summaryrefslogtreecommitdiff
path: root/chromium/third_party/sqlite/sqlite-src-3240000/ext/misc/amatch.c
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/third_party/sqlite/sqlite-src-3240000/ext/misc/amatch.c')
-rw-r--r--chromium/third_party/sqlite/sqlite-src-3240000/ext/misc/amatch.c1499
1 files changed, 0 insertions, 1499 deletions
diff --git a/chromium/third_party/sqlite/sqlite-src-3240000/ext/misc/amatch.c b/chromium/third_party/sqlite/sqlite-src-3240000/ext/misc/amatch.c
deleted file mode 100644
index 914e2633d4b..00000000000
--- a/chromium/third_party/sqlite/sqlite-src-3240000/ext/misc/amatch.c
+++ /dev/null
@@ -1,1499 +0,0 @@
-/*
-** 2013-03-14
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-**
-** This file contains code for a demonstration virtual table that finds
-** "approximate matches" - strings from a finite set that are nearly the
-** same as a single input string. The virtual table is called "amatch".
-**
-** A amatch virtual table is created like this:
-**
-** CREATE VIRTUAL TABLE f USING approximate_match(
-** vocabulary_table=<tablename>, -- V
-** vocabulary_word=<columnname>, -- W
-** vocabulary_language=<columnname>, -- L
-** edit_distances=<edit-cost-table>
-** );
-**
-** When it is created, the new amatch table must be supplied with the
-** the name of a table V and columns V.W and V.L such that
-**
-** SELECT W FROM V WHERE L=$language
-**
-** returns the allowed vocabulary for the match. If the "vocabulary_language"
-** or L columnname is left unspecified or is an empty string, then no
-** filtering of the vocabulary by language is performed.
-**
-** For efficiency, it is essential that the vocabulary table be indexed:
-**
-** CREATE vocab_index ON V(W)
-**
-** A separate edit-cost-table provides scoring information that defines
-** what it means for one string to be "close" to another.
-**
-** The edit-cost-table must contain exactly four columns (more precisely,
-** the statement "SELECT * FROM <edit-cost-table>" must return records
-** that consist of four columns). It does not matter what the columns are
-** named.
-**
-** Each row in the edit-cost-table represents a single character
-** transformation going from user input to the vocabulary. The leftmost
-** column of the row (column 0) contains an integer identifier of the
-** language to which the transformation rule belongs (see "MULTIPLE LANGUAGES"
-** below). The second column of the row (column 1) contains the input
-** character or characters - the characters of user input. The third
-** column contains characters as they appear in the vocabulary table.
-** And the fourth column contains the integer cost of making the
-** transformation. For example:
-**
-** CREATE TABLE f_data(iLang, cFrom, cTo, Cost);
-** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '', 'a', 100);
-** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, 'b', '', 87);
-** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38);
-** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40);
-**
-** The first row inserted into the edit-cost-table by the SQL script
-** above indicates that the cost of having an extra 'a' in the vocabulary
-** table that is missing in the user input 100. (All costs are integers.
-** Overall cost must not exceed 16777216.) The second INSERT statement
-** creates a rule saying that the cost of having a single letter 'b' in
-** user input which is missing in the vocabulary table is 87. The third
-** INSERT statement mean that the cost of matching an 'o' in user input
-** against an 'oe' in the vocabulary table is 38. And so forth.
-**
-** The following rules are special:
-**
-** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '?', '', 97);
-** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '', '?', 98);
-** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '?', '?', 99);
-**
-** The '?' to '' rule is the cost of having any single character in the input
-** that is not found in the vocabular. The '' to '?' rule is the cost of
-** having a character in the vocabulary table that is missing from input.
-** And the '?' to '?' rule is the cost of doing an arbitrary character
-** substitution. These three generic rules apply across all languages.
-** In other words, the iLang field is ignored for the generic substitution
-** rules. If more than one cost is given for a generic substitution rule,
-** then the lowest cost is used.
-**
-** Once it has been created, the amatch virtual table can be queried
-** as follows:
-**
-** SELECT word, distance FROM f
-** WHERE word MATCH 'abcdefg'
-** AND distance<200;
-**
-** This query outputs the strings contained in the T(F) field that
-** are close to "abcdefg" and in order of increasing distance. No string
-** is output more than once. If there are multiple ways to transform the
-** target string ("abcdefg") into a string in the vocabulary table then
-** the lowest cost transform is the one that is returned. In this example,
-** the search is limited to strings with a total distance of less than 200.
-**
-** For efficiency, it is important to put tight bounds on the distance.
-** The time and memory space needed to perform this query is exponential
-** in the maximum distance. A good rule of thumb is to limit the distance
-** to no more than 1.5 or 2 times the maximum cost of any rule in the
-** edit-cost-table.
-**
-** The amatch is a read-only table. Any attempt to DELETE, INSERT, or
-** UPDATE on a amatch table will throw an error.
-**
-** It is important to put some kind of a limit on the amatch output. This
-** can be either in the form of a LIMIT clause at the end of the query,
-** or better, a "distance<NNN" constraint where NNN is some number. The
-** running time and memory requirement is exponential in the value of NNN
-** so you want to make sure that NNN is not too big. A value of NNN that
-** is about twice the average transformation cost seems to give good results.
-**
-** The amatch table can be useful for tasks such as spelling correction.
-** Suppose all allowed words are in table vocabulary(w). Then one would create
-** an amatch virtual table like this:
-**
-** CREATE VIRTUAL TABLE ex1 USING amatch(
-** vocabtable=vocabulary,
-** vocabcolumn=w,
-** edit_distances=ec1
-** );
-**
-** Then given an input word $word, look up close spellings this way:
-**
-** SELECT word, distance FROM ex1
-** WHERE word MATCH $word AND distance<200;
-**
-** MULTIPLE LANGUAGES
-**
-** Normally, the "iLang" value associated with all character transformations
-** in the edit-cost-table is zero. However, if required, the amatch
-** virtual table allows multiple languages to be defined. Each query uses
-** only a single iLang value. This allows, for example, a single
-** amatch table to support multiple languages.
-**
-** By default, only the rules with iLang=0 are used. To specify an
-** alternative language, a "language = ?" expression must be added to the
-** WHERE clause of a SELECT, where ? is the integer identifier of the desired
-** language. For example:
-**
-** SELECT word, distance FROM ex1
-** WHERE word MATCH $word
-** AND distance<=200
-** AND language=1 -- Specify use language 1 instead of 0
-**
-** If no "language = ?" constraint is specified in the WHERE clause, language
-** 0 is used.
-**
-** LIMITS
-**
-** The maximum language number is 2147483647. The maximum length of either
-** of the strings in the second or third column of the amatch data table
-** is 50 bytes. The maximum cost on a rule is 1000.
