diff options
author | Allan Sandfeld Jensen <allan.jensen@theqtcompany.com> | 2016-05-09 14:22:11 +0200 |
---|---|---|
committer | Allan Sandfeld Jensen <allan.jensen@qt.io> | 2016-05-09 15:11:45 +0000 |
commit | 2ddb2d3e14eef3de7dbd0cef553d669b9ac2361c (patch) | |
tree | e75f511546c5fd1a173e87c1f9fb11d7ac8d1af3 /chromium/v8/src/snapshot | |
parent | a4f3d46271c57e8155ba912df46a05559d14726e (diff) | |
download | qtwebengine-chromium-2ddb2d3e14eef3de7dbd0cef553d669b9ac2361c.tar.gz |
BASELINE: Update Chromium to 51.0.2704.41
Also adds in all smaller components by reversing logic for exclusion.
Change-Id: Ibf90b506e7da088ea2f65dcf23f2b0992c504422
Reviewed-by: Joerg Bornemann <joerg.bornemann@theqtcompany.com>
Diffstat (limited to 'chromium/v8/src/snapshot')
19 files changed, 3487 insertions, 3629 deletions
diff --git a/chromium/v8/src/snapshot/code-serializer.cc b/chromium/v8/src/snapshot/code-serializer.cc new file mode 100644 index 00000000000..84a08c103de --- /dev/null +++ b/chromium/v8/src/snapshot/code-serializer.cc @@ -0,0 +1,421 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "src/snapshot/code-serializer.h" + +#include "src/code-stubs.h" +#include "src/log.h" +#include "src/macro-assembler.h" +#include "src/profiler/cpu-profiler.h" +#include "src/snapshot/deserializer.h" +#include "src/version.h" + +namespace v8 { +namespace internal { + +ScriptData* CodeSerializer::Serialize(Isolate* isolate, + Handle<SharedFunctionInfo> info, + Handle<String> source) { + base::ElapsedTimer timer; + if (FLAG_profile_deserialization) timer.Start(); + if (FLAG_trace_serializer) { + PrintF("[Serializing from"); + Object* script = info->script(); + if (script->IsScript()) Script::cast(script)->name()->ShortPrint(); + PrintF("]\n"); + } + + // Serialize code object. + SnapshotByteSink sink(info->code()->CodeSize() * 2); + CodeSerializer cs(isolate, &sink, *source); + DisallowHeapAllocation no_gc; + Object** location = Handle<Object>::cast(info).location(); + cs.VisitPointer(location); + cs.SerializeDeferredObjects(); + cs.Pad(); + + SerializedCodeData data(sink.data(), cs); + ScriptData* script_data = data.GetScriptData(); + + if (FLAG_profile_deserialization) { + double ms = timer.Elapsed().InMillisecondsF(); + int length = script_data->length(); + PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms); + } + + return script_data; +} + +void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, + WhereToPoint where_to_point, int skip) { + int root_index = root_index_map_.Lookup(obj); + if (root_index != RootIndexMap::kInvalidRootIndex) { + PutRoot(root_index, obj, how_to_code, where_to_point, skip); + return; + } + + if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; + + FlushSkip(skip); + + if (obj->IsCode()) { + Code* code_object = Code::cast(obj); + switch (code_object->kind()) { + case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet. + case Code::HANDLER: // No handlers patched in yet. + case Code::REGEXP: // No regexp literals initialized yet. + case Code::NUMBER_OF_KINDS: // Pseudo enum value. + case Code::BYTECODE_HANDLER: // No direct references to handlers. + CHECK(false); + case Code::BUILTIN: + SerializeBuiltin(code_object->builtin_index(), how_to_code, + where_to_point); + return; + case Code::STUB: + SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point); + return; +#define IC_KIND_CASE(KIND) case Code::KIND: + IC_KIND_LIST(IC_KIND_CASE) +#undef IC_KIND_CASE + SerializeIC(code_object, how_to_code, where_to_point); + return; + case Code::FUNCTION: + DCHECK(code_object->has_reloc_info_for_serialization()); + SerializeGeneric(code_object, how_to_code, where_to_point); + return; + case Code::WASM_FUNCTION: + case Code::WASM_TO_JS_FUNCTION: + case Code::JS_TO_WASM_FUNCTION: + UNREACHABLE(); + } + UNREACHABLE(); + } + + // Past this point we should not see any (context-specific) maps anymore. + CHECK(!obj->IsMap()); + // There should be no references to the global object embedded. + CHECK(!obj->IsJSGlobalProxy() && !obj->IsJSGlobalObject()); + // There should be no hash table embedded. They would require rehashing. + CHECK(!obj->IsHashTable()); + // We expect no instantiated function objects or