summaryrefslogtreecommitdiff
path: root/chromium/third_party/sqlite/sqlite-src-3240000/src/test_rtree.c
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/sqlite/sqlite-src-3240000/src/test_rtree.c')
-rw-r--r--chromium/third_party/sqlite/sqlite-src-3240000/src/test_rtree.c511
1 files changed, 0 insertions, 511 deletions
diff --git a/chromium/third_party/sqlite/sqlite-src-3240000/src/test_rtree.c b/chromium/third_party/sqlite/sqlite-src-3240000/src/test_rtree.c
deleted file mode 100644
index 0c6dbf3cd73..00000000000
--- a/chromium/third_party/sqlite/sqlite-src-3240000/src/test_rtree.c
+++ /dev/null
@@ -1,511 +0,0 @@
-/*
-** 2010 August 28
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** Code for testing all sorts of SQLite interfaces. This code
-** is not included in the SQLite library.
-*/
-
-#include "sqlite3.h"
-#if defined(INCLUDE_SQLITE_TCL_H)
-# include "sqlite_tcl.h"
-#else
-# include "tcl.h"
-#endif
-
-/* Solely for the UNUSED_PARAMETER() macro. */
-#include "sqliteInt.h"
-
-#ifdef SQLITE_ENABLE_RTREE
-/*
-** Type used to cache parameter information for the "circle" r-tree geometry
-** callback.
-*/
-typedef struct Circle Circle;
-struct Circle {
- struct Box {
- double xmin;
- double xmax;
- double ymin;
- double ymax;
- } aBox[2];
- double centerx;
- double centery;
- double radius;
- double mxArea;
- int eScoreType;
-};
-
-/*
-** Destructor function for Circle objects allocated by circle_geom().
-*/
-static void circle_del(void *p){
- sqlite3_free(p);
-}
-
-/*
-** Implementation of "circle" r-tree geometry callback.
-*/
-static int circle_geom(
- sqlite3_rtree_geometry *p,
- int nCoord,
- sqlite3_rtree_dbl *aCoord,
- int *pRes
-){
- int i; /* Iterator variable */
- Circle *pCircle; /* Structure defining circular region */
- double xmin, xmax; /* X dimensions of box being tested */
- double ymin, ymax; /* X dimensions of box being tested */
-
- xmin = aCoord[0];
- xmax = aCoord[1];
- ymin = aCoord[2];
- ymax = aCoord[3];
- pCircle = (Circle *)p->pUser;
- if( pCircle==0 ){
- /* If pUser is still 0, then the parameter values have not been tested
- ** for correctness or stored into a Circle structure yet. Do this now. */
-
- /* This geometry callback is for use with a 2-dimensional r-tree table.
- ** Return an error if the table does not have exactly 2 dimensions. */
- if( nCoord!=4 ) return SQLITE_ERROR;
-
- /* Test that the correct number of parameters (3) have been supplied,
- ** and that the parameters are in range (that the radius of the circle
- ** radius is greater than zero). */
- if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR;
-
- /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
- ** if the allocation fails. */
- pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
- if( !pCircle ) return SQLITE_NOMEM;
- p->xDelUser = circle_del;
-
- /* Record the center and radius of the circular region. One way that
- ** tested bounding boxes that intersect the circular region are detected
- ** is by testing if each corner of the bounding box lies within radius
- ** units of the center of the circle. */
- pCircle->centerx = p->aParam[0];
- pCircle->centery = p->aParam[1];
- pCircle->radius = p->aParam[2];
-
- /* Define two bounding box regions. The first, aBox[0], extends to
- ** infinity in the X dimension. It covers the same range of the Y dimension
- ** as the circular region. The second, aBox[1], extends to infinity in
- ** the Y dimension and is constrained to the range of the circle in the
- ** X dimension.
- **
- ** Then imagine each box is split in half along its short axis by a line
- ** that intersects the center of the circular region. A bounding box
- ** being tested can be said to intersect the circular region if it contains
- ** points from each half of either of the two infinite bounding boxes.
