summaryrefslogtreecommitdiff
path: root/chromium/media/audio/pulse/audio_manager_pulse.cc
blob: fc0ec5d6c4d62a99cd7ce7db37fe60a0a5e77caf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/audio/pulse/audio_manager_pulse.h"

#include "base/command_line.h"
#include "base/environment.h"
#include "base/logging.h"
#include "base/nix/xdg_util.h"
#include "base/stl_util.h"
#include "media/audio/audio_device_description.h"
#include "media/audio/pulse/pulse_input.h"
#include "media/audio/pulse/pulse_output.h"
#include "media/audio/pulse/pulse_util.h"
#include "media/base/audio_parameters.h"
#include "media/base/channel_layout.h"

namespace media {

using pulse::AutoPulseLock;
using pulse::WaitForOperationCompletion;

// Maximum number of output streams that can be open simultaneously.
static const int kMaxOutputStreams = 50;

// Define bounds for the output buffer size.
static const int kMinimumOutputBufferSize = 512;
static const int kMaximumOutputBufferSize = 8192;

// Default input buffer size.
static const int kDefaultInputBufferSize = 1024;

AudioManagerPulse::AudioManagerPulse(std::unique_ptr<AudioThread> audio_thread,
                                     AudioLogFactory* audio_log_factory,
                                     pa_threaded_mainloop* pa_mainloop,
                                     pa_context* pa_context)
    : AudioManagerBase(std::move(audio_thread), audio_log_factory),
      input_mainloop_(pa_mainloop),
      input_context_(pa_context),
      devices_(NULL),
      native_input_sample_rate_(0),
      native_channel_count_(0) {
  DCHECK(input_mainloop_);
  DCHECK(input_context_);
  SetMaxOutputStreamsAllowed(kMaxOutputStreams);
}

AudioManagerPulse::~AudioManagerPulse() = default;

void AudioManagerPulse::ShutdownOnAudioThread() {
  AudioManagerBase::ShutdownOnAudioThread();
  // The Pulse objects are the last things to be destroyed since
  // AudioManagerBase::ShutdownOnAudioThread() needs them.
  pulse::DestroyPulse(input_mainloop_, input_context_);
}

bool AudioManagerPulse::HasAudioOutputDevices() {
  AudioDeviceNames devices;
  GetAudioOutputDeviceNames(&devices);
  return !devices.empty();
}

bool AudioManagerPulse::HasAudioInputDevices() {
  AudioDeviceNames devices;
  GetAudioInputDeviceNames(&devices);
  return !devices.empty();
}

void AudioManagerPulse::GetAudioDeviceNames(
    bool input, media::AudioDeviceNames* device_names) {
  DCHECK(device_names->empty());
  DCHECK(input_mainloop_);
  DCHECK(input_context_);
  AutoPulseLock auto_lock(input_mainloop_);
  devices_ = device_names;
  pa_operation* operation = NULL;
  if (input) {
    operation = pa_context_get_source_info_list(
      input_context_, InputDevicesInfoCallback, this);
  } else {
    operation = pa_context_get_sink_info_list(
        input_context_, OutputDevicesInfoCallback, this);
  }
  WaitForOperationCompletion(input_mainloop_, operation);

  // Prepend the default device if the list is not empty.
  if (!device_names->empty())
    device_names->push_front(AudioDeviceName::CreateDefault());
}

void AudioManagerPulse::GetAudioInputDeviceNames(
    AudioDeviceNames* device_names) {
  GetAudioDeviceNames(true, device_names);
}

void AudioManagerPulse::GetAudioOutputDeviceNames(
    AudioDeviceNames* device_names) {
  GetAudioDeviceNames(false, device_names);
}

AudioParameters AudioManagerPulse::GetInputStreamParameters(
    const std::string& device_id) {
  int user_buffer_size = GetUserBufferSize();
  int buffer_size = user_buffer_size ?
      user_buffer_size : kDefaultInputBufferSize;

  // TODO(xians): add support for querying native channel layout for pulse.
  UpdateNativeAudioHardwareInfo();
  return AudioParameters(AudioParameters::AUDIO_PCM_LOW_LATENCY,
                         CHANNEL_LAYOUT_STEREO, native_input_sample_rate_,
                         buffer_size);
}

const char* AudioManagerPulse::GetName() {
  return "PulseAudio";
}

AudioOutputStream* AudioManagerPulse::MakeLinearOutputStream(
    const AudioParameters& params,
    const LogCallback& log_callback) {
  DCHECK_EQ(AudioParameters::AUDIO_PCM_LINEAR, params.format());
  return MakeOutputStream(params, AudioDeviceDescription::kDefaultDeviceId);
}

