summaryrefslogtreecommitdiff
path: root/chromium/cc/tiles/gpu_image_decode_cache.cc
blob: 747f1a367a9f0afd95e254218e34d9cc4b62f371 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/tiles/gpu_image_decode_cache.h"

#include <inttypes.h>

#include "base/auto_reset.h"
#include "base/debug/alias.h"
#include "base/hash.h"
#include "base/memory/discardable_memory_allocator.h"
#include "base/memory/memory_coordinator_client_registry.h"
#include "base/metrics/histogram_macros.h"
#include "base/numerics/safe_math.h"
#include "base/strings/stringprintf.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/trace_event/memory_dump_manager.h"
#include "cc/base/devtools_instrumentation.h"
#include "cc/base/histograms.h"
#include "cc/paint/image_transfer_cache_entry.h"
#include "cc/raster/tile_task.h"
#include "cc/tiles/mipmap_util.h"
#include "components/viz/common/gpu/raster_context_provider.h"
#include "gpu/command_buffer/client/context_support.h"
#include "gpu/command_buffer/client/gles2_interface.h"
#include "gpu/command_buffer/client/raster_interface.h"
#include "third_party/skia/include/core/SkCanvas.h"
#include "third_party/skia/include/core/SkRefCnt.h"
#include "third_party/skia/include/core/SkSurface.h"
#include "third_party/skia/include/gpu/GrBackendSurface.h"
#include "third_party/skia/include/gpu/GrContext.h"
#include "third_party/skia/include/gpu/GrTexture.h"
#include "ui/gfx/skia_util.h"
#include "ui/gl/trace_util.h"

namespace cc {
namespace {
// The number or entries to keep in the cache, depending on the memory state of
// the system. This limit can be breached by in-use cache items, which cannot
// be deleted.
static const int kNormalMaxItemsInCacheForGpu = 2000;
static const int kThrottledMaxItemsInCacheForGpu = 100;
static const int kSuspendedMaxItemsInCacheForGpu = 0;

// lock_count │ used  │ result state
// ═══════════╪═══════╪══════════════════
//  1         │ false │ WASTED_ONCE
//  1         │ true  │ USED_ONCE
//  >1        │ false │ WASTED_RELOCKED
//  >1        │ true  │ USED_RELOCKED
// Note that it's important not to reorder the following enum, since the
// numerical values are used in the histogram code.
enum ImageUsageState : int {
  IMAGE_USAGE_STATE_WASTED_ONCE,
  IMAGE_USAGE_STATE_USED_ONCE,
  IMAGE_USAGE_STATE_WASTED_RELOCKED,
  IMAGE_USAGE_STATE_USED_RELOCKED,
  IMAGE_USAGE_STATE_COUNT
};

// Returns true if an image would not be drawn and should therefore be
// skipped rather than decoded.
bool SkipImage(const DrawImage& draw_image) {
  if (!SkIRect::Intersects(
          draw_image.src_rect(),
          SkIRect::MakeWH(draw_image.paint_image().width(),
                          draw_image.paint_image().height()))) {
    return true;
  }
  if (std::abs(draw_image.scale().width()) <
          std::numeric_limits<float>::epsilon() ||
      std::abs(draw_image.scale().height()) <
          std::numeric_limits<float>::epsilon()) {
    return true;
  }
  return false;
}

// Returns the filter quality to use for scaling the image to upload scale as
// well as for using when passing the decoded image to skia. Due to parity with
// SW and power impliciation, limit the filter quality to medium.
SkFilterQuality CalculateDesiredFilterQuality(const DrawImage& draw_image) {
  return std::min(kMedium_SkFilterQuality, draw_image.filter_quality());
}

// Calculate the mip level to upload-scale the image to before uploading. We use
// mip levels rather than exact scales to increase re-use of scaled images.
int CalculateUploadScaleMipLevel(const DrawImage& draw_image) {
  // Images which are being clipped will have color-bleeding if scaled.
  // TODO(ericrk): Investigate uploading clipped images to handle this case and
  // provide further optimization. crbug.com/620899
  if (draw_image.src_rect() !=
      SkIRect::MakeWH(draw_image.paint_image().width(),
                      draw_image.paint_image().height())) {
    return 0;
  }

  gfx::Size base_size(draw_image.paint_image().width(),
                      draw_image.paint_image().height());
  // Ceil our scaled size so that the mip map generated is guaranteed to be
  // larger. Take the abs of the scale, as mipmap functions don't handle
  // (and aren't impacted by) negative image dimensions.
  gfx::Size scaled_size =
      gfx::ScaleToCeiledSize(base_size, std::abs(draw_image.scale().width()),
                             std::abs(draw_image.scale().height()));

  return MipMapUtil::GetLevelForSize(base_size, scaled_size);
}

// Calculates the scale factor which can be used to scale an image to a given
// mip level.
SkSize CalculateScaleFactorForMipLevel(const DrawImage& draw_image,
                                       int upload_scale_mip_level) {
  gfx::Size base_size(draw_image.paint_image().width(),
                      draw_image.paint_image().height());
  return MipMapUtil::GetScaleAdjustmentForLevel(base_size,
                                                upload_scale_mip_level);
}

// Calculates the size of a given mip level.
gfx::Size CalculateSizeForMipLevel(const DrawImage& draw_image,
                                   int upload_scale_mip_level) {
  gfx::Size base_size(draw_image.paint_image().width(),
                      draw_image.paint_image().height());
  return MipMapUtil::GetSizeForLevel(base_size, upload_scale_mip_level);
}

// Determines whether a draw image requires mips.
bool ShouldGenerateMips(const DrawImage& draw_image,
                        int upload_scale_mip_level) {
  // If filter quality is less than medium, don't generate mips.
  if (draw_image.filter_quality() < kMedium_SkFilterQuality)
    return false;

  gfx::Size base_size(draw_image.paint_image().width(),
                      draw_image.paint_image().height());
  // Take the abs of the scale, as mipmap functions don't handle (and aren't
  // impacted by) negative image dimensions.
  gfx::SizeF scaled_size = gfx::ScaleSize(
      gfx::SizeF(base_size), std::abs(draw_image.scale().width()),
      std::abs(draw_image.scale().height()));

  // If our target size is smaller than our scaled size in both dimension, we
  // need to generate mips.
  gfx::SizeF target_size =
      gfx::SizeF(CalculateSizeForMipLevel(draw_image, upload_scale_mip_level));
  if (scaled_size.width() < target_size.width() &&
      scaled_size.height() < target_size.height()) {
    return true;
  }

  return false;
}

// Draws and scales the provided |draw_image| into the |target_pixmap|. If the
// draw/scale can be done directly, calls directly into PaintImage::Decode.
// if not, decodes to a compatible temporary pixmap and then converts that into
// the |target_pixmap|.
bool DrawAndScaleImage(const DrawImage& draw_image, SkPixmap* target_pixmap) {
  // We will pass color_space explicitly to PaintImage::Decode, so pull it out
  // of the pixmap and populate a stand-alone value.
  // note: To pull colorspace out of the pixmap, we create a new pixmap with
  // null colorspace but the same memory pointer.
  SkPixmap pixmap(target_pixmap->info().makeColorSpace(nullptr),
                  target_pixmap->writable_addr(), target_pixmap->rowBytes());
  sk_sp<SkColorSpace> color_space = target_pixmap->info().refColorSpace();

  const PaintImage& paint_image = draw_image.paint_image();
  const bool is_original_decode =
      SkISize::Make(paint_image.width(), paint_image.height()) ==
      pixmap.bounds().size();
  const bool is_nearest_neighbor =
      draw_image.filter_quality() == kNone_SkFilterQuality;

  SkISize supported_size =
      paint_image.GetSupportedDecodeSize(pixmap.bounds().size());
  // We can directly decode into target pixmap if we are doing an original
  // decode or we are decoding to scale without nearest neighbor filtering.
  const bool can_directly_decode = is_original_decode || !is_nearest_neighbor;
  if (supported_size == pixmap.bounds().size() && can_directly_decode) {
    SkImageInfo info = pixmap.info();
    return paint_image.Decode(pixmap.writable_addr(), &info, color_space,
                              draw_image.frame_index());
  }

  // If we can't decode/scale directly, we will handle this in up to 3 steps.
  // Step 1: Decode at the nearest (larger) directly supported size or the
  // original size if nearest neighbor quality is requested.
  SkISize decode_size =
      is_nearest_neighbor
          ? SkISize::Make(paint_image.width(), paint_image.height())
          : supported_size;
  SkImageInfo decode_info =
      SkImageInfo::MakeN32Premul(decode_size.width(), decode_size.height());
  SkBitmap decode_bitmap;
  if (!decode_bitmap.tryAllocPixels(decode_info))
    return false;
  SkPixmap decode_pixmap(decode_bitmap.info(), decode_bitmap.getPixels(),
                         decode_bitmap.rowBytes());
  if (!paint_image.Decode(decode_pixmap.writable_addr(), &decode_info,
                          color_space, draw_image.frame_index())) {
    return false;
  }

  // Step 2a: Scale to |pixmap| directly if kN32_SkColorType.
  if (pixmap.info().colorType() == kN32_SkColorType) {
    return decode_pixmap.scalePixels(pixmap,
                                     CalculateDesiredFilterQuality(draw_image));
  }

  // Step 2b: Scale to temporary pixmap of kN32_SkColorType.
  SkImageInfo scaled_info = pixmap.info().makeColorType(kN32_SkColorType);
  SkBitmap scaled_bitmap;
  if (!scaled_bitmap.tryAllocPixels(scaled_info))
    return false;
  SkPixmap scaled_pixmap(scaled_bitmap.info(), scaled_bitmap.getPixels(),
                         scaled_bitmap.rowBytes());
  if (!decode_pixmap.scalePixels(scaled_pixmap,
                                 CalculateDesiredFilterQuality(draw_image))) {
    return false;
  }

  // Step 3: Copy the temporary scaled pixmap to |pixmap|, performing
  // color type conversion. We can't do the color conversion in step 1, as
  // the scale in step 2 must happen in kN32_SkColorType.
  return scaled_pixmap.readPixels(pixmap);
}