-*/
-#include "sqlite3ext.h"
-SQLITE_EXTENSION_INIT1
-#include <stdlib.h>
-#include <string.h>
-#include <assert.h>
-#include <stdio.h>
-#include <ctype.h>
-
-#ifndef SQLITE_OMIT_VIRTUALTABLE
-
-/*
-** Forward declaration of objects used by this implementation
-*/
-typedef struct amatch_vtab amatch_vtab;
-typedef struct amatch_cursor amatch_cursor;
-typedef struct amatch_rule amatch_rule;
-typedef struct amatch_word amatch_word;
-typedef struct amatch_avl amatch_avl;
-
-
-/*****************************************************************************
-** AVL Tree implementation
-*/
-/*
-** Objects that want to be members of the AVL tree should embedded an
-** instance of this structure.
-*/
-struct amatch_avl {
- amatch_word *pWord; /* Points to the object being stored in the tree */
- char *zKey; /* Key. zero-terminated string. Must be unique */
- amatch_avl *pBefore; /* Other elements less than zKey */
- amatch_avl *pAfter; /* Other elements greater than zKey */
- amatch_avl *pUp; /* Parent element */
- short int height; /* Height of this node. Leaf==1 */
- short int imbalance; /* Height difference between pBefore and pAfter */
-};
-
-/* Recompute the amatch_avl.height and amatch_avl.imbalance fields for p.
-** Assume that the children of p have correct heights.
-*/
-static void amatchAvlRecomputeHeight(amatch_avl *p){
- short int hBefore = p->pBefore ? p->pBefore->height : 0;
- short int hAfter = p->pAfter ? p->pAfter->height : 0;
- p->imbalance = hBefore - hAfter; /* -: pAfter higher. +: pBefore higher */
- p->height = (hBefore>hAfter ? hBefore : hAfter)+1;
-}
-
-/*
-** P B
-** / \ / \
-** B Z ==> X P
-** / \ / \
-** X Y Y Z
-**
-*/
-static amatch_avl *amatchAvlRotateBefore(amatch_avl *pP){
- amatch_avl *pB = pP->pBefore;
- amatch_avl *pY = pB->pAfter;
- pB->pUp = pP->pUp;
- pB->pAfter = pP;
- pP->pUp = pB;
- pP->pBefore = pY;
- if( pY ) pY->pUp = pP;
- amatchAvlRecomputeHeight(pP);
- amatchAvlRecomputeHeight(pB);
- return pB;
-}
-
-/*
-** P A
-** / \ / \
-** X A ==> P Z
-** / \ / \
-** Y Z X Y
-**
-*/
-static amatch_avl *amatchAvlRotateAfter(amatch_avl *pP){
- amatch_avl *pA = pP->pAfter;
- amatch_avl *pY = pA->pBefore;
- pA->pUp = pP->pUp;
- pA->pBefore = pP;
- pP->pUp = pA;
- pP->pAfter = pY;
- if( pY ) pY->pUp = pP;
- amatchAvlRecomputeHeight(pP);
- amatchAvlRecomputeHeight(pA);
- return pA;
-}
-
-/*
-** Return a pointer to the pBefore or pAfter pointer in the parent
-** of p that points to p. Or if p is the root node, return pp.
-*/
-static amatch_avl **amatchAvlFromPtr(amatch_avl *p, amatch_avl **pp){
- amatch_avl *pUp = p->pUp;
- if( pUp==0 ) return pp;
- if( pUp->pAfter==p ) return &pUp->pAfter;
- return &pUp->pBefore;
-}
-
-/*
-** Rebalance all nodes starting with p and working up to the root.
-** Return the new root.
-*/
-static amatch_avl *amatchAvlBalance(amatch_avl *p){
- amatch_avl *pTop = p;
- amatch_avl **pp;
- while( p ){
- amatchAvlRecomputeHeight(p);
- if( p->imbalance>=2 ){
- amatch_avl *pB = p->pBefore;
- if( pB->imbalance<0 ) p->pBefore = amatchAvlRotateAfter(pB);
- pp = amatchAvlFromPtr(p,&p);
- p = *pp = amatchAvlRotateBefore(p);
- }else if( p->imbalance<=(-2) ){
- amatch_avl *pA = p->pAfter;
- if( pA->imbalance>0 ) p->pAfter = amatchAvlRotateBefore(pA);
- pp = amatchAvlFromPtr(p,&p);
- p = *pp = amatchAvlRotateAfter(p);
- }
- pTop = p;
- p = p->pUp;
- }
- return pTop;
-}
-
-/* Search the tree rooted at p for an entry with zKey. Return a pointer
-** to the entry or return NULL.
-*/
-static amatch_avl *amatchAvlSearch(amatch_avl *p, const char *zKey){
- int c;
- while( p && (c = strcmp(zKey, p->zKey))!=0 ){
- p = (c<0) ? p->pBefore : p->pAfter;
- }
- return p;
-}
-
-/* Find the first node (the one with the smallest key).
-*/
-static amatch_avl *amatchAvlFirst(amatch_avl *p){
- if( p ) while( p->pBefore ) p = p->pBefore;
- return p;
-}
-
-#if 0 /* NOT USED */
-/* Return the node with the next larger key after p.
-*/
-static amatch_avl *amatchAvlNext(amatch_avl *p){
- amatch_avl *pPrev = 0;
- while( p && p->pAfter==pPrev ){
- pPrev = p;
- p = p->pUp;
- }
- if( p && pPrev==0 ){
- p = amatchAvlFirst(p->pAfter);
- }
- return p;
-}
-#endif
-
-#if 0 /* NOT USED */
-/* Verify AVL tree integrity
-*/
-static int amatchAvlIntegrity(amatch_avl *pHead){
- amatch_avl *p;
- if( pHead==0 ) return 1;
- if( (p = pHead->pBefore)!=0 ){
- assert( p->pUp==pHead );
- assert( amatchAvlIntegrity(p) );
- assert( strcmp(p->zKey, pHead->zKey)<0 );
- while( p->pAfter ) p = p->pAfter;
- assert( strcmp(p->zKey, pHead->zKey)<0 );
- }
- if( (p = pHead->pAfter)!=0 ){
- assert( p->pUp==pHead );
- assert( amatchAvlIntegrity(p) );
- assert( strcmp(p->zKey, pHead->zKey)>0 );
- p = amatchAvlFirst(p);
- assert( strcmp(p->zKey, pHead->zKey)>0 );
- }
- return 1;
-}
-static int amatchAvlIntegrity2(amatch_avl *pHead){
- amatch_avl *p, *pNext;
- for(p=amatchAvlFirst(pHead); p; p=pNext){
- pNext = amatchAvlNext(p);
- if( pNext==0 ) break;
- assert( strcmp(p->zKey, pNext->zKey)<0 );
- }
- return 1;
-}
-#endif
-
-/* Insert a new node pNew. Return NULL on success. If the key is not
-** unique, then do not perform the insert but instead leave pNew unchanged
-** and return a pointer to an existing node with the same key.