- */
- pCircle->aBox[0].xmin = pCircle->centerx;
- pCircle->aBox[0].xmax = pCircle->centerx;
- pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius;
- pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius;
- pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius;
- pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius;
- pCircle->aBox[1].ymin = pCircle->centery;
- pCircle->aBox[1].ymax = pCircle->centery;
- pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0;
- }
-
- /* Check if any of the 4 corners of the bounding-box being tested lie
- ** inside the circular region. If they do, then the bounding-box does
- ** intersect the region of interest. Set the output variable to true and
- ** return SQLITE_OK in this case. */
- for(i=0; i<4; i++){
- double x = (i&0x01) ? xmax : xmin;
- double y = (i&0x02) ? ymax : ymin;
- double d2;
-
- d2 = (x-pCircle->centerx)*(x-pCircle->centerx);
- d2 += (y-pCircle->centery)*(y-pCircle->centery);
- if( d2<(pCircle->radius*pCircle->radius) ){
- *pRes = 1;
- return SQLITE_OK;
- }
- }
-
- /* Check if the bounding box covers any other part of the circular region.
- ** See comments above for a description of how this test works. If it does
- ** cover part of the circular region, set the output variable to true
- ** and return SQLITE_OK. */
- for(i=0; i<2; i++){
- if( xmin<=pCircle->aBox[i].xmin
- && xmax>=pCircle->aBox[i].xmax
- && ymin<=pCircle->aBox[i].ymin
- && ymax>=pCircle->aBox[i].ymax
- ){
- *pRes = 1;
- return SQLITE_OK;
- }
- }
-
- /* The specified bounding box does not intersect the circular region. Set
- ** the output variable to zero and return SQLITE_OK. */
- *pRes = 0;
- return SQLITE_OK;
-}
-
-/*
-** Implementation of "circle" r-tree geometry callback using the
-** 2nd-generation interface that allows scoring.
-**
-** Two calling forms:
-**
-** Qcircle(X,Y,Radius,eType) -- All values are doubles
-** Qcircle('x:X y:Y r:R e:ETYPE') -- Single string parameter
-*/
-static int circle_query_func(sqlite3_rtree_query_info *p){
- int i; /* Iterator variable */
- Circle *pCircle; /* Structure defining circular region */
- double xmin, xmax; /* X dimensions of box being tested */
- double ymin, ymax; /* X dimensions of box being tested */
- int nWithin = 0; /* Number of corners inside the circle */
-
- xmin = p->aCoord[0];
- xmax = p->aCoord[1];
- ymin = p->aCoord[2];
- ymax = p->aCoord[3];
- pCircle = (Circle *)p->pUser;
- if( pCircle==0 ){
- /* If pUser is still 0, then the parameter values have not been tested
- ** for correctness or stored into a Circle structure yet. Do this now. */
-
- /* This geometry callback is for use with a 2-dimensional r-tree table.
- ** Return an error if the table does not have exactly 2 dimensions. */
- if( p->nCoord!=4 ) return SQLITE_ERROR;
-
- /* Test that the correct number of parameters (1 or 4) have been supplied.
- */
- if( p->nParam!=4 && p->nParam!=1 ) return SQLITE_ERROR;
-
- /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
- ** if the allocation fails. */
- pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
- if( !pCircle ) return SQLITE_NOMEM;
- p->xDelUser = circle_del;
-
- /* Record the center and radius of the circular region. One way that
- ** tested bounding boxes that intersect the circular region are detected
- ** is by testing if each corner of the bounding box lies within radius
- ** units of the center of the circle. */
- if( p->nParam==4 ){
- pCircle->centerx = p->aParam[0];
- pCircle->centery = p->aParam[1];
- pCircle->radius = p->aParam[2];
- pCircle->eScoreType = (int)p->aParam[3];
- }else{
- const char *z = (const char*)sqlite3_value_text(p->apSqlParam[0]);
- pCircle->centerx = 0.0;
- pCircle->centery = 0.0;
- pCircle->radius = 0.0;
- pCircle->eScoreType = 0;
- while( z && z[0] ){
- if( z[0]=='r' && z[1]==':' ){
- pCircle->radius = atof(&z[2]);
- }else if( z[0]=='x' && z[1]==':' ){
- pCircle->centerx = atof(&z[2]);
- }else if( z[0]=='y' && z[1]==':' ){
- pCircle->centery = atof(&z[2]);
- }else if( z[0]=='e' && z[1]==':' ){
- pCircle->eScoreType = (int)atof(&z[2]);
- }else if( z[0]==' ' ){
- z++;
- continue;
- }
- while( z[0]!=0 && z[0]!=' ' ) z++;
- while( z[0]==' ' ) z++;
- }
- }
- if( pCircle->radius<0.0 ){
- sqlite3_free(pCircle);
- return SQLITE_NOMEM;
- }
-
- /* Define two bounding box regions. The first, aBox[0], extends to
- ** infinity in the X dimension. It covers the same range of the Y dimension
- ** as the circular region. The second, aBox[1], extends to infinity in
- ** the Y dimension and is constrained to the range of the circle in the
- ** X dimension.