// Takes ownership of the backing texture of an SkImage. This allows us to
// delete this texture under Skia (via discardable).
sk_sp<SkImage> TakeOwnershipOfSkImageBacking(GrContext* context,
                                             sk_sp<SkImage> image) {
  // If the image is not texture backed, it has no backing, just return it.
  if (!image->isTextureBacked()) {
    return image;
  }

  GrSurfaceOrigin origin;
  image->getBackendTexture(false /* flushPendingGrContextIO */, &origin);
  SkColorType color_type = image->colorType();
  if (color_type == kUnknown_SkColorType) {
    return nullptr;
  }
  sk_sp<SkColorSpace> color_space = image->refColorSpace();
  GrBackendTexture backend_texture;
  SkImage::BackendTextureReleaseProc release_proc;
  SkImage::MakeBackendTextureFromSkImage(context, std::move(image),
                                         &backend_texture, &release_proc);
  return SkImage::MakeFromTexture(context, backend_texture, origin, color_type,
                                  kPremul_SkAlphaType, std::move(color_space));
}

// Immediately deletes an SkImage, preventing caching of that image. Must be
// called while holding the context lock.
void DeleteSkImageAndPreventCaching(viz::RasterContextProvider* context,
                                    sk_sp<SkImage>&& image) {
  // No need to do anything for a non-texture-backed images.
  if (!image->isTextureBacked())
    return;

  sk_sp<SkImage> image_owned =
      TakeOwnershipOfSkImageBacking(context->GrContext(), std::move(image));
  // If context is lost, we may get a null image here.
  if (image_owned) {
    // Delete |original_image_owned| as Skia will not clean it up. We are
    // holding the context lock here, so we can delete immediately.
    uint32_t texture_id =
        GpuImageDecodeCache::GlIdFromSkImage(image_owned.get());
    context->ContextGL()->DeleteTextures(1, &texture_id);
  }
}

// TODO(ericrk): Replace calls to this with calls to SkImage::makeTextureImage,
// once that function handles colorspaces. https://crbug.com/834837
sk_sp<SkImage> MakeTextureImage(viz::RasterContextProvider* context,
                                sk_sp<SkImage> source_image,
                                sk_sp<SkColorSpace> target_color_space,
                                GrMipMapped mip_mapped) {
  // Step 1: Upload image and generate mips if necessary. If we will be applying
  // a color-space conversion, don't generate mips yet, instead do it after
  // conversion, in step 3.
  bool add_mips_after_color_conversion =
      (target_color_space && mip_mapped == GrMipMapped::kYes);
  sk_sp<SkImage> uploaded_image = source_image->makeTextureImage(
      context->GrContext(), nullptr,
      add_mips_after_color_conversion ? GrMipMapped::kNo : mip_mapped);

  // Step 2: Apply a color-space conversion if necessary.
  if (uploaded_image && target_color_space) {
    sk_sp<SkImage> pre_converted_image = uploaded_image;
    uploaded_image = uploaded_image->makeColorSpace(target_color_space);

    if (uploaded_image != pre_converted_image)
      DeleteSkImageAndPreventCaching(context, std::move(pre_converted_image));
  }

  // Step 3: If we had a colorspace conversion, we couldn't mipmap in step 1, so
  // add mips here.
  if (uploaded_image && add_mips_after_color_conversion) {
    sk_sp<SkImage> pre_mipped_image = uploaded_image;
    uploaded_image = uploaded_image->makeTextureImage(
        context->GrContext(), nullptr, GrMipMapped::kYes);
    DCHECK_NE(pre_mipped_image, uploaded_image);
    DeleteSkImageAndPreventCaching(context, std::move(pre_mipped_image));
  }

  return uploaded_image;
}

}  // namespace

// static
GpuImageDecodeCache::InUseCacheKey
GpuImageDecodeCache::InUseCacheKey::FromDrawImage(const DrawImage& draw_image) {
  return InUseCacheKey(draw_image);
}

// Extract the information to uniquely identify a DrawImage for the purposes of
// the |in_use_cache_|.
GpuImageDecodeCache::InUseCacheKey::InUseCacheKey(const DrawImage& draw_image)
    : frame_key(draw_image.frame_key()),
      upload_scale_mip_level(CalculateUploadScaleMipLevel(draw_image)),
      filter_quality(CalculateDesiredFilterQuality(draw_image)),
      target_color_space(draw_image.target_color_space()) {}

bool GpuImageDecodeCache::InUseCacheKey::operator==(
    const InUseCacheKey& other) const {
  return frame_key == other.frame_key &&
         upload_scale_mip_level == other.upload_scale_mip_level &&
         filter_quality == other.filter_quality &&
         target_color_space == other.target_color_space;
}

size_t GpuImageDecodeCache::InUseCacheKeyHash::operator()(
    const InUseCacheKey& cache_key) const {
  return base::HashInts(
      cache_key.target_color_space.GetHash(),
      base::HashInts(cache_key.frame_key.hash(),
                     base::HashInts(cache_key.upload_scale_mip_level,
                                    cache_key.filter_quality)));
}

GpuImageDecodeCache::InUseCacheEntry::InUseCacheEntry(
    scoped_refptr<ImageData> image_data)
    : image_data(std::move(image_data)) {}
GpuImageDecodeCache::InUseCacheEntry::InUseCacheEntry(const InUseCacheEntry&) =
    default;
GpuImageDecodeCache::InUseCacheEntry::InUseCacheEntry(InUseCacheEntry&&) =
    default;
GpuImageDecodeCache::InUseCacheEntry::~InUseCacheEntry() = default;

// Task which decodes an image and stores the result in discardable memory.
// This task does not use GPU resources and can be run on any thread.
class GpuImageDecodeTaskImpl : public TileTask {
 public:
  GpuImageDecodeTaskImpl(GpuImageDecodeCache* cache,
                         const DrawImage& draw_image,
                         const ImageDecodeCache::TracingInfo& tracing_info,
                         GpuImageDecodeCache::DecodeTaskType task_type)
      : TileTask(true),
        cache_(cache),
        image_(draw_image),
        tracing_info_(tracing_info),
        task_type_(task_type) {
    DCHECK(!SkipImage(draw_image));
  }

  // Overridden from Task:
  void RunOnWorkerThread() override {
    TRACE_EVENT2("cc", "GpuImageDecodeTaskImpl::RunOnWorkerThread", "mode",
                 "gpu", "source_prepare_tiles_id",
                 tracing_info_.prepare_tiles_id);
    devtools_instrumentation::ScopedImageDecodeTask image_decode_task(
        &image_.paint_image(),
        devtools_instrumentation::ScopedImageDecodeTask::kGpu,
        ImageDecodeCache::ToScopedTaskType(tracing_info_.task_type));
    cache_->DecodeImageInTask(image_, tracing_info_.task_type);
  }

  // Overridden from TileTask:
  void OnTaskCompleted() override {
    cache_->OnImageDecodeTaskCompleted(image_, task_type_);
  }

 protected:
  ~GpuImageDecodeTaskImpl() override = default;

 private:
  GpuImageDecodeCache* cache_;
  DrawImage image_;
  const ImageDecodeCache::TracingInfo tracing_info_;
  const GpuImageDecodeCache::DecodeTaskType task_type_;

  DISALLOW_COPY_AND_ASSIGN(GpuImageDecodeTaskImpl);
};

// Task which creates an image from decoded data. Typically this involves
// uploading data to the GPU, which requires this task be run on the non-
// concurrent thread.
class ImageUploadTaskImpl : public TileTask {
 public:
  ImageUploadTaskImpl(GpuImageDecodeCache* cache,
                      const DrawImage& draw_image,
                      scoped_refptr<TileTask> decode_dependency,
                      const ImageDecodeCache::TracingInfo& tracing_info)
      : TileTask(false),
        cache_(cache),
        image_(draw_image),
        tracing_info_(tracing_info) {
    DCHECK(!SkipImage(draw_image));
    // If an image is already decoded and locked, we will not generate a
    // decode task.
    if (decode_dependency)
      dependencies_.push_back(std::move(decode_dependency));
  }

  // Override from Task:
  void RunOnWorkerThread() override {
    TRACE_EVENT2("cc", "ImageUploadTaskImpl::RunOnWorkerThread", "mode", "gpu",
                 "source_prepare_tiles_id", tracing_info_.prepare_tiles_id);
    cache_->UploadImageInTask(image_);
  }

  // Overridden from TileTask:
  void OnTaskCompleted() override {
    cache_->OnImageUploadTaskCompleted(image_);
  }

 protected:
  ~ImageUploadTaskImpl() override = default;

 private:
  GpuImageDecodeCache* cache_;
  DrawImage image_;
  const ImageDecodeCache::TracingInfo tracing_info_;

  DISALLOW_COPY_AND_ASSIGN(ImageUploadTaskImpl);
};

