EMPTY)
      break;

    // TODO(grunell): Should we handle different errors explicitly? Perhaps exit
    // by setting |error = true|. What are the assumptions here that makes us
    // rely on the next WaitForMultipleObjects? Do we expect the next wait to be
    // successful sometimes?
    if (FAILED(hr)) {
      LOG(ERROR) << "WAIS::" << __func__
                 << " => (ERROR: IAudioCaptureClient::GetBuffer=["
                 << ErrorToString(hr).c_str() << "])";
      break;
    }

    // If the device position has changed, we assume this data belongs to a new
    // chunk, so we report delay and glitch stats and update the last and next
    // expected device positions.
    // If the device position has not changed we assume this data belongs to the
    // previous chunk, and only update the expected next device position.
    if (device_position != last_device_position) {
      UpdateGlitchCount(device_position);
      last_device_position = device_position;
      expected_next_device_position_ = device_position + num_frames_to_read;
    } else {
      expected_next_device_position_ += num_frames_to_read;
    }

    // TODO(dalecurtis, olka, grunell): Is this ever false? If it is, should we
    // handle |flags & AUDCLNT_BUFFERFLAGS_TIMESTAMP_ERROR|?
    if (audio_clock_) {
      // The reported timestamp from GetBuffer is not as reliable as the clock
      // from the client.  We've seen timestamps reported for USB audio devices,
      // be off by several days.  Furthermore we've seen them jump back in time
      // every 2 seconds or so.
      // TODO(grunell): Using the audio clock as capture time for the currently
      // processed buffer seems incorrect. http://crbug.com/825744.
      audio_clock_->GetPosition(&device_position, &capture_time_100ns);
    }

    base::TimeTicks capture_time;
    if (capture_time_100ns) {
      // See conversion notes on |capture_time_100ns|.
      capture_time +=
          base::TimeDelta::FromMicroseconds(capture_time_100ns / 10.0);
    } else {
      // We may not have an IAudioClock or GetPosition() may return zero.
      capture_time = base::TimeTicks::Now();
    }

    // Adjust |capture_time| for the FIFO before pushing.
    capture_time -= AudioTimestampHelper::FramesToTime(
        fifo_->GetAvailableFrames(), input_format_.Format.nSamplesPerSec);

    // TODO(grunell): Since we check |hr == AUDCLNT_S_BUFFER_EMPTY| above,
    // should we instead assert that |num_frames_to_read != 0|?
    if (num_frames_to_read != 0) {
      if (flags & AUDCLNT_BUFFERFLAGS_SILENT) {
        fifo_->PushSilence(num_frames_to_read);
      } else {
        fifo_->Push(data_ptr, num_frames_to_read,
                    input_format_.Format.wBitsPerSample / 8);
      }
    }

    hr = audio_capture_client_->ReleaseBuffer(num_frames_to_read);
    if (FAILED(hr)) {
      LOG(ERROR) << "WAIS::" << __func__
                 << " => (ERROR: IAudioCaptureClient::ReleaseBuffer=["
                 << ErrorToString(hr).c_str() << "])";
      break;
    }

    // Get a cached AGC volume level which is updated once every second on the
    // audio manager thread. Note that, |volume| is also updated each time
    // SetVolume() is called through IPC by the render-side AGC.
    double volume = 0.0;
    GetAgcVolume(&volume);

    // Deliver captured data to the registered consumer using a packet size
    // which was specified at construction.
    while (fifo_->available_blocks()) {
      if (converter_) {
        if (imperfect_buffer_size_conversion_ &&
            fifo_->available_blocks() == 1) {
          // Special case. We need to buffer up more audio before we can convert
          // or else we'll suffer an underrun.
          // TODO(grunell): Verify this is really true.
          break;
        }
        converter_->Convert(convert_bus_.get());
        sink_->OnData(convert_bus_.get(), capture_time, volume);

        // Move the capture time forward for each vended block.
        capture_time += AudioTimestampHelper::FramesToTime(
            convert_bus_->frames(), output_format_.nSamplesPerSec);
      } else {
        sink_->OnData(fifo_->Consume(), capture_time, volume);

        // Move the capture time forward for each vended block.
        capture_time += AudioTimestampHelper::FramesToTime(
            packet_size_frames_, input_format_.Format.nSamplesPerSec);
      }
    }
  }  // while (true)
}

void WASAPIAudioInputStream::HandleError(HRESULT err) {
  NOTREACHED() << "Error code: " << err;
  if (sink_)
    sink_->OnError();
}

