summaryrefslogtreecommitdiff
path: root/chromium/base/process/process_metrics_mac.cc
blob: 4400ecebfe75e10970ccf25a92e331071b842534 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/process/process_metrics.h"

#include <libproc.h>
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <mach/mach_vm.h>
#include <mach/shared_region.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/sysctl.h>

#include "base/logging.h"
#include "base/mac/mac_util.h"
#include "base/mac/mach_logging.h"
#include "base/mac/scoped_mach_port.h"
#include "base/memory/ptr_util.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math.h"
#include "base/process/process_metrics_iocounters.h"
#include "base/time/time.h"
#include "build/build_config.h"

namespace {

// This is a standin for the private pm_task_energy_data_t struct.
struct OpaquePMTaskEnergyData {
  // Empirical size of the private struct.
  uint8_t data[408];
};

// Sample everything but network usage, since fetching network
// usage can hang.
static constexpr uint8_t kPMSampleFlags = 0xff & ~0x8;

}  // namespace

extern "C" {

// From libpmsample.dylib
int pm_sample_task(mach_port_t task,
                   OpaquePMTaskEnergyData* pm_energy,
                   uint64_t mach_time,
                   uint8_t flags);

// From libpmenergy.dylib
double pm_energy_impact(OpaquePMTaskEnergyData* pm_energy);

}  // extern "C"

namespace base {

namespace {

bool GetTaskInfo(mach_port_t task, task_basic_info_64* task_info_data) {
  if (task == MACH_PORT_NULL)
    return false;
  mach_msg_type_number_t count = TASK_BASIC_INFO_64_COUNT;
  kern_return_t kr = task_info(task,
                               TASK_BASIC_INFO_64,
                               reinterpret_cast<task_info_t>(task_info_data),
                               &count);
  // Most likely cause for failure: |task| is a zombie.
  return kr == KERN_SUCCESS;
}

MachVMRegionResult ParseOutputFromMachVMRegion(kern_return_t kr) {
  if (kr == KERN_INVALID_ADDRESS) {
    // We're at the end of the address space.
    return MachVMRegionResult::Finished;
  } else if (kr != KERN_SUCCESS) {
    return MachVMRegionResult::Error;
  }
  return MachVMRegionResult::Success;
}

bool GetPowerInfo(mach_port_t task, task_power_info* power_info_data) {
  if (task == MACH_PORT_NULL)
    return false;

  mach_msg_type_number_t power_info_count = TASK_POWER_INFO_COUNT;
  kern_return_t kr = task_info(task, TASK_POWER_INFO,
                               reinterpret_cast<task_info_t>(power_info_data),
                               &power_info_count);
  // Most likely cause for failure: |task| is a zombie.
  return kr == KERN_SUCCESS;
}

double GetEnergyImpactInternal(mach_port_t task, uint64_t mach_time) {
  OpaquePMTaskEnergyData energy_info{};

  if (pm_sample_task(task, &energy_info, mach_time, kPMSampleFlags) != 0)
    return 0.0;
  return pm_energy_impact(&energy_info);
}

}  // namespace

// Getting a mach task from a pid for another process requires permissions in
// general, so there doesn't really seem to be a way to do these (and spinning
// up ps to fetch each stats seems dangerous to put in a base api for anyone to
// call). Child processes ipc their port, so return something if available,
// otherwise return 0.

// static
std::unique_ptr<ProcessMetrics> ProcessMetrics::CreateProcessMetrics(
    ProcessHandle process,
    PortProvider* port_provider) {
  return WrapUnique(new ProcessMetrics(process, port_provider));
}

#define TIME_VALUE_TO_TIMEVAL(a, r) do {  \
  (r)->tv_sec = (a)->seconds;             \
  (r)->tv_usec = (a)->microseconds;       \
} while (0)

TimeDelta ProcessMetrics::GetCumulativeCPUUsage() {
  mach_port_t task = TaskForPid(process_);
  if (task == MACH_PORT_NULL)
    return TimeDelta();

  // Libtop explicitly loops over the threads (libtop_pinfo_update_cpu_usage()
  // in libtop.c), but this is more concise and gives the same results:
  task_thread_times_info thread_info_data;
  mach_msg_type_number_t thread_info_count = TASK_THREAD_TIMES_INFO_COUNT;
  kern_return_t kr = task_info(task,
                               TASK_THREAD_TIMES_INFO,
                               reinterpret_cast<task_info_t>(&thread_info_data),
                               &thread_info_count);
  if (kr != KERN_SUCCESS) {
    // Most likely cause: |task| is a zombie.
    return TimeDelta();
  }

  task_basic_info_64 task_info_data;
  if (!GetTaskInfo(task, &task_info_data))
    return TimeDelta();