GpuImageDecodeCache::ImageDataBase::ImageDataBase() = default;
GpuImageDecodeCache::ImageDataBase::~ImageDataBase() = default;

void GpuImageDecodeCache::ImageDataBase::OnSetLockedData(bool out_of_raster) {
  DCHECK_EQ(usage_stats_.lock_count, 1);
  DCHECK(!is_locked_);
  usage_stats_.first_lock_out_of_raster = out_of_raster;
  is_locked_ = true;
}

void GpuImageDecodeCache::ImageDataBase::OnResetData() {
  is_locked_ = false;
  usage_stats_ = UsageStats();
}

void GpuImageDecodeCache::ImageDataBase::OnLock() {
  DCHECK(!is_locked_);
  is_locked_ = true;
  ++usage_stats_.lock_count;
}

void GpuImageDecodeCache::ImageDataBase::OnUnlock() {
  DCHECK(is_locked_);
  is_locked_ = false;
  if (usage_stats_.lock_count == 1)
    usage_stats_.first_lock_wasted = !usage_stats_.used;
}

int GpuImageDecodeCache::ImageDataBase::UsageState() const {
  ImageUsageState state = IMAGE_USAGE_STATE_WASTED_ONCE;
  if (usage_stats_.lock_count == 1) {
    if (usage_stats_.used)
      state = IMAGE_USAGE_STATE_USED_ONCE;
    else
      state = IMAGE_USAGE_STATE_WASTED_ONCE;
  } else {
    if (usage_stats_.used)
      state = IMAGE_USAGE_STATE_USED_RELOCKED;
    else
      state = IMAGE_USAGE_STATE_WASTED_RELOCKED;
  }

  return state;
}

GpuImageDecodeCache::DecodedImageData::DecodedImageData(bool is_bitmap_backed)
    : is_bitmap_backed_(is_bitmap_backed) {}
GpuImageDecodeCache::DecodedImageData::~DecodedImageData() {
  ResetData();
}

bool GpuImageDecodeCache::DecodedImageData::Lock() {
  if (data_->Lock())
    OnLock();
  return is_locked_;
}

void GpuImageDecodeCache::DecodedImageData::Unlock() {
  data_->Unlock();
  OnUnlock();
}

void GpuImageDecodeCache::DecodedImageData::SetLockedData(
    std::unique_ptr<base::DiscardableMemory> data,
    sk_sp<SkImage> image,
    bool out_of_raster) {
  DCHECK(data);
  DCHECK(!data_);
  DCHECK(image);
  DCHECK(!image_);
  data_ = std::move(data);
  image_ = std::move(image);
  OnSetLockedData(out_of_raster);
}

void GpuImageDecodeCache::DecodedImageData::SetBitmapImage(
    sk_sp<SkImage> image) {
  DCHECK(is_bitmap_backed_);
  image_ = std::move(image);
  OnLock();
}

void GpuImageDecodeCache::DecodedImageData::ResetBitmapImage() {
  DCHECK(is_bitmap_backed_);
  image_ = nullptr;
  OnUnlock();
}

void GpuImageDecodeCache::DecodedImageData::ResetData() {
  if (data_) {
    DCHECK(image_);
    ReportUsageStats();
  }
  image_ = nullptr;
  data_ = nullptr;
  OnResetData();
}

void GpuImageDecodeCache::DecodedImageData::ReportUsageStats() const {
  UMA_HISTOGRAM_ENUMERATION("Renderer4.GpuImageDecodeState",
                            static_cast<ImageUsageState>(UsageState()),
                            IMAGE_USAGE_STATE_COUNT);
  UMA_HISTOGRAM_BOOLEAN("Renderer4.GpuImageDecodeState.FirstLockWasted",
                        usage_stats_.first_lock_wasted);
  if (usage_stats_.first_lock_out_of_raster)
    UMA_HISTOGRAM_BOOLEAN(
        "Renderer4.GpuImageDecodeState.FirstLockWasted.OutOfRaster",
        usage_stats_.first_lock_wasted);
}

GpuImageDecodeCache::UploadedImageData::UploadedImageData() = default;
GpuImageDecodeCache::UploadedImageData::~UploadedImageData() {
  DCHECK(!image());
}

void GpuImageDecodeCache::UploadedImageData::SetImage(sk_sp<SkImage> image) {
  DCHECK(mode_ == Mode::kNone);
  DCHECK(!image_);
  DCHECK(!transfer_cache_id_);
  DCHECK(image);

  mode_ = Mode::kSkImage;
  image_ = std::move(image);
  if (image_->isTextureBacked())
    gl_id_ = GlIdFromSkImage(image_.get());
  OnSetLockedData(false /* out_of_raster */);
}

void GpuImageDecodeCache::UploadedImageData::SetTransferCacheId(uint32_t id) {
  DCHECK(mode_ == Mode::kNone);
  DCHECK(!image_);
  DCHECK(!transfer_cache_id_);

  mode_ = Mode::kTransferCache;
  transfer_cache_id_ = id;
  OnSetLockedData(false /* out_of_raster */);
}

void GpuImageDecodeCache::UploadedImageData::Reset() {
  if (mode_ != Mode::kNone)
    ReportUsageStats();

  mode_ = Mode::kNone;
  image_ = nullptr;
  gl_id_ = 0;
  transfer_cache_id_.reset();
  OnResetData();
}

void GpuImageDecodeCache::UploadedImageData::ReportUsageStats() const {
  UMA_HISTOGRAM_ENUMERATION("Renderer4.GpuImageUploadState",
                            static_cast<ImageUsageState>(UsageState()),
                            IMAGE_USAGE_STATE_COUNT);
  UMA_HISTOGRAM_BOOLEAN("Renderer4.GpuImageUploadState.FirstLockWasted",
                        usage_stats_.first_lock_wasted);
}

GpuImageDecodeCache::ImageData::ImageData(
    PaintImage::Id paint_image_id,
    DecodedDataMode mode,
    size_t size,
    const gfx::ColorSpace& target_color_space,
    SkFilterQuality quality,
    int upload_scale_mip_level,
    bool needs_mips,
    bool is_bitmap_backed)
    : paint_image_id(paint_image_id),
      mode(mode),
      size(size),
      target_color_space(target_color_space),
      quality(quality),
      upload_scale_mip_level(upload_scale_mip_level),
      needs_mips(needs_mips),
      is_bitmap_backed(is_bitmap_backed),
      decode(is_bitmap_backed) {}

GpuImageDecodeCache::ImageData::~ImageData() {
  // We should never delete ImageData while it is in use or before it has been
  // cleaned up.
  DCHECK_EQ(0u, upload.ref_count);
  DCHECK_EQ(0u, decode.ref_count);
  DCHECK_EQ(false, decode.is_locked());
  // This should always be cleaned up before deleting the image, as it needs to
  // be freed with the GL context lock held.
  DCHECK(!HasUploadedData());
}

bool GpuImageDecodeCache::ImageData::IsGpuOrTransferCache() const {
  return mode == DecodedDataMode::kGpu ||
         mode == DecodedDataMode::kTransferCache;
}

bool GpuImageDecodeCache::ImageData::HasUploadedData() const {
  switch (mode) {
    case DecodedDataMode::kGpu:
      return !!upload.image();
    case DecodedDataMode::kTransferCache:
      return !!upload.transfer_cache_id();
    case DecodedDataMode::kCpu:
      return false;
  }
  return false;
}

void GpuImageDecodeCache::ImageData::ValidateBudgeted() const {
  // If the image is budgeted, it must be refed.
  DCHECK(is_budgeted);
  DCHECK_GT(upload.ref_count, 0u);
}

// static
GrGLuint GpuImageDecodeCache::GlIdFromSkImage(const SkImage* image) {
  DCHECK(image->isTextureBacked());
  GrBackendTexture backend_texture =
      image->getBackendTexture(true /* flushPendingGrContextIO */);
  if (!backend_texture.isValid())
    return 0;

  GrGLTextureInfo info;
  if (!backend_texture.getGLTextureInfo(&info))
    return 0;

  return info.fID;
}

GpuImageDecodeCache::GpuImageDecodeCache(viz::RasterContextProvider* context,
                                         bool use_transfer_cache,
                                         SkColorType color_type,
                                         size_t max_working_set_bytes,
                                         int max_texture_size)
    : color_type_(color_type),
      use_transfer_cache_(use_transfer_cache),
      context_(context),
      max_texture_size_(max_texture_size),
      persistent_cache_(PersistentCache::NO_AUTO_EVICT),
      max_working_set_bytes_(max_working_set_bytes) {
  // In certain cases, ThreadTaskRunnerHandle isn't set (Android Webview).
  // Don't register a dump provider in these cases.
  if (base::ThreadTaskRunnerHandle::IsSet()) {
    base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
        this, "cc::GpuImageDecodeCache", base::ThreadTaskRunnerHandle::Get());
  }
  // Register this component with base::MemoryCoordinatorClientRegistry.
  base::MemoryCoordinatorClientRegistry::GetInstance()->Register(this);
}

GpuImageDecodeCache::~GpuImageDecodeCache() {
  // Debugging crbug.com/650234.
  CHECK_EQ(0u, in_use_cache_.size());

  // SetShouldAggressivelyFreeResources will zero our limits and free all
  // outstanding image memory.
  SetShouldAggressivelyFreeResources(true);

  // It is safe to unregister, even if we didn't register in the constructor.
  base::trace_event::MemoryDumpManager::GetInstance()->UnregisterDumpProvider(
      this);
  // Unregister this component with memory_coordinator::ClientRegistry.
  base::MemoryCoordinatorClientRegistry::GetInstance()->Unregister(this);

  memory_pressure_listener_.reset(
      new base::MemoryPressureListener(base::BindRepeating(
          &GpuImageDecodeCache::OnMemoryPressure, base::Unretained(this))));

  // TODO(vmpstr): If we don't have a client name, it may cause problems in
  // unittests, since most tests don't set the name but some do. The UMA system
  // expects the name to be always the same. This assertion is violated in the
  // tests that do set the name.
  if (GetClientNameForMetrics()) {
    UMA_HISTOGRAM_CUSTOM_COUNTS(
        base::StringPrintf("Compositing.%s.CachedImagesCount.Gpu",
                           GetClientNameForMetrics()),
        lifetime_max_items_in_cache_, 1, 1000, 20);
  }
}

ImageDecodeCache::TaskResult GpuImageDecodeCache::GetTaskForImageAndRef(
    const DrawImage& draw_image,
    const TracingInfo& tracing_info) {
  DCHECK_EQ(tracing_info.task_type, TaskType::kInRaster);
  return GetTaskForImageAndRefInternal(draw_image, tracing_info,
                                       DecodeTaskType::kPartOfUploadTask);
}

ImageDecodeCache::TaskResult
GpuImageDecodeCache::GetOutOfRasterDecodeTaskForImageAndRef(
    const DrawImage& draw_image) {
  return GetTaskForImageAndRefInternal(
      draw_image, TracingInfo(0, TilePriority::NOW, TaskType::kOutOfRaster),
      DecodeTaskType::kStandAloneDecodeTask);
}