HRESULT WASAPIAudioInputStream::SetCaptureDevice() {
  DCHECK_EQ(OPEN_RESULT_OK, open_result_);
  DCHECK(!endpoint_device_.Get());
  SendLogMessage("%s()", __func__);

  Microsoft::WRL::ComPtr<IMMDeviceEnumerator> enumerator;
  HRESULT hr = ::CoCreateInstance(__uuidof(MMDeviceEnumerator), nullptr,
                                  CLSCTX_ALL, IID_PPV_ARGS(&enumerator));
  if (FAILED(hr)) {
    open_result_ = OPEN_RESULT_CREATE_INSTANCE;
    return hr;
  }

  // Retrieve the IMMDevice by using the specified role or the specified
  // unique endpoint device-identification string.

  // To open a stream in loopback mode, the client must obtain an IMMDevice
  // interface for the rendering endpoint device. Make that happen if needed;
  // otherwise use default capture data-flow direction.
  const EDataFlow data_flow =
      AudioDeviceDescription::IsLoopbackDevice(device_id_) ? eRender : eCapture;
  // Determine selected role to be used if the device is a default device.
  const ERole role = AudioDeviceDescription::IsCommunicationsDevice(device_id_)
                         ? eCommunications
                         : eConsole;
  if (AudioDeviceDescription::IsDefaultDevice(device_id_) ||
      AudioDeviceDescription::IsCommunicationsDevice(device_id_) ||
      AudioDeviceDescription::IsLoopbackDevice(device_id_)) {
    hr =
        enumerator->GetDefaultAudioEndpoint(data_flow, role, &endpoint_device_);
  } else {
    hr = enumerator->GetDevice(base::UTF8ToWide(device_id_).c_str(),
                               &endpoint_device_);
  }
  if (FAILED(hr)) {
    open_result_ = OPEN_RESULT_NO_ENDPOINT;
    return hr;
  }

  // If loopback device with muted system audio is requested, get the volume
  // interface for the endpoint.
  if (device_id_ == AudioDeviceDescription::kLoopbackWithMuteDeviceId) {
    hr = endpoint_device_->Activate(__uuidof(IAudioEndpointVolume), CLSCTX_ALL,
                                    nullptr, &system_audio_volume_);
    if (FAILED(hr)) {
      open_result_ = OPEN_RESULT_ACTIVATION_FAILED;
      return hr;
    }
  }

  // Verify that the audio endpoint device is active, i.e., the audio
  // adapter that connects to the endpoint device is present and enabled.
  DWORD state = DEVICE_STATE_DISABLED;
  hr = endpoint_device_->GetState(&state);
  if (FAILED(hr)) {
    open_result_ = OPEN_RESULT_NO_STATE;
    return hr;
  }

  if (!(state & DEVICE_STATE_ACTIVE)) {
    DLOG(ERROR) << "Selected capture device is not active.";
    open_result_ = OPEN_RESULT_DEVICE_NOT_ACTIVE;
    hr = E_ACCESSDENIED;
  }

  return hr;
}

HRESULT WASAPIAudioInputStream::GetAudioEngineStreamFormat() {
  HRESULT hr = S_OK;
#ifndef NDEBUG
  base::win::ScopedCoMem<WAVEFORMATEX> format;
  hr = audio_client_->GetMixFormat(&format);
  if (FAILED(hr))
    return hr;
  DVLOG(1) << CoreAudioUtil::WaveFormatToString(format.get());
#endif
  return hr;
}

bool WASAPIAudioInputStream::RawProcessingSupported() {
  DCHECK(endpoint_device_.Get());
  // Check if System.Devices.AudioDevice.RawProcessingSupported can be found
  // and queried in the Windows Property System. It corresponds to raw
  // processing mode support for the specified audio device. If its value is
  // VARIANT_TRUE the device supports raw processing mode.
  bool raw_processing_supported = false;
  Microsoft::WRL::ComPtr<IPropertyStore> properties;
  base::win::ScopedPropVariant raw_processing;
  if (FAILED(endpoint_device_->OpenPropertyStore(STGM_READ, &properties)) ||
      FAILED(
          properties->GetValue(PKEY_Devices_AudioDevice_RawProcessingSupported,
                               raw_processing.Receive())) ||
      raw_processing.get().vt != VT_BOOL) {
    SendLogMessage(
        "%s => (WARNING: failed to access "
        "System.Devices.AudioDevice.RawProcessingSupported)",
        __func__);
  } else {
    raw_processing_supported = VariantBoolToBool(raw_processing.get().boolVal);
    SendLogMessage(
        "%s => (System.Devices.AudioDevice.RawProcessingSupported=%s)",
        __func__, raw_processing_supported ? "true" : "false");
  }
  return raw_processing_supported;
}

std::string WASAPIAudioInputStream::GetUWPDeviceId() {
  DCHECK(endpoint_device_.Get());

