summaryrefslogtreecommitdiff
path: root/chromium/crypto/encryptor.cc
blob: d7da5a80199242f5bc9aff1948f45cfcc50545b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "crypto/encryptor.h"

#include <stddef.h>
#include <stdint.h>

#include "base/logging.h"
#include "base/strings/string_util.h"
#include "base/sys_byteorder.h"
#include "crypto/openssl_util.h"
#include "crypto/symmetric_key.h"
#include "third_party/boringssl/src/include/openssl/aes.h"
#include "third_party/boringssl/src/include/openssl/evp.h"

namespace crypto {

namespace {

const EVP_CIPHER* GetCipherForKey(const SymmetricKey* key) {
  switch (key->key().length()) {
    case 16: return EVP_aes_128_cbc();
    case 32: return EVP_aes_256_cbc();
    default:
      return nullptr;
  }
}

}  // namespace

/////////////////////////////////////////////////////////////////////////////
// Encryptor Implementation.

Encryptor::Encryptor() : key_(nullptr), mode_(CBC) {}

Encryptor::~Encryptor() = default;

bool Encryptor::Init(const SymmetricKey* key, Mode mode, base::StringPiece iv) {
  return Init(key, mode, base::as_bytes(base::make_span(iv)));
}

bool Encryptor::Init(const SymmetricKey* key,
                     Mode mode,
                     base::span<const uint8_t> iv) {
  DCHECK(key);
  DCHECK(mode == CBC || mode == CTR);

  EnsureOpenSSLInit();
  if (mode == CBC && iv.size() != AES_BLOCK_SIZE)
    return false;
  // CTR mode passes the starting counter separately, via SetCounter().
  if (mode == CTR && !iv.empty())
    return false;

  if (GetCipherForKey(key) == nullptr)
    return false;

  key_ = key;
  mode_ = mode;
  iv_.assign(iv.begin(), iv.end());
  return true;
}

bool Encryptor::Encrypt(base::StringPiece plaintext, std::string* ciphertext) {
  CHECK(!plaintext.empty() || mode_ == CBC);
  return CryptString(/*do_encrypt=*/true, plaintext, ciphertext);
}

bool Encryptor::Encrypt(base::span<const uint8_t> plaintext,
                        std::vector<uint8_t>* ciphertext) {
  CHECK(!plaintext.empty() || mode_ == CBC);
  return CryptBytes(/*do_encrypt=*/true, plaintext, ciphertext);
}

bool Encryptor::Decrypt(base::StringPiece ciphertext, std::string* plaintext) {
  CHECK(!ciphertext.empty());
  return CryptString(/*do_encrypt=*/false, ciphertext, plaintext);
}

bool Encryptor::Decrypt(base::span<const uint8_t> ciphertext,
                        std::vector<uint8_t>* plaintext) {
  CHECK(!ciphertext.empty());
  return CryptBytes(/*do_encrypt=*/false, ciphertext, plaintext);
}

bool Encryptor::SetCounter(base::StringPiece counter) {
  return SetCounter(base::as_bytes(base::make_span(counter)));
}

bool Encryptor::SetCounter(base::span<const uint8_t> counter) {
  if (mode_ != CTR)
    return false;
  if (counter.size() != 16u)
    return false;

  iv_.assign(counter.begin(), counter.end());
  return true;
}

bool Encryptor::CryptString(bool do_encrypt,
                            base::StringPiece input,
                            std::string* output) {
  size_t out_size = MaxOutput(do_encrypt, input.size());
  CHECK_GT(out_size + 1, out_size);  // Overflow
  std::string result;
  uint8_t* out_ptr =
      reinterpret_cast<uint8_t*>(base::WriteInto(&result, out_size + 1));

  base::Optional<size_t> len =
      (mode_ == CTR)
          ? CryptCTR(do_encrypt, base::as_bytes(base::make_span(input)),
                     base::make_span(out_ptr, out_size))
          : Crypt(do_encrypt, base::as_bytes(base::make_span(input)),
                  base::make_span(out_ptr, out_size));
  if (!len)
    return false;

  result.resize(*len);
  *output = std::move(result);
  return true;
}

bool Encryptor::CryptBytes(bool do_encrypt,
                           base::span<const uint8_t> input,
                           std::vector<uint8_t>* output) {
  std::vector<uint8_t> result(MaxOutput(do_encrypt, input.size()));
  base::Optional<size_t> len = (mode_ == CTR)
                                   ? CryptCTR(do_encrypt, input, result)
                                   : Crypt(do_encrypt, input, result);
  if (!len)
    return false;

  result.resize(*len);
  *output = std::move(result);
  return true;
}

size_t Encryptor::MaxOutput(bool do_encrypt, size_t length) {
  size_t result = length + ((do_encrypt && mode_ == CBC) ? 16 : 0);
  CHECK_GE(result, length);  // Overflow
  return result;
}

base::Optional<size_t> Encryptor::Crypt(bool do_encrypt,
                                        base::span<const uint8_t> input,
                                        base::span<uint8_t> output) {
  DCHECK(key_);  // Must call Init() before En/De-crypt.

  const EVP_CIPHER* cipher = GetCipherForKey(key_);
  DCHECK(cipher);  // Already handled in Init();

  const std::string& key = key_->key();
  DCHECK_EQ(EVP_CIPHER_iv_length(cipher), iv_.size());
  DCHECK_EQ(EVP_CIPHER_key_length(cipher), key.size());

  OpenSSLErrStackTracer err_tracer(FROM_HERE);
  bssl::ScopedEVP_CIPHER_CTX ctx;
  if (!EVP_CipherInit_ex(ctx.get(), cipher, nullptr,
                         reinterpret_cast<const uint8_t*>(key.data()),
                         iv_.data(), do_encrypt)) {
    return base::nullopt;
  }

  // Encrypting needs a block size of space to allow for any padding.
  CHECK_GE(output.size(), input.size() + (do_encrypt ? iv_.size() : 0));
  int out_len;
  if (!EVP_CipherUpdate(ctx.get(), output.data(), &out_len, input.data(),
                        input.size()))
    return base::nullopt;

  // Write out the final block plus padding (if any) to the end of the data
  // just written.
  int tail_len;
  if (!EVP_CipherFinal_ex(ctx.get(), output.data() + out_len, &tail_len))
    return base::nullopt;

  out_len += tail_len;
  DCHECK_LE(out_len, static_cast<int>(output.size()));
  return out_len;
}

base::Optional<size_t> Encryptor::CryptCTR(bool do_encrypt,
                                           base::span<const uint8_t> input,
                                           base::span<uint8_t> output) {
  if (iv_.size() != AES_BLOCK_SIZE) {
    LOG(ERROR) << "Counter value not set in CTR mode.";
    return base::nullopt;
  }

  AES_KEY aes_key;
  if (AES_set_encrypt_key(reinterpret_cast<const uint8_t*>(key_->key().data()),
                          key_->key().size() * 8, &aes_key) != 0) {
    return base::nullopt;
  }

  uint8_t ecount_buf[AES_BLOCK_SIZE] = { 0 };
  unsigned int block_offset = 0;

  // |output| must have room for |input|.
  CHECK_GE(output.size(), input.size());
  // Note AES_ctr128_encrypt() will update |iv_|. However, this method discards
  // |ecount_buf| and |block_offset|, so this is not quite a streaming API.
  AES_ctr128_encrypt(input.data(), output.data(), input.size(), &aes_key,
                     iv_.data(), ecount_buf, &block_offset);
  return input.size();
}

}  // namespace crypto