-*/
-static amatch_avl *amatchAvlInsert(amatch_avl **ppHead, amatch_avl *pNew){
- int c;
- amatch_avl *p = *ppHead;
- if( p==0 ){
- p = pNew;
- pNew->pUp = 0;
- }else{
- while( p ){
- c = strcmp(pNew->zKey, p->zKey);
- if( c<0 ){
- if( p->pBefore ){
- p = p->pBefore;
- }else{
- p->pBefore = pNew;
- pNew->pUp = p;
- break;
- }
- }else if( c>0 ){
- if( p->pAfter ){
- p = p->pAfter;
- }else{
- p->pAfter = pNew;
- pNew->pUp = p;
- break;
- }
- }else{
- return p;
- }
- }
- }
- pNew->pBefore = 0;
- pNew->pAfter = 0;
- pNew->height = 1;
- pNew->imbalance = 0;
- *ppHead = amatchAvlBalance(p);
- /* assert( amatchAvlIntegrity(*ppHead) ); */
- /* assert( amatchAvlIntegrity2(*ppHead) ); */
- return 0;
-}
-
-/* Remove node pOld from the tree. pOld must be an element of the tree or
-** the AVL tree will become corrupt.
-*/
-static void amatchAvlRemove(amatch_avl **ppHead, amatch_avl *pOld){
- amatch_avl **ppParent;
- amatch_avl *pBalance = 0;
- /* assert( amatchAvlSearch(*ppHead, pOld->zKey)==pOld ); */
- ppParent = amatchAvlFromPtr(pOld, ppHead);
- if( pOld->pBefore==0 && pOld->pAfter==0 ){
- *ppParent = 0;
- pBalance = pOld->pUp;
- }else if( pOld->pBefore && pOld->pAfter ){
- amatch_avl *pX, *pY;
- pX = amatchAvlFirst(pOld->pAfter);
- *amatchAvlFromPtr(pX, 0) = pX->pAfter;
- if( pX->pAfter ) pX->pAfter->pUp = pX->pUp;
- pBalance = pX->pUp;
- pX->pAfter = pOld->pAfter;
- if( pX->pAfter ){
- pX->pAfter->pUp = pX;
- }else{
- assert( pBalance==pOld );
- pBalance = pX;
- }
- pX->pBefore = pY = pOld->pBefore;
- if( pY ) pY->pUp = pX;
- pX->pUp = pOld->pUp;
- *ppParent = pX;
- }else if( pOld->pBefore==0 ){
- *ppParent = pBalance = pOld->pAfter;
- pBalance->pUp = pOld->pUp;
- }else if( pOld->pAfter==0 ){
- *ppParent = pBalance = pOld->pBefore;
- pBalance->pUp = pOld->pUp;
- }
- *ppHead = amatchAvlBalance(pBalance);
- pOld->pUp = 0;
- pOld->pBefore = 0;
- pOld->pAfter = 0;
- /* assert( amatchAvlIntegrity(*ppHead) ); */
- /* assert( amatchAvlIntegrity2(*ppHead) ); */
-}
-/*
-** End of the AVL Tree implementation
-******************************************************************************/
-
-
-/*
-** Various types.
-**
-** amatch_cost is the "cost" of an edit operation.
-**
-** amatch_len is the length of a matching string.
-**
-** amatch_langid is an ruleset identifier.
-*/
-typedef int amatch_cost;
-typedef signed char amatch_len;
-typedef int amatch_langid;
-
-/*
-** Limits
-*/
-#define AMATCH_MX_LENGTH 50 /* Maximum length of a rule string */
-#define AMATCH_MX_LANGID 2147483647 /* Maximum rule ID */
-#define AMATCH_MX_COST 1000 /* Maximum single-rule cost */
-
-/*
-** A match or partial match
-*/
-struct amatch_word {
- amatch_word *pNext; /* Next on a list of all amatch_words */
- amatch_avl sCost; /* Linkage of this node into the cost tree */
- amatch_avl sWord; /* Linkage of this node into the word tree */
- amatch_cost rCost; /* Cost of the match so far */
- int iSeq; /* Sequence number */
- char zCost[10]; /* Cost key (text rendering of rCost) */
- short int nMatch; /* Input characters matched */
- char zWord[4]; /* Text of the word. Extra space appended as needed */
-};
-
-/*
-** Each transformation rule is stored as an instance of this object.
-** All rules are kept on a linked list sorted by rCost.
-*/
-struct amatch_rule {
- amatch_rule *pNext; /* Next rule in order of increasing rCost */
- char *zFrom; /* Transform from (a string from user input) */
- amatch_cost rCost; /* Cost of this transformation */
- amatch_langid iLang; /* The langauge to which this rule belongs */
- amatch_len nFrom, nTo; /* Length of the zFrom and zTo strings */
- char zTo[4]; /* Tranform to V.W value (extra space appended) */
-};
-
-/*
-** A amatch virtual-table object
-*/
-struct amatch_vtab {
- sqlite3_vtab base; /* Base class - must be first */
- char *zClassName; /* Name of this class. Default: "amatch" */
- char *zDb; /* Name of database. (ex: "main") */
- char *zSelf; /* Name of this virtual table */
- char *zCostTab; /* Name of edit-cost-table */
- char *zVocabTab; /* Name of vocabulary table */
- char *zVocabWord; /* Name of vocabulary table word column */
- char *zVocabLang; /* Name of vocabulary table language column */
- amatch_rule *pRule; /* All active rules in this amatch */
- amatch_cost rIns; /* Generic insertion cost '' -> ? */
- amatch_cost rDel; /* Generic deletion cost ? -> '' */
- amatch_cost rSub; /* Generic substitution cost ? -> ? */
- sqlite3 *db; /* The database connection */
- sqlite3_stmt *pVCheck; /* Query to check zVocabTab */
- int nCursor; /* Number of active cursors */
-};
-
-/* A amatch cursor object */
-struct amatch_cursor {
- sqlite3_vtab_cursor base; /* Base class - must be first */
- sqlite3_int64 iRowid; /* The rowid of the current word */
- amatch_langid iLang; /* Use this language ID */
- amatch_cost rLimit; /* Maximum cost of any term */
- int nBuf; /* Space allocated for zBuf */
- int oomErr; /* True following an OOM error */
- int nWord; /* Number of amatch_word objects */
- char *zBuf; /* Temp-use buffer space */
- char *zInput; /* Input word to match against */
- amatch_vtab *pVtab; /* The virtual table this cursor belongs to */
- amatch_word *pAllWords; /* List of all amatch_word objects */
- amatch_word *pCurrent; /* Most recent solution */
- amatch_avl *pCost; /* amatch_word objects keyed by iCost */
- amatch_avl *pWord; /* amatch_word objects keyed by zWord */
-};
-
-/*
-** The two input rule lists are both sorted in order of increasing
-** cost. Merge them together into a single list, sorted by cost, and
-** return a pointer to the head of that list.