  // The Windows.Media.Devices.IMediaDeviceStatics interface provides access to
  // the implementation of Windows.Media.Devices.MediaDevice.
  ComPtr<IMediaDeviceStatics> media_device_statics;
  HRESULT hr =
      GetActivationFactory<IMediaDeviceStatics,
                           RuntimeClass_Windows_Media_Devices_MediaDevice>(
          &media_device_statics);
  if (FAILED(hr)) {
    DLOG(ERROR) << "IMediaDeviceStatics factory failed: " << ErrorToString(hr);
    return std::string();
  }

  // The remaining part of this method builds up the unique device ID needed
  // by the Windows.Media.Effects.AudioEffectsManager UWP API to enumerate
  // active capture effects like AEC and NS. The ID contains three parts.
  // Example:
  //   1) \\?\SWD#MMDEVAPI#
  //   2) {0.0.1.00000000}.{7c24467c-94fc-4fa1-a2b2-a3f5d9cb8a5b}
  //   3) #{2eef81be-33fa-4800-9670-1cd474972c3f}
  // Where (1) is a constant string, (2) comes from the IMMDevice::GetId() API,
  // and (3) is a substring of of the selector string which can be retrieved by
  // the IMediaDeviceStatics::GetAudioCaptureSelector UWP API. Knowledge about
  // the structure of this device ID can be gained by using the
  // IMediaDeviceStatics::GetDefaultAudioCaptureId UWP API but this method also
  // adds support for non default devices.

  // (1) Start building the final device ID. Start with the constant prefix.
  std::string device_id(kUwpDeviceIdPrefix);

  // (2) Next, add the unique ID from IMMDevice::GetId() API.
  // Example: {0.0.1.00000000}.{7c24467c-94fc-4fa1-a2b2-a3f5d9cb8a5b}.
  ScopedCoMem<WCHAR> immdevice_id16;
  hr = endpoint_device_->GetId(&immdevice_id16);
  if (FAILED(hr)) {
    DLOG(ERROR) << "IMMDevice::GetId failed: " << ErrorToString(hr);
    return std::string();
  }
  std::string immdevice_id8;
  base::WideToUTF8(immdevice_id16, wcslen(immdevice_id16), &immdevice_id8);
  device_id.append(immdevice_id8);

  // (3) Finally, add the last part from the selector string.
  // Example: '#{2eef81be-33fa-4800-9670-1cd474972c3f}'.
  HSTRING selector;
  // Returns the identifier string of a device for capturing audio. A substring
  // will be used when generating the final unique device ID.
  // Example: part of the selector string can look like
  // System.Devices.InterfaceClassGuid:="{2eef81be-33fa-4800-9670-1cd474972c3f}"
  // and we want the {2eef81be-33fa-4800-9670-1cd474972c3f} substring for our
  // purposes.
  hr = media_device_statics->GetAudioCaptureSelector(&selector);
  if (FAILED(hr)) {
    DLOG(ERROR) << "IMediaDeviceStatics::GetAudioCaptureSelector failed: "
                << ErrorToString(hr);
    return std::string();
  }
  device_id.append("#");
  std::string selector_string = ScopedHString(selector).GetAsUTF8();
  std::size_t start = selector_string.find("{");
  std::size_t stop = selector_string.find("}", start + 1);
  if (start != std::string::npos && stop != std::string::npos) {
    // Will extract '{2eef81be-33fa-4800-9670-1cd474972c3f}' in the example
    // above.
    device_id.append(selector_string.substr(start, stop - start + 1));
  } else {
    DLOG(ERROR) << "Failed to extract System.Devices.InterfaceClassGuid string";
    return std::string();
  }

  return device_id;
}

HRESULT WASAPIAudioInputStream::GetAudioCaptureEffects(
    const std::string& uwp_device_id) {
  DCHECK(!AudioDeviceDescription::IsLoopbackDevice(device_id_));
  DCHECK(raw_processing_supported_);
  DCHECK(!uwp_device_id.empty());
  SendLogMessage("%s()", __func__);

