summaryrefslogtreecommitdiff
path: root/chromium/cc/resources/tile_manager.cc
blob: 2fbb6d18913b7707cec786033aa24063408833dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/resources/tile_manager.h"

#include <algorithm>
#include <limits>
#include <string>

#include "base/bind.h"
#include "base/json/json_writer.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "cc/debug/traced_value.h"
#include "cc/resources/image_raster_worker_pool.h"
#include "cc/resources/pixel_buffer_raster_worker_pool.h"
#include "cc/resources/tile.h"
#include "third_party/skia/include/core/SkCanvas.h"
#include "ui/gfx/rect_conversions.h"

namespace cc {

namespace {

// Memory limit policy works by mapping some bin states to the NEVER bin.
const ManagedTileBin kBinPolicyMap[NUM_TILE_MEMORY_LIMIT_POLICIES][NUM_BINS] = {
  {  // [ALLOW_NOTHING]
    NEVER_BIN,                  // [NOW_AND_READY_TO_DRAW_BIN]
    NEVER_BIN,                  // [NOW_BIN]
    NEVER_BIN,                  // [SOON_BIN]
    NEVER_BIN,                  // [EVENTUALLY_AND_ACTIVE_BIN]
    NEVER_BIN,                  // [EVENTUALLY_BIN]
    NEVER_BIN,                  // [AT_LAST_AND_ACTIVE_BIN]
    NEVER_BIN,                  // [AT_LAST_BIN]
    NEVER_BIN
  }, {  // [ALLOW_ABSOLUTE_MINIMUM]
    NOW_AND_READY_TO_DRAW_BIN,
    NOW_BIN,
    NEVER_BIN,                  // [SOON_BIN]
    NEVER_BIN,                  // [EVENTUALLY_AND_ACTIVE_BIN]
    NEVER_BIN,                  // [EVENTUALLY_BIN]
    NEVER_BIN,                  // [AT_LAST_AND_ACTIVE_BIN]
    NEVER_BIN,                  // [AT_LAST_BIN]
    NEVER_BIN
  }, {  // [ALLOW_PREPAINT_ONLY]
    NOW_AND_READY_TO_DRAW_BIN,
    NOW_BIN,
    SOON_BIN,
    NEVER_BIN,                  // [EVENTUALLY_AND_ACTIVE_BIN]
    NEVER_BIN,                  // [EVENTUALLY_BIN]
    NEVER_BIN,                  // [AT_LAST_AND_ACTIVE_BIN]
    NEVER_BIN,                  // [AT_LAST_BIN]
    NEVER_BIN
  }, {  // [ALLOW_ANYTHING]
    NOW_AND_READY_TO_DRAW_BIN,
    NOW_BIN,
    SOON_BIN,
    EVENTUALLY_AND_ACTIVE_BIN,
    EVENTUALLY_BIN,
    AT_LAST_AND_ACTIVE_BIN,
    AT_LAST_BIN,
    NEVER_BIN
  }
};

// Ready to draw works by mapping NOW_BIN to NOW_AND_READY_TO_DRAW_BIN.
const ManagedTileBin kBinReadyToDrawMap[2][NUM_BINS] = {
  {  // Not ready
    NOW_AND_READY_TO_DRAW_BIN,
    NOW_BIN,
    SOON_BIN,
    EVENTUALLY_AND_ACTIVE_BIN,
    EVENTUALLY_BIN,
    AT_LAST_AND_ACTIVE_BIN,
    AT_LAST_BIN,
    NEVER_BIN
  }, {  // Ready
    NOW_AND_READY_TO_DRAW_BIN,
    NOW_AND_READY_TO_DRAW_BIN,  // [NOW_BIN]
    SOON_BIN,
    EVENTUALLY_AND_ACTIVE_BIN,
    EVENTUALLY_BIN,
    AT_LAST_AND_ACTIVE_BIN,
    AT_LAST_BIN,
    NEVER_BIN
  }
};

// Active works by mapping some bin stats to equivalent _ACTIVE_BIN state.
const ManagedTileBin kBinIsActiveMap[2][NUM_BINS] = {
  {  // Inactive
    NOW_AND_READY_TO_DRAW_BIN,
    NOW_BIN,
    SOON_BIN,
    EVENTUALLY_AND_ACTIVE_BIN,
    EVENTUALLY_BIN,
    AT_LAST_AND_ACTIVE_BIN,
    AT_LAST_BIN,
    NEVER_BIN
  }, {  // Active
    NOW_AND_READY_TO_DRAW_BIN,
    NOW_BIN,
    SOON_BIN,
    EVENTUALLY_AND_ACTIVE_BIN,
    EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_BIN]
    AT_LAST_AND_ACTIVE_BIN,
    AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_BIN]
    NEVER_BIN
  }
};