  /* Set total_time. */
  // thread info contains live time...
  struct timeval user_timeval, system_timeval, task_timeval;
  TIME_VALUE_TO_TIMEVAL(&thread_info_data.user_time, &user_timeval);
  TIME_VALUE_TO_TIMEVAL(&thread_info_data.system_time, &system_timeval);
  timeradd(&user_timeval, &system_timeval, &task_timeval);

  // ... task info contains terminated time.
  TIME_VALUE_TO_TIMEVAL(&task_info_data.user_time, &user_timeval);
  TIME_VALUE_TO_TIMEVAL(&task_info_data.system_time, &system_timeval);
  timeradd(&user_timeval, &task_timeval, &task_timeval);
  timeradd(&system_timeval, &task_timeval, &task_timeval);

  return TimeDelta::FromMicroseconds(TimeValToMicroseconds(task_timeval));
}

int ProcessMetrics::GetPackageIdleWakeupsPerSecond() {
  mach_port_t task = TaskForPid(process_);
  task_power_info power_info_data;

  GetPowerInfo(task, &power_info_data);

  // The task_power_info struct contains two wakeup counters:
  // task_interrupt_wakeups and task_platform_idle_wakeups.
  // task_interrupt_wakeups is the total number of wakeups generated by the
  // process, and is the number that Activity Monitor reports.
  // task_platform_idle_wakeups is a subset of task_interrupt_wakeups that
  // tallies the number of times the processor was taken out of its low-power
  // idle state to handle a wakeup. task_platform_idle_wakeups therefore result
  // in a greater power increase than the other interrupts which occur while the
  // CPU is already working, and reducing them has a greater overall impact on
  // power usage. See the powermetrics man page for more info.
  return CalculatePackageIdleWakeupsPerSecond(
      power_info_data.task_platform_idle_wakeups);
}

int ProcessMetrics::GetIdleWakeupsPerSecond() {
  mach_port_t task = TaskForPid(process_);
  task_power_info power_info_data;

  GetPowerInfo(task, &power_info_data);

  return CalculateIdleWakeupsPerSecond(power_info_data.task_interrupt_wakeups);
}

int ProcessMetrics::GetEnergyImpact() {
  uint64_t now = mach_absolute_time();
  if (last_energy_impact_ == 0) {
    last_energy_impact_ = GetEnergyImpactInternal(TaskForPid(process_), now);
    last_energy_impact_time_ = now;
    return 0;
  }

  double total_energy_impact =
      GetEnergyImpactInternal(TaskForPid(process_), now);
  uint64_t delta = now - last_energy_impact_time_;
  if (delta == 0)
    return 0;

  // Scale by 100 since the histogram is integral.
  double seconds_since_last_measurement =
      base::TimeTicks::FromMachAbsoluteTime(delta).since_origin().InSecondsF();
  int energy_impact = 100 * (total_energy_impact - last_energy_impact_) /
                      seconds_since_last_measurement;
  last_energy_impact_ = total_energy_impact;
  last_energy_impact_time_ = now;

  return energy_impact;
}

int ProcessMetrics::GetOpenFdCount() const {
  // In order to get a true count of the open number of FDs, PROC_PIDLISTFDS
  // is used. This is done twice: first to get the appropriate size of a
  // buffer, and then secondly to fill the buffer with the actual FD info.
  //
  // The buffer size returned in the first call is an estimate, based on the
  // number of allocated fileproc structures in the kernel. This number can be
  // greater than the actual number of open files, since the structures are
  // allocated in slabs. The value returned in proc_bsdinfo::pbi_nfiles is
  // also the number of allocated fileprocs, not the number in use.
  //
  // However, the buffer size returned in the second call is an accurate count
  // of the open number of descriptors. The contents of the buffer are unused.
  int rv = proc_pidinfo(process_, PROC_PIDLISTFDS, 0, nullptr, 0);
  if (rv < 0)
    return -1;

  std::unique_ptr<char[]> buffer(new char[rv]);
  rv = proc_pidinfo(process_, PROC_PIDLISTFDS, 0, buffer.get(), rv);
  if (rv < 0)
    return -1;
  return rv / PROC_PIDLISTFD_SIZE;
}

int ProcessMetrics::GetOpenFdSoftLimit() const {
  return GetMaxFds();
}

bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const {
  return false;
}

ProcessMetrics::ProcessMetrics(ProcessHandle process,
                               PortProvider* port_provider)
    : process_(process),
      last_absolute_idle_wakeups_(0),
      last_absolute_package_idle_wakeups_(0),
      last_energy_impact_(0),
      port_provider_(port_provider) {}

mach_port_t ProcessMetrics::TaskForPid(ProcessHandle process) const {
  mach_port_t task = MACH_PORT_NULL;
  if (port_provider_)
    task = port_provider_->TaskForPid(process_);
  if (task == MACH_PORT_NULL && process_ == getpid())
    task = mach_task_self();
  return task;
}