contexts. + CHECK(!obj->IsJSFunction() && !obj->IsContext()); + + SerializeGeneric(obj, how_to_code, where_to_point); +} + +void CodeSerializer::SerializeGeneric(HeapObject* heap_object, + HowToCode how_to_code, + WhereToPoint where_to_point) { + // Object has not yet been serialized. Serialize it here. + ObjectSerializer serializer(this, heap_object, sink_, how_to_code, + where_to_point); + serializer.Serialize(); +} + +void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code, + WhereToPoint where_to_point) { + DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || + (how_to_code == kPlain && where_to_point == kInnerPointer) || + (how_to_code == kFromCode && where_to_point == kInnerPointer)); + DCHECK_LT(builtin_index, Builtins::builtin_count); + DCHECK_LE(0, builtin_index); + + if (FLAG_trace_serializer) { + PrintF(" Encoding builtin: %s\n", + isolate()->builtins()->name(builtin_index)); + } + + sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin"); + sink_->PutInt(builtin_index, "builtin_index"); +} + +void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code, + WhereToPoint where_to_point) { + DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || + (how_to_code == kPlain && where_to_point == kInnerPointer) || + (how_to_code == kFromCode && where_to_point == kInnerPointer)); + DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache); + DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null()); + + int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex; + + if (FLAG_trace_serializer) { + PrintF(" Encoding code stub %s as %d\n", + CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key)), index); + } + + sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub"); + sink_->PutInt(index, "CodeStub key"); +} + +void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code, + WhereToPoint where_to_point) { + // The IC may be implemented as a stub. + uint32_t stub_key = ic->stub_key(); + if (stub_key != CodeStub::NoCacheKey()) { + if (FLAG_trace_serializer) { + PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind())); + } + SerializeCodeStub(stub_key, how_to_code, where_to_point); + return; + } + // The IC may be implemented as builtin. Only real builtins have an + // actual builtin_index value attached (otherwise it's just garbage). + // Compare to make sure we are really dealing with a builtin. + int builtin_index = ic->builtin_index(); + if (builtin_index < Builtins::builtin_count) { + Builtins::Name name = static_cast<Builtins::Name>(builtin_index); + Code* builtin = isolate()->builtins()->builtin(name); + if (builtin == ic) { + if (FLAG_trace_serializer) { + PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind())); + } + DCHECK(ic->kind() == Code::KEYED_LOAD_IC || + ic->kind() == Code::KEYED_STORE_IC); + SerializeBuiltin(builtin_index, how_to_code, where_to_point); + return; + } + } + // The IC may also just be a piece of code kept in the non_monomorphic_cache. + // In that case, just serialize as a normal code object. + if (FLAG_trace_serializer) { + PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind())); + } + DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC); + SerializeGeneric(ic, how_to_code, where_to_point); +} + +int CodeSerializer::AddCodeStubKey(uint32_t stub_key) { + // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2). + int index = 0; + while (index < stub_keys_.length()) { + if (stub_keys_[index] == stub_key) return index; + index++; + } + stub_keys_.Add(stub_key); + return index; +} + +MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize( + Isolate* isolate, ScriptData* cached_data, Handle<String> source) { + base::ElapsedTimer timer; + if (FLAG_profile_deserialization) timer.Start(); + + HandleScope scope(isolate); + + base::SmartPointer<SerializedCodeData> scd( + SerializedCodeData::FromCachedData(isolate, cached_data, *source)); + if (scd.is_empty()) { + if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n"); + DCHECK(cached_data->rejected()); + return MaybeHandle<SharedFunctionInfo>(); + } + + // Prepare and register list of attached objects. + Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys(); + Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New( + code_stub_keys.length() + kCodeStubsBaseIndex); + attached_objects[kSourceObjectIndex] = source; + for (int i = 0; i < code_stub_keys.length(); i++) { + attached_objects[i + kCodeStubsBaseIndex] = + CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked(); + } + + Deserializer deserializer(scd.get()); + deserializer.SetAttachedObjects(attached_objects); + + // Deserialize. + Handle<SharedFunctionInfo> result; + if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) { + // Deserializing may fail if the reservations cannot be fulfilled. + if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n"); + return MaybeHandle<SharedFunctionInfo>(); + } + + if (FLAG_profile_deserialization) { + double ms = timer.Elapsed().InMillisecondsF(); + int length = cached_data->length(); + PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms); + } + result->set_deserialized(true); + + if (isolate->logger()->is_logging_code_events() || + isolate->cpu_profiler()->is_profiling()) { + String* name = isolate->heap()->empty_string(); + if (result->script()->IsScript()) { + Script* script = Script::cast(result->script()); + if (script->name()->IsString()) name = String::cast(script->name()); + } + isolate->logger()->CodeCreateEvent( + Logger::SCRIPT_TAG, result->abstract_code(), *result, NULL, name); + } + return scope.CloseAndEscape(result); +} + +class Checksum { + public: + explicit Checksum(Vector<const byte> payload) { +#ifdef MEMORY_SANITIZER + // Computing the checksum includes padding bytes for objects like strings. + // Mark every object as initialized in the code serializer. + MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length()); +#endif // MEMORY_SANITIZER + // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit. + uintptr_t a = 1; + uintptr_t b = 0; + const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start()); + DCHECK(IsAligned(payload.length(), kIntptrSize)); + const uintptr_t* end = cur + payload.length() / kIntptrSize; + while (cur < end) { + // Unsigned overflow expected and intended. + a += *cur++; + b += a; + } +#if V8_HOST_ARCH_64_BIT + a ^= a >> 32; + b ^= b >> 32; +#endif // V8_HOST_ARCH_64_BIT + a_ = static_cast<uint32_t>(a); + b_ = static_cast<uint32_t>(b); + } + + bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; } + + uint32_t a() const { return a_; } + uint32_t b() const { return b_; } + + private: + uint32_t a_; + uint32_t b_; + + DISALLOW_COPY_AND_ASSIGN(Checksum); +}; + +SerializedCodeData::SerializedCodeData(const List<byte>& payload, + const CodeSerializer& cs) { + DisallowHeapAllocation no_gc; + const List<uint32_t>* stub_keys = cs.stub_keys(); + + List<Reservation> reservations; + cs.EncodeReservations(&reservations); + + // Calculate sizes. + int reservation_size = reservations.length() * kInt32Size; + int num_stub_keys = stub_keys->length(); + int stub_keys_size = stub_keys->length() * kInt32Size; + int payload_offset = kHeaderSize + reservation_size + stub_keys_size; + int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); + int size = padded_payload_offset + payload.length(); + + // Allocate backing store and create result data. + AllocateData(size); + + // Set header values. + SetMagicNumber(cs.isolate()); + SetHeaderValue(kVersionHashOffset, Version::Hash()); + SetHeaderValue(kSourceHashOffset, SourceHash(cs.source())); + SetHeaderValue(kCpuFeaturesOffset, + static_cast<uint32_t>(CpuFeatures::SupportedFeatures())); + SetHeaderValue(kFlagHashOffset, FlagList::Hash()); + SetHeaderValue(kNumReservationsOffset, reservations.length()); + SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys); + SetHeaderValue(kPayloadLengthOffset, payload.length()); + + Checksum checksum(payload.ToConstVector()); + SetHeaderValue(kChecksum1Offset, checksum.a()); + SetHeaderValue(kChecksum2Offset, checksum.b()); + + // Copy reservation chunk sizes. + CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()), + reservation_size); + + // Copy code stub keys. + CopyBytes(data_ + kHeaderSize + reservation_size, + reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size); + + memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset); + + // Copy serialized data. + CopyBytes(data_ + padded_payload_offset, payload.begin(), + static_cast<size_t>(payload.length())); +} + +SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck( + Isolate* isolate, String* source) const { + uint32_t magic_number = GetMagicNumber(); + if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH; + uint32_t version_hash = GetHeaderValue(kVersionHashOffset); + uint32_t source_hash = GetHeaderValue(kSourceHashOffset); + uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset); + uint32_t flags_hash = GetHeaderValue(kFlagHashOffset); + uint32_t c1 = GetHeaderValue(kChecksum1Offset); + uint32_t c2 = GetHeaderValue(kChecksum2Offset); + if (version_hash != Version::Hash()) return VERSION_MISMATCH; + if (source_hash != SourceHash(source)) return SOURCE_MISMATCH; + if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) { + return CPU_FEATURES_MISMATCH; + } + if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH; + if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH; + return CHECK_SUCCESS; +} + +uint32_t SerializedCodeData::SourceHash(String* source) const { + return source->length(); +} + +// Return ScriptData object and relinquish ownership over it to the caller. +ScriptData* SerializedCodeData::GetScriptData() { + DCHECK(owns_data_); + ScriptData* result = new ScriptData(data_, size_); + result->AcquireDataOwnership(); + owns_data_ = false; + data_ = NULL; + return result; +} + +Vector<const SerializedData::Reservation> SerializedCodeData::Reservations() + const { + return Vector<const Reservation>( + reinterpret_cast<const Reservation*>(data_ + kHeaderSize), + GetHeaderValue(kNumReservationsOffset)); +} + +Vector<const byte> SerializedCodeData::Payload() const { + int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; + int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size; + int payload_offset = kHeaderSize + reservations_size + code_stubs_size; + int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); + const byte* payload = data_ + padded_payload_offset; + DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment)); + int length = GetHeaderValue(kPayloadLengthOffset); + DCHECK_EQ(data_ + size_, payload + length); + return Vector<const byte>(payload, length); +} + +Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const { + int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; + const byte* start = data_ + kHeaderSize + reservations_size; + return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start), + GetHeaderValue(kNumCodeStubKeysOffset)); +} + +SerializedCodeData::SerializedCodeData(ScriptData* data) + : SerializedData(const_cast<byte*>(data->data()), data->length()) {} + +SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate, + ScriptData* cached_data, + String* source) { + DisallowHeapAllocation no_gc; + SerializedCodeData* scd = new SerializedCodeData(cached_data); + SanityCheckResult r = scd->SanityCheck(isolate, source); + if (r == CHECK_SUCCESS) return scd; + cached_data->Reject(); + source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r); + delete scd; + return NULL; +} + +} // namespace internal +} // namespace v8 diff --git a/chromium/v8/src/snapshot/code-serializer.h b/chromium/v8/src/snapshot/code-serializer.h new file mode 100644 index 00000000000..b217fff52b8 --- /dev/null +++ b/chromium/v8/src/snapshot/code-serializer.h @@ -0,0 +1,127 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_SNAPSHOT_CODE_SERIALIZER_H_ +#define V8_SNAPSHOT_CODE_SERIALIZER_H_ + +#include "src/parsing/preparse-data.h" +#include "src/snapshot/serializer.h" + +namespace v8 { +namespace internal { + +class CodeSerializer : public Serializer { + public: + static ScriptData* Serialize(Isolate* isolate, + Handle<SharedFunctionInfo> info, + Handle<String> source); + + MUST_USE_RESULT static MaybeHandle<SharedFunctionInfo> Deserialize( + Isolate* isolate, ScriptData* cached_data, Handle<String> source); + + static const int kSourceObjectIndex = 0; + STATIC_ASSERT(kSourceObjectReference == kSourceObjectIndex); + + static const int kCodeStubsBaseIndex = 1; + + String* source() const { + DCHECK(!AllowHeapAllocation::IsAllowed()); + return source_; + } + + const List<uint32_t>* stub_keys() const { return &stub_keys_; } + + private: + CodeSerializer(Isolate* isolate, SnapshotByteSink* sink, String* source) + : Serializer(isolate, sink), source_(source) { + back_reference_map_.AddSourceString(source); + } + + ~CodeSerializer() override { OutputStatistics("CodeSerializer"); } + + void SerializeObject(HeapObject* o, HowToCode how_to_code, + WhereToPoint where_to_point, int skip) override; + + void SerializeBuiltin(int builtin_index, HowToCode how_to_code, + WhereToPoint where_to_point); + void SerializeIC(Code* ic, HowToCode how_to_code, + WhereToPoint where_to_point); + void SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code, + WhereToPoint where_to_point); + void SerializeGeneric(HeapObject* heap_object, HowToCode how_to_code, + WhereToPoint where_to_point); + int AddCodeStubKey(uint32_t stub_key); + + DisallowHeapAllocation no_gc_; + String* source_; + List<uint32_t> stub_keys_; + DISALLOW_COPY_AND_ASSIGN(CodeSerializer); +}; + +// Wrapper around ScriptData to provide code-serializer-specific functionality. +class SerializedCodeData : public SerializedData { + public: + // Used when consuming. + static SerializedCodeData* FromCachedData(Isolate* isolate, + ScriptData* cached_data, + String* source); + + // Used when producing. + SerializedCodeData(const List<byte>& payload, const CodeSerializer& cs); + + // Return ScriptData object and relinquish ownership over it to the caller. + ScriptData* GetScriptData(); + + Vector<const Reservation> Reservations() const; + Vector<const byte> Payload() const; + + Vector<const uint32_t> CodeStubKeys() const; + + private: + explicit SerializedCodeData(ScriptData* data); + + enum SanityCheckResult { + CHECK_SUCCESS = 0, + MAGIC_NUMBER_MISMATCH = 1, + VERSION_MISMATCH = 2, + SOURCE_MISMATCH = 3, + CPU_FEATURES_MISMATCH = 4, + FLAGS_MISMATCH = 5, + CHECKSUM_MISMATCH = 6 + }; + + SanityCheckResult SanityCheck(Isolate* isolate, String* source) const; + + uint32_t SourceHash(String* source) const; + + // The data header consists of uint32_t-sized entries: + // [0] magic number and external reference count + // [1] version hash + // [2] source hash + // [3] cpu features + // [4] flag hash + // [5] number of code stub keys + // [6] number of reservation size entries + // [7] payload length + // [8] payload checksum part 1 + // [9] payload checksum part 2 + // ... reservations + // ... code stub keys + // ... serialized payload + static const int kVersionHashOffset = kMagicNumberOffset + kInt32Size; + static const int kSourceHashOffset = kVersionHashOffset + kInt32Size; + static const int kCpuFeaturesOffset = kSourceHashOffset + kInt32Size; + static const int kFlagHashOffset = kCpuFeaturesOffset + kInt32Size; + static const int kNumReservationsOffset = kFlagHashOffset + kInt32Size; + static const int kNumCodeStubKeysOffset = kNumReservationsOffset + kInt32Size; + static const int kPayloadLengthOffset = kNumCodeStubKeysOffset + kInt32Size; + static const int kChecksum1Offset = kPayloadLengthOffset + kInt32Size; + static const int kChecksum2Offset = kChecksum1Offset + kInt32Size; + static const int kHeaderSize = kChecksum2Offset + kInt32Size; +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_SNAPSHOT_CODE_SERIALIZER_H_ diff --git a/chromium/v8/src/snapshot/deserializer.cc b/chromium/v8/src/snapshot/deserializer.cc new file mode 100644 index 00000000000..0a21feffa14 --- /dev/null +++ b/chromium/v8/src/snapshot/deserializer.cc @@ -0,0 +1,818 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "src/snapshot/deserializer.h" + +#include "src/bootstrapper.h" +#include "src/external-reference-table.h" +#include "src/heap/heap.h" +#include "src/isolate.h" +#include "src/macro-assembler.h" +#include "src/snapshot/natives.h" +#include "src/v8.h" + +namespace v8 { +namespace internal { + +void Deserializer::DecodeReservation( + Vector<const SerializedData::Reservation> res) { + DCHECK_EQ(0, reservations_[NEW_SPACE].length()); + STATIC_ASSERT(NEW_SPACE == 0); + int current_space = NEW_SPACE; + for (auto& r : res) { + reservations_[current_space].Add({r.chunk_size(), NULL, NULL}); + if (r.is_last()) current_space++; + } + DCHECK_EQ(kNumberOfSpaces, current_space); + for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0; +} + +void Deserializer::FlushICacheForNewIsolate() { + DCHECK(!deserializing_user_code_); + // The