-*/
-static amatch_rule *amatchMergeRules(amatch_rule *pA, amatch_rule *pB){
- amatch_rule head;
- amatch_rule *pTail;
-
- pTail = &head;
- while( pA && pB ){
- if( pA->rCost<=pB->rCost ){
- pTail->pNext = pA;
- pTail = pA;
- pA = pA->pNext;
- }else{
- pTail->pNext = pB;
- pTail = pB;
- pB = pB->pNext;
- }
- }
- if( pA==0 ){
- pTail->pNext = pB;
- }else{
- pTail->pNext = pA;
- }
- return head.pNext;
-}
-
-/*
-** Statement pStmt currently points to a row in the amatch data table. This
-** function allocates and populates a amatch_rule structure according to
-** the content of the row.
-**
-** If successful, *ppRule is set to point to the new object and SQLITE_OK
-** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point
-** to an error message and an SQLite error code returned.
-*/
-static int amatchLoadOneRule(
- amatch_vtab *p, /* Fuzzer virtual table handle */
- sqlite3_stmt *pStmt, /* Base rule on statements current row */
- amatch_rule **ppRule, /* OUT: New rule object */
- char **pzErr /* OUT: Error message */
-){
- sqlite3_int64 iLang = sqlite3_column_int64(pStmt, 0);
- const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1);
- const char *zTo = (const char *)sqlite3_column_text(pStmt, 2);
- amatch_cost rCost = sqlite3_column_int(pStmt, 3);
-
- int rc = SQLITE_OK; /* Return code */
- int nFrom; /* Size of string zFrom, in bytes */
- int nTo; /* Size of string zTo, in bytes */
- amatch_rule *pRule = 0; /* New rule object to return */
-
- if( zFrom==0 ) zFrom = "";
- if( zTo==0 ) zTo = "";
- nFrom = (int)strlen(zFrom);
- nTo = (int)strlen(zTo);
-
- /* Silently ignore null transformations */
- if( strcmp(zFrom, zTo)==0 ){
- if( zFrom[0]=='?' && zFrom[1]==0 ){
- if( p->rSub==0 || p->rSub>rCost ) p->rSub = rCost;
- }
- *ppRule = 0;
- return SQLITE_OK;
- }
-
- if( rCost<=0 || rCost>AMATCH_MX_COST ){
- *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d",
- p->zClassName, AMATCH_MX_COST
- );
- rc = SQLITE_ERROR;
- }else
- if( nFrom>AMATCH_MX_LENGTH || nTo>AMATCH_MX_LENGTH ){
- *pzErr = sqlite3_mprintf("%s: maximum string length is %d",
- p->zClassName, AMATCH_MX_LENGTH
- );
- rc = SQLITE_ERROR;
- }else
- if( iLang<0 || iLang>AMATCH_MX_LANGID ){
- *pzErr = sqlite3_mprintf("%s: iLang must be between 0 and %d",
- p->zClassName, AMATCH_MX_LANGID
- );
- rc = SQLITE_ERROR;
- }else
- if( strcmp(zFrom,"")==0 && strcmp(zTo,"?")==0 ){
- if( p->rIns==0 || p->rIns>rCost ) p->rIns = rCost;
- }else
- if( strcmp(zFrom,"?")==0 && strcmp(zTo,"")==0 ){
- if( p->rDel==0 || p->rDel>rCost ) p->rDel = rCost;
- }else
- {
- pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo );
- if( pRule==0 ){
- rc = SQLITE_NOMEM;
- }else{
- memset(pRule, 0, sizeof(*pRule));
- pRule->zFrom = &pRule->zTo[nTo+1];
- pRule->nFrom = (amatch_len)nFrom;
- memcpy(pRule->zFrom, zFrom, nFrom+1);
- memcpy(pRule->zTo, zTo, nTo+1);
- pRule->nTo = (amatch_len)nTo;
- pRule->rCost = rCost;
- pRule->iLang = (int)iLang;
- }
- }
-
- *ppRule = pRule;
- return rc;
-}
-
-/*
-** Free all the content in the edit-cost-table
-*/
-static void amatchFreeRules(amatch_vtab *p){
- while( p->pRule ){
- amatch_rule *pRule = p->pRule;
- p->pRule = pRule->pNext;
- sqlite3_free(pRule);
- }
- p->pRule = 0;
-}
-
-/*
-** Load the content of the amatch data table into memory.
-*/
-static int amatchLoadRules(
- sqlite3 *db, /* Database handle */
- amatch_vtab *p, /* Virtual amatch table to configure */
- char **pzErr /* OUT: Error message */
-){
- int rc = SQLITE_OK; /* Return code */
- char *zSql; /* SELECT used to read from rules table */
- amatch_rule *pHead = 0;
-
- zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", p->zDb, p->zCostTab);
- if( zSql==0 ){
- rc = SQLITE_NOMEM;
- }else{
- int rc2; /* finalize() return code */
- sqlite3_stmt *pStmt = 0;
- rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
- if( rc!=SQLITE_OK ){
- *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db));
- }else if( sqlite3_column_count(pStmt)!=4 ){
- *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4",
- p->zClassName, p->zCostTab, sqlite3_column_count(pStmt)
- );
- rc = SQLITE_ERROR;
- }else{
- while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
- amatch_rule *pRule = 0;
- rc = amatchLoadOneRule(p, pStmt, &pRule, pzErr);
- if( pRule ){
- pRule->pNext = pHead;
- pHead = pRule;
- }
- }
- }
- rc2 = sqlite3_finalize(pStmt);
- if( rc==SQLITE_OK ) rc = rc2;
- }
- sqlite3_free(zSql);
-
- /* All rules are now in a singly linked list starting at pHead. This
- ** block sorts them by cost and then sets amatch_vtab.pRule to point to
- ** point to the head of the sorted list.
- */
- if( rc==SQLITE_OK ){
- unsigned int i;
- amatch_rule *pX;
- amatch_rule *a[15];
- for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
- while( (pX = pHead)!=0 ){
- pHead = pX->pNext;
- pX->pNext = 0;
- for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
- pX = amatchMergeRules(a[i], pX);
- a[i] = 0;
- }
- a[i] = amatchMergeRules(a[i], pX);
- }
- for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
- pX = amatchMergeRules(a[i], pX);
- }
- p->pRule = amatchMergeRules(p->pRule, pX);
- }else{
- /* An error has occurred. Setting p->pRule to point to the head of the
- ** allocated list ensures that the list will be cleaned up in this case.
- */
- assert( p->pRule==0 );
- p->pRule = pHead;
- }
-
- return rc;
-}
-
-/*
-** This function converts an SQL quoted string into an unquoted string
-** and returns a pointer to a buffer allocated using sqlite3_malloc()
-** containing the result. The caller should eventually free this buffer
-** using sqlite3_free.