ImageDecodeCache::TaskResult GpuImageDecodeCache::GetTaskForImageAndRefInternal(
    const DrawImage& draw_image,
    const TracingInfo& tracing_info,
    DecodeTaskType task_type) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::GetTaskForImageAndRef");
  if (SkipImage(draw_image))
    return TaskResult(false);

  base::AutoLock lock(lock_);
  const InUseCacheKey cache_key = InUseCacheKey::FromDrawImage(draw_image);
  ImageData* image_data = GetImageDataForDrawImage(draw_image, cache_key);
  scoped_refptr<ImageData> new_data;
  if (!image_data) {
    // We need an ImageData, create one now.
    new_data = CreateImageData(draw_image);
    image_data = new_data.get();
  } else if (image_data->decode.decode_failure) {
    // We have already tried and failed to decode this image, so just return.
    return TaskResult(false);
  } else if (task_type == DecodeTaskType::kPartOfUploadTask &&
             image_data->upload.task) {
    // We had an existing upload task, ref the image and return the task.
    image_data->ValidateBudgeted();
    RefImage(draw_image, cache_key);
    return TaskResult(image_data->upload.task);
  } else if (task_type == DecodeTaskType::kStandAloneDecodeTask &&
             image_data->decode.stand_alone_task) {
    // We had an existing out of raster task, ref the image and return the task.
    image_data->ValidateBudgeted();
    RefImage(draw_image, cache_key);
    return TaskResult(image_data->decode.stand_alone_task);
  }

  // Ensure that the image we're about to decode/upload will fit in memory, if
  // not already budgeted.
  if (!image_data->is_budgeted && !EnsureCapacity(image_data->size)) {
    // Image will not fit, do an at-raster decode.
    return TaskResult(false);
  }

  // If we had to create new image data, add it to our map now that we know it
  // will fit.
  if (new_data)
    AddToPersistentCache(draw_image, std::move(new_data));

  // Ref the image before creating a task - this ref is owned by the caller, and
  // it is their responsibility to release it by calling UnrefImage.
  RefImage(draw_image, cache_key);

  // If we already have an image and it is locked (or lock-able), just return
  // that. The image must be budgeted before we attempt to lock it.
  DCHECK(image_data->is_budgeted);
  if (image_data->HasUploadedData() &&
      TryLockImage(HaveContextLock::kNo, draw_image, image_data)) {
    return TaskResult(true);
  }

  scoped_refptr<TileTask> task;
  if (task_type == DecodeTaskType::kPartOfUploadTask) {
    // Ref image and create a upload and decode tasks. We will release this ref
    // in UploadTaskCompleted.
    RefImage(draw_image, cache_key);
    task = base::MakeRefCounted<ImageUploadTaskImpl>(
        this, draw_image,
        GetImageDecodeTaskAndRef(draw_image, tracing_info, task_type),
        tracing_info);
    image_data->upload.task = task;
  } else {
    task = GetImageDecodeTaskAndRef(draw_image, tracing_info, task_type);
  }

  return TaskResult(task);
}

void GpuImageDecodeCache::UnrefImage(const DrawImage& draw_image) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::UnrefImage");
  base::AutoLock lock(lock_);
  UnrefImageInternal(draw_image, InUseCacheKey::FromDrawImage(draw_image));
}

bool GpuImageDecodeCache::UseCacheForDrawImage(
    const DrawImage& draw_image) const {
  if (draw_image.paint_image().GetSkImage()->isTextureBacked())
    return false;

  return true;
}

DecodedDrawImage GpuImageDecodeCache::GetDecodedImageForDraw(
    const DrawImage& draw_image) {
  TRACE_EVENT0("cc", "GpuImageDecodeCache::GetDecodedImageForDraw");

  // We are being called during raster. The context lock must already be
  // acquired by the caller.
  CheckContextLockAcquiredIfNecessary();

  // If we're skipping the image, then the filter quality doesn't matter.
  if (SkipImage(draw_image))
    return DecodedDrawImage();

  base::AutoLock lock(lock_);
  const InUseCacheKey cache_key = InUseCacheKey::FromDrawImage(draw_image);
  ImageData* image_data = GetImageDataForDrawImage(draw_image, cache_key);
  if (!image_data) {
    // We didn't find the image, create a new entry.
    auto data = CreateImageData(draw_image);
    image_data = data.get();
    AddToPersistentCache(draw_image, std::move(data));
  }

  // Ref the image and decode so that they stay alive while we are
  // decoding/uploading.
  // Note that refing the image will attempt to budget the image, if not already
  // done.
  RefImage(draw_image, cache_key);
  RefImageDecode(draw_image, cache_key);

  // We may or may not need to decode and upload the image we've found, the
  // following functions early-out to if we already decoded.
  DecodeImageIfNecessary(draw_image, image_data, TaskType::kInRaster);
  UploadImageIfNecessary(draw_image, image_data);
  // Unref the image decode, but not the image. The image ref will be released
  // in DrawWithImageFinished.
  UnrefImageDecode(draw_image, cache_key);

  if (image_data->mode == DecodedDataMode::kTransferCache) {
    DCHECK(use_transfer_cache_);
    auto id = image_data->upload.transfer_cache_id();
    if (id)
      image_data->upload.mark_used();
    DCHECK(id || image_data->decode.decode_failure);

    SkSize scale_factor = CalculateScaleFactorForMipLevel(
        draw_image, image_data->upload_scale_mip_level);
    DecodedDrawImage decoded_draw_image(
        id, SkSize(), scale_factor, CalculateDesiredFilterQuality(draw_image),
        image_data->needs_mips, image_data->is_budgeted);
    return decoded_draw_image;
  } else {
    DCHECK(!use_transfer_cache_);
    sk_sp<SkImage> image = image_data->upload.image();
    if (image)
      image_data->upload.mark_used();
    DCHECK(image || image_data->decode.decode_failure);

    SkSize scale_factor = CalculateScaleFactorForMipLevel(
        draw_image, image_data->upload_scale_mip_level);
    DecodedDrawImage decoded_draw_image(
        std::move(image), SkSize(), scale_factor,
        CalculateDesiredFilterQuality(draw_image), image_data->is_budgeted);
    return decoded_draw_image;
  }
}

void GpuImageDecodeCache::DrawWithImageFinished(
    const DrawImage& draw_image,
    const DecodedDrawImage& decoded_draw_image) {
  TRACE_EVENT0("cc", "GpuImageDecodeCache::DrawWithImageFinished");

  // Release decoded_draw_image to ensure the referenced SkImage can be
  // cleaned up below.
  { auto delete_decoded_draw_image = std::move(decoded_draw_image); }

  // We are being called during raster. The context lock must already be
  // acquired by the caller.
  CheckContextLockAcquiredIfNecessary();

  if (SkipImage(draw_image))
    return;

  base::AutoLock lock(lock_);
  UnrefImageInternal(draw_image, InUseCacheKey::FromDrawImage(draw_image));

  // We are mid-draw and holding the context lock, ensure we clean up any
  // textures (especially at-raster), which may have just been marked for
  // deletion by UnrefImage.
  RunPendingContextThreadOperations();
}

void GpuImageDecodeCache::ReduceCacheUsage() {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::ReduceCacheUsage");
  base::AutoLock lock(lock_);
  EnsureCapacity(0);

  // This is typically called when no tasks are running (between scheduling
  // tasks). Try to lock and run pending operations if possible, but don't
  // block on it.
  if (context_->GetLock() && !context_->GetLock()->Try())
    return;

  RunPendingContextThreadOperations();
  if (context_->GetLock())
    context_->GetLock()->Release();
}

void GpuImageDecodeCache::SetShouldAggressivelyFreeResources(
    bool aggressively_free_resources) {
  TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::SetShouldAggressivelyFreeResources",
               "agressive_free_resources", aggressively_free_resources);
  if (aggressively_free_resources) {
    base::Optional<viz::RasterContextProvider::ScopedRasterContextLock>
        context_lock;
    if (context_->GetLock())
      context_lock.emplace(context_);

    base::AutoLock lock(lock_);
    aggressively_freeing_resources_ = aggressively_free_resources;
    EnsureCapacity(0);

    // We are holding the context lock, so finish cleaning up deleted images
    // now.
    RunPendingContextThreadOperations();
  } else {
    base::AutoLock lock(lock_);
    aggressively_freeing_resources_ = aggressively_free_resources;
  }
}

void GpuImageDecodeCache::ClearCache() {
  base::AutoLock lock(lock_);
  for (auto it = persistent_cache_.begin(); it != persistent_cache_.end();)
    it = RemoveFromPersistentCache(it);
  DCHECK(persistent_cache_.empty());
  paint_image_entries_.clear();
}

void GpuImageDecodeCache::AddToPersistentCache(const DrawImage& draw_image,
                                               scoped_refptr<ImageData> data) {
  lock_.AssertAcquired();

  WillAddCacheEntry(draw_image);
  persistent_cache_.Put(draw_image.frame_key(), std::move(data));
}

template <typename Iterator>
Iterator GpuImageDecodeCache::RemoveFromPersistentCache(Iterator it) {
  lock_.AssertAcquired();

  if (it->second->decode.ref_count != 0 || it->second->upload.ref_count != 0) {
    // Orphan the image and erase it from the |persisent_cache_|. This ensures
    // that the image will be deleted once all refs are removed.
    it->second->is_orphaned = true;
  } else {
    // Current entry has no refs. Ensure it is not locked.
    DCHECK(!it->second->decode.is_locked());
    DCHECK(!it->second->upload.is_locked());

    // Unlocked images must not be budgeted.
    DCHECK(!it->second->is_budgeted);

    // Free the uploaded image if it exists.
    if (it->second->HasUploadedData())
      DeleteImage(it->second.get());
  }

  auto entries_it = paint_image_entries_.find(it->second->paint_image_id);
  DCHECK(entries_it != paint_image_entries_.end());
  DCHECK_GT(entries_it->second.count, 0u);