- **
- ** Then imagine each box is split in half along its short axis by a line
- ** that intersects the center of the circular region. A bounding box
- ** being tested can be said to intersect the circular region if it contains
- ** points from each half of either of the two infinite bounding boxes.
- */
- pCircle->aBox[0].xmin = pCircle->centerx;
- pCircle->aBox[0].xmax = pCircle->centerx;
- pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius;
- pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius;
- pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius;
- pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius;
- pCircle->aBox[1].ymin = pCircle->centery;
- pCircle->aBox[1].ymax = pCircle->centery;
- pCircle->mxArea = 200.0*200.0;
- }
-
- /* Check if any of the 4 corners of the bounding-box being tested lie
- ** inside the circular region. If they do, then the bounding-box does
- ** intersect the region of interest. Set the output variable to true and
- ** return SQLITE_OK in this case. */
- for(i=0; i<4; i++){
- double x = (i&0x01) ? xmax : xmin;
- double y = (i&0x02) ? ymax : ymin;
- double d2;
-
- d2 = (x-pCircle->centerx)*(x-pCircle->centerx);
- d2 += (y-pCircle->centery)*(y-pCircle->centery);
- if( d2<(pCircle->radius*pCircle->radius) ) nWithin++;
- }
-
- /* Check if the bounding box covers any other part of the circular region.
- ** See comments above for a description of how this test works. If it does
- ** cover part of the circular region, set the output variable to true
- ** and return SQLITE_OK. */
- if( nWithin==0 ){
- for(i=0; i<2; i++){
- if( xmin<=pCircle->aBox[i].xmin
- && xmax>=pCircle->aBox[i].xmax
- && ymin<=pCircle->aBox[i].ymin
- && ymax>=pCircle->aBox[i].ymax
- ){
- nWithin = 1;
- break;
- }
- }
- }
-
- if( pCircle->eScoreType==1 ){
- /* Depth first search */
- p->rScore = p->iLevel;
- }else if( pCircle->eScoreType==2 ){
- /* Breadth first search */
- p->rScore = 100 - p->iLevel;
- }else if( pCircle->eScoreType==3 ){
- /* Depth-first search, except sort the leaf nodes by area with
- ** the largest area first */
- if( p->iLevel==1 ){
- p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea;
- if( p->rScore<0.01 ) p->rScore = 0.01;
- }else{
- p->rScore = 0.0;
- }
- }else if( pCircle->eScoreType==4 ){
- /* Depth-first search, except exclude odd rowids */
- p->rScore = p->iLevel;
- if( p->iRowid&1 ) nWithin = 0;
- }else{
- /* Breadth-first search, except exclude odd rowids */
- p->rScore = 100 - p->iLevel;
- if( p->iRowid&1 ) nWithin = 0;
- }
- if( nWithin==0 ){
- p->eWithin = NOT_WITHIN;
- }else if( nWithin>=4 ){
- p->eWithin = FULLY_WITHIN;
- }else{
- p->eWithin = PARTLY_WITHIN;
- }
- return SQLITE_OK;
-}
-/*
-** Implementation of "breadthfirstsearch" r-tree geometry callback using the
-** 2nd-generation interface that allows scoring.
-**
-** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ...
-**
-** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1.
-*/
-static int bfs_query_func(sqlite3_rtree_query_info *p){
- double x0,x1,y0,y1; /* Dimensions of box being tested */
- double bx0,bx1,by0,by1; /* Boundary of the query function */
-
- if( p->nParam!=4 ) return SQLITE_ERROR;
- x0 = p->aCoord[0];
- x1 = p->aCoord[1];
- y0 = p->aCoord[2];
- y1 = p->aCoord[3];
- bx0 = p->aParam[0];
- bx1 = p->aParam[1];
- by0 = p->aParam[2];
- by1 = p->aParam[3];
- p->rScore = 100 - p->iLevel;
- if( p->eParentWithin==FULLY_WITHIN ){
- p->eWithin = FULLY_WITHIN;
- }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){
- p->eWithin = FULLY_WITHIN;
- }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){
- p->eWithin = PARTLY_WITHIN;
- }else{
- p->eWithin = NOT_WITHIN;
- }
- return SQLITE_OK;
-}
-
-/* END of implementation of "circle" geometry callback.