-**
-** Examples:
-**
-** "abc" becomes abc
-** 'xyz' becomes xyz
-** [pqr] becomes pqr
-** `mno` becomes mno
-*/
-static char *amatchDequote(const char *zIn){
- int nIn; /* Size of input string, in bytes */
- char *zOut; /* Output (dequoted) string */
-
- nIn = (int)strlen(zIn);
- zOut = sqlite3_malloc(nIn+1);
- if( zOut ){
- char q = zIn[0]; /* Quote character (if any ) */
-
- if( q!='[' && q!= '\'' && q!='"' && q!='`' ){
- memcpy(zOut, zIn, nIn+1);
- }else{
- int iOut = 0; /* Index of next byte to write to output */
- int iIn; /* Index of next byte to read from input */
-
- if( q=='[' ) q = ']';
- for(iIn=1; iIn<nIn; iIn++){
- if( zIn[iIn]==q ) iIn++;
- zOut[iOut++] = zIn[iIn];
- }
- }
- assert( (int)strlen(zOut)<=nIn );
- }
- return zOut;
-}
-
-/*
-** Deallocate the pVCheck prepared statement.
-*/
-static void amatchVCheckClear(amatch_vtab *p){
- if( p->pVCheck ){
- sqlite3_finalize(p->pVCheck);
- p->pVCheck = 0;
- }
-}
-
-/*
-** Deallocate an amatch_vtab object
-*/
-static void amatchFree(amatch_vtab *p){
- if( p ){
- amatchFreeRules(p);
- amatchVCheckClear(p);
- sqlite3_free(p->zClassName);
- sqlite3_free(p->zDb);
- sqlite3_free(p->zCostTab);
- sqlite3_free(p->zVocabTab);
- sqlite3_free(p->zVocabWord);
- sqlite3_free(p->zVocabLang);
- sqlite3_free(p->zSelf);
- memset(p, 0, sizeof(*p));
- sqlite3_free(p);
- }
-}
-
-/*
-** xDisconnect/xDestroy method for the amatch module.
-*/
-static int amatchDisconnect(sqlite3_vtab *pVtab){
- amatch_vtab *p = (amatch_vtab*)pVtab;
- assert( p->nCursor==0 );
- amatchFree(p);
- return SQLITE_OK;
-}
-
-/*
-** Check to see if the argument is of the form:
-**
-** KEY = VALUE
-**
-** If it is, return a pointer to the first character of VALUE.
-** If not, return NULL. Spaces around the = are ignored.
-*/
-static const char *amatchValueOfKey(const char *zKey, const char *zStr){
- int nKey = (int)strlen(zKey);
- int nStr = (int)strlen(zStr);
- int i;
- if( nStr<nKey+1 ) return 0;
- if( memcmp(zStr, zKey, nKey)!=0 ) return 0;
- for(i=nKey; isspace((unsigned char)zStr[i]); i++){}
- if( zStr[i]!='=' ) return 0;
- i++;
- while( isspace((unsigned char)zStr[i]) ){ i++; }
- return zStr+i;
-}
-
-/*
-** xConnect/xCreate method for the amatch module. Arguments are:
-**
-** argv[0] -> module name ("approximate_match")
-** argv[1] -> database name
-** argv[2] -> table name
-** argv[3...] -> arguments
-*/
-static int amatchConnect(
- sqlite3 *db,
- void *pAux,
- int argc, const char *const*argv,
- sqlite3_vtab **ppVtab,
- char **pzErr
-){
- int rc = SQLITE_OK; /* Return code */
- amatch_vtab *pNew = 0; /* New virtual table */
- const char *zModule = argv[0];
- const char *zDb = argv[1];
- const char *zVal;
- int i;
-
- (void)pAux;
- *ppVtab = 0;
- pNew = sqlite3_malloc( sizeof(*pNew) );
- if( pNew==0 ) return SQLITE_NOMEM;
- rc = SQLITE_NOMEM;
- memset(pNew, 0, sizeof(*pNew));
- pNew->db = db;
- pNew->zClassName = sqlite3_mprintf("%s", zModule);
- if( pNew->zClassName==0 ) goto amatchConnectError;
- pNew->zDb = sqlite3_mprintf("%s", zDb);
- if( pNew->zDb==0 ) goto amatchConnectError;
- pNew->zSelf = sqlite3_mprintf("%s", argv[2]);
- if( pNew->zSelf==0 ) goto amatchConnectError;
- for(i=3; i<argc; i++){
- zVal = amatchValueOfKey("vocabulary_table", argv[i]);
- if( zVal ){
- sqlite3_free(pNew->zVocabTab);
- pNew->zVocabTab = amatchDequote(zVal);
- if( pNew->zVocabTab==0 ) goto amatchConnectError;
- continue;
- }
- zVal = amatchValueOfKey("vocabulary_word", argv[i]);
- if( zVal ){
- sqlite3_free(pNew->zVocabWord);
- pNew->zVocabWord = amatchDequote(zVal);
- if( pNew->zVocabWord==0 ) goto amatchConnectError;
- continue;
- }
- zVal = amatchValueOfKey("vocabulary_language", argv[i]);
- if( zVal ){
- sqlite3_free(pNew->zVocabLang);
- pNew->zVocabLang = amatchDequote(zVal);
- if( pNew->zVocabLang==0 ) goto amatchConnectError;
- continue;
- }
- zVal = amatchValueOfKey("edit_distances", argv[i]);
- if( zVal ){
- sqlite3_free(pNew->zCostTab);
- pNew->zCostTab = amatchDequote(zVal);
- if( pNew->zCostTab==0 ) goto amatchConnectError;
- continue;
- }
- *pzErr = sqlite3_mprintf("unrecognized argument: [%s]\n", argv[i]);
- amatchFree(pNew);
- *ppVtab = 0;
- return SQLITE_ERROR;
- }
- rc = SQLITE_OK;
- if( pNew->zCostTab==0 ){
- *pzErr = sqlite3_mprintf("no edit_distances table specified");
- rc = SQLITE_ERROR;
- }else{
- rc = amatchLoadRules(db, pNew, pzErr);
- }
- if( rc==SQLITE_OK ){
- rc = sqlite3_declare_vtab(db,
- "CREATE TABLE x(word,distance,language,"
- "command HIDDEN,nword HIDDEN)"
- );
-#define AMATCH_COL_WORD 0
-#define AMATCH_COL_DISTANCE 1
-#define AMATCH_COL_LANGUAGE 2
-#define AMATCH_COL_COMMAND 3
-#define AMATCH_COL_NWORD 4
- }
- if( rc!=SQLITE_OK ){
- amatchFree(pNew);
- }
- *ppVtab = &pNew->base;
- return rc;
-
-amatchConnectError:
- amatchFree(pNew);
- return rc;
-}
-
-/*
-** Open a new amatch cursor.
