1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CC_BASE_RTREE_H_
#define CC_BASE_RTREE_H_
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <vector>
#include "base/logging.h"
#include "base/numerics/clamped_math.h"
#include "ui/gfx/geometry/rect.h"
namespace cc {
// The following description and most of the implementation is borrowed from
// Skia's SkRTree implementation.
//
// An R-Tree implementation. In short, it is a balanced n-ary tree containing a
// hierarchy of bounding rectangles.
//
// It only supports bulk-loading, i.e. creation from a batch of bounding
// rectangles. This performs a bottom-up bulk load using the STR
// (sort-tile-recursive) algorithm.
//
// Things to do: Experiment with other bulk-load algorithms (in particular the
// Hilbert pack variant, which groups rects by position on the Hilbert curve, is
// probably worth a look). There also exist top-down bulk load variants
// (VAMSplit, TopDownGreedy, etc).
//
// For more details see:
//
// Beckmann, N.; Kriegel, H. P.; Schneider, R.; Seeger, B. (1990).
// "The R*-tree: an efficient and robust access method for points and
// rectangles"
template <typename T>
class RTree {
public:
RTree();
~RTree();
// Constructs the rtree from a given container of gfx::Rects. Queries using
// Search will then return indices into this container.
template <typename Container>
void Build(const Container& items);
// Build helper that takes a container, a function used to get gfx::Rect
// from each item, and a function used to get the payload for each item. That
// is, "bounds_getter(items, i);" should return a gfx::Rect representing the
// bounds of ith item, and "payload_getter(items, i);" should return the
// payload (aka T) of ith item.
template <typename Container, typename BoundsFunctor, typename PayloadFunctor>
void Build(const Container& items,
const BoundsFunctor& bounds_getter,
const PayloadFunctor& payload_getter);
// Given a query rect, returns elements that intersect the rect. Elements are
// returned in the order they appeared in the initial container.
void Search(const gfx::Rect& query, std::vector<T>* results) const;
// Given a query rect, returns non-owning pointers to elements that intersect
// the rect. Elements are returned in the order they appeared in the initial
// container.
void SearchRefs(const gfx::Rect& query, std::vector<const T*>* results) const;
// Returns the total bounds of all items in this rtree.
gfx::Rect GetBounds() const;
// Returns respective bounds of all items in this rtree in the order of items.
// Production code except tracing should not use this method.
std::vector<gfx::Rect> GetAllBoundsForTracing() const;
void Reset();
private:
// These values were empirically determined to produce reasonable performance
// in most cases.
enum { kMinChildren = 6 };
enum { kMaxChildren = 11 };
template <typename U>
struct Node;
template <typename U>
struct Branch {
// When the node level is 0, then the node is a leaf and the branch has a
// valid index pointing to an element in the vector that was used to build
// this rtree. When the level is not 0, it's an internal node and it has a
// valid subtree pointer.
Node<U>* subtree;
U payload;
gfx::Rect bounds;
Branch() = default;
Branch(U payload, const gfx::Rect& bounds)
: payload(std::move(payload)), bounds(bounds) {}
};
template <typename U>
struct Node {
uint16_t num_children = 0u;
uint16_t level = 0u;
Branch<U> children[kMaxChildren];
explicit Node(uint16_t level) : level(level) {}
};
void SearchRecursive(Node<T>* root,
const gfx::Rect& query,
std::vector<T>* results) const;
void SearchRefsRecursive(Node<T>* root,
const gfx::Rect& query,
std::vector<const T*>* results) const;
// Consumes the input array.