  // If this is the last entry for this image, remove its tracking.
  --entries_it->second.count;
  if (entries_it->second.count == 0u)
    paint_image_entries_.erase(entries_it);

  return persistent_cache_.Erase(it);
}

size_t GpuImageDecodeCache::GetMaximumMemoryLimitBytes() const {
  return max_working_set_bytes_;
}

bool GpuImageDecodeCache::OnMemoryDump(
    const base::trace_event::MemoryDumpArgs& args,
    base::trace_event::ProcessMemoryDump* pmd) {
  using base::trace_event::MemoryAllocatorDump;
  using base::trace_event::MemoryAllocatorDumpGuid;
  using base::trace_event::MemoryDumpLevelOfDetail;

  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::OnMemoryDump");

  if (args.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND) {
    std::string dump_name = base::StringPrintf(
        "cc/image_memory/cache_0x%" PRIXPTR, reinterpret_cast<uintptr_t>(this));
    MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(dump_name);
    dump->AddScalar(MemoryAllocatorDump::kNameSize,
                    MemoryAllocatorDump::kUnitsBytes, working_set_bytes_);

    // Early out, no need for more detail in a BACKGROUND dump.
    return true;
  }

  for (const auto& image_pair : persistent_cache_) {
    const ImageData* image_data = image_pair.second.get();
    int image_id = static_cast<int>(image_pair.first.hash());

    // If we have discardable decoded data, dump this here.
    if (image_data->decode.data()) {
      std::string discardable_dump_name = base::StringPrintf(
          "cc/image_memory/cache_0x%" PRIXPTR "/discardable/image_%d",
          reinterpret_cast<uintptr_t>(this), image_id);
      MemoryAllocatorDump* dump =
          image_data->decode.data()->CreateMemoryAllocatorDump(
              discardable_dump_name.c_str(), pmd);
      // Dump the "locked_size" as an additional column.
      // This lets us see the amount of discardable which is contributing to
      // memory pressure.
      size_t locked_size =
          image_data->decode.is_locked() ? image_data->size : 0u;
      dump->AddScalar("locked_size", MemoryAllocatorDump::kUnitsBytes,
                      locked_size);
    }

    // If we have an uploaded image (that is actually on the GPU, not just a
    // CPU wrapper), upload it here.
    if (image_data->HasUploadedData() &&
        image_data->mode == DecodedDataMode::kGpu) {
      size_t discardable_size = image_data->size;
      // If the discardable system has deleted this out from under us, log a
      // size of 0 to match software discardable.
      if (context_->ContextSupport()
              ->ThreadsafeDiscardableTextureIsDeletedForTracing(
                  image_data->upload.gl_id())) {
        discardable_size = 0;
      }

      std::string gpu_dump_name = base::StringPrintf(
          "cc/image_memory/cache_0x%" PRIXPTR "/gpu/image_%d",
          reinterpret_cast<uintptr_t>(this), image_id);
      MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(gpu_dump_name);
      dump->AddScalar(MemoryAllocatorDump::kNameSize,
                      MemoryAllocatorDump::kUnitsBytes, discardable_size);

      // Dump the "locked_size" as an additional column.
      size_t locked_size =
          image_data->upload.is_locked() ? discardable_size : 0u;
      dump->AddScalar("locked_size", MemoryAllocatorDump::kUnitsBytes,
                      locked_size);

      // Create a global shred GUID to associate this data with its GPU
      // process counterpart.
      MemoryAllocatorDumpGuid guid = gl::GetGLTextureClientGUIDForTracing(
          context_->ContextSupport()->ShareGroupTracingGUID(),
          image_data->upload.gl_id());

      // kImportance is somewhat arbitrary - we chose 3 to be higher than the
      // value used in the GPU process (1), and Skia (2), causing us to appear
      // as the owner in memory traces.
      const int kImportance = 3;
      pmd->CreateSharedGlobalAllocatorDump(guid);
      pmd->AddOwnershipEdge(dump->guid(), guid, kImportance);
    }
  }

  return true;
}

void GpuImageDecodeCache::DecodeImageInTask(const DrawImage& draw_image,
                                            TaskType task_type) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::DecodeImage");
  base::AutoLock lock(lock_);
  ImageData* image_data = GetImageDataForDrawImage(
      draw_image, InUseCacheKey::FromDrawImage(draw_image));
  DCHECK(image_data);
  DCHECK(image_data->is_budgeted) << "Must budget an image for pre-decoding";
  DecodeImageIfNecessary(draw_image, image_data, task_type);
}

void GpuImageDecodeCache::UploadImageInTask(const DrawImage& draw_image) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::UploadImage");
  base::Optional<viz::RasterContextProvider::ScopedRasterContextLock>
      context_lock;
  if (context_->GetLock())
    context_lock.emplace(context_);

  base::AutoLock lock(lock_);
  ImageData* image_data = GetImageDataForDrawImage(
      draw_image, InUseCacheKey::FromDrawImage(draw_image));
  DCHECK(image_data);
  DCHECK(image_data->is_budgeted) << "Must budget an image for pre-decoding";
  UploadImageIfNecessary(draw_image, image_data);
}

void GpuImageDecodeCache::OnImageDecodeTaskCompleted(
    const DrawImage& draw_image,
    DecodeTaskType task_type) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::OnImageDecodeTaskCompleted");
  base::AutoLock lock(lock_);
  auto cache_key = InUseCacheKey::FromDrawImage(draw_image);
  // Decode task is complete, remove our reference to it.
  ImageData* image_data = GetImageDataForDrawImage(draw_image, cache_key);
  DCHECK(image_data);
  if (task_type == DecodeTaskType::kPartOfUploadTask) {
    DCHECK(image_data->decode.task);
    image_data->decode.task = nullptr;
  } else {
    DCHECK(task_type == DecodeTaskType::kStandAloneDecodeTask);
    DCHECK(image_data->decode.stand_alone_task);
    image_data->decode.stand_alone_task = nullptr;
  }

  // While the decode task is active, we keep a ref on the decoded data.
  // Release that ref now.
  UnrefImageDecode(draw_image, cache_key);
}

void GpuImageDecodeCache::OnImageUploadTaskCompleted(
    const DrawImage& draw_image) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::OnImageUploadTaskCompleted");
  base::AutoLock lock(lock_);
  // Upload task is complete, remove our reference to it.
  InUseCacheKey cache_key = InUseCacheKey::FromDrawImage(draw_image);
  ImageData* image_data = GetImageDataForDrawImage(draw_image, cache_key);
  DCHECK(image_data);
  DCHECK(image_data->upload.task);
  image_data->upload.task = nullptr;

  // While the upload task is active, we keep a ref on both the image it will be
  // populating, as well as the decode it needs to populate it. Release these
  // refs now.
  UnrefImageDecode(draw_image, cache_key);
  UnrefImageInternal(draw_image, cache_key);
}

// Checks if an existing image decode exists. If not, returns a task to produce
// the requested decode.
scoped_refptr<TileTask> GpuImageDecodeCache::GetImageDecodeTaskAndRef(
    const DrawImage& draw_image,
    const TracingInfo& tracing_info,
    DecodeTaskType task_type) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::GetImageDecodeTaskAndRef");
  lock_.AssertAcquired();

  auto cache_key = InUseCacheKey::FromDrawImage(draw_image);

  // This ref is kept alive while an upload task may need this decode. We
  // release this ref in UploadTaskCompleted.
  if (task_type == DecodeTaskType::kPartOfUploadTask)
    RefImageDecode(draw_image, cache_key);

  ImageData* image_data = GetImageDataForDrawImage(draw_image, cache_key);
  DCHECK(image_data);
  if (image_data->decode.is_locked()) {
    // We should never be creating a decode task for a not budgeted image.
    DCHECK(image_data->is_budgeted);
    // We should never be creating a decode for an already-uploaded image.
    DCHECK(!image_data->HasUploadedData());
    return nullptr;
  }

  // We didn't have an existing locked image, create a task to lock or decode.
  scoped_refptr<TileTask>& existing_task =
      (task_type == DecodeTaskType::kPartOfUploadTask)
          ? image_data->decode.task
          : image_data->decode.stand_alone_task;
  if (!existing_task) {
    // Ref image decode and create a decode task. This ref will be released in
    // DecodeTaskCompleted.
    RefImageDecode(draw_image, cache_key);
    existing_task = base::MakeRefCounted<GpuImageDecodeTaskImpl>(
        this, draw_image, tracing_info, task_type);
  }
  return existing_task;
}

void GpuImageDecodeCache::RefImageDecode(const DrawImage& draw_image,
                                         const InUseCacheKey& cache_key) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::RefImageDecode");
  lock_.AssertAcquired();
  auto found = in_use_cache_.find(cache_key);
  DCHECK(found != in_use_cache_.end());
  ++found->second.ref_count;
  ++found->second.image_data->decode.ref_count;
  OwnershipChanged(draw_image, found->second.image_data.get());
}

void GpuImageDecodeCache::UnrefImageDecode(const DrawImage& draw_image,
                                           const InUseCacheKey& cache_key) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::UnrefImageDecode");
  lock_.AssertAcquired();
  auto found = in_use_cache_.find(cache_key);
  DCHECK(found != in_use_cache_.end());
  DCHECK_GT(found->second.image_data->decode.ref_count, 0u);
  DCHECK_GT(found->second.ref_count, 0u);
  --found->second.ref_count;
  --found->second.image_data->decode.ref_count;
  OwnershipChanged(draw_image, found->second.image_data.get());
  if (found->second.ref_count == 0u) {
    in_use_cache_.erase(found);
  }
}

void GpuImageDecodeCache::RefImage(const DrawImage& draw_image,
                                   const InUseCacheKey& cache_key) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::RefImage");
  lock_.AssertAcquired();
  auto found = in_use_cache_.find(cache_key);

  // If no secondary cache entry was found for the given |draw_image|, then
  // the draw_image only exists in the |persistent_cache_|. Create an in-use
  // cache entry now.
  if (found == in_use_cache_.end()) {
    auto found_image = persistent_cache_.Peek(draw_image.frame_key());
    DCHECK(found_image != persistent_cache_.end());
    DCHECK(IsCompatible(found_image->second.get(), draw_image));
    found = in_use_cache_
                .insert(InUseCache::value_type(
                    cache_key, InUseCacheEntry(found_image->second)))
                .first;
  }