// Determine bin based on three categories of tiles: things we need now,
// things we need soon, and eventually.
inline ManagedTileBin BinFromTilePriority(const TilePriority& prio) {
  // The amount of time/pixels for which we want to have prepainting coverage.
  // Note: All very arbitrary constants: metric-based tuning is welcome!
  const float kPrepaintingWindowTimeSeconds = 1.0f;
  const float kBackflingGuardDistancePixels = 314.0f;
  // Note: The max distances here assume that SOON_BIN will never help overcome
  // raster being too slow (only caching in advance will do that), so we just
  // need enough padding to handle some latency and per-tile variability.
  const float kMaxPrepaintingDistancePixelsHighRes = 2000.0f;
  const float kMaxPrepaintingDistancePixelsLowRes = 4000.0f;

  if (prio.distance_to_visible_in_pixels ==
      std::numeric_limits<float>::infinity())
    return NEVER_BIN;

  if (prio.time_to_visible_in_seconds == 0)
    return NOW_BIN;

  if (prio.resolution == NON_IDEAL_RESOLUTION)
    return EVENTUALLY_BIN;

  float max_prepainting_distance_pixels =
      (prio.resolution == HIGH_RESOLUTION)
          ? kMaxPrepaintingDistancePixelsHighRes
          : kMaxPrepaintingDistancePixelsLowRes;

  // Soon bin if we are within backfling-guard, or under both the time window
  // and the max distance window.
  if (prio.distance_to_visible_in_pixels < kBackflingGuardDistancePixels ||
      (prio.time_to_visible_in_seconds < kPrepaintingWindowTimeSeconds &&
       prio.distance_to_visible_in_pixels <= max_prepainting_distance_pixels))
    return SOON_BIN;

  return EVENTUALLY_BIN;
}

}  // namespace

RasterTaskCompletionStats::RasterTaskCompletionStats()
    : completed_count(0u),
      canceled_count(0u) {
}

scoped_ptr<base::Value> RasterTaskCompletionStatsAsValue(
    const RasterTaskCompletionStats& stats) {
  scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
  state->SetInteger("completed_count", stats.completed_count);
  state->SetInteger("canceled_count", stats.canceled_count);
  return state.PassAs<base::Value>();
}

// static
scoped_ptr<TileManager> TileManager::Create(
    TileManagerClient* client,
    ResourceProvider* resource_provider,
    size_t num_raster_threads,
    RenderingStatsInstrumentation* rendering_stats_instrumentation,
    bool use_map_image,
    size_t max_transfer_buffer_usage_bytes,
    size_t max_raster_usage_bytes,
    GLenum map_image_texture_target) {
  return make_scoped_ptr(
      new TileManager(client,
                      resource_provider,
                      use_map_image ?
                      ImageRasterWorkerPool::Create(
                          resource_provider,
                          num_raster_threads,
                          map_image_texture_target) :
                      PixelBufferRasterWorkerPool::Create(
                          resource_provider,
                          num_raster_threads,
                          max_transfer_buffer_usage_bytes),
                      num_raster_threads,
                      max_raster_usage_bytes,
                      rendering_stats_instrumentation));
}

TileManager::TileManager(
    TileManagerClient* client,
    ResourceProvider* resource_provider,
    scoped_ptr<RasterWorkerPool> raster_worker_pool,
    size_t num_raster_threads,
    size_t max_raster_usage_bytes,
    RenderingStatsInstrumentation* rendering_stats_instrumentation)
    : client_(client),
      resource_pool_(ResourcePool::Create(
                         resource_provider,
                         raster_worker_pool->GetResourceTarget(),
                         raster_worker_pool->GetResourceFormat())),
      raster_worker_pool_(raster_worker_pool.Pass()),
      prioritized_tiles_dirty_(false),
      all_tiles_that_need_to_be_rasterized_have_memory_(true),
      all_tiles_required_for_activation_have_memory_(true),
      memory_required_bytes_(0),
      memory_nice_to_have_bytes_(0),
      bytes_releasable_(0),
      resources_releasable_(0),
      max_raster_usage_bytes_(max_raster_usage_bytes),
      ever_exceeded_memory_budget_(false),
      rendering_stats_instrumentation_(rendering_stats_instrumentation),
      did_initialize_visible_tile_(false),
      did_check_for_completed_tasks_since_last_schedule_tasks_(true) {
  raster_worker_pool_->SetClient(this);
}

TileManager::~TileManager() {
  // Reset global state and manage. This should cause
  // our memory usage to drop to zero.
  global_state_ = GlobalStateThatImpactsTilePriority();

  CleanUpReleasedTiles();
  DCHECK_EQ(0u, tiles_.size());

  RasterWorkerPool::RasterTask::Queue empty;
  raster_worker_pool_->ScheduleTasks(&empty);

  // This should finish all pending tasks and release any uninitialized
  // resources.
  raster_worker_pool_->Shutdown();
  raster_worker_pool_->CheckForCompletedTasks();