Branch<T> BuildRecursive(std::vector<Branch<T>>* branches, int level);
Node<T>* AllocateNodeAtLevel(int level);
void GetAllBoundsRecursive(Node<T>* root,
std::vector<gfx::Rect>* results) const;
// This is the count of data elements (rather than total nodes in the tree)
size_t num_data_elements_ = 0u;
Branch<T> root_;
std::vector<Node<T>> nodes_;
DISALLOW_COPY_AND_ASSIGN(RTree);
};
template <typename T>
RTree<T>::RTree() = default;
template <typename T>
RTree<T>::~RTree() = default;
template <typename T>
template <typename Container>
void RTree<T>::Build(const Container& items) {
Build(items,
[](const Container& items, size_t index) { return items[index]; },
[](const Container& items, size_t index) { return index; });
}
template <typename T>
template <typename Container, typename BoundsFunctor, typename PayloadFunctor>
void RTree<T>::Build(const Container& items,
const BoundsFunctor& bounds_getter,
const PayloadFunctor& payload_getter) {
DCHECK_EQ(0u, num_data_elements_);
std::vector<Branch<T>> branches;
branches.reserve(items.size());
for (size_t i = 0; i < items.size(); i++) {
const gfx::Rect& bounds = bounds_getter(items, i);
if (bounds.IsEmpty())
continue;
branches.emplace_back(payload_getter(items, i), bounds);
}
num_data_elements_ = branches.size();
if (num_data_elements_ == 1u) {
nodes_.reserve(1);
Node<T>* node = AllocateNodeAtLevel(0);
root_.subtree = node;
root_.bounds = branches[0].bounds;
node->num_children = 1;
node->children[0] = std::move(branches[0]);
} else if (num_data_elements_ > 1u) {
// Determine a reasonable upper bound on the number of nodes to prevent
// reallocations. This is basically (n**d - 1) / (n - 1), which is the
// number of nodes in a complete tree with n branches at each node. In the
// code n = |branch_count|, d = |depth|. However, we normally would have
// kMaxChildren branch factor, but that can be broken if some children
// don't have enough nodes. That can happen for at most kMinChildren nodes
// (since otherwise, we'd create a new node).
size_t branch_count = kMaxChildren;
double depth = log(branches.size()) / log(branch_count);
size_t node_count =
static_cast<size_t>((std::pow(branch_count, depth) - 1) /
(branch_count - 1)) +
kMinChildren;
nodes_.reserve(node_count);
root_ = BuildRecursive(&branches, 0);
}
// We should've wasted at most kMinChildren nodes.
DCHECK_LE(nodes_.capacity() - nodes_.size(),
static_cast<size_t>(kMinChildren));
}
template <typename T>
auto RTree<T>::AllocateNodeAtLevel(int level) -> Node<T>* {
// We don't allow reallocations, since that would invalidate references to
// existing nodes, so verify that capacity > size.
DCHECK_GT(nodes_.capacity(), nodes_.size());
nodes_.emplace_back(level);
return &nodes_.back();
}
template <typename T>
auto RTree<T>::BuildRecursive(std::vector<Branch<T>>* branches, int level)
-> Branch<T> {
// Only one branch. It will be the root.
if (branches->size() == 1)
return std::move((*branches)[0]);
// TODO(vmpstr): Investigate if branches should be sorted in y.
// The comment from Skia reads:
// We might sort our branches here, but we expect Blink gives us a reasonable
// x,y order. Skipping a call to sort (in Y) here resulted in a 17% win for
// recording with negligible difference in playback speed.
int num_branches = static_cast<int>(branches->size() / kMaxChildren);
int remainder = static_cast<int>(branches->size() % kMaxChildren);
if (remainder > 0) {
++num_branches;
// If the remainder isn't enough to fill a node, we'll add fewer nodes to
// other branches.
if (remainder >= kMinChildren)
remainder = 0;
else
remainder = kMinChildren - remainder;
}
int num_strips = static_cast<int>(std::ceil(std::sqrt(num_branches)));
int num_tiles = static_cast<int>(
std::ceil(num_branches / static_cast<float>(num_strips)));
size_t current_branch = 0;
size_t new_branch_index = 0;
for (int i = 0; i < num_strips; ++i) {
// Might be worth sorting by X here too.