-*/
-static int amatchOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
- amatch_vtab *p = (amatch_vtab*)pVTab;
- amatch_cursor *pCur;
- pCur = sqlite3_malloc( sizeof(*pCur) );
- if( pCur==0 ) return SQLITE_NOMEM;
- memset(pCur, 0, sizeof(*pCur));
- pCur->pVtab = p;
- *ppCursor = &pCur->base;
- p->nCursor++;
- return SQLITE_OK;
-}
-
-/*
-** Free up all the memory allocated by a cursor. Set it rLimit to 0
-** to indicate that it is at EOF.
-*/
-static void amatchClearCursor(amatch_cursor *pCur){
- amatch_word *pWord, *pNextWord;
- for(pWord=pCur->pAllWords; pWord; pWord=pNextWord){
- pNextWord = pWord->pNext;
- sqlite3_free(pWord);
- }
- pCur->pAllWords = 0;
- sqlite3_free(pCur->zInput);
- pCur->zInput = 0;
- sqlite3_free(pCur->zBuf);
- pCur->zBuf = 0;
- pCur->nBuf = 0;
- pCur->pCost = 0;
- pCur->pWord = 0;
- pCur->pCurrent = 0;
- pCur->rLimit = 1000000;
- pCur->iLang = 0;
- pCur->nWord = 0;
-}
-
-/*
-** Close a amatch cursor.
-*/
-static int amatchClose(sqlite3_vtab_cursor *cur){
- amatch_cursor *pCur = (amatch_cursor *)cur;
- amatchClearCursor(pCur);
- pCur->pVtab->nCursor--;
- sqlite3_free(pCur);
- return SQLITE_OK;
-}
-
-/*
-** Render a 24-bit unsigned integer as a 4-byte base-64 number.
-*/
-static void amatchEncodeInt(int x, char *z){
- static const char a[] =
- "0123456789"
- "ABCDEFGHIJ"
- "KLMNOPQRST"
- "UVWXYZ^abc"
- "defghijklm"
- "nopqrstuvw"
- "xyz~";
- z[0] = a[(x>>18)&0x3f];
- z[1] = a[(x>>12)&0x3f];
- z[2] = a[(x>>6)&0x3f];
- z[3] = a[x&0x3f];
-}
-
-/*
-** Write the zCost[] field for a amatch_word object
-*/
-static void amatchWriteCost(amatch_word *pWord){
- amatchEncodeInt(pWord->rCost, pWord->zCost);
- amatchEncodeInt(pWord->iSeq, pWord->zCost+4);
- pWord->zCost[8] = 0;
-}
-
-/* Circumvent compiler warnings about the use of strcpy() by supplying
-** our own implementation.
-*/
-static void amatchStrcpy(char *dest, const char *src){
- while( (*(dest++) = *(src++))!=0 ){}
-}
-static void amatchStrcat(char *dest, const char *src){
- while( *dest ) dest++;
- amatchStrcpy(dest, src);
-}
-
-/*
-** Add a new amatch_word object to the queue.
-**
-** If a prior amatch_word object with the same zWord, and nMatch
-** already exists, update its rCost (if the new rCost is less) but
-** otherwise leave it unchanged. Do not add a duplicate.
-**
-** Do nothing if the cost exceeds threshold.
-*/
-static void amatchAddWord(
- amatch_cursor *pCur,
- amatch_cost rCost,
- int nMatch,
- const char *zWordBase,
- const char *zWordTail
-){
- amatch_word *pWord;
- amatch_avl *pNode;
- amatch_avl *pOther;
- int nBase, nTail;
- char zBuf[4];
-
- if( rCost>pCur->rLimit ){
- return;
- }
- nBase = (int)strlen(zWordBase);
- nTail = (int)strlen(zWordTail);
- if( nBase+nTail+3>pCur->nBuf ){
- pCur->nBuf = nBase+nTail+100;
- pCur->zBuf = sqlite3_realloc(pCur->zBuf, pCur->nBuf);
- if( pCur->zBuf==0 ){
- pCur->nBuf = 0;
- return;
- }
- }
- amatchEncodeInt(nMatch, zBuf);
- memcpy(pCur->zBuf, zBuf+2, 2);
- memcpy(pCur->zBuf+2, zWordBase, nBase);
- memcpy(pCur->zBuf+2+nBase, zWordTail, nTail+1);
- pNode = amatchAvlSearch(pCur->pWord, pCur->zBuf);
- if( pNode ){
- pWord = pNode->pWord;
- if( pWord->rCost>rCost ){
-#ifdef AMATCH_TRACE_1
- printf("UPDATE [%s][%.*s^%s] %d (\"%s\" \"%s\")\n",
- pWord->zWord+2, pWord->nMatch, pCur->zInput, pCur->zInput,
- pWord->rCost, pWord->zWord, pWord->zCost);
-#endif
- amatchAvlRemove(&pCur->pCost, &pWord->sCost);
- pWord->rCost = rCost;
- amatchWriteCost(pWord);
-#ifdef AMATCH_TRACE_1
- printf(" ---> %d (\"%s\" \"%s\")\n",
- pWord->rCost, pWord->zWord, pWord->zCost);
-#endif
- pOther = amatchAvlInsert(&pCur->pCost, &pWord->sCost);
- assert( pOther==0 ); (void)pOther;
- }
- return;
- }
- pWord = sqlite3_malloc( sizeof(*pWord) + nBase + nTail - 1 );
- if( pWord==0 ) return;
- memset(pWord, 0, sizeof(*pWord));
- pWord->rCost = rCost;
- pWord->iSeq = pCur->nWord++;
- amatchWriteCost(pWord);
- pWord->nMatch = (short)nMatch;
- pWord->pNext = pCur->pAllWords;
- pCur->pAllWords = pWord;
- pWord->sCost.zKey = pWord->zCost;
- pWord->sCost.pWord = pWord;
- pOther = amatchAvlInsert(&pCur->pCost, &pWord->sCost);
- assert( pOther==0 ); (void)pOther;
- pWord->sWord.zKey = pWord->zWord;
- pWord->sWord.pWord = pWord;
- amatchStrcpy(pWord->zWord, pCur->zBuf);
- pOther = amatchAvlInsert(&pCur->pWord, &pWord->sWord);
- assert( pOther==0 ); (void)pOther;
-#ifdef AMATCH_TRACE_1
- printf("INSERT [%s][%.*s^%s] %d (\"%s\" \"%s\")\n", pWord->zWord+2,
- pWord->nMatch, pCur->zInput, pCur->zInput+pWord->nMatch, rCost,
- pWord->zWord, pWord->zCost);
-#endif
-}
-
-
-/*
-** Advance a cursor to its next row of output
-*/
-static int amatchNext(sqlite3_vtab_cursor *cur){
- amatch_cursor *pCur = (amatch_cursor*)cur;
- amatch_word *pWord = 0;
- amatch_avl *pNode;
- int isMatch = 0;
- amatch_vtab *p = pCur->pVtab;
- int nWord;
- int rc;
- int i;
- const char *zW;
- amatch_rule *pRule;
- char *zBuf = 0;
- char nBuf = 0;
- char zNext[8];
- char zNextIn[8];