  DCHECK_EQ(0u, bytes_releasable_);
  DCHECK_EQ(0u, resources_releasable_);
}

void TileManager::Release(Tile* tile) {
  prioritized_tiles_dirty_ = true;
  released_tiles_.push_back(tile);
}

void TileManager::DidChangeTilePriority(Tile* tile) {
  prioritized_tiles_dirty_ = true;
}

bool TileManager::ShouldForceTasksRequiredForActivationToComplete() const {
  return global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY;
}

void TileManager::CleanUpReleasedTiles() {
  for (std::vector<Tile*>::iterator it = released_tiles_.begin();
       it != released_tiles_.end();
       ++it) {
    Tile* tile = *it;

    FreeResourcesForTile(tile);

    DCHECK(tiles_.find(tile->id()) != tiles_.end());
    tiles_.erase(tile->id());

    LayerCountMap::iterator layer_it =
        used_layer_counts_.find(tile->layer_id());
    DCHECK_GT(layer_it->second, 0);
    if (--layer_it->second == 0) {
      used_layer_counts_.erase(layer_it);
      image_decode_tasks_.erase(tile->layer_id());
    }

    delete tile;
  }

  released_tiles_.clear();
}

void TileManager::UpdatePrioritizedTileSetIfNeeded() {
  if (!prioritized_tiles_dirty_)
    return;

  CleanUpReleasedTiles();

  prioritized_tiles_.Clear();
  GetTilesWithAssignedBins(&prioritized_tiles_);
  prioritized_tiles_dirty_ = false;
}

void TileManager::DidFinishRunningTasks() {
  TRACE_EVENT0("cc", "TileManager::DidFinishRunningTasks");

  // When OOM, keep re-assigning memory until we reach a steady state
  // where top-priority tiles are initialized.
  if (all_tiles_that_need_to_be_rasterized_have_memory_)
    return;

  raster_worker_pool_->CheckForCompletedTasks();
  did_check_for_completed_tasks_since_last_schedule_tasks_ = true;

  TileVector tiles_that_need_to_be_rasterized;
  AssignGpuMemoryToTiles(&prioritized_tiles_,
                         &tiles_that_need_to_be_rasterized);

  // |tiles_that_need_to_be_rasterized| will be empty when we reach a
  // steady memory state. Keep scheduling tasks until we reach this state.
  if (!tiles_that_need_to_be_rasterized.empty()) {
    ScheduleTasks(tiles_that_need_to_be_rasterized);
    return;
  }

  // We don't reserve memory for required-for-activation tiles during
  // accelerated gestures, so we just postpone activation when we don't
  // have these tiles, and activate after the accelerated gesture.
  bool allow_rasterize_on_demand =
      global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY;

  // Use on-demand raster for any required-for-activation tiles that have not
  // been been assigned memory after reaching a steady memory state. This
  // ensures that we activate even when OOM.
  for (TileMap::iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    Tile* tile = it->second;
    ManagedTileState& mts = tile->managed_state();
    ManagedTileState::TileVersion& tile_version =
        mts.tile_versions[mts.raster_mode];

    if (tile->required_for_activation() && !tile_version.IsReadyToDraw()) {
      // If we can't raster on demand, give up early (and don't activate).
      if (!allow_rasterize_on_demand)
        return;
      tile_version.set_rasterize_on_demand();
    }
  }

  client_->NotifyReadyToActivate();
}

void TileManager::DidFinishRunningTasksRequiredForActivation() {
  // This is only a true indication that all tiles required for
  // activation are initialized when no tiles are OOM. We need to
  // wait for DidFinishRunningTasks() to be called, try to re-assign
  // memory and in worst case use on-demand raster when tiles
  // required for activation are OOM.
  if (!all_tiles_required_for_activation_have_memory_)
    return;

  client_->NotifyReadyToActivate();
}

void TileManager::GetTilesWithAssignedBins(PrioritizedTileSet* tiles) {
  TRACE_EVENT0("cc", "TileManager::GetTilesWithAssignedBins");

  // Compute new stats to be return by GetMemoryStats().
  memory_required_bytes_ = 0;
  memory_nice_to_have_bytes_ = 0;

  const TileMemoryLimitPolicy memory_policy = global_state_.memory_limit_policy;
  const TreePriority tree_priority = global_state_.tree_priority;

  // For each tree, bin into different categories of tiles.
  for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    Tile* tile = it->second;
    ManagedTileState& mts = tile->managed_state();

    const ManagedTileState::TileVersion& tile_version =
        tile->GetTileVersionForDrawing();
    bool tile_is_ready_to_draw = tile_version.IsReadyToDraw();
    bool tile_is_active =
        tile_is_ready_to_draw ||
        !mts.tile_versions[mts.raster_mode].raster_task_.is_null();

    // Get the active priority and bin.
    TilePriority active_priority = tile->priority(ACTIVE_TREE);
    ManagedTileBin active_bin = BinFromTilePriority(active_priority);