AudioOutputStream* AudioManagerPulse::MakeLowLatencyOutputStream(
    const AudioParameters& params,
    const std::string& device_id,
    const LogCallback& log_callback) {
  DCHECK_EQ(AudioParameters::AUDIO_PCM_LOW_LATENCY, params.format());
  return MakeOutputStream(params, device_id.empty()
                                      ? AudioDeviceDescription::kDefaultDeviceId
                                      : device_id);
}

AudioInputStream* AudioManagerPulse::MakeLinearInputStream(
    const AudioParameters& params,
    const std::string& device_id,
    const LogCallback& log_callback) {
  DCHECK_EQ(AudioParameters::AUDIO_PCM_LINEAR, params.format());
  return MakeInputStream(params, device_id);
}

AudioInputStream* AudioManagerPulse::MakeLowLatencyInputStream(
    const AudioParameters& params,
    const std::string& device_id,
    const LogCallback& log_callback) {
  DCHECK_EQ(AudioParameters::AUDIO_PCM_LOW_LATENCY, params.format());
  return MakeInputStream(params, device_id);
}

AudioParameters AudioManagerPulse::GetPreferredOutputStreamParameters(
    const std::string& output_device_id,
    const AudioParameters& input_params) {
  // TODO(tommi): Support |output_device_id|.
  VLOG_IF(0, !output_device_id.empty()) << "Not implemented!";

  int buffer_size = kMinimumOutputBufferSize;

  // Query native parameters where applicable; Pulse does not require these to
  // be respected though, so prefer the input parameters for channel count.
  UpdateNativeAudioHardwareInfo();
  int sample_rate = native_input_sample_rate_;
  ChannelLayout channel_layout = GuessChannelLayout(native_channel_count_);

  if (input_params.IsValid()) {
    // Use the system's output channel count for the DISCRETE layout. This is to
    // avoid a crash due to the lack of support on the multi-channel beyond 8 in
    // the PulseAudio layer.
    if (input_params.channel_layout() != CHANNEL_LAYOUT_DISCRETE)
      channel_layout = input_params.channel_layout();

    buffer_size =
        std::min(kMaximumOutputBufferSize,
                 std::max(buffer_size, input_params.frames_per_buffer()));
  }

  int user_buffer_size = GetUserBufferSize();
  if (user_buffer_size)
    buffer_size = user_buffer_size;

  return AudioParameters(AudioParameters::AUDIO_PCM_LOW_LATENCY, channel_layout,
                         sample_rate, buffer_size);
}

AudioOutputStream* AudioManagerPulse::MakeOutputStream(
    const AudioParameters& params,
    const std::string& device_id) {
  DCHECK(!device_id.empty());
  return new PulseAudioOutputStream(params, device_id, this);
}

AudioInputStream* AudioManagerPulse::MakeInputStream(
    const AudioParameters& params, const std::string& device_id) {
  return new PulseAudioInputStream(this, device_id, params,
                                   input_mainloop_, input_context_);
}

void AudioManagerPulse::UpdateNativeAudioHardwareInfo() {
  DCHECK(input_mainloop_);
  DCHECK(input_context_);
  AutoPulseLock auto_lock(input_mainloop_);
  pa_operation* operation = pa_context_get_server_info(
      input_context_, AudioHardwareInfoCallback, this);
  WaitForOperationCompletion(input_mainloop_, operation);
}

void AudioManagerPulse::InputDevicesInfoCallback(pa_context* context,
                                                 const pa_source_info* info,
                                                 int error, void *user_data) {
  AudioManagerPulse* manager = reinterpret_cast<AudioManagerPulse*>(user_data);

  if (error) {
    // Signal the pulse object that it is done.
    pa_threaded_mainloop_signal(manager->input_mainloop_, 0);
    return;
  }

  // Exclude the output devices.
  if (info->monitor_of_sink == PA_INVALID_INDEX) {
    manager->devices_->push_back(AudioDeviceName(info->description,
                                                 info->name));
  }
}

void AudioManagerPulse::OutputDevicesInfoCallback(pa_context* context,
                                                  const pa_sink_info* info,
                                                  int error, void *user_data) {
  AudioManagerPulse* manager = reinterpret_cast<AudioManagerPulse*>(user_data);

  if (error) {
    // Signal the pulse object that it is done.
    pa_threaded_mainloop_signal(manager->input_mainloop_, 0);
    return;
  }

  manager->devices_->push_back(AudioDeviceName(info->description,
                                               info->name));
}

void AudioManagerPulse::AudioHardwareInfoCallback(pa_context* context,
                                                  const pa_server_info* info,
                                                  void* user_data) {
  AudioManagerPulse* manager = reinterpret_cast<AudioManagerPulse*>(user_data);

  manager->native_input_sample_rate_ = info->sample_spec.rate;
  manager->native_channel_count_ = info->sample_spec.channels;
  pa_threaded_mainloop_signal(manager->input_mainloop_, 0);
}

}  // namespace media