1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! DEPRECATED !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Please don't introduce new instances of LazyInstance<T>. Use a function-local
// static of type base::NoDestructor<T> instead:
//
// Factory& Factory::GetInstance() {
// static base::NoDestructor<Factory> instance;
// return *instance;
// }
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//
// The LazyInstance<Type, Traits> class manages a single instance of Type,
// which will be lazily created on the first time it's accessed. This class is
// useful for places you would normally use a function-level static, but you
// need to have guaranteed thread-safety. The Type constructor will only ever
// be called once, even if two threads are racing to create the object. Get()
// and Pointer() will always return the same, completely initialized instance.
// When the instance is constructed it is registered with AtExitManager. The
// destructor will be called on program exit.
//
// LazyInstance is completely thread safe, assuming that you create it safely.
// The class was designed to be POD initialized, so it shouldn't require a
// static constructor. It really only makes sense to declare a LazyInstance as
// a global variable using the LAZY_INSTANCE_INITIALIZER initializer.
//
// LazyInstance is similar to Singleton, except it does not have the singleton
// property. You can have multiple LazyInstance's of the same type, and each
// will manage a unique instance. It also preallocates the space for Type, as
// to avoid allocating the Type instance on the heap. This may help with the
// performance of creating the instance, and reducing heap fragmentation. This
// requires that Type be a complete type so we can determine the size.
//
// Example usage:
// static LazyInstance<MyClass>::Leaky inst = LAZY_INSTANCE_INITIALIZER;
// void SomeMethod() {
// inst.Get().SomeMethod(); // MyClass::SomeMethod()
//
// MyClass* ptr = inst.Pointer();
// ptr->DoDoDo(); // MyClass::DoDoDo
// }
#ifndef BASE_LAZY_INSTANCE_H_
#define BASE_LAZY_INSTANCE_H_
#include <atomic>
#include <new> // For placement new.
#include "base/check_op.h"
#include "base/dcheck_is_on.h"
#include "base/debug/leak_annotations.h"
#include "base/lazy_instance_helpers.h"
#include "base/threading/thread_restrictions.h"
#include "build/build_config.h"
// LazyInstance uses its own struct initializer-list style static
// initialization, which does not require a constructor.
#define LAZY_INSTANCE_INITIALIZER {}
namespace base {
template <typename Type>
struct LazyInstanceTraitsBase {
static Type* New(void* instance) {
DCHECK_EQ(reinterpret_cast<uintptr_t>(instance) & (alignof(Type) - 1), 0u);
// Use placement new to initialize our instance in our preallocated space.
// The parenthesis is very important here to force POD type initialization.
return new (instance) Type();
}
static void CallDestructor(Type* instance) {
// Explicitly call the destructor.
instance->~Type();
}
};
// We pull out some of the functionality into non-templated functions, so we
// can implement the more complicated pieces out of line in the .cc file.
namespace internal {
// This traits class causes destruction the contained Type at process exit via
// AtExitManager. This is probably generally not what you want. Instead, prefer
// Leaky below.
template <typename Type>
struct DestructorAtExitLazyInstanceTraits {
static const bool kRegisterOnExit = true;
#if DCHECK_IS_ON()
static const bool kAllowedToAccessOnNonjoinableThread = false;
#endif
static Type* New(void* instance) {
return LazyInstanceTraitsBase<Type>::New(instance);
}
static void Delete(Type* instance) {
LazyInstanceTraitsBase<Type>::CallDestructor(instance);
}
};
// Use LazyInstance<T>::Leaky for a less-verbose call-site typedef; e.g.:
// base::LazyInstance<T>::Leaky my_leaky_lazy_instance;
// instead of:
// base::LazyInstance<T, base::internal::LeakyLazyInstanceTraits<T> >
// my_leaky_lazy_instance;
// (especially when T is MyLongTypeNameImplClientHolderFactory).
// Only use this internal::-qualified verbose form to extend this traits class
// (depending on its implementation details).
template <typename Type>
struct LeakyLazyInstanceTraits {
static const bool kRegisterOnExit = false;
#if DCHECK_IS_ON()
static const bool kAllowedToAccessOnNonjoinableThread = true;
#endif
static Type* New(void* instance) {
ANNOTATE_SCOPED_MEMORY_LEAK;
return LazyInstanceTraitsBase<Type>::New(instance);
}
static void Delete(Type* instance) {
}
};
template <typename Type>
struct ErrorMustSelectLazyOrDestructorAtExitForLazyInstance {};
} // namespace internal
template <
typename Type,
typename Traits =
internal::ErrorMustSelectLazyOrDestructorAtExitForLazyInstance<Type>>
class LazyInstance {
public:
// Do not define a destructor, as doing so makes LazyInstance a
// non-POD-struct. We don't want that because then a static initializer will
// be created to register the (empty) destructor with atexit() under MSVC, for
// example. We handle destruction of the contained Type class explicitly via
// the OnExit member function, where needed.
// ~LazyInstance() {}
// Convenience typedef to avoid having to repeat Type for leaky lazy
// instances.
typedef LazyInstance<Type, internal::LeakyLazyInstanceTraits<Type>> Leaky;
typedef LazyInstance<Type, internal::DestructorAtExitLazyInstanceTraits<Type>>
DestructorAtExit;
Type& Get() {
return *Pointer();
}
Type* Pointer() {
#if DCHECK_IS_ON()
if (!Traits::kAllowedToAccessOnNonjoinableThread)
internal::AssertSingletonAllowed();
#endif
return subtle::GetOrCreateLazyPointer(
private_instance_, &Traits::New, private_buf_,
Traits::kRegisterOnExit ? OnExit : nullptr, this);
}
// Returns true if the lazy instance has been created. Unlike Get() and
// Pointer(), calling IsCreated() will not instantiate the object of Type.
bool IsCreated() {
// Return true (i.e. "created") if |private_instance_| is either being
// created right now (i.e. |private_instance_| has value of
// internal::kLazyInstanceStateCreating) or was already created (i.e.
// |private_instance_| has any other non-zero value).
return 0 != private_instance_.load(std::memory_order_relaxed);
}
// MSVC gives a warning that the alignment expands the size of the
// LazyInstance struct to make the size a multiple of the alignment. This
// is expected in this case.
#if BUILDFLAG(IS_WIN)
#pragma warning(push)
#pragma warning(disable : 4324)
#endif
// Effectively private: member data is only public to allow the linker to
// statically initialize it and to maintain a POD class. DO NOT USE FROM
// OUTSIDE THIS CLASS.
std::atomic<uintptr_t> private_instance_;
// Preallocated space for the Type instance.
alignas(Type) char private_buf_[sizeof(Type)];
#if BUILDFLAG(IS_WIN)
#pragma warning(pop)
#endif
private:
Type* instance() {
return reinterpret_cast<Type*>(
private_instance_.load(std::memory_order_relaxed));
}
// Adapter function for use with AtExit. This should be called single
// threaded, so don't synchronize across threads.
// Calling OnExit while the instance is in use by other threads is a mistake.
static void OnExit(void* lazy_instance) {
LazyInstance<Type, Traits>* me =
reinterpret_cast<LazyInstance<Type, Traits>*>(lazy_instance);
Traits::Delete(me->instance());
me->private_instance_.store(0, std::memory_order_relaxed);
}
};
} // namespace base
#endif // BASE_LAZY_INSTANCE_H_
|