    // Get the pending priority and bin.
    TilePriority pending_priority = tile->priority(PENDING_TREE);
    ManagedTileBin pending_bin = BinFromTilePriority(pending_priority);

    bool pending_is_low_res =
        pending_priority.resolution == LOW_RESOLUTION;
    bool pending_is_non_ideal =
        pending_priority.resolution == NON_IDEAL_RESOLUTION;
    bool active_is_non_ideal =
        active_priority.resolution == NON_IDEAL_RESOLUTION;

    // Adjust pending bin state for low res tiles. This prevents
    // pending tree low-res tiles from being initialized before
    // high-res tiles.
    if (pending_is_low_res)
      pending_bin = std::max(pending_bin, EVENTUALLY_BIN);

    // Adjust bin state based on if ready to draw.
    active_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][active_bin];
    pending_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][pending_bin];

    // Adjust bin state based on if active.
    active_bin = kBinIsActiveMap[tile_is_active][active_bin];
    pending_bin = kBinIsActiveMap[tile_is_active][pending_bin];

    // We never want to paint new non-ideal tiles, as we always have
    // a high-res tile covering that content (paint that instead).
    if (!tile_is_ready_to_draw && active_is_non_ideal)
      active_bin = NEVER_BIN;
    if (!tile_is_ready_to_draw && pending_is_non_ideal)
      pending_bin = NEVER_BIN;

    // Compute combined bin.
    ManagedTileBin combined_bin = std::min(active_bin, pending_bin);

    ManagedTileBin tree_bin[NUM_TREES];
    tree_bin[ACTIVE_TREE] = kBinPolicyMap[memory_policy][active_bin];
    tree_bin[PENDING_TREE] = kBinPolicyMap[memory_policy][pending_bin];

    // The bin that the tile would have if the GPU memory manager had
    // a maximally permissive policy, send to the GPU memory manager
    // to determine policy.
    ManagedTileBin gpu_memmgr_stats_bin = NEVER_BIN;
    TilePriority tile_priority;

    switch (tree_priority) {
      case SAME_PRIORITY_FOR_BOTH_TREES:
        mts.bin = kBinPolicyMap[memory_policy][combined_bin];
        gpu_memmgr_stats_bin = combined_bin;
        tile_priority = tile->combined_priority();
        break;
      case SMOOTHNESS_TAKES_PRIORITY:
        mts.bin = tree_bin[ACTIVE_TREE];
        gpu_memmgr_stats_bin = active_bin;
        tile_priority = active_priority;
        break;
      case NEW_CONTENT_TAKES_PRIORITY:
        mts.bin = tree_bin[PENDING_TREE];
        gpu_memmgr_stats_bin = pending_bin;
        tile_priority = pending_priority;
        break;
    }

    if (!tile_is_ready_to_draw || tile_version.requires_resource()) {
      if ((gpu_memmgr_stats_bin == NOW_BIN) ||
          (gpu_memmgr_stats_bin == NOW_AND_READY_TO_DRAW_BIN))
        memory_required_bytes_ += BytesConsumedIfAllocated(tile);
      if (gpu_memmgr_stats_bin != NEVER_BIN)
        memory_nice_to_have_bytes_ += BytesConsumedIfAllocated(tile);
    }

    // Bump up the priority if we determined it's NEVER_BIN on one tree,
    // but is still required on the other tree.
    bool is_in_never_bin_on_both_trees =
        tree_bin[ACTIVE_TREE] == NEVER_BIN &&
        tree_bin[PENDING_TREE] == NEVER_BIN;

    if (mts.bin == NEVER_BIN && !is_in_never_bin_on_both_trees)
      mts.bin = tile_is_active ? AT_LAST_AND_ACTIVE_BIN : AT_LAST_BIN;

    mts.resolution = tile_priority.resolution;
    mts.time_to_needed_in_seconds = tile_priority.time_to_visible_in_seconds;
    mts.distance_to_visible_in_pixels =
        tile_priority.distance_to_visible_in_pixels;
    mts.required_for_activation = tile_priority.required_for_activation;

    mts.visible_and_ready_to_draw =
        tree_bin[ACTIVE_TREE] == NOW_AND_READY_TO_DRAW_BIN;

    if (mts.bin == NEVER_BIN) {
      FreeResourcesForTile(tile);
      continue;
    }

    // Note that if the tile is visible_and_ready_to_draw, then we always want
    // the priority to be NOW_AND_READY_TO_DRAW_BIN, even if HIGH_PRIORITY_BIN
    // is something different. The reason for this is that if we're prioritizing
    // the pending tree, we still want visible tiles to take the highest
    // priority.
    ManagedTileBin priority_bin = mts.visible_and_ready_to_draw
                                  ? NOW_AND_READY_TO_DRAW_BIN
                                  : mts.bin;