  DCHECK(found != in_use_cache_.end());
  ++found->second.ref_count;
  ++found->second.image_data->upload.ref_count;
  OwnershipChanged(draw_image, found->second.image_data.get());
}

void GpuImageDecodeCache::UnrefImageInternal(const DrawImage& draw_image,
                                             const InUseCacheKey& cache_key) {
  lock_.AssertAcquired();
  auto found = in_use_cache_.find(cache_key);
  DCHECK(found != in_use_cache_.end());
  DCHECK_GT(found->second.image_data->upload.ref_count, 0u);
  DCHECK_GT(found->second.ref_count, 0u);
  --found->second.ref_count;
  --found->second.image_data->upload.ref_count;
  OwnershipChanged(draw_image, found->second.image_data.get());
  if (found->second.ref_count == 0u) {
    in_use_cache_.erase(found);
  }
}

// Called any time an image or decode ref count changes. Takes care of any
// necessary memory budget book-keeping and cleanup.
void GpuImageDecodeCache::OwnershipChanged(const DrawImage& draw_image,
                                           ImageData* image_data) {
  lock_.AssertAcquired();

  bool has_any_refs =
      image_data->upload.ref_count > 0 || image_data->decode.ref_count > 0;
  // If we have no image refs on an image, we should unbudget it.
  if (!has_any_refs && image_data->is_budgeted) {
    DCHECK_GE(working_set_bytes_, image_data->size);
    working_set_bytes_ -= image_data->size;
    image_data->is_budgeted = false;
  }

  // Don't keep around completely empty images. This can happen if an image's
  // decode/upload tasks were both cancelled before completing.
  const bool has_cpu_data =
      image_data->decode.data() ||
      (image_data->is_bitmap_backed && image_data->decode.image());
  if (!has_any_refs && !image_data->HasUploadedData() && !has_cpu_data &&
      !image_data->is_orphaned) {
    auto found_persistent = persistent_cache_.Peek(draw_image.frame_key());
    if (found_persistent != persistent_cache_.end())
      RemoveFromPersistentCache(found_persistent);
  }

  // If we have no refs on an uploaded image, it should be unlocked. Do this
  // before any attempts to delete the image.
  if (image_data->IsGpuOrTransferCache() && image_data->upload.ref_count == 0 &&
      image_data->upload.is_locked()) {
    UnlockImage(image_data);
  }

  // Don't keep around orphaned images.
  if (image_data->is_orphaned && !has_any_refs) {
    DeleteImage(image_data);
  }

  // Don't keep CPU images if they are unused, these images can be recreated by
  // re-locking discardable (rather than requiring a full upload like GPU
  // images).
  if (image_data->mode == DecodedDataMode::kCpu && !has_any_refs) {
    DeleteImage(image_data);
  }

  // If we have image that could be budgeted, but isn't, budget it now.
  if (has_any_refs && !image_data->is_budgeted &&
      CanFitInWorkingSet(image_data->size)) {
    working_set_bytes_ += image_data->size;
    image_data->is_budgeted = true;
  }

  // We should unlock the decoded image memory for the image in two cases:
  // 1) The image is no longer being used (no decode or upload refs).
  // 2) This is a non-CPU image that has already been uploaded and we have
  //    no remaining decode refs.
  bool should_unlock_decode = !has_any_refs || (image_data->HasUploadedData() &&
                                                !image_data->decode.ref_count);

  if (should_unlock_decode && image_data->decode.is_locked()) {
    if (image_data->is_bitmap_backed) {
      DCHECK(!image_data->decode.data());
      image_data->decode.ResetBitmapImage();
    } else {
      DCHECK(image_data->decode.data());
      image_data->decode.Unlock();
    }
  }

  // EnsureCapacity to make sure we are under our cache limits.
  EnsureCapacity(0);

#if DCHECK_IS_ON()
  // Sanity check the above logic.
  if (image_data->HasUploadedData()) {
    if (image_data->mode == DecodedDataMode::kCpu)
      DCHECK(image_data->decode.is_locked());
  } else {
    DCHECK(!image_data->is_budgeted || has_any_refs);
  }
#endif
}

// Checks whether we can fit a new image of size |required_size| in our
// working set. Also frees unreferenced entries to keep us below our preferred
// items limit.
bool GpuImageDecodeCache::EnsureCapacity(size_t required_size) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::EnsureCapacity");
  lock_.AssertAcquired();

  lifetime_max_items_in_cache_ =
      std::max(lifetime_max_items_in_cache_, persistent_cache_.size());

  // While we are over preferred item capacity, we iterate through our set of
  // cached image data in LRU order, removing unreferenced images.
  for (auto it = persistent_cache_.rbegin();
       it != persistent_cache_.rend() && ExceedsPreferredCount();) {
    if (it->second->decode.ref_count != 0 ||
        it->second->upload.ref_count != 0) {
      ++it;
      continue;
    }

    it = RemoveFromPersistentCache(it);
  }

  return CanFitInWorkingSet(required_size);
}

bool GpuImageDecodeCache::CanFitInWorkingSet(size_t size) const {
  lock_.AssertAcquired();

  base::CheckedNumeric<uint32_t> new_size(working_set_bytes_);
  new_size += size;
  return new_size.IsValid() && new_size.ValueOrDie() <= max_working_set_bytes_;
}

bool GpuImageDecodeCache::ExceedsPreferredCount() const {
  lock_.AssertAcquired();

  size_t items_limit;
  if (aggressively_freeing_resources_) {
    items_limit = kSuspendedMaxItemsInCacheForGpu;
  } else if (memory_state_ == base::MemoryState::NORMAL) {
    items_limit = kNormalMaxItemsInCacheForGpu;
  } else if (memory_state_ == base::MemoryState::THROTTLED) {
    items_limit = kThrottledMaxItemsInCacheForGpu;
  } else {
    DCHECK_EQ(base::MemoryState::SUSPENDED, memory_state_);
    items_limit = kSuspendedMaxItemsInCacheForGpu;
  }

  return persistent_cache_.size() > items_limit;
}

void GpuImageDecodeCache::DecodeImageIfNecessary(const DrawImage& draw_image,
                                                 ImageData* image_data,
                                                 TaskType task_type) {
  lock_.AssertAcquired();

  DCHECK_GT(image_data->decode.ref_count, 0u);

  if (image_data->decode.decode_failure) {
    // We have already tried and failed to decode this image. Don't try again.
    return;
  }

  if (image_data->HasUploadedData() &&
      TryLockImage(HaveContextLock::kNo, draw_image, image_data)) {
    // We already have an uploaded image, no reason to decode.
    return;
  }

  if (image_data->is_bitmap_backed) {
    DCHECK(!draw_image.paint_image().IsLazyGenerated());
    image_data->decode.SetBitmapImage(draw_image.paint_image().GetSkImage());
    return;
  }

  if (image_data->decode.data() &&
      (image_data->decode.is_locked() || image_data->decode.Lock())) {
    // We already decoded this, or we just needed to lock, early out.
    return;
  }

  TRACE_EVENT0("cc", "GpuImageDecodeCache::DecodeImage");
  RecordImageMipLevelUMA(image_data->upload_scale_mip_level);

  image_data->decode.ResetData();
  std::unique_ptr<base::DiscardableMemory> backing_memory;
  sk_sp<SkImage> image;
  {
    base::AutoUnlock unlock(lock_);
    backing_memory = base::DiscardableMemoryAllocator::GetInstance()
                         ->AllocateLockedDiscardableMemory(image_data->size);
    SkImageInfo image_info = CreateImageInfoForDrawImage(
        draw_image, image_data->upload_scale_mip_level);
    SkPixmap pixmap(image_info, backing_memory->data(),
                    image_info.minRowBytes());

    // Set |pixmap| to the desired colorspace to decode into.
    pixmap.setColorSpace(
        ColorSpaceForImageDecode(draw_image, image_data->mode));
    if (!DrawAndScaleImage(draw_image, &pixmap)) {
      DLOG(ERROR) << "DrawAndScaleImage failed.";
      backing_memory->Unlock();
      backing_memory.reset();
    } else {
      image =
          SkImage::MakeFromRaster(pixmap, [](const void*, void*) {}, nullptr);
    }
  }

  if (image_data->decode.data()) {
    DCHECK(image_data->decode.image());
    // An at-raster task decoded this before us. Ingore our decode.
    return;
  }

  if (!backing_memory) {
    DCHECK(!image);
    // If |backing_memory| was not populated, we had a non-decodable image.
    image_data->decode.decode_failure = true;
    return;
  }

  image_data->decode.SetLockedData(std::move(backing_memory), std::move(image),
                                   task_type == TaskType::kOutOfRaster);
}

void GpuImageDecodeCache::UploadImageIfNecessary(const DrawImage& draw_image,
                                                 ImageData* image_data) {
  CheckContextLockAcquiredIfNecessary();
  lock_.AssertAcquired();

  // We are about to upload a new image and are holding the context lock.
  // Ensure that any images which have been marked for deletion are actually
  // cleaned up so we don't exceed our memory limit during this upload.
  RunPendingContextThreadOperations();

  if (image_data->decode.decode_failure) {
    // We were unable to decode this image. Don't try to upload.
    return;
  }

  // If an upload already exists, try to lock it. If this fails, it will clear
  // any uploaded data.
  if (image_data->HasUploadedData())
    TryLockImage(HaveContextLock::kYes, draw_image, image_data);

  // Ensure the mip status is correct before returning the locked upload or
  // preparing to upload a new image.
  UpdateMipsIfNeeded(draw_image, image_data);

  // If we have uploaded data at this point, it is locked with correct mips,
  // just return.
  if (image_data->HasUploadedData())
    return;