- int nNextIn;
-
- if( p->pVCheck==0 ){
- char *zSql;
- if( p->zVocabLang && p->zVocabLang[0] ){
- zSql = sqlite3_mprintf(
- "SELECT \"%w\" FROM \"%w\"",
- " WHERE \"%w\">=?1 AND \"%w\"=?2"
- " ORDER BY 1",
- p->zVocabWord, p->zVocabTab,
- p->zVocabWord, p->zVocabLang
- );
- }else{
- zSql = sqlite3_mprintf(
- "SELECT \"%w\" FROM \"%w\""
- " WHERE \"%w\">=?1"
- " ORDER BY 1",
- p->zVocabWord, p->zVocabTab,
- p->zVocabWord
- );
- }
- rc = sqlite3_prepare_v2(p->db, zSql, -1, &p->pVCheck, 0);
- sqlite3_free(zSql);
- if( rc ) return rc;
- }
- sqlite3_bind_int(p->pVCheck, 2, pCur->iLang);
-
- do{
- pNode = amatchAvlFirst(pCur->pCost);
- if( pNode==0 ){
- pWord = 0;
- break;
- }
- pWord = pNode->pWord;
- amatchAvlRemove(&pCur->pCost, &pWord->sCost);
-
-#ifdef AMATCH_TRACE_1
- printf("PROCESS [%s][%.*s^%s] %d (\"%s\" \"%s\")\n",
- pWord->zWord+2, pWord->nMatch, pCur->zInput, pCur->zInput+pWord->nMatch,
- pWord->rCost, pWord->zWord, pWord->zCost);
-#endif
- nWord = (int)strlen(pWord->zWord+2);
- if( nWord+20>nBuf ){
- nBuf = (char)(nWord+100);
- zBuf = sqlite3_realloc(zBuf, nBuf);
- if( zBuf==0 ) return SQLITE_NOMEM;
- }
- amatchStrcpy(zBuf, pWord->zWord+2);
- zNext[0] = 0;
- zNextIn[0] = pCur->zInput[pWord->nMatch];
- if( zNextIn[0] ){
- for(i=1; i<=4 && (pCur->zInput[pWord->nMatch+i]&0xc0)==0x80; i++){
- zNextIn[i] = pCur->zInput[pWord->nMatch+i];
- }
- zNextIn[i] = 0;
- nNextIn = i;
- }else{
- nNextIn = 0;
- }
-
- if( zNextIn[0] && zNextIn[0]!='*' ){
- sqlite3_reset(p->pVCheck);
- amatchStrcat(zBuf, zNextIn);
- sqlite3_bind_text(p->pVCheck, 1, zBuf, nWord+nNextIn, SQLITE_STATIC);
- rc = sqlite3_step(p->pVCheck);
- if( rc==SQLITE_ROW ){
- zW = (const char*)sqlite3_column_text(p->pVCheck, 0);
- if( strncmp(zBuf, zW, nWord+nNextIn)==0 ){
- amatchAddWord(pCur, pWord->rCost, pWord->nMatch+nNextIn, zBuf, "");
- }
- }
- zBuf[nWord] = 0;
- }
-
- while( 1 ){
- amatchStrcpy(zBuf+nWord, zNext);
- sqlite3_reset(p->pVCheck);
- sqlite3_bind_text(p->pVCheck, 1, zBuf, -1, SQLITE_TRANSIENT);
- rc = sqlite3_step(p->pVCheck);
- if( rc!=SQLITE_ROW ) break;
- zW = (const char*)sqlite3_column_text(p->pVCheck, 0);
- amatchStrcpy(zBuf+nWord, zNext);
- if( strncmp(zW, zBuf, nWord)!=0 ) break;
- if( (zNextIn[0]=='*' && zNextIn[1]==0)
- || (zNextIn[0]==0 && zW[nWord]==0)
- ){
- isMatch = 1;
- zNextIn[0] = 0;
- nNextIn = 0;
- break;
- }
- zNext[0] = zW[nWord];
- for(i=1; i<=4 && (zW[nWord+i]&0xc0)==0x80; i++){
- zNext[i] = zW[nWord+i];
- }
- zNext[i] = 0;
- zBuf[nWord] = 0;
- if( p->rIns>0 ){
- amatchAddWord(pCur, pWord->rCost+p->rIns, pWord->nMatch,
- zBuf, zNext);
- }
- if( p->rSub>0 ){
- amatchAddWord(pCur, pWord->rCost+p->rSub, pWord->nMatch+nNextIn,
- zBuf, zNext);
- }
- if( p->rIns<0 && p->rSub<0 ) break;
- zNext[i-1]++; /* FIX ME */
- }
- sqlite3_reset(p->pVCheck);
-
- if( p->rDel>0 ){
- zBuf[nWord] = 0;
- amatchAddWord(pCur, pWord->rCost+p->rDel, pWord->nMatch+nNextIn,
- zBuf, "");
- }
-
- for(pRule=p->pRule; pRule; pRule=pRule->pNext){
- if( pRule->iLang!=pCur->iLang ) continue;
- if( strncmp(pRule->zFrom, pCur->zInput+pWord->nMatch, pRule->nFrom)==0 ){
- amatchAddWord(pCur, pWord->rCost+pRule->rCost,
- pWord->nMatch+pRule->nFrom, pWord->zWord+2, pRule->zTo);
- }
- }
- }while( !isMatch );
- pCur->pCurrent = pWord;
- sqlite3_free(zBuf);
- return SQLITE_OK;
-}
-
-/*
-** Called to "rewind" a cursor back to the beginning so that
-** it starts its output over again. Always called at least once
-** prior to any amatchColumn, amatchRowid, or amatchEof call.
-*/
-static int amatchFilter(
- sqlite3_vtab_cursor *pVtabCursor,
- int idxNum, const char *idxStr,
- int argc, sqlite3_value **argv
-){
- amatch_cursor *pCur = (amatch_cursor *)pVtabCursor;
- const char *zWord = "*";
- int idx;
-
- amatchClearCursor(pCur);
- idx = 0;
- if( idxNum & 1 ){
- zWord = (const char*)sqlite3_value_text(argv[0]);
- idx++;
- }
- if( idxNum & 2 ){
- pCur->rLimit = (amatch_cost)sqlite3_value_int(argv[idx]);
- idx++;
- }
- if( idxNum & 4 ){
- pCur->iLang = (amatch_cost)sqlite3_value_int(argv[idx]);
- idx++;
- }
- pCur->zInput = sqlite3_mprintf("%s", zWord);
- if( pCur->zInput==0 ) return SQLITE_NOMEM;
- amatchAddWord(pCur, 0, 0, "", "");
- amatchNext(pVtabCursor);
-
- return SQLITE_OK;
-}
-
-/*
-** Only the word and distance columns have values. All other columns
-** return NULL
-*/
-static int amatchColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
- amatch_cursor *pCur = (amatch_cursor*)cur;
- switch( i ){
- case AMATCH_COL_WORD: {
- sqlite3_result_text(ctx, pCur->pCurrent->zWord+2, -1, SQLITE_STATIC);
- break;
- }
- case AMATCH_COL_DISTANCE: {
- sqlite3_result_int(ctx, pCur->pCurrent->rCost);
- break;
- }
- case AMATCH_COL_LANGUAGE: {
- sqlite3_result_int(ctx, pCur->iLang);
- break;
- }
- case AMATCH_COL_NWORD: {
- sqlite3_result_int(ctx, pCur->nWord);
- break;
- }
- default: {
- sqlite3_result_null(ctx);
- break;
- }
- }
- return SQLITE_OK;
-}
-
-/*
-** The rowid.