    // Insert the tile into a priority set.
    tiles->InsertTile(tile, priority_bin);
  }
}

void TileManager::ManageTiles(const GlobalStateThatImpactsTilePriority& state) {
  TRACE_EVENT0("cc", "TileManager::ManageTiles");

  // Update internal state.
  if (state != global_state_) {
    global_state_ = state;
    prioritized_tiles_dirty_ = true;
    resource_pool_->SetResourceUsageLimits(
        global_state_.memory_limit_in_bytes,
        global_state_.unused_memory_limit_in_bytes,
        global_state_.num_resources_limit);
  }

  // We need to call CheckForCompletedTasks() once in-between each call
  // to ScheduleTasks() to prevent canceled tasks from being scheduled.
  if (!did_check_for_completed_tasks_since_last_schedule_tasks_) {
    raster_worker_pool_->CheckForCompletedTasks();
    did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
  }

  UpdatePrioritizedTileSetIfNeeded();

  TileVector tiles_that_need_to_be_rasterized;
  AssignGpuMemoryToTiles(&prioritized_tiles_,
                         &tiles_that_need_to_be_rasterized);

  // Finally, schedule rasterizer tasks.
  ScheduleTasks(tiles_that_need_to_be_rasterized);

  TRACE_EVENT_INSTANT1(
      "cc", "DidManage", TRACE_EVENT_SCOPE_THREAD,
      "state", TracedValue::FromValue(BasicStateAsValue().release()));

  TRACE_COUNTER_ID1("cc", "unused_memory_bytes", this,
                    resource_pool_->total_memory_usage_bytes() -
                    resource_pool_->acquired_memory_usage_bytes());
}

bool TileManager::UpdateVisibleTiles() {
  TRACE_EVENT0("cc", "TileManager::UpdateVisibleTiles");

  raster_worker_pool_->CheckForCompletedTasks();
  did_check_for_completed_tasks_since_last_schedule_tasks_ = true;

  TRACE_EVENT_INSTANT1(
      "cc", "DidUpdateVisibleTiles", TRACE_EVENT_SCOPE_THREAD,
      "stats", TracedValue::FromValue(
          RasterTaskCompletionStatsAsValue(
              update_visible_tiles_stats_).release()));
  update_visible_tiles_stats_ = RasterTaskCompletionStats();

  bool did_initialize_visible_tile = did_initialize_visible_tile_;
  did_initialize_visible_tile_ = false;
  return did_initialize_visible_tile;
}

void TileManager::GetMemoryStats(
    size_t* memory_required_bytes,
    size_t* memory_nice_to_have_bytes,
    size_t* memory_allocated_bytes,
    size_t* memory_used_bytes) const {
  *memory_required_bytes = memory_required_bytes_;
  *memory_nice_to_have_bytes = memory_nice_to_have_bytes_;
  *memory_allocated_bytes = resource_pool_->total_memory_usage_bytes();
  *memory_used_bytes = resource_pool_->acquired_memory_usage_bytes();
}

scoped_ptr<base::Value> TileManager::BasicStateAsValue() const {
  scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
  state->SetInteger("tile_count", tiles_.size());
  state->Set("global_state", global_state_.AsValue().release());
  state->Set("memory_requirements", GetMemoryRequirementsAsValue().release());
  return state.PassAs<base::Value>();
}

scoped_ptr<base::Value> TileManager::AllTilesAsValue() const {
  scoped_ptr<base::ListValue> state(new base::ListValue());
  for (TileMap::const_iterator it = tiles_.begin();
       it != tiles_.end();
       it++) {
    state->Append(it->second->AsValue().release());
  }
  return state.PassAs<base::Value>();
}

scoped_ptr<base::Value> TileManager::GetMemoryRequirementsAsValue() const {
  scoped_ptr<base::DictionaryValue> requirements(
      new base::DictionaryValue());

  size_t memory_required_bytes;
  size_t memory_nice_to_have_bytes;
  size_t memory_allocated_bytes;
  size_t memory_used_bytes;
  GetMemoryStats(&memory_required_bytes,
                 &memory_nice_to_have_bytes,
                 &memory_allocated_bytes,
                 &memory_used_bytes);
  requirements->SetInteger("memory_required_bytes", memory_required_bytes);
  requirements->SetInteger("memory_nice_to_have_bytes",
                           memory_nice_to_have_bytes);
  requirements->SetInteger("memory_allocated_bytes", memory_allocated_bytes);
  requirements->SetInteger("memory_used_bytes", memory_used_bytes);
  return requirements.PassAs<base::Value>();
}

RasterMode TileManager::DetermineRasterMode(const Tile* tile) const {
  DCHECK(tile);
  DCHECK(tile->picture_pile());

  const ManagedTileState& mts = tile->managed_state();
  RasterMode current_mode = mts.raster_mode;