  // The Windows.Media.Effects.IAudioEffectsManagerStatics interface provides
  // access to the implementation of Windows.Media.Effects.AudioEffectsManager.
  ComPtr<IAudioEffectsManagerStatics> audio_effects_manager;
  HRESULT hr = GetActivationFactory<
      IAudioEffectsManagerStatics,
      RuntimeClass_Windows_Media_Effects_AudioEffectsManager>(
      &audio_effects_manager);
  if (FAILED(hr)) {
    SendLogMessage(
        "%s => (ERROR: IAudioEffectsManagerStatics factory failed: [%s])",
        __func__, ErrorToString(hr).c_str());
    return hr;
  }

  SendLogMessage("%s => (uwp_device_id=[%s])", __func__, uwp_device_id.c_str());
  ScopedHString device_id = ScopedHString::Create(uwp_device_id);

  // Check capture effects for two different audio processing modes:
  // - Default: Normal audio signal processing
  // - Raw: Minimal audio signal processing
  // Raw is included since it is not possible to disable all effects on all
  // devices. In most cases, the number of found capture effects will be zero
  // for the raw mode.
  ABI::Windows::Media::AudioProcessing audio_processing_mode[] = {
      ABI::Windows::Media::AudioProcessing::AudioProcessing_Default,
      ABI::Windows::Media::AudioProcessing::AudioProcessing_Raw};
  for (size_t i = 0; i < base::size(audio_processing_mode); ++i) {
    // Create an AudioCaptureEffectsManager manager which can be used to
    // discover the audio processing chain on a device for a specific media
    // category and audio processing mode. The media category is fixed and set
    // to Communications since that is what we aim at using when audio effects
    // later are disabled.
    ComPtr<IAudioCaptureEffectsManager> capture_effects_manager;
    hr = audio_effects_manager->CreateAudioCaptureEffectsManagerWithMode(
        device_id.get(),
        ABI::Windows::Media::Capture::MediaCategory::
            MediaCategory_Communications,
        audio_processing_mode[i], &capture_effects_manager);
    if (FAILED(hr)) {
      SendLogMessage(
          "%s => (ERROR: IAudioEffectsManagerStatics::"
          "CreateAudioCaptureEffectsManager=[%s])",
          __func__, ErrorToString(hr).c_str());
      return hr;
    }

    // Get a list of audio effects on the device. Based on tests on different
    // devices, only enabled effects will be included. Hence, if a user has
    // explicitly disabled an effect using the System Sound Settings, that
    // component will not show up here.
    ComPtr<IVectorView<ABI::Windows::Media::Effects::AudioEffect*>> effects;
    hr = capture_effects_manager->GetAudioCaptureEffects(&effects);
    if (FAILED(hr)) {
      SendLogMessage(
          "%s => (ERROR: IAudioCaptureEffectsManager::"
          "GetAudioCaptureEffects=[%s])",
          __func__, ErrorToString(hr).c_str());
      return hr;
    }

    unsigned int count = 0;
    if (effects) {
      // Returns number of supported effects.
      effects->get_Size(&count);
    }

    // Store all supported and active effect types in |default_effect_types_|
    // or |raw_effect_types_| depending on selected audio processing mode.
    // These will be utilized later for UMA histograms.
    for (unsigned int j = 0; j < count; ++j) {
      ComPtr<ABI::Windows::Media::Effects::IAudioEffect> effect;
      hr = effects->GetAt(j, &effect);
      if (SUCCEEDED(hr)) {
        ABI::Windows::Media::Effects::AudioEffectType type;
        hr = effect->get_AudioEffectType(&type);
        if (SUCCEEDED(hr)) {
          audio_processing_mode[i] ==
                  ABI::Windows::Media::AudioProcessing::AudioProcessing_Default
              ? default_effect_types_.push_back(type)
              : raw_effect_types_.push_back(type);
        }
      }
    }

    // For cases when no audio effects were found (common in raw mode), add a
    // dummy effect type called AudioEffectType_Other so that the vector
    // contains at least one value. This is done to ensure that an UMA histogram
    // is uploaded also for the empty case. Hence, AudioEffectType_Other is
    // used to indicate an unknown audio effect and "no audio effect found".
    if (count == 0) {
      const ABI::Windows::Media::Effects::AudioEffectType no_effect_found =
          ABI::Windows::Media::Effects::AudioEffectType::AudioEffectType_Other;
      audio_processing_mode[i] ==
              ABI::Windows::Media::AudioProcessing::AudioProcessing_Default
          ? default_effect_types_.push_back(no_effect_found)
          : raw_effect_types_.push_back(no_effect_found);
    }
  }

  return hr;
}

HRESULT WASAPIAudioInputStream::SetCommunicationsCategoryAndRawCaptureMode() {
  DCHECK(audio_client_.Get());
  DCHECK(!AudioDeviceDescription::IsLoopbackDevice(device_id_));
  DCHECK(raw_processing_supported_);
  SendLogMessage("%s()", __func__);