// Bytes committed by the system.
size_t GetSystemCommitCharge() {
  base::mac::ScopedMachSendRight host(mach_host_self());
  mach_msg_type_number_t count = HOST_VM_INFO_COUNT;
  vm_statistics_data_t data;
  kern_return_t kr = host_statistics(host.get(), HOST_VM_INFO,
                                     reinterpret_cast<host_info_t>(&data),
                                     &count);
  if (kr != KERN_SUCCESS) {
    MACH_DLOG(WARNING, kr) << "host_statistics";
    return 0;
  }

  return (data.active_count * PAGE_SIZE) / 1024;
}

bool GetSystemMemoryInfo(SystemMemoryInfoKB* meminfo) {
  struct host_basic_info hostinfo;
  mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
  base::mac::ScopedMachSendRight host(mach_host_self());
  int result = host_info(host.get(), HOST_BASIC_INFO,
                         reinterpret_cast<host_info_t>(&hostinfo), &count);
  if (result != KERN_SUCCESS)
    return false;

  DCHECK_EQ(HOST_BASIC_INFO_COUNT, count);
  meminfo->total = static_cast<int>(hostinfo.max_mem / 1024);

  vm_statistics64_data_t vm_info;
  count = HOST_VM_INFO64_COUNT;

  if (host_statistics64(host.get(), HOST_VM_INFO64,
                        reinterpret_cast<host_info64_t>(&vm_info),
                        &count) != KERN_SUCCESS) {
    return false;
  }
  DCHECK_EQ(HOST_VM_INFO64_COUNT, count);

  DCHECK_EQ(PAGE_SIZE % 1024, 0u) << "Invalid page size";

  meminfo->free = saturated_cast<int>(
      PAGE_SIZE / 1024 * (vm_info.free_count - vm_info.speculative_count));
  meminfo->speculative =
      saturated_cast<int>(PAGE_SIZE / 1024 * vm_info.speculative_count);
  meminfo->file_backed =
      saturated_cast<int>(PAGE_SIZE / 1024 * vm_info.external_page_count);
  meminfo->purgeable =
      saturated_cast<int>(PAGE_SIZE / 1024 * vm_info.purgeable_count);

  return true;
}

// Both |size| and |address| are in-out parameters.
// |info| is an output parameter, only valid on Success.
MachVMRegionResult GetTopInfo(mach_port_t task,
                              mach_vm_size_t* size,
                              mach_vm_address_t* address,
                              vm_region_top_info_data_t* info) {
  mach_msg_type_number_t info_count = VM_REGION_TOP_INFO_COUNT;
  mach_port_t object_name;
  kern_return_t kr = mach_vm_region(task, address, size, VM_REGION_TOP_INFO,
                                    reinterpret_cast<vm_region_info_t>(info),
                                    &info_count, &object_name);
  // The kernel always returns a null object for VM_REGION_TOP_INFO, but
  // balance it with a deallocate in case this ever changes. See 10.9.2
  // xnu-2422.90.20/osfmk/vm/vm_map.c vm_map_region.
  mach_port_deallocate(task, object_name);
  return ParseOutputFromMachVMRegion(kr);
}

MachVMRegionResult GetBasicInfo(mach_port_t task,
                                mach_vm_size_t* size,
                                mach_vm_address_t* address,
                                vm_region_basic_info_64* info) {
  mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
  mach_port_t object_name;
  kern_return_t kr = mach_vm_region(
      task, address, size, VM_REGION_BASIC_INFO_64,
      reinterpret_cast<vm_region_info_t>(info), &info_count, &object_name);
  // The kernel always returns a null object for VM_REGION_BASIC_INFO_64, but
  // balance it with a deallocate in case this ever changes. See 10.9.2
  // xnu-2422.90.20/osfmk/vm/vm_map.c vm_map_region.
  mach_port_deallocate(task, object_name);
  return ParseOutputFromMachVMRegion(kr);
}

}  // namespace base