  RasterMode raster_mode = HIGH_QUALITY_RASTER_MODE;
  if (tile->managed_state().resolution == LOW_RESOLUTION)
    raster_mode = LOW_QUALITY_RASTER_MODE;
  else if (tile->can_use_lcd_text())
    raster_mode = HIGH_QUALITY_RASTER_MODE;
  else if (mts.tile_versions[current_mode].has_text_ ||
           !mts.tile_versions[current_mode].IsReadyToDraw())
    raster_mode = HIGH_QUALITY_NO_LCD_RASTER_MODE;

  return std::min(raster_mode, current_mode);
}

void TileManager::AssignGpuMemoryToTiles(
    PrioritizedTileSet* tiles,
    TileVector* tiles_that_need_to_be_rasterized) {
  TRACE_EVENT0("cc", "TileManager::AssignGpuMemoryToTiles");

  // Maintain the list of released resources that can potentially be re-used
  // or deleted.
  // If this operation becomes expensive too, only do this after some
  // resource(s) was returned. Note that in that case, one also need to
  // invalidate when releasing some resource from the pool.
  resource_pool_->CheckBusyResources();

  // Now give memory out to the tiles until we're out, and build
  // the needs-to-be-rasterized queue.
  all_tiles_that_need_to_be_rasterized_have_memory_ = true;
  all_tiles_required_for_activation_have_memory_ = true;

  // Cast to prevent overflow.
  int64 bytes_available =
      static_cast<int64>(bytes_releasable_) +
      static_cast<int64>(global_state_.memory_limit_in_bytes) -
      static_cast<int64>(resource_pool_->acquired_memory_usage_bytes());
  int resources_available =
      resources_releasable_ +
      global_state_.num_resources_limit -
      resource_pool_->acquired_resource_count();

  size_t bytes_allocatable =
      std::max(static_cast<int64>(0), bytes_available);
  size_t resources_allocatable = std::max(0, resources_available);

  size_t bytes_that_exceeded_memory_budget = 0;
  size_t bytes_left = bytes_allocatable;
  size_t resources_left = resources_allocatable;
  bool oomed = false;

  // Memory we assign to raster tasks now will be deducted from our memory
  // in future iterations if priorities change. By assigning at most half
  // the raster limit, we will always have another 50% left even if priorities
  // change completely (assuming we check for completed/cancelled rasters
  // between each call to this function).
  size_t max_raster_bytes = max_raster_usage_bytes_ / 2;
  size_t raster_bytes = 0;

  unsigned schedule_priority = 1u;
  for (PrioritizedTileSet::Iterator it(tiles, true);
       it;
       ++it) {
    Tile* tile = *it;
    ManagedTileState& mts = tile->managed_state();

    mts.scheduled_priority = schedule_priority++;

    mts.raster_mode = DetermineRasterMode(tile);

    ManagedTileState::TileVersion& tile_version =
        mts.tile_versions[mts.raster_mode];

    // If this tile doesn't need a resource, then nothing to do.
    if (!tile_version.requires_resource())
      continue;

    // If the tile is not needed, free it up.
    if (mts.bin == NEVER_BIN) {
      FreeResourcesForTile(tile);
      continue;
    }

    size_t bytes_if_allocated = BytesConsumedIfAllocated(tile);
    size_t raster_bytes_if_rastered = raster_bytes + bytes_if_allocated;

    size_t tile_bytes = 0;
    size_t tile_resources = 0;

    // It costs to maintain a resource.
    for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
      if (mts.tile_versions[mode].resource_) {
        tile_bytes += bytes_if_allocated;
        tile_resources++;
      }
    }

    // Allow lower priority tiles with initialized resources to keep
    // their memory by only assigning memory to new raster tasks if
    // they can be scheduled.
    if (raster_bytes_if_rastered <= max_raster_bytes) {
      // If we don't have the required version, and it's not in flight
      // then we'll have to pay to create a new task.
      if (!tile_version.resource_ && tile_version.raster_task_.is_null()) {
        tile_bytes += bytes_if_allocated;
        tile_resources++;
      }
    }

    // Tile is OOM.
    if (tile_bytes > bytes_left || tile_resources > resources_left) {
      FreeResourcesForTile(tile);

      // This tile was already on screen and now its resources have been
      // released. In order to prevent checkerboarding, set this tile as
      // rasterize on demand immediately.
      if (mts.visible_and_ready_to_draw)
        tile_version.set_rasterize_on_demand();

      oomed = true;
      bytes_that_exceeded_memory_budget += tile_bytes;
    } else {
      bytes_left -= tile_bytes;
      resources_left -= tile_resources;

      if (tile_version.resource_)
        continue;
    }

    DCHECK(!tile_version.resource_);

