summaryrefslogtreecommitdiff
path: root/chromium/base/memory/scoped_refptr.h
blob: 2b4a532c87c1464f9f12b2a4b9b26322543c362a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_MEMORY_SCOPED_REFPTR_H_
#define BASE_MEMORY_SCOPED_REFPTR_H_

#include <stddef.h>

#include <iosfwd>
#include <type_traits>
#include <utility>

#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/macros.h"

template <class T>
class scoped_refptr;

namespace base {

template <class, typename>
class RefCounted;
template <class, typename>
class RefCountedThreadSafe;

template <typename T>
scoped_refptr<T> AdoptRef(T* t);

namespace subtle {

enum AdoptRefTag { kAdoptRefTag };
enum StartRefCountFromZeroTag { kStartRefCountFromZeroTag };
enum StartRefCountFromOneTag { kStartRefCountFromOneTag };

template <typename T, typename U, typename V>
constexpr bool IsRefCountPreferenceOverridden(const T*,
                                              const RefCounted<U, V>*) {
  return !std::is_same<std::decay_t<decltype(T::kRefCountPreference)>,
                       std::decay_t<decltype(U::kRefCountPreference)>>::value;
}

template <typename T, typename U, typename V>
constexpr bool IsRefCountPreferenceOverridden(
    const T*,
    const RefCountedThreadSafe<U, V>*) {
  return !std::is_same<std::decay_t<decltype(T::kRefCountPreference)>,
                       std::decay_t<decltype(U::kRefCountPreference)>>::value;
}

constexpr bool IsRefCountPreferenceOverridden(...) {
  return false;
}

}  // namespace subtle

// Creates a scoped_refptr from a raw pointer without incrementing the reference
// count. Use this only for a newly created object whose reference count starts
// from 1 instead of 0.
template <typename T>
scoped_refptr<T> AdoptRef(T* obj) {
  using Tag = std::decay_t<decltype(T::kRefCountPreference)>;
  static_assert(std::is_same<subtle::StartRefCountFromOneTag, Tag>::value,
                "Use AdoptRef only for the reference count starts from one.");

  DCHECK(obj);
  DCHECK(obj->HasOneRef());
  obj->Adopted();
  return scoped_refptr<T>(obj, subtle::kAdoptRefTag);
}

namespace subtle {

template <typename T>
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromZeroTag) {
  return scoped_refptr<T>(obj);
}

template <typename T>
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromOneTag) {
  return AdoptRef(obj);
}

}  // namespace subtle

// Constructs an instance of T, which is a ref counted type, and wraps the
// object into a scoped_refptr<T>.
template <typename T, typename... Args>
scoped_refptr<T> MakeRefCounted(Args&&... args) {
  T* obj = new T(std::forward<Args>(args)...);
  return subtle::AdoptRefIfNeeded(obj, T::kRefCountPreference);
}

// Takes an instance of T, which is a ref counted type, and wraps the object
// into a scoped_refptr<T>.
template <typename T>
scoped_refptr<T> WrapRefCounted(T* t) {
  return scoped_refptr<T>(t);
}

}  // namespace base

//
// A smart pointer class for reference counted objects.  Use this class instead
// of calling AddRef and Release manually on a reference counted object to
// avoid common memory leaks caused by forgetting to Release an object
// reference.  Sample usage:
//
//   class MyFoo : public RefCounted<MyFoo> {
//    ...
//    private:
//     friend class RefCounted<MyFoo>;  // Allow destruction by RefCounted<>.
//     ~MyFoo();                        // Destructor must be private/protected.
//   };
//
//   void some_function() {
//     scoped_refptr<MyFoo> foo = new MyFoo();
//     foo->Method(param);
//     // |foo| is released when this function returns
//   }
//
//   void some_other_function() {
//     scoped_refptr<MyFoo> foo = new MyFoo();
//     ...
//     foo = nullptr;  // explicitly releases |foo|
//     ...
//     if (foo)
//       foo->Method(param);
//   }
//
// The above examples show how scoped_refptr<T> acts like a pointer to T.
// Given two scoped_refptr<T> classes, it is also possible to exchange
// references between the two objects, like so:
//
//   {
//     scoped_refptr<MyFoo> a = new MyFoo();
//     scoped_refptr<MyFoo> b;
//
//     b.swap(a);
//     // now, |b| references the MyFoo object, and |a| references nullptr.
//   }
//
// To make both |a| and |b| in the above example reference the same MyFoo
// object, simply use the assignment operator:
//
//   {
//     scoped_refptr<MyFoo> a = new MyFoo();
//     scoped_refptr<MyFoo> b;
//
//     b = a;
//     // now, |a| and |b| each own a reference to the same MyFoo object.
//   }
//
template <class T>
class scoped_refptr {
 public:
  typedef T element_type;

  constexpr scoped_refptr() = default;