  Microsoft::WRL::ComPtr<IAudioClient2> audio_client2;
  HRESULT hr = audio_client_.As(&audio_client2);
  if (FAILED(hr)) {
    SendLogMessage("%s => (ERROR: IAudioClient2 is not supported)", __func__);
    return hr;
  }
  // Use IAudioClient2::SetClientProperties() to set communications category
  // and to enable raw stream capture if it is supported.
  if (audio_client2.Get()) {
    AudioClientProperties audio_props = {0};
    audio_props.cbSize = sizeof(AudioClientProperties);
    audio_props.bIsOffload = false;
    // AudioCategory_Communications opts us in to communications policy and
    // communications processing. AUDCLNT_STREAMOPTIONS_RAW turns off the
    // processing, but not the policy.
    audio_props.eCategory = AudioCategory_Communications;
    // The audio stream is a 'raw' stream that bypasses all signal processing
    // except for endpoint specific, always-on processing in the Audio
    // Processing Object (APO), driver, and hardware.
    audio_props.Options = AUDCLNT_STREAMOPTIONS_RAW;
    hr = audio_client2->SetClientProperties(&audio_props);
    if (FAILED(hr)) {
      SendLogMessage("%s => (ERROR: IAudioClient2::SetClientProperties=[%s])",
                     __func__, ErrorToString(hr).c_str());
    }
  }
  return hr;
}

bool WASAPIAudioInputStream::DesiredFormatIsSupported(HRESULT* hr) {
  SendLogMessage("%s()", __func__);
  // An application that uses WASAPI to manage shared-mode streams can rely
  // on the audio engine to perform only limited format conversions. The audio
  // engine can convert between a standard PCM sample size used by the
  // application and the floating-point samples that the engine uses for its
  // internal processing. However, the format for an application stream
  // typically must have the same number of channels and the same sample
  // rate as the stream format used by the device.
  // Many audio devices support both PCM and non-PCM stream formats. However,
  // the audio engine can mix only PCM streams.
  base::win::ScopedCoMem<WAVEFORMATEX> closest_match;
  HRESULT hresult = audio_client_->IsFormatSupported(
      AUDCLNT_SHAREMODE_SHARED,
      reinterpret_cast<const WAVEFORMATEX*>(&input_format_), &closest_match);
  if (FAILED(hresult)) {
    SendLogMessage("%s => (ERROR: IAudioClient::IsFormatSupported=[%s])",
                   __func__, ErrorToString(hresult).c_str());
  }

  if (hresult == S_FALSE) {
    SendLogMessage(
        "%s => (WARNING: Format is not supported but a closest match exists)",
        __func__);
    // Change the format we're going to ask for to better match with what the OS
    // can provide.  If we succeed in initializing the audio client in this
    // format and are able to convert from this format, we will do that
    // conversion.
    WAVEFORMATEX* input_format = &input_format_.Format;
    input_format->nChannels = closest_match->nChannels;
    input_format->nSamplesPerSec = closest_match->nSamplesPerSec;

    // If the closest match is fixed point PCM (WAVE_FORMAT_PCM or
    // KSDATAFORMAT_SUBTYPE_PCM), we use the closest match's bits per sample.
    // Otherwise, we keep the bits sample as is since we still request fixed
    // point PCM. In that case the closest match is typically in float format
    // (KSDATAFORMAT_SUBTYPE_IEEE_FLOAT).
    if (CoreAudioUtil::WaveFormatWrapper(closest_match.get()).IsPcm()) {
      input_format->wBitsPerSample = closest_match->wBitsPerSample;
    }

    input_format->nBlockAlign =
        (input_format->wBitsPerSample / 8) * input_format->nChannels;
    input_format->nAvgBytesPerSec =
        input_format->nSamplesPerSec * input_format->nBlockAlign;

    if (IsSupportedFormatForConversion(&input_format_)) {
      SendLogMessage(
          "%s => (WARNING: Captured audio will be converted: [%s] ==> [%s])",
          __func__, CoreAudioUtil::WaveFormatToString(&input_format_).c_str(),
          CoreAudioUtil::WaveFormatToString(&output_format_).c_str());
      SetupConverterAndStoreFormatInfo();