    // Tile shouldn't be rasterized if |tiles_that_need_to_be_rasterized|
    // has reached it's limit or we've failed to assign gpu memory to this
    // or any higher priority tile. Preventing tiles that fit into memory
    // budget to be rasterized when higher priority tile is oom is
    // important for two reasons:
    // 1. Tile size should not impact raster priority.
    // 2. Tiles with existing raster task could otherwise incorrectly
    //    be added as they are not affected by |bytes_allocatable|.
    if (oomed || raster_bytes_if_rastered > max_raster_bytes) {
      all_tiles_that_need_to_be_rasterized_have_memory_ = false;
      if (tile->required_for_activation())
        all_tiles_required_for_activation_have_memory_ = false;
      it.DisablePriorityOrdering();
      continue;
    }

    raster_bytes = raster_bytes_if_rastered;
    tiles_that_need_to_be_rasterized->push_back(tile);
  }

  ever_exceeded_memory_budget_ |= bytes_that_exceeded_memory_budget > 0;
  if (ever_exceeded_memory_budget_) {
      TRACE_COUNTER_ID2("cc", "over_memory_budget", this,
                        "budget", global_state_.memory_limit_in_bytes,
                        "over", bytes_that_exceeded_memory_budget);
  }
  memory_stats_from_last_assign_.total_budget_in_bytes =
      global_state_.memory_limit_in_bytes;
  memory_stats_from_last_assign_.bytes_allocated =
      bytes_allocatable - bytes_left;
  memory_stats_from_last_assign_.bytes_unreleasable =
      bytes_allocatable - bytes_releasable_;
  memory_stats_from_last_assign_.bytes_over =
      bytes_that_exceeded_memory_budget;
}

void TileManager::FreeResourceForTile(Tile* tile, RasterMode mode) {
  ManagedTileState& mts = tile->managed_state();
  if (mts.tile_versions[mode].resource_) {
    resource_pool_->ReleaseResource(
        mts.tile_versions[mode].resource_.Pass());

    DCHECK_GE(bytes_releasable_, BytesConsumedIfAllocated(tile));
    DCHECK_GE(resources_releasable_, 1u);

    bytes_releasable_ -= BytesConsumedIfAllocated(tile);
    --resources_releasable_;
  }
}

void TileManager::FreeResourcesForTile(Tile* tile) {
  for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
    FreeResourceForTile(tile, static_cast<RasterMode>(mode));
  }
}

void TileManager::FreeUnusedResourcesForTile(Tile* tile) {
  DCHECK(tile->IsReadyToDraw());
  ManagedTileState& mts = tile->managed_state();
  RasterMode used_mode = HIGH_QUALITY_NO_LCD_RASTER_MODE;
  for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
    if (mts.tile_versions[mode].IsReadyToDraw()) {
      used_mode = static_cast<RasterMode>(mode);
      break;
    }
  }

  for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
    if (mode != used_mode)
      FreeResourceForTile(tile, static_cast<RasterMode>(mode));
  }
}

void TileManager::ScheduleTasks(
    const TileVector& tiles_that_need_to_be_rasterized) {
  TRACE_EVENT1("cc", "TileManager::ScheduleTasks",
               "count", tiles_that_need_to_be_rasterized.size());
  RasterWorkerPool::RasterTask::Queue tasks;

  DCHECK(did_check_for_completed_tasks_since_last_schedule_tasks_);

  // Build a new task queue containing all task currently needed. Tasks
  // are added in order of priority, highest priority task first.
  for (TileVector::const_iterator it = tiles_that_need_to_be_rasterized.begin();
       it != tiles_that_need_to_be_rasterized.end();
       ++it) {
    Tile* tile = *it;
    ManagedTileState& mts = tile->managed_state();
    ManagedTileState::TileVersion& tile_version =
        mts.tile_versions[mts.raster_mode];

    DCHECK(tile_version.requires_resource());
    DCHECK(!tile_version.resource_);

    if (tile_version.raster_task_.is_null())
      tile_version.raster_task_ = CreateRasterTask(tile);

    tasks.Append(tile_version.raster_task_, tile->required_for_activation());
  }

  // We must reduce the amount of unused resoruces before calling
  // ScheduleTasks to prevent usage from rising above limits.
  resource_pool_->ReduceResourceUsage();

  // Schedule running of |tasks|. This replaces any previously
  // scheduled tasks and effectively cancels all tasks not present
  // in |tasks|.
  raster_worker_pool_->ScheduleTasks(&tasks);

  did_check_for_completed_tasks_since_last_schedule_tasks_ = false;
}

RasterWorkerPool::Task TileManager::CreateImageDecodeTask(
    Tile* tile, skia::LazyPixelRef* pixel_ref) {
  return RasterWorkerPool::CreateImageDecodeTask(
      pixel_ref,
      tile->layer_id(),
      rendering_stats_instrumentation_,
      base::Bind(&TileManager::OnImageDecodeTaskCompleted,
                 base::Unretained(this),
                 tile->layer_id(),
                 base::Unretained(pixel_ref)));
}

RasterWorkerPool::RasterTask TileManager::CreateRasterTask(Tile* tile) {
  ManagedTileState& mts = tile->managed_state();

  scoped_ptr<ScopedResource> resource =
      resource_pool_->AcquireResource(tile->tile_size_.size());
  const ScopedResource* const_resource = resource.get();