-*/
-static int amatchRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
- amatch_cursor *pCur = (amatch_cursor*)cur;
- *pRowid = pCur->iRowid;
- return SQLITE_OK;
-}
-
-/*
-** EOF indicator
-*/
-static int amatchEof(sqlite3_vtab_cursor *cur){
- amatch_cursor *pCur = (amatch_cursor*)cur;
- return pCur->pCurrent==0;
-}
-
-/*
-** Search for terms of these forms:
-**
-** (A) word MATCH $str
-** (B1) distance < $value
-** (B2) distance <= $value
-** (C) language == $language
-**
-** The distance< and distance<= are both treated as distance<=.
-** The query plan number is a bit vector:
-**
-** bit 1: Term of the form (A) found
-** bit 2: Term like (B1) or (B2) found
-** bit 3: Term like (C) found
-**
-** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set
-** then $value is in filter.argv[0] if bit-1 is clear and is in
-** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is
-** in filter.argv[0] if bit-1 and bit-2 are both zero, is in
-** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in
-** filter.argv[2] if both bit-1 and bit-2 are set.
-*/
-static int amatchBestIndex(
- sqlite3_vtab *tab,
- sqlite3_index_info *pIdxInfo
-){
- int iPlan = 0;
- int iDistTerm = -1;
- int iLangTerm = -1;
- int i;
- const struct sqlite3_index_constraint *pConstraint;
-
- (void)tab;
- pConstraint = pIdxInfo->aConstraint;
- for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
- if( pConstraint->usable==0 ) continue;
- if( (iPlan & 1)==0
- && pConstraint->iColumn==0
- && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
- ){
- iPlan |= 1;
- pIdxInfo->aConstraintUsage[i].argvIndex = 1;
- pIdxInfo->aConstraintUsage[i].omit = 1;
- }
- if( (iPlan & 2)==0
- && pConstraint->iColumn==1
- && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
- || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
- ){
- iPlan |= 2;
- iDistTerm = i;
- }
- if( (iPlan & 4)==0
- && pConstraint->iColumn==2
- && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
- ){
- iPlan |= 4;
- pIdxInfo->aConstraintUsage[i].omit = 1;
- iLangTerm = i;
- }
- }
- if( iPlan & 2 ){
- pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
- }
- if( iPlan & 4 ){
- int idx = 1;
- if( iPlan & 1 ) idx++;
- if( iPlan & 2 ) idx++;
- pIdxInfo->aConstraintUsage[iLangTerm].argvIndex = idx;
- }
- pIdxInfo->idxNum = iPlan;
- if( pIdxInfo->nOrderBy==1
- && pIdxInfo->aOrderBy[0].iColumn==1
- && pIdxInfo->aOrderBy[0].desc==0
- ){
- pIdxInfo->orderByConsumed = 1;
- }
- pIdxInfo->estimatedCost = (double)10000;
-
- return SQLITE_OK;
-}
-
-/*
-** The xUpdate() method.
-**
-** This implementation disallows DELETE and UPDATE. The only thing
-** allowed is INSERT into the "command" column.
-*/
-static int amatchUpdate(
- sqlite3_vtab *pVTab,
- int argc,
- sqlite3_value **argv,
- sqlite_int64 *pRowid
-){
- amatch_vtab *p = (amatch_vtab*)pVTab;
- const unsigned char *zCmd;
- (void)pRowid;
- if( argc==1 ){
- pVTab->zErrMsg = sqlite3_mprintf("DELETE from %s is not allowed",
- p->zSelf);
- return SQLITE_ERROR;
- }
- if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){
- pVTab->zErrMsg = sqlite3_mprintf("UPDATE of %s is not allowed",
- p->zSelf);
- return SQLITE_ERROR;
- }
- if( sqlite3_value_type(argv[2+AMATCH_COL_WORD])!=SQLITE_NULL
- || sqlite3_value_type(argv[2+AMATCH_COL_DISTANCE])!=SQLITE_NULL
- || sqlite3_value_type(argv[2+AMATCH_COL_LANGUAGE])!=SQLITE_NULL
- ){
- pVTab->zErrMsg = sqlite3_mprintf(
- "INSERT INTO %s allowed for column [command] only", p->zSelf);
- return SQLITE_ERROR;
- }
- zCmd = sqlite3_value_text(argv[2+AMATCH_COL_COMMAND]);
- if( zCmd==0 ) return SQLITE_OK;
-
- return SQLITE_OK;
-}
-
-/*
-** A virtual table module that implements the "approximate_match".
-*/
-static sqlite3_module amatchModule = {
- 0, /* iVersion */
- amatchConnect, /* xCreate */
- amatchConnect, /* xConnect */
- amatchBestIndex, /* xBestIndex */
- amatchDisconnect, /* xDisconnect */
- amatchDisconnect, /* xDestroy */
- amatchOpen, /* xOpen - open a cursor */
- amatchClose, /* xClose - close a cursor */
- amatchFilter, /* xFilter - configure scan constraints */
- amatchNext, /* xNext - advance a cursor */
- amatchEof, /* xEof - check for end of scan */
- amatchColumn, /* xColumn - read data */
- amatchRowid, /* xRowid - read data */
- amatchUpdate, /* xUpdate */
- 0, /* xBegin */
- 0, /* xSync */
- 0, /* xCommit */
- 0, /* xRollback */
- 0, /* xFindMethod */
- 0, /* xRename */
- 0, /* xSavepoint */
- 0, /* xRelease */
- 0 /* xRollbackTo */
-};
-
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
-
-/*
-** Register the amatch virtual table
-*/
-#ifdef _WIN32
-__declspec(dllexport)
-#endif
-int sqlite3_amatch_init(
- sqlite3 *db,
- char **pzErrMsg,
- const sqlite3_api_routines *pApi
-){
- int rc = SQLITE_OK;
- SQLITE_EXTENSION_INIT2(pApi);
- (void)pzErrMsg; /* Not used */
-#ifndef SQLITE_OMIT_VIRTUALTABLE
- rc = sqlite3_create_module(db, "approximate_match", &amatchModule, 0);
-#endif /* SQLITE_OMIT_VIRTUALTABLE */
- return rc;
-}