      // Indicate that we're good to go with a close match.
      hresult = S_OK;
    }
  }

  // At this point, |hresult| == S_OK if the desired format is supported. If
  // |hresult| == S_FALSE, the OS supports a closest match but we don't support
  // conversion to it. Thus, SUCCEEDED() or FAILED() can't be used to determine
  // if the desired format is supported.
  *hr = hresult;
  return (hresult == S_OK);
}

void WASAPIAudioInputStream::SetupConverterAndStoreFormatInfo() {
  // Ideally, we want a 1:1 ratio between the buffers we get and the buffers
  // we give to OnData so that each buffer we receive from the OS can be
  // directly converted to a buffer that matches with what was asked for.
  const double buffer_ratio =
      output_format_.nSamplesPerSec / static_cast<double>(packet_size_frames_);
  double new_frames_per_buffer =
      input_format_.Format.nSamplesPerSec / buffer_ratio;

  const auto input_layout = GuessChannelLayout(input_format_.Format.nChannels);
  DCHECK_NE(CHANNEL_LAYOUT_UNSUPPORTED, input_layout);
  const auto output_layout = GuessChannelLayout(output_format_.nChannels);
  DCHECK_NE(CHANNEL_LAYOUT_UNSUPPORTED, output_layout);

  const AudioParameters input(AudioParameters::AUDIO_PCM_LOW_LATENCY,
                              input_layout, input_format_.Format.nSamplesPerSec,
                              static_cast<int>(new_frames_per_buffer));

  const AudioParameters output(AudioParameters::AUDIO_PCM_LOW_LATENCY,
                               output_layout, output_format_.nSamplesPerSec,
                               packet_size_frames_);

  converter_.reset(new AudioConverter(input, output, false));
  converter_->AddInput(this);
  converter_->PrimeWithSilence();
  convert_bus_ = AudioBus::Create(output);

  // Update our packet size assumptions based on the new format.
  const auto new_bytes_per_buffer = static_cast<int>(new_frames_per_buffer) *
                                    input_format_.Format.nBlockAlign;
  packet_size_frames_ = new_bytes_per_buffer / input_format_.Format.nBlockAlign;
  packet_size_bytes_ = new_bytes_per_buffer;
  frame_size_bytes_ = input_format_.Format.nBlockAlign;

  imperfect_buffer_size_conversion_ =
      std::modf(new_frames_per_buffer, &new_frames_per_buffer) != 0.0;
  if (imperfect_buffer_size_conversion_) {
    SendLogMessage("%s => (WARNING: Audio capture conversion requires a FIFO)",
                   __func__);
  }
}

HRESULT WASAPIAudioInputStream::InitializeAudioEngine() {
  DCHECK_EQ(OPEN_RESULT_OK, open_result_);
  SendLogMessage("%s()", __func__);

  DWORD flags;
  // Use event-driven mode only for regular input devices. For loopback the
  // EVENTCALLBACK flag is specified when initializing
  // |audio_render_client_for_loopback_|.
  if (AudioDeviceDescription::IsLoopbackDevice(device_id_)) {
    flags = AUDCLNT_STREAMFLAGS_LOOPBACK | AUDCLNT_STREAMFLAGS_NOPERSIST;
  } else {
    flags = AUDCLNT_STREAMFLAGS_EVENTCALLBACK | AUDCLNT_STREAMFLAGS_NOPERSIST;
  }

  // Initialize the audio stream between the client and the device.
  // We connect indirectly through the audio engine by using shared mode.
  // The buffer duration is set to 100 ms, which reduces the risk of glitches.
  // It would normally be set to 0 and the minimum buffer size to ensure that
  // glitches do not occur would be used (typically around 22 ms). There are
  // however cases when there are glitches anyway and it's avoided by setting a
  // larger buffer size. The larger size does not create higher latency for
  // properly implemented drivers.
  HRESULT hr = audio_client_->Initialize(
      AUDCLNT_SHAREMODE_SHARED, flags,
      100 * 1000 * 10,  // Buffer duration, 100 ms expressed in 100-ns units.
      0,                // Device period, n/a for shared mode.
      reinterpret_cast<const WAVEFORMATEX*>(&input_format_),
      AudioDeviceDescription::IsCommunicationsDevice(device_id_)
          ? &kCommunicationsSessionId
          : nullptr);

  if (FAILED(hr)) {
    SendLogMessage("%s => (ERROR: IAudioClient::Initialize=[%s])", __func__,
                   ErrorToString(hr).c_str());
    open_result_ = OPEN_RESULT_AUDIO_CLIENT_INIT_FAILED;
    base::UmaHistogramSparse("Media.Audio.Capture.Win.InitError", hr);
    MaybeReportFormatRelatedInitError(hr);
    return hr;
  }

