summaryrefslogtreecommitdiff
path: root/chromium/extensions/browser/api/declarative/deduping_factory_unittest.cc
blob: f4c335b7040441e9e41076b58ceb6a299649906e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "extensions/browser/api/declarative/deduping_factory.h"

#include "base/macros.h"
#include "base/memory/scoped_ptr.h"
#include "base/values.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace {

const char kTypeName[] = "Foo";
const char kTypeName2[] = "Foo2";

// This serves as an example how to use the DedupingFactory.
class BaseClass : public base::RefCounted<BaseClass> {
 public:
  // The type is introduced so that we can compare derived classes even though
  // Equals takes a parameter of type BaseClass. Each derived class gets an
  // entry in Type.
  enum Type { FOO };

  explicit BaseClass(Type type) : type_(type) {}

  Type type() const { return type_; }

  // For BaseClassT template:
  virtual bool Equals(const BaseClass* other) const = 0;

 protected:
  friend class base::RefCounted<BaseClass>;
  virtual ~BaseClass() {}

 private:
  const Type type_;
};

class Foo : public BaseClass {
 public:
  explicit Foo(int parameter) : BaseClass(FOO), parameter_(parameter) {}
  bool Equals(const BaseClass* other) const override {
    return other->type() == type() &&
           static_cast<const Foo*>(other)->parameter_ == parameter_;
  }
  int parameter() const {
    return parameter_;
  }

 private:
  friend class base::RefCounted<BaseClass>;
  ~Foo() override {}

  // Note that this class must be immutable.
  const int parameter_;
  DISALLOW_COPY_AND_ASSIGN(Foo);
};

scoped_refptr<const BaseClass> CreateFoo(const std::string& /*instance_type*/,
                                         const base::Value* value,
                                         std::string* error,
                                         bool* bad_message) {
  const base::DictionaryValue* dict = NULL;
  CHECK(value->GetAsDictionary(&dict));
  int parameter = 0;
  if (!dict->GetInteger("parameter", &parameter)) {
    *error = "No parameter";
    *bad_message = true;
    return scoped_refptr<const BaseClass>(NULL);
  }
  return scoped_refptr<const BaseClass>(new Foo(parameter));
}

scoped_ptr<base::DictionaryValue> CreateDictWithParameter(int parameter) {
  scoped_ptr<base::DictionaryValue> dict(new base::DictionaryValue);
  dict->SetInteger("parameter", parameter);
  return dict;
}

}  // namespace

namespace extensions {

TEST(DedupingFactoryTest, InstantiationParameterized) {
  DedupingFactory<BaseClass> factory(2);
  factory.RegisterFactoryMethod(
      kTypeName, DedupingFactory<BaseClass>::IS_PARAMETERIZED, &CreateFoo);

  scoped_ptr<base::DictionaryValue> d1(CreateDictWithParameter(1));
  scoped_ptr<base::DictionaryValue> d2(CreateDictWithParameter(2));
  scoped_ptr<base::DictionaryValue> d3(CreateDictWithParameter(3));
  scoped_ptr<base::DictionaryValue> d4(CreateDictWithParameter(4));

  std::string error;
  bool bad_message = false;

  // Fill factory with 2 different types.
  scoped_refptr<const BaseClass> c1(
      factory.Instantiate(kTypeName, d1.get(), &error, &bad_message));
  scoped_refptr<const BaseClass> c2(
      factory.Instantiate(kTypeName, d2.get(), &error, &bad_message));
  ASSERT_TRUE(c1.get());
  ASSERT_TRUE(c2.get());
  EXPECT_EQ(1, static_cast<const Foo*>(c1.get())->parameter());
  EXPECT_EQ(2, static_cast<const Foo*>(c2.get())->parameter());

  // This one produces an overflow, now the cache contains [2, 3]
  scoped_refptr<const BaseClass> c3(
      factory.Instantiate(kTypeName, d3.get(), &error, &bad_message));
  ASSERT_TRUE(c3.get());
  EXPECT_EQ(3, static_cast<const Foo*>(c3.get())->parameter());

