summaryrefslogtreecommitdiff
path: root/chromium/crypto/aead.cc
blob: 6ba5cec6b6a1095e045cf988e7faa5e506d7c832 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "crypto/aead.h"

#include <stddef.h>
#include <stdint.h>
#include <string>

#include "base/strings/string_util.h"
#include "crypto/openssl_util.h"
#include "third_party/boringssl/src/include/openssl/aes.h"
#include "third_party/boringssl/src/include/openssl/evp.h"

namespace crypto {

Aead::Aead(AeadAlgorithm algorithm) {
  EnsureOpenSSLInit();
  switch (algorithm) {
    case AES_128_CTR_HMAC_SHA256:
      aead_ = EVP_aead_aes_128_ctr_hmac_sha256();
      break;
    case AES_256_GCM:
      aead_ = EVP_aead_aes_256_gcm();
      break;
    case AES_256_GCM_SIV:
      aead_ = EVP_aead_aes_256_gcm_siv();
      break;
    case CHACHA20_POLY1305:
      aead_ = EVP_aead_chacha20_poly1305();
      break;
  }
}

Aead::~Aead() = default;

void Aead::Init(base::span<const uint8_t> key) {
  DCHECK(!key_);
  DCHECK_EQ(KeyLength(), key.size());
  key_ = key;
}

static base::span<const uint8_t> ToSpan(base::StringPiece sp) {
  return base::as_bytes(base::make_span(sp));
}

void Aead::Init(const std::string* key) {
  Init(ToSpan(*key));
}

std::vector<uint8_t> Aead::Seal(
    base::span<const uint8_t> plaintext,
    base::span<const uint8_t> nonce,
    base::span<const uint8_t> additional_data) const {
  const size_t max_output_length =
      EVP_AEAD_max_overhead(aead_) + plaintext.size();
  CHECK(max_output_length >= plaintext.size());
  std::vector<uint8_t> ret;
  ret.resize(max_output_length);

  size_t output_length;
  CHECK(Seal(plaintext, nonce, additional_data, ret.data(), &output_length,
             max_output_length));
  ret.resize(output_length);
  return ret;
}

bool Aead::Seal(base::StringPiece plaintext,
                base::StringPiece nonce,
                base::StringPiece additional_data,
                std::string* ciphertext) const {
  const size_t max_output_length =
      EVP_AEAD_max_overhead(aead_) + plaintext.size();
  CHECK(max_output_length + 1 >= plaintext.size());
  uint8_t* out_ptr = reinterpret_cast<uint8_t*>(
      base::WriteInto(ciphertext, max_output_length + 1));

  size_t output_length;
  if (!Seal(ToSpan(plaintext), ToSpan(nonce), ToSpan(additional_data), out_ptr,
            &output_length, max_output_length)) {
    ciphertext->clear();
    return false;
  }

  ciphertext->resize(output_length);
  return true;
}

base::Optional<std::vector<uint8_t>> Aead::Open(
    base::span<const uint8_t> ciphertext,
    base::span<const uint8_t> nonce,
    base::span<const uint8_t> additional_data) const {
  const size_t max_output_length = ciphertext.size();
  std::vector<uint8_t> ret;
  ret.resize(max_output_length);

  size_t output_length;
  if (!Open(ciphertext, nonce, additional_data, ret.data(), &output_length,
            max_output_length)) {
    return base::nullopt;
  }

  ret.resize(output_length);
  return ret;
}

bool Aead::Open(base::StringPiece ciphertext,
                base::StringPiece nonce,
                base::StringPiece additional_data,
                std::string* plaintext) const {
  const size_t max_output_length = ciphertext.size();
  CHECK(max_output_length + 1 > max_output_length);
  uint8_t* out_ptr = reinterpret_cast<uint8_t*>(
      base::WriteInto(plaintext, max_output_length + 1));

  size_t output_length;
  if (!Open(ToSpan(ciphertext), ToSpan(nonce), ToSpan(additional_data), out_ptr,
            &output_length, max_output_length)) {
    plaintext->clear();
    return false;
  }

  plaintext->resize(output_length);
  return true;
}

size_t Aead::KeyLength() const {
  return EVP_AEAD_key_length(aead_);
}

size_t Aead::NonceLength() const {
  return EVP_AEAD_nonce_length(aead_);
}

bool Aead::Seal(base::span<const uint8_t> plaintext,
                base::span<const uint8_t> nonce,
                base::span<const uint8_t> additional_data,
                uint8_t* out,
                size_t* output_length,
                size_t max_output_length) const {
  DCHECK(key_);
  DCHECK_EQ(NonceLength(), nonce.size());
  bssl::ScopedEVP_AEAD_CTX ctx;

  if (!EVP_AEAD_CTX_init(ctx.get(), aead_, key_->data(), key_->size(),
                         EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr) ||
      !EVP_AEAD_CTX_seal(ctx.get(), out, output_length, max_output_length,
                         nonce.data(), nonce.size(), plaintext.data(),
                         plaintext.size(), additional_data.data(),
                         additional_data.size())) {
    return false;
  }

  DCHECK_LE(*output_length, max_output_length);
  return true;
}

bool Aead::Open(base::span<const uint8_t> plaintext,
                base::span<const uint8_t> nonce,
                base::span<const uint8_t> additional_data,
                uint8_t* out,
                size_t* output_length,
                size_t max_output_length) const {
  DCHECK(key_);
  DCHECK_EQ(NonceLength(), nonce.size());
  bssl::ScopedEVP_AEAD_CTX ctx;

  if (!EVP_AEAD_CTX_init(ctx.get(), aead_, key_->data(), key_->size(),
                         EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr) ||
      !EVP_AEAD_CTX_open(ctx.get(), out, output_length, max_output_length,
                         nonce.data(), nonce.size(), plaintext.data(),
                         plaintext.size(), additional_data.data(),
                         additional_data.size())) {
    return false;
  }

  DCHECK_LE(*output_length, max_output_length);
  return true;
}

}  // namespace crypto