  // Create and queue all image decode tasks that this tile depends on.
  RasterWorkerPool::Task::Set decode_tasks;
  PixelRefTaskMap& existing_pixel_refs = image_decode_tasks_[tile->layer_id()];
  for (PicturePileImpl::PixelRefIterator iter(tile->content_rect(),
                                              tile->contents_scale(),
                                              tile->picture_pile());
       iter; ++iter) {
    skia::LazyPixelRef* pixel_ref = *iter;
    uint32_t id = pixel_ref->getGenerationID();

    // Append existing image decode task if available.
    PixelRefTaskMap::iterator decode_task_it = existing_pixel_refs.find(id);
    if (decode_task_it != existing_pixel_refs.end()) {
      decode_tasks.Insert(decode_task_it->second);
      continue;
    }

    // Create and append new image decode task for this pixel ref.
    RasterWorkerPool::Task decode_task = CreateImageDecodeTask(
        tile, pixel_ref);
    decode_tasks.Insert(decode_task);
    existing_pixel_refs[id] = decode_task;
  }

  return RasterWorkerPool::CreateRasterTask(
      const_resource,
      tile->picture_pile(),
      tile->content_rect(),
      tile->contents_scale(),
      mts.raster_mode,
      mts.resolution,
      tile->layer_id(),
      static_cast<const void *>(tile),
      tile->source_frame_number(),
      rendering_stats_instrumentation_,
      base::Bind(&TileManager::OnRasterTaskCompleted,
                 base::Unretained(this),
                 tile->id(),
                 base::Passed(&resource),
                 mts.raster_mode),
      &decode_tasks);
}

void TileManager::OnImageDecodeTaskCompleted(
    int layer_id,
    skia::LazyPixelRef* pixel_ref,
    bool was_canceled) {
  // If the task was canceled, we need to clean it up
  // from |image_decode_tasks_|.
  if (!was_canceled)
    return;

  LayerPixelRefTaskMap::iterator layer_it =
      image_decode_tasks_.find(layer_id);

  if (layer_it == image_decode_tasks_.end())
    return;

  PixelRefTaskMap& pixel_ref_tasks = layer_it->second;
  PixelRefTaskMap::iterator task_it =
      pixel_ref_tasks.find(pixel_ref->getGenerationID());

  if (task_it != pixel_ref_tasks.end())
    pixel_ref_tasks.erase(task_it);
}

void TileManager::OnRasterTaskCompleted(
    Tile::Id tile_id,
    scoped_ptr<ScopedResource> resource,
    RasterMode raster_mode,
    const PicturePileImpl::Analysis& analysis,
    bool was_canceled) {
  TileMap::iterator it = tiles_.find(tile_id);
  if (it == tiles_.end()) {
    ++update_visible_tiles_stats_.canceled_count;
    resource_pool_->ReleaseResource(resource.Pass());
    return;
  }

  Tile* tile = it->second;
  ManagedTileState& mts = tile->managed_state();
  ManagedTileState::TileVersion& tile_version =
      mts.tile_versions[raster_mode];
  DCHECK(!tile_version.raster_task_.is_null());
  tile_version.raster_task_.Reset();

  if (was_canceled) {
    ++update_visible_tiles_stats_.canceled_count;
    resource_pool_->ReleaseResource(resource.Pass());
    return;
  }

  ++update_visible_tiles_stats_.completed_count;

  tile_version.set_has_text(analysis.has_text);
  if (analysis.is_solid_color) {
    tile_version.set_solid_color(analysis.solid_color);
    resource_pool_->ReleaseResource(resource.Pass());
  } else {
    tile_version.set_use_resource();
    tile_version.resource_ = resource.Pass();

    bytes_releasable_ += BytesConsumedIfAllocated(tile);
    ++resources_releasable_;
  }

  FreeUnusedResourcesForTile(tile);
  if (tile->priority(ACTIVE_TREE).distance_to_visible_in_pixels == 0)
    did_initialize_visible_tile_ = true;
}

scoped_refptr<Tile> TileManager::CreateTile(PicturePileImpl* picture_pile,
                                            gfx::Size tile_size,
                                            gfx::Rect content_rect,
                                            gfx::Rect opaque_rect,
                                            float contents_scale,
                                            int layer_id,
                                            int source_frame_number,
                                            int flags) {
  scoped_refptr<Tile> tile = make_scoped_refptr(new Tile(this,
                                                         picture_pile,
                                                         tile_size,
                                                         content_rect,
                                                         opaque_rect,
                                                         contents_scale,
                                                         layer_id,
                                                         source_frame_number,
                                                         flags));
  DCHECK(tiles_.find(tile->id()) == tiles_.end());

  tiles_[tile->id()] = tile;
  used_layer_counts_[tile->layer_id()]++;
  prioritized_tiles_dirty_ = true;
  return tile;
}

}  // namespace cc