-**************************************************************************
-*************************************************************************/
-
-#include <assert.h>
-#if defined(INCLUDE_SQLITE_TCL_H)
-# include "sqlite_tcl.h"
-#else
-# include "tcl.h"
-#endif
-
-typedef struct Cube Cube;
-struct Cube {
- double x;
- double y;
- double z;
- double width;
- double height;
- double depth;
-};
-
-static void cube_context_free(void *p){
- sqlite3_free(p);
-}
-
-/*
-** The context pointer registered along with the 'cube' callback is
-** always ((void *)&gHere). This is just to facilitate testing, it is not
-** actually used for anything.
-*/
-static int gHere = 42;
-
-/*
-** Implementation of a simple r-tree geom callback to test for intersection
-** of r-tree rows with a "cube" shape. Cubes are defined by six scalar
-** coordinates as follows:
-**
-** cube(x, y, z, width, height, depth)
-**
-** The width, height and depth parameters must all be greater than zero.
-*/
-static int cube_geom(
- sqlite3_rtree_geometry *p,
- int nCoord,
- sqlite3_rtree_dbl *aCoord,
- int *piRes
-){
- Cube *pCube = (Cube *)p->pUser;
-
- assert( p->pContext==(void *)&gHere );
-
- if( pCube==0 ){
- if( p->nParam!=6 || nCoord!=6
- || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0
- ){
- return SQLITE_ERROR;
- }
- pCube = (Cube *)sqlite3_malloc(sizeof(Cube));
- if( !pCube ){
- return SQLITE_NOMEM;
- }
- pCube->x = p->aParam[0];
- pCube->y = p->aParam[1];
- pCube->z = p->aParam[2];
- pCube->width = p->aParam[3];
- pCube->height = p->aParam[4];
- pCube->depth = p->aParam[5];
-
- p->pUser = (void *)pCube;
- p->xDelUser = cube_context_free;
- }
-
- assert( nCoord==6 );
- *piRes = 0;
- if( aCoord[0]<=(pCube->x+pCube->width)
- && aCoord[1]>=pCube->x
- && aCoord[2]<=(pCube->y+pCube->height)
- && aCoord[3]>=pCube->y
- && aCoord[4]<=(pCube->z+pCube->depth)
- && aCoord[5]>=pCube->z
- ){
- *piRes = 1;
- }
-
- return SQLITE_OK;
-}
-#endif /* SQLITE_ENABLE_RTREE */
-
-static int SQLITE_TCLAPI register_cube_geom(
- void * clientData,
- Tcl_Interp *interp,
- int objc,
- Tcl_Obj *CONST objv[]
-){
-#ifndef SQLITE_ENABLE_RTREE
- UNUSED_PARAMETER(clientData);
- UNUSED_PARAMETER(interp);
- UNUSED_PARAMETER(objc);
- UNUSED_PARAMETER(objv);
-#else
- extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
- extern const char *sqlite3ErrName(int);
- sqlite3 *db;
- int rc;
-
- if( objc!=2 ){
- Tcl_WrongNumArgs(interp, 1, objv, "DB");
- return TCL_ERROR;
- }
- if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
- rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere);
- Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);
-#endif
- return TCL_OK;
-}
-
-static int SQLITE_TCLAPI register_circle_geom(
- void * clientData,
- Tcl_Interp *interp,
- int objc,
- Tcl_Obj *CONST objv[]
-){
-#ifndef SQLITE_ENABLE_RTREE
- UNUSED_PARAMETER(clientData);
- UNUSED_PARAMETER(interp);
- UNUSED_PARAMETER(objc);
- UNUSED_PARAMETER(objv);
-#else
- extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
- extern const char *sqlite3ErrName(int);
- sqlite3 *db;
- int rc;
-
- if( objc!=2 ){
- Tcl_WrongNumArgs(interp, 1, objv, "DB");
- return TCL_ERROR;
- }
- if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
- rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0);
- if( rc==SQLITE_OK ){
- rc = sqlite3_rtree_query_callback(db, "Qcircle",
- circle_query_func, 0, 0);
- }
- if( rc==SQLITE_OK ){
- rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch",
- bfs_query_func, 0, 0);
- }
- Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);
-#endif
- return TCL_OK;
-}
-
-int Sqlitetestrtree_Init(Tcl_Interp *interp){
- Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0);
- Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0);
- return TCL_OK;
-}