  // Retrieve the length of the endpoint buffer shared between the client
  // and the audio engine. The buffer length determines the maximum amount
  // of capture data that the audio engine can read from the endpoint buffer
  // during a single processing pass.
  hr = audio_client_->GetBufferSize(&endpoint_buffer_size_frames_);
  if (FAILED(hr)) {
    open_result_ = OPEN_RESULT_GET_BUFFER_SIZE_FAILED;
    return hr;
  }
  const int endpoint_buffer_size_ms =
      static_cast<double>(endpoint_buffer_size_frames_ * 1000) /
          input_format_.Format.nSamplesPerSec +
      0.5;
  SendLogMessage("%s => (endpoint_buffer_size_frames=%u (%d ms))", __func__,
                 endpoint_buffer_size_frames_, endpoint_buffer_size_ms);

#ifndef NDEBUG
  // The period between processing passes by the audio engine is fixed for a
  // particular audio endpoint device and represents the smallest processing
  // quantum for the audio engine. This period plus the stream latency between
  // the buffer and endpoint device represents the minimum possible latency
  // that an audio application can achieve.
  REFERENCE_TIME device_period_shared_mode = 0;
  REFERENCE_TIME device_period_exclusive_mode = 0;
  HRESULT hr_dbg = audio_client_->GetDevicePeriod(
      &device_period_shared_mode, &device_period_exclusive_mode);
  if (SUCCEEDED(hr_dbg)) {
    // The 5000 addition is to round end result to closest integer.
    const int device_period_ms = (device_period_shared_mode + 5000) / 10000;
    DVLOG(1) << "Device period: " << device_period_ms << " ms";
  }

  REFERENCE_TIME latency = 0;
  hr_dbg = audio_client_->GetStreamLatency(&latency);
  if (SUCCEEDED(hr_dbg)) {
    // The 5000 addition is to round end result to closest integer.
    const int latency_ms = (device_period_shared_mode + 5000) / 10000;
    DVLOG(1) << "Stream latency: " << latency_ms << " ms";
  }
#endif

  // Set the event handle that the audio engine will signal each time a buffer
  // becomes ready to be processed by the client.
  //
  // In loopback case the capture device doesn't receive any events, so we
  // need to create a separate playback client to get notifications. According
  // to MSDN:
  //
  //   A pull-mode capture client does not receive any events when a stream is
  //   initialized with event-driven buffering and is loopback-enabled. To
  //   work around this, initialize a render stream in event-driven mode. Each
  //   time the client receives an event for the render stream, it must signal
  //   the capture client to run the capture thread that reads the next set of
  //   samples from the capture endpoint buffer.
  //
  // http://msdn.microsoft.com/en-us/library/windows/desktop/dd316551(v=vs.85).aspx
  if (AudioDeviceDescription::IsLoopbackDevice(device_id_)) {
    SendLogMessage("%s => (WARNING: loopback mode is selected)", __func__);
    hr = endpoint_device_->Activate(__uuidof(IAudioClient), CLSCTX_ALL, nullptr,
                                    &audio_render_client_for_loopback_);
    if (FAILED(hr)) {
      open_result_ = OPEN_RESULT_LOOPBACK_ACTIVATE_FAILED;
      return hr;
    }

    hr = audio_render_client_for_loopback_->Initialize(
        AUDCLNT_SHAREMODE_SHARED,
        AUDCLNT_STREAMFLAGS_EVENTCALLBACK | AUDCLNT_STREAMFLAGS_NOPERSIST, 0, 0,
        reinterpret_cast<const WAVEFORMATEX*>(&input_format_),
        AudioDeviceDescription::IsCommunicationsDevice(device_id_)
            ? &kCommunicationsSessionId
            : nullptr);
    if (FAILED(hr)) {
      open_result_ = OPEN_RESULT_LOOPBACK_INIT_FAILED;
      return hr;
    }

    hr = audio_render_client_for_loopback_->SetEventHandle(
        audio_samples_ready_event_.Get());
  } else {
    hr = audio_client_->SetEventHandle(audio_samples_ready_event_.Get());
  }

  if (FAILED(hr)) {
    open_result_ = OPEN_RESULT_SET_EVENT_HANDLE;
    return hr;
  }