  // Constructs from raw pointer. constexpr if |p| is null.
  constexpr scoped_refptr(T* p) : ptr_(p) {
    if (ptr_)
      AddRef(ptr_);
  }

  // Copy constructor. This is required in addition to the copy conversion
  // constructor below.
  scoped_refptr(const scoped_refptr& r) : scoped_refptr(r.ptr_) {}

  // Copy conversion constructor.
  template <typename U,
            typename = typename std::enable_if<
                std::is_convertible<U*, T*>::value>::type>
  scoped_refptr(const scoped_refptr<U>& r) : scoped_refptr(r.ptr_) {}

  // Move constructor. This is required in addition to the move conversion
  // constructor below.
  scoped_refptr(scoped_refptr&& r) noexcept : ptr_(r.ptr_) { r.ptr_ = nullptr; }

  // Move conversion constructor.
  template <typename U,
            typename = typename std::enable_if<
                std::is_convertible<U*, T*>::value>::type>
  scoped_refptr(scoped_refptr<U>&& r) noexcept : ptr_(r.ptr_) {
    r.ptr_ = nullptr;
  }

  ~scoped_refptr() {
    static_assert(!base::subtle::IsRefCountPreferenceOverridden(
                      static_cast<T*>(nullptr), static_cast<T*>(nullptr)),
                  "It's unsafe to override the ref count preference."
                  " Please remove REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE"
                  " from subclasses.");
    if (ptr_)
      Release(ptr_);
  }

  T* get() const { return ptr_; }

  T& operator*() const {
    DCHECK(ptr_);
    return *ptr_;
  }

  T* operator->() const {
    DCHECK(ptr_);
    return ptr_;
  }

  scoped_refptr& operator=(T* p) { return *this = scoped_refptr(p); }

  // Unified assignment operator.
  scoped_refptr& operator=(scoped_refptr r) noexcept {
    swap(r);
    return *this;
  }

  void swap(scoped_refptr& r) noexcept { std::swap(ptr_, r.ptr_); }

  explicit operator bool() const { return ptr_ != nullptr; }

  template <typename U>
  bool operator==(const scoped_refptr<U>& rhs) const {
    return ptr_ == rhs.get();
  }

  template <typename U>
  bool operator!=(const scoped_refptr<U>& rhs) const {
    return !operator==(rhs);
  }

  template <typename U>
  bool operator<(const scoped_refptr<U>& rhs) const {
    return ptr_ < rhs.get();
  }

 protected:
  T* ptr_ = nullptr;

 private:
  template <typename U>
  friend scoped_refptr<U> base::AdoptRef(U*);

  scoped_refptr(T* p, base::subtle::AdoptRefTag) : ptr_(p) {}

  // Friend required for move constructors that set r.ptr_ to null.
  template <typename U>
  friend class scoped_refptr;

  // Non-inline helpers to allow:
  //     class Opaque;
  //     extern template class scoped_refptr<Opaque>;
  // Otherwise the compiler will complain that Opaque is an incomplete type.
  static void AddRef(T* ptr);
  static void Release(T* ptr);
};

// static
template <typename T>
void scoped_refptr<T>::AddRef(T* ptr) {
  ptr->AddRef();
}

// static
template <typename T>
void scoped_refptr<T>::Release(T* ptr) {
  ptr->Release();
}

template <typename T, typename U>
bool operator==(const scoped_refptr<T>& lhs, const U* rhs) {
  return lhs.get() == rhs;
}

template <typename T, typename U>
bool operator==(const T* lhs, const scoped_refptr<U>& rhs) {
  return lhs == rhs.get();
}

template <typename T>
bool operator==(const scoped_refptr<T>& lhs, std::nullptr_t null) {
  return !static_cast<bool>(lhs);
}

template <typename T>
bool operator==(std::nullptr_t null, const scoped_refptr<T>& rhs) {
  return !static_cast<bool>(rhs);
}

template <typename T, typename U>
bool operator!=(const scoped_refptr<T>& lhs, const U* rhs) {
  return !operator==(lhs, rhs);
}

template <typename T, typename U>
bool operator!=(const T* lhs, const scoped_refptr<U>& rhs) {
  return !operator==(lhs, rhs);
}

template <typename T>
bool operator!=(const scoped_refptr<T>& lhs, std::nullptr_t null) {
  return !operator==(lhs, null);
}

template <typename T>
bool operator!=(std::nullptr_t null, const scoped_refptr<T>& rhs) {
  return !operator==(null, rhs);
}

template <typename T>
std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) {
  return out << p.get();
}

template <typename T>
void swap(scoped_refptr<T>& lhs, scoped_refptr<T>& rhs) noexcept {
  lhs.swap(rhs);
}

#endif  // BASE_MEMORY_SCOPED_REFPTR_H_