  // Reuse 2, this should give the same instance as c2.
  scoped_refptr<const BaseClass> c2_b(
      factory.Instantiate(kTypeName, d2.get(), &error, &bad_message));
  EXPECT_EQ(2, static_cast<const Foo*>(c2_b.get())->parameter());
  EXPECT_EQ(c2, c2_b);

  // Also check that the reuse of 2 moved it to the end, so that the cache is
  // now [3, 2] and 3 is discarded before 2.
  // This discards 3, so the cache becomes [2, 1]
  scoped_refptr<const BaseClass> c1_b(
      factory.Instantiate(kTypeName, d1.get(), &error, &bad_message));

  scoped_refptr<const BaseClass> c2_c(
      factory.Instantiate(kTypeName, d2.get(), &error, &bad_message));
  EXPECT_EQ(2, static_cast<const Foo*>(c2_c.get())->parameter());
  EXPECT_EQ(c2, c2_c);
}

TEST(DedupingFactoryTest, InstantiationNonParameterized) {
  DedupingFactory<BaseClass> factory(2);
  factory.RegisterFactoryMethod(
      kTypeName, DedupingFactory<BaseClass>::IS_NOT_PARAMETERIZED, &CreateFoo);

  scoped_ptr<base::DictionaryValue> d1(CreateDictWithParameter(1));
  scoped_ptr<base::DictionaryValue> d2(CreateDictWithParameter(2));

  std::string error;
  bool bad_message = false;

  // We create two instances with different dictionaries but because the type is
  // declared to be not parameterized, we should get the same instance.
  scoped_refptr<const BaseClass> c1(
      factory.Instantiate(kTypeName, d1.get(), &error, &bad_message));
  scoped_refptr<const BaseClass> c2(
      factory.Instantiate(kTypeName, d2.get(), &error, &bad_message));
  ASSERT_TRUE(c1.get());
  ASSERT_TRUE(c2.get());
  EXPECT_EQ(1, static_cast<const Foo*>(c1.get())->parameter());
  EXPECT_EQ(1, static_cast<const Foo*>(c2.get())->parameter());
  EXPECT_EQ(c1, c2);
}

TEST(DedupingFactoryTest, TypeNames) {
  DedupingFactory<BaseClass> factory(2);
  factory.RegisterFactoryMethod(
      kTypeName, DedupingFactory<BaseClass>::IS_PARAMETERIZED, &CreateFoo);
  factory.RegisterFactoryMethod(
      kTypeName2, DedupingFactory<BaseClass>::IS_PARAMETERIZED, &CreateFoo);

  scoped_ptr<base::DictionaryValue> d1(CreateDictWithParameter(1));

  std::string error;
  bool bad_message = false;

  scoped_refptr<const BaseClass> c1_a(
      factory.Instantiate(kTypeName, d1.get(), &error, &bad_message));
  scoped_refptr<const BaseClass> c1_b(
      factory.Instantiate(kTypeName2, d1.get(), &error, &bad_message));

  ASSERT_TRUE(c1_a.get());
  ASSERT_TRUE(c1_b.get());
  EXPECT_NE(c1_a, c1_b);
}

TEST(DedupingFactoryTest, Clear) {
  DedupingFactory<BaseClass> factory(2);
  factory.RegisterFactoryMethod(
      kTypeName, DedupingFactory<BaseClass>::IS_PARAMETERIZED, &CreateFoo);

  scoped_ptr<base::DictionaryValue> d1(CreateDictWithParameter(1));

  std::string error;
  bool bad_message = false;

  scoped_refptr<const BaseClass> c1_a(
      factory.Instantiate(kTypeName, d1.get(), &error, &bad_message));

  factory.ClearPrototypes();

  scoped_refptr<const BaseClass> c1_b(
      factory.Instantiate(kTypeName, d1.get(), &error, &bad_message));

  ASSERT_TRUE(c1_a.get());
  ASSERT_TRUE(c1_b.get());
  EXPECT_NE(c1_a, c1_b);
}

}  // namespace extensions