  TRACE_EVENT0("cc", "GpuImageDecodeCache::UploadImage");
  DCHECK(image_data->decode.is_locked());
  DCHECK_GT(image_data->decode.ref_count, 0u);
  DCHECK_GT(image_data->upload.ref_count, 0u);

  sk_sp<SkColorSpace> target_color_space =
      SupportsColorSpaceConversion() &&
              draw_image.target_color_space().IsValid()
          ? draw_image.target_color_space().ToSkColorSpace()
          : nullptr;
  if (target_color_space &&
      SkColorSpace::Equals(target_color_space.get(),
                           image_data->decode.image()->colorSpace())) {
    target_color_space = nullptr;
  }

  if (image_data->mode == DecodedDataMode::kTransferCache) {
    DCHECK(use_transfer_cache_);
    SkPixmap pixmap;
    if (!image_data->decode.image()->peekPixels(&pixmap))
      return;

    ClientImageTransferCacheEntry image_entry(&pixmap, target_color_space.get(),
                                              image_data->needs_mips);
    size_t size = image_entry.SerializedSize();
    void* data = context_->ContextSupport()->MapTransferCacheEntry(size);
    if (data) {
      bool succeeded = image_entry.Serialize(
          base::make_span(reinterpret_cast<uint8_t*>(data), size));
      DCHECK(succeeded);
      context_->ContextSupport()->UnmapAndCreateTransferCacheEntry(
          image_entry.UnsafeType(), image_entry.Id());
      image_data->upload.SetTransferCacheId(image_entry.Id());
    } else {
      // Transfer cache entry can fail due to a lost gpu context or failure
      // to allocate shared memory.  Handle this gracefully.  Mark this
      // image as "decode failed" so that we do not try to handle it again.
      // If this was a lost context, we'll recreate this image decode cache.
      image_data->decode.decode_failure = true;
    }

    return;
  }

  // If we reached this point, we are in the CPU/GPU path (not transfer cache).
  DCHECK(!use_transfer_cache_);

  // Grab a reference to our decoded image. For the kCpu path, we will use this
  // directly as our "uploaded" data.
  sk_sp<SkImage> uploaded_image = image_data->decode.image();
  image_data->decode.mark_used();

  // For kGpu, we upload and color convert (if necessary).
  if (image_data->mode == DecodedDataMode::kGpu) {
    DCHECK(!use_transfer_cache_);
    base::AutoUnlock unlock(lock_);
    uploaded_image = MakeTextureImage(
        context_, std::move(uploaded_image), target_color_space,
        image_data->needs_mips ? GrMipMapped::kYes : GrMipMapped::kNo);
  }

  // At-raster may have decoded this while we were unlocked. If so, ignore our
  // result.
  if (image_data->upload.image()) {
    if (uploaded_image)
      DeleteSkImageAndPreventCaching(context_, std::move(uploaded_image));
    return;
  }

  // Take ownership of any GL texture backing for the SkImage. This allows
  // us to use the image with the discardable system.
  if (uploaded_image) {
    uploaded_image = TakeOwnershipOfSkImageBacking(context_->GrContext(),
                                                   std::move(uploaded_image));
  }

  // TODO(crbug.com/740737): uploaded_image is sometimes null in certain
  // context-lost situations.
  if (!uploaded_image)
    return;

  image_data->upload.SetImage(std::move(uploaded_image));

  // If we have a new GPU-backed image, initialize it for use in the GPU
  // discardable system.
  if (image_data->mode == DecodedDataMode::kGpu) {
    // Notify the discardable system of this image so it will count against
    // budgets.
    context_->ContextGL()->InitializeDiscardableTextureCHROMIUM(
        image_data->upload.gl_id());
  }
}

scoped_refptr<GpuImageDecodeCache::ImageData>
GpuImageDecodeCache::CreateImageData(const DrawImage& draw_image) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::CreateImageData");
  lock_.AssertAcquired();

  int upload_scale_mip_level = CalculateUploadScaleMipLevel(draw_image);
  bool needs_mips = ShouldGenerateMips(draw_image, upload_scale_mip_level);
  SkImageInfo image_info =
      CreateImageInfoForDrawImage(draw_image, upload_scale_mip_level);

  DecodedDataMode mode;
  if (use_transfer_cache_) {
    mode = DecodedDataMode::kTransferCache;
  } else if (image_info.width() > max_texture_size_ ||
             image_info.height() > max_texture_size_) {
    // Image too large to upload. Try to use SW fallback.
    mode = DecodedDataMode::kCpu;
  } else {
    mode = DecodedDataMode::kGpu;
  }

  size_t data_size = image_info.computeMinByteSize();

  // We need to cache the result of color conversion on the cpu if the image
  // will be color converted during the decode.
  auto decode_color_space = ColorSpaceForImageDecode(draw_image, mode);
  const bool cache_color_conversion_on_cpu =
      decode_color_space &&
      !SkColorSpace::Equals(decode_color_space.get(),
                            draw_image.paint_image().color_space());

  // |is_bitmap_backed| specifies whether the image has pixel data which can
  // directly be used for the upload. This will be the case for non-lazy images
  // used at the original scale. In these cases, we don't internally cache any
  // cpu component for the image.
  // However, if the image will be scaled or color converts on the cpu, we
  // consider it a lazy image and cache the scaled result in discardable memory.
  const bool is_bitmap_backed = !draw_image.paint_image().IsLazyGenerated() &&
                                upload_scale_mip_level == 0 &&
                                !cache_color_conversion_on_cpu;
  return base::WrapRefCounted(
      new ImageData(draw_image.paint_image().stable_id(), mode, data_size,
                    draw_image.target_color_space(),
                    CalculateDesiredFilterQuality(draw_image),
                    upload_scale_mip_level, needs_mips, is_bitmap_backed));
}

void GpuImageDecodeCache::WillAddCacheEntry(const DrawImage& draw_image) {
  // Remove any old entries for this image. We keep at-most 2 ContentIds for a
  // PaintImage (pending and active tree).
  auto& cache_entries =
      paint_image_entries_[draw_image.paint_image().stable_id()];
  cache_entries.count++;

  auto& cached_content_ids = cache_entries.content_ids;
  const PaintImage::ContentId new_content_id =
      draw_image.frame_key().content_id();

  if (cached_content_ids[0] == new_content_id ||
      cached_content_ids[1] == new_content_id) {
    return;
  }

  if (cached_content_ids[0] == PaintImage::kInvalidContentId) {
    cached_content_ids[0] = new_content_id;
    return;
  }

  if (cached_content_ids[1] == PaintImage::kInvalidContentId) {
    cached_content_ids[1] = new_content_id;
    return;
  }

  const PaintImage::ContentId content_id_to_remove =
      std::min(cached_content_ids[0], cached_content_ids[1]);
  const PaintImage::ContentId content_id_to_keep =
      std::max(cached_content_ids[0], cached_content_ids[1]);
  DCHECK_NE(content_id_to_remove, content_id_to_keep);

  for (auto it = persistent_cache_.begin(); it != persistent_cache_.end();) {
    if (it->first.content_id() != content_id_to_remove) {
      ++it;
    } else {
      it = RemoveFromPersistentCache(it);
    }
  }

  // Removing entries from the persistent cache should not erase the tracking
  // for the current paint_image, since we have 2 different content ids for it
  // and only one of them was erased above.
  DCHECK_NE(paint_image_entries_.count(draw_image.paint_image().stable_id()),
            0u);

  cached_content_ids[0] = content_id_to_keep;
  cached_content_ids[1] = new_content_id;
}

void GpuImageDecodeCache::DeleteImage(ImageData* image_data) {
  if (image_data->HasUploadedData()) {
    DCHECK(!image_data->upload.is_locked());
    if (image_data->mode == DecodedDataMode::kGpu)
      images_pending_deletion_.push_back(image_data->upload.image());
    if (image_data->mode == DecodedDataMode::kTransferCache)
      ids_pending_deletion_.push_back(*image_data->upload.transfer_cache_id());
  }
  image_data->upload.Reset();
}

void GpuImageDecodeCache::UnlockImage(ImageData* image_data) {
  DCHECK(image_data->HasUploadedData());
  if (image_data->mode == DecodedDataMode::kGpu) {
    images_pending_unlock_.push_back(image_data->upload.image().get());
  } else {
    DCHECK(image_data->mode == DecodedDataMode::kTransferCache);
    ids_pending_unlock_.push_back(*image_data->upload.transfer_cache_id());
  }
  image_data->upload.OnUnlock();

  // If we were holding onto an unmipped image for defering deletion, do it now
  // it is guarenteed to have no-refs.
  auto unmipped_image = image_data->upload.take_unmipped_image();
  if (unmipped_image)
    images_pending_deletion_.push_back(std::move(unmipped_image));
}

// We always run pending operations in the following order:
//   Lock > Unlock > Delete
// This ensures that:
//   a) We never fully unlock an image that's pending lock (lock before unlock)
//   b) We never delete an image that has pending locks/unlocks.
// As this can be run at-raster, to unlock/delete an image that was just used,
// we need to call GlIdFromSkImage, which flushes pending IO on the image,
// rather than just using a cached GL ID.
void GpuImageDecodeCache::RunPendingContextThreadOperations() {
  CheckContextLockAcquiredIfNecessary();
  lock_.AssertAcquired();

  for (auto* image : images_pending_complete_lock_) {
    context_->ContextSupport()->CompleteLockDiscardableTexureOnContextThread(
        GlIdFromSkImage(image));
  }
  images_pending_complete_lock_.clear();

  for (auto* image : images_pending_unlock_) {
    context_->ContextGL()->UnlockDiscardableTextureCHROMIUM(
        GlIdFromSkImage(image));
  }
  images_pending_unlock_.clear();

  for (auto id : ids_pending_unlock_) {
    context_->ContextSupport()->UnlockTransferCacheEntries({std::make_pair(
        static_cast<uint32_t>(TransferCacheEntryType::kImage), id)});
  }
  ids_pending_unlock_.clear();

  for (auto& image : images_pending_deletion_) {
    uint32_t texture_id = GlIdFromSkImage(image.get());
    if (context_->ContextGL()->LockDiscardableTextureCHROMIUM(texture_id)) {
      context_->ContextGL()->DeleteTextures(1, &texture_id);
    }
  }
  images_pending_deletion_.clear();

  for (auto id : ids_pending_deletion_) {
    if (context_->ContextSupport()->ThreadsafeLockTransferCacheEntry(
            static_cast<uint32_t>(TransferCacheEntryType::kImage), id)) {
      context_->ContextSupport()->DeleteTransferCacheEntry(
          static_cast<uint32_t>(TransferCacheEntryType::kImage), id);
    }
  }
  ids_pending_deletion_.clear();
}