  // Get access to the IAudioCaptureClient interface. This interface
  // enables us to read input data from the capture endpoint buffer.
  hr = audio_client_->GetService(IID_PPV_ARGS(&audio_capture_client_));
  if (FAILED(hr)) {
    open_result_ = OPEN_RESULT_NO_CAPTURE_CLIENT;
    return hr;
  }

  // Obtain a reference to the ISimpleAudioVolume interface which enables
  // us to control the master volume level of an audio session.
  hr = audio_client_->GetService(IID_PPV_ARGS(&simple_audio_volume_));
  if (FAILED(hr))
    open_result_ = OPEN_RESULT_NO_AUDIO_VOLUME;

  audio_client_->GetService(IID_PPV_ARGS(&audio_clock_));
  if (!audio_clock_) {
    SendLogMessage(
        "%s => (WARNING: IAudioClock unavailable, capture times will be "
        "inaccurate)",
        __func__);
  }

  return hr;
}

void WASAPIAudioInputStream::ReportOpenResult(HRESULT hr) {
  DCHECK(!opened_);
  UMA_HISTOGRAM_ENUMERATION("Media.Audio.Capture.Win.Open", open_result_,
                            OPEN_RESULT_MAX + 1);
  if (open_result_ != OPEN_RESULT_OK &&
      open_result_ != OPEN_RESULT_OK_WITH_RESAMPLING) {
    SendLogMessage(
        "%s", GetOpenLogString(open_result_, hr, input_format_, output_format_)
                  .c_str());
  }
}

void WASAPIAudioInputStream::MaybeReportFormatRelatedInitError(
    HRESULT hr) const {
  if (hr != AUDCLNT_E_UNSUPPORTED_FORMAT && hr != E_INVALIDARG)
    return;

  const FormatRelatedInitError format_related_error =
      hr == AUDCLNT_E_UNSUPPORTED_FORMAT
          ? converter_.get()
                ? FormatRelatedInitError::kUnsupportedFormatWithFormatConversion
                : FormatRelatedInitError::kUnsupportedFormat
          // Otherwise |hr| == E_INVALIDARG.
          : converter_.get()
                ? FormatRelatedInitError::kInvalidArgumentWithFormatConversion
                : FormatRelatedInitError::kInvalidArgument;
  base::UmaHistogramEnumeration(
      "Media.Audio.Capture.Win.InitError.FormatRelated", format_related_error,
      FormatRelatedInitError::kCount);
}

double WASAPIAudioInputStream::ProvideInput(AudioBus* audio_bus,
                                            uint32_t frames_delayed) {
  fifo_->Consume()->CopyTo(audio_bus);
  return 1.0;
}

void WASAPIAudioInputStream::UpdateGlitchCount(UINT64 device_position) {
  if (expected_next_device_position_ != 0) {
    if (device_position > expected_next_device_position_) {
      ++total_glitches_;
      auto lost_frames = device_position - expected_next_device_position_;
      total_lost_frames_ += lost_frames;
      if (lost_frames > largest_glitch_frames_)
        largest_glitch_frames_ = lost_frames;
    }
  }
}

void WASAPIAudioInputStream::ReportAndResetGlitchStats() {
  UMA_HISTOGRAM_COUNTS_1M("Media.Audio.Capture.Glitches", total_glitches_);
  double lost_frames_ms =
      (total_lost_frames_ * 1000) / input_format_.Format.nSamplesPerSec;
  SendLogMessage(
      "%s => (total glitches=[%d], total frames lost=[%llu/%.0lf ms])",
      __func__, total_glitches_, total_lost_frames_, lost_frames_ms);
  if (total_glitches_ != 0) {
    UMA_HISTOGRAM_LONG_TIMES("Media.Audio.Capture.LostFramesInMs",
                             base::TimeDelta::FromMilliseconds(lost_frames_ms));
    int64_t largest_glitch_ms =
        (largest_glitch_frames_ * 1000) / input_format_.Format.nSamplesPerSec;
    UMA_HISTOGRAM_CUSTOM_TIMES(
        "Media.Audio.Capture.LargestGlitchMs",
        base::TimeDelta::FromMilliseconds(largest_glitch_ms),
        base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromMinutes(1),
        50);
  }

  expected_next_device_position_ = 0;
  total_glitches_ = 0;
  total_lost_frames_ = 0;
  largest_glitch_frames_ = 0;
}

}  // namespace media