for (int j = 0; j < num_tiles && current_branch < branches->size(); ++j) {
int increment_by = kMaxChildren;
if (remainder != 0) {
// if need be, omit some nodes to make up for remainder
if (remainder <= kMaxChildren - kMinChildren) {
increment_by -= remainder;
remainder = 0;
} else {
increment_by = kMinChildren;
remainder -= kMaxChildren - kMinChildren;
}
}
Node<T>* node = AllocateNodeAtLevel(level);
node->num_children = 1;
node->children[0] = (*branches)[current_branch];
Branch<T> branch;
branch.bounds = (*branches)[current_branch].bounds;
branch.subtree = node;
++current_branch;
int x = branch.bounds.x();
int y = branch.bounds.y();
int right = branch.bounds.right();
int bottom = branch.bounds.bottom();
for (int k = 1; k < increment_by && current_branch < branches->size();
++k) {
// We use a custom union instead of gfx::Rect::Union here, since this
// bypasses some empty checks and extra setters, which improves
// performance.
auto& bounds = (*branches)[current_branch].bounds;
x = std::min(x, bounds.x());
y = std::min(y, bounds.y());
right = std::max(right, bounds.right());
bottom = std::max(bottom, bounds.bottom());
node->children[k] = (*branches)[current_branch];
++node->num_children;
++current_branch;
}
branch.bounds.SetRect(x, y, base::ClampSub(right, x),
base::ClampSub(bottom, y));
DCHECK_LT(new_branch_index, current_branch);
(*branches)[new_branch_index] = std::move(branch);
++new_branch_index;
}
}
branches->resize(new_branch_index);
return BuildRecursive(branches, level + 1);
}
template <typename T>
void RTree<T>::Search(const gfx::Rect& query, std::vector<T>* results) const {
results->clear();
if (num_data_elements_ > 0 && query.Intersects(root_.bounds))
SearchRecursive(root_.subtree, query, results);
}
template <typename T>
void RTree<T>::SearchRefs(const gfx::Rect& query,
std::vector<const T*>* results) const {
results->clear();
if (num_data_elements_ > 0 && query.Intersects(root_.bounds))
SearchRefsRecursive(root_.subtree, query, results);
}
template <typename T>
void RTree<T>::SearchRecursive(Node<T>* node,
const gfx::Rect& query,
std::vector<T>* results) const {
for (uint16_t i = 0; i < node->num_children; ++i) {
if (query.Intersects(node->children[i].bounds)) {
if (node->level == 0)
results->push_back(node->children[i].payload);
else
SearchRecursive(node->children[i].subtree, query, results);
}
}
}
template <typename T>
void RTree<T>::SearchRefsRecursive(Node<T>* node,
const gfx::Rect& query,
std::vector<const T*>* results) const {
for (uint16_t i = 0; i < node->num_children; ++i) {
if (query.Intersects(node->children[i].bounds)) {
if (node->level == 0)
results->push_back(&node->children[i].payload);
else
SearchRefsRecursive(node->children[i].subtree, query, results);
}
}
}
template <typename T>
gfx::Rect RTree<T>::GetBounds() const {
return root_.bounds;
}
template <typename T>
std::vector<gfx::Rect> RTree<T>::GetAllBoundsForTracing() const {
std::vector<gfx::Rect> results;
if (num_data_elements_ > 0)
GetAllBoundsRecursive(root_.subtree, &results);
return results;
}
template <typename T>
void RTree<T>::GetAllBoundsRecursive(Node<T>* node,
std::vector<gfx::Rect>* results) const {
for (uint16_t i = 0; i < node->num_children; ++i) {
if (node->level == 0)
results->push_back(node->children[i].bounds);
else
GetAllBoundsRecursive(node->children[i].subtree, results);
}
}
template <typename T>
void RTree<T>::Reset() {
num_data_elements_ = 0;
nodes_.clear();
root_.bounds = gfx::Rect();
}
} // namespace cc
#endif // CC_BASE_RTREE_H_
|