SkImageInfo GpuImageDecodeCache::CreateImageInfoForDrawImage(
    const DrawImage& draw_image,
    int upload_scale_mip_level) const {
  gfx::Size mip_size =
      CalculateSizeForMipLevel(draw_image, upload_scale_mip_level);
  return SkImageInfo::Make(mip_size.width(), mip_size.height(), color_type_,
                           kPremul_SkAlphaType);
}

bool GpuImageDecodeCache::TryLockImage(HaveContextLock have_context_lock,
                                       const DrawImage& draw_image,
                                       ImageData* data) {
  DCHECK(data->HasUploadedData());

  if (data->upload.is_locked())
    return true;

  if (data->mode == DecodedDataMode::kTransferCache) {
    DCHECK(use_transfer_cache_);
    DCHECK(data->upload.transfer_cache_id());
    if (context_->ContextSupport()->ThreadsafeLockTransferCacheEntry(
            static_cast<uint32_t>(TransferCacheEntryType::kImage),
            *data->upload.transfer_cache_id())) {
      data->upload.OnLock();
      return true;
    }
  } else if (have_context_lock == HaveContextLock::kYes &&
             context_->ContextGL()->LockDiscardableTextureCHROMIUM(
                 data->upload.gl_id())) {
    DCHECK(!use_transfer_cache_);
    DCHECK(data->mode == DecodedDataMode::kGpu);
    // If |have_context_lock|, we can immediately lock the image and send
    // the lock command to the GPU process.
    data->upload.OnLock();
    return true;
  } else if (context_->ContextSupport()
                 ->ThreadSafeShallowLockDiscardableTexture(
                     data->upload.gl_id())) {
    DCHECK(!use_transfer_cache_);
    DCHECK(data->mode == DecodedDataMode::kGpu);
    // If !|have_context_lock|, we use ThreadsafeShallowLockDiscardableTexture.
    // This takes a reference to the image, ensuring that it can't be deleted
    // by the service, but delays sending a lock command over the command
    // buffer. This command must be sent before the image is used, but is now
    // guaranteed to succeed. We will send this command via
    // CompleteLockDiscardableTextureOnContextThread in UploadImageIfNecessary,
    // which is guaranteed to run before the texture is used.
    data->upload.OnLock();
    images_pending_complete_lock_.push_back(data->upload.image().get());
    return true;
  }

  // Couldn't lock, abandon the image.
  DeleteImage(data);
  return false;
}

// Tries to find an ImageData that can be used to draw the provided
// |draw_image|. First looks for an exact entry in our |in_use_cache_|. If one
// cannot be found, it looks for a compatible entry in our |persistent_cache_|.
GpuImageDecodeCache::ImageData* GpuImageDecodeCache::GetImageDataForDrawImage(
    const DrawImage& draw_image,
    const InUseCacheKey& key) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "GpuImageDecodeCache::GetImageDataForDrawImage");
  lock_.AssertAcquired();
  DCHECK(UseCacheForDrawImage(draw_image));

  auto found_in_use = in_use_cache_.find(key);
  if (found_in_use != in_use_cache_.end())
    return found_in_use->second.image_data.get();

  auto found_persistent = persistent_cache_.Get(draw_image.frame_key());
  if (found_persistent != persistent_cache_.end()) {
    ImageData* image_data = found_persistent->second.get();
    if (IsCompatible(image_data, draw_image)) {
      return image_data;
    } else {
      RemoveFromPersistentCache(found_persistent);
    }
  }

  return nullptr;
}

// Determines if we can draw the provided |draw_image| using the provided
// |image_data|. This is true if the |image_data| is not scaled, or if it
// is scaled at an equal or larger scale and equal or larger quality to
// the provided |draw_image|.
bool GpuImageDecodeCache::IsCompatible(const ImageData* image_data,
                                       const DrawImage& draw_image) const {
  bool is_scaled = image_data->upload_scale_mip_level != 0;
  bool scale_is_compatible = CalculateUploadScaleMipLevel(draw_image) >=
                             image_data->upload_scale_mip_level;
  bool quality_is_compatible =
      CalculateDesiredFilterQuality(draw_image) <= image_data->quality;
  bool color_is_compatible =
      image_data->target_color_space == draw_image.target_color_space();
  if (!color_is_compatible)
    return false;
  if (is_scaled && (!scale_is_compatible || !quality_is_compatible))
    return false;
  return true;
}

size_t GpuImageDecodeCache::GetDrawImageSizeForTesting(const DrawImage& image) {
  base::AutoLock lock(lock_);
  scoped_refptr<ImageData> data = CreateImageData(image);
  return data->size;
}

void GpuImageDecodeCache::SetImageDecodingFailedForTesting(
    const DrawImage& image) {
  base::AutoLock lock(lock_);
  auto found = persistent_cache_.Peek(image.frame_key());
  DCHECK(found != persistent_cache_.end());
  ImageData* image_data = found->second.get();
  image_data->decode.decode_failure = true;
}

bool GpuImageDecodeCache::DiscardableIsLockedForTesting(
    const DrawImage& image) {
  base::AutoLock lock(lock_);
  auto found = persistent_cache_.Peek(image.frame_key());
  DCHECK(found != persistent_cache_.end());
  ImageData* image_data = found->second.get();
  return image_data->decode.is_locked();
}

bool GpuImageDecodeCache::IsInInUseCacheForTesting(
    const DrawImage& image) const {
  auto found = in_use_cache_.find(InUseCacheKey::FromDrawImage(image));
  return found != in_use_cache_.end();
}

bool GpuImageDecodeCache::IsInPersistentCacheForTesting(
    const DrawImage& image) const {
  auto found = persistent_cache_.Peek(image.frame_key());
  return found != persistent_cache_.end();
}

sk_sp<SkImage> GpuImageDecodeCache::GetSWImageDecodeForTesting(
    const DrawImage& image) {
  base::AutoLock lock(lock_);
  auto found = persistent_cache_.Peek(image.frame_key());
  DCHECK(found != persistent_cache_.end());
  ImageData* image_data = found->second.get();
  return image_data->decode.ImageForTesting();
}

void GpuImageDecodeCache::OnMemoryStateChange(base::MemoryState state) {
  memory_state_ = state;
}

void GpuImageDecodeCache::OnPurgeMemory() {
  base::AutoLock lock(lock_);
  // Temporary changes |memory_state_| to free up cache as much as possible.
  base::AutoReset<base::MemoryState> reset(&memory_state_,
                                           base::MemoryState::SUSPENDED);
  EnsureCapacity(0);
}

void GpuImageDecodeCache::OnMemoryPressure(
    base::MemoryPressureListener::MemoryPressureLevel level) {
  switch (level) {
    case base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_NONE:
    case base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_MODERATE:
      break;
    case base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_CRITICAL:
      OnPurgeMemory();
      break;
  }
}

bool GpuImageDecodeCache::SupportsColorSpaceConversion() const {
  switch (color_type_) {
    case kRGBA_8888_SkColorType:
    case kBGRA_8888_SkColorType:
    case kRGBA_F16_SkColorType:
      return true;
    default:
      return false;
  }
}

sk_sp<SkColorSpace> GpuImageDecodeCache::ColorSpaceForImageDecode(
    const DrawImage& image,
    DecodedDataMode mode) const {
  if (!SupportsColorSpaceConversion())
    return nullptr;

  if (mode == DecodedDataMode::kCpu)
    return image.target_color_space().ToSkColorSpace();

  // For kGpu or kTransferCache images color conversion is handled during
  // upload, so keep the original colorspace here.
  return sk_ref_sp(image.paint_image().color_space());
}

void GpuImageDecodeCache::CheckContextLockAcquiredIfNecessary() {
  if (!context_->GetLock())
    return;
  context_->GetLock()->AssertAcquired();
}

void GpuImageDecodeCache::UpdateMipsIfNeeded(const DrawImage& draw_image,
                                             ImageData* image_data) {
  CheckContextLockAcquiredIfNecessary();

  // If we already have mips, nothing to do.
  if (image_data->needs_mips)
    return;

  bool needs_mips =
      ShouldGenerateMips(draw_image, image_data->upload_scale_mip_level);
  if (!needs_mips)
    return;

  image_data->needs_mips = true;

  // If we have no uploaded image, nothing to do other than update needs_mips.
  // Mips will be generated during later upload.
  if (!image_data->HasUploadedData() ||
      image_data->mode != DecodedDataMode::kGpu)
    return;

  // Need to generate mips. Take a reference on the image we're about to delete,
  // delaying deletion.
  sk_sp<SkImage> previous_image = image_data->upload.image();

  // Generate a new image from the previous, adding mips.
  sk_sp<SkImage> image_with_mips = previous_image->makeTextureImage(
      context_->GrContext(), nullptr, GrMipMapped::kYes);

  // Handle lost context.
  if (!image_with_mips)
    return;

  // No need to do anything if mipping this image results in the same texture.
  // Deleting it below will result in lifetime issues.
  if (GlIdFromSkImage(image_with_mips.get()) == image_data->upload.gl_id())
    return;

  // Skia owns our new image, take ownership.
  sk_sp<SkImage> image_with_mips_owned = TakeOwnershipOfSkImageBacking(
      context_->GrContext(), std::move(image_with_mips));

  // Handle lost context
  if (!image_with_mips_owned)
    return;

  // The previous image might be in the in-use cache, potentially held
  // externally. We must defer deleting it until the entry is unlocked.
  image_data->upload.set_unmipped_image(image_data->upload.image());

  // Set the new image on the cache.
  image_data->upload.Reset();
  image_data->upload.SetImage(std::move(image_with_mips_owned));
  context_->ContextGL()->InitializeDiscardableTextureCHROMIUM(
      image_data->upload.gl_id());
}

}  // namespace cc