entire isolate is newly deserialized. Simply flush all code pages. + PageIterator it(isolate_->heap()->code_space()); + while (it.has_next()) { + Page* p = it.next(); + Assembler::FlushICache(isolate_, p->area_start(), + p->area_end() - p->area_start()); + } +} + +void Deserializer::FlushICacheForNewCodeObjects() { + DCHECK(deserializing_user_code_); + for (Code* code : new_code_objects_) { + if (FLAG_serialize_age_code) code->PreAge(isolate_); + Assembler::FlushICache(isolate_, code->instruction_start(), + code->instruction_size()); + } +} + +bool Deserializer::ReserveSpace() { +#ifdef DEBUG + for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) { + CHECK(reservations_[i].length() > 0); + } +#endif // DEBUG + if (!isolate_->heap()->ReserveSpace(reservations_)) return false; + for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { + high_water_[i] = reservations_[i][0].start; + } + return true; +} + +void Deserializer::Initialize(Isolate* isolate) { + DCHECK_NULL(isolate_); + DCHECK_NOT_NULL(isolate); + isolate_ = isolate; + DCHECK_NULL(external_reference_table_); + external_reference_table_ = ExternalReferenceTable::instance(isolate); + CHECK_EQ(magic_number_, + SerializedData::ComputeMagicNumber(external_reference_table_)); +} + +void Deserializer::Deserialize(Isolate* isolate) { + Initialize(isolate); + if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context"); + // No active threads. + DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse()); + // No active handles. + DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty()); + // Partial snapshot cache is not yet populated. + DCHECK(isolate_->partial_snapshot_cache()->is_empty()); + + { + DisallowHeapAllocation no_gc; + isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG_ROOT_LIST); + isolate_->heap()->IterateSmiRoots(this); + isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); + isolate_->heap()->RepairFreeListsAfterDeserialization(); + isolate_->heap()->IterateWeakRoots(this, VISIT_ALL); + DeserializeDeferredObjects(); + FlushICacheForNewIsolate(); + } + + isolate_->heap()->set_native_contexts_list( + isolate_->heap()->undefined_value()); + // The allocation site list is build during root iteration, but if no sites + // were encountered then it needs to be initialized to undefined. + if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { + isolate_->heap()->set_allocation_sites_list( + isolate_->heap()->undefined_value()); + } + + // Update data pointers to the external strings containing natives sources. + Natives::UpdateSourceCache(isolate_->heap()); + ExtraNatives::UpdateSourceCache(isolate_->heap()); + + // Issue code events for newly deserialized code objects. + LOG_CODE_EVENT(isolate_, LogCodeObjects()); + LOG_CODE_EVENT(isolate_, LogBytecodeHandlers()); + LOG_CODE_EVENT(isolate_, LogCompiledFunctions()); +} + +MaybeHandle<Object> Deserializer::DeserializePartial( + Isolate* isolate, Handle<JSGlobalProxy> global_proxy) { + Initialize(isolate); + if (!ReserveSpace()) { + V8::FatalProcessOutOfMemory("deserialize context"); + return MaybeHandle<Object>(); + } + + Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1); + attached_objects[kGlobalProxyReference] = global_proxy; + SetAttachedObjects(attached_objects); + + DisallowHeapAllocation no_gc; + // Keep track of the code space start and end pointers in case new + // code objects were unserialized + OldSpace* code_space = isolate_->heap()->code_space(); + Address start_address = code_space->top(); + Object* root; + VisitPointer(&root); + DeserializeDeferredObjects(); + + isolate->heap()->RegisterReservationsForBlackAllocation(reservations_); + + // There's no code deserialized here. If this assert fires then that's + // changed and logging should be added to notify the profiler et al of the + // new code, which also has to be flushed from instruction cache. + CHECK_EQ(start_address, code_space->top()); + return Handle<Object>(root, isolate); +} + +MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode( + Isolate* isolate) { + Initialize(isolate); + if (!ReserveSpace()) { + return Handle<SharedFunctionInfo>(); + } else { + deserializing_user_code_ = true; + HandleScope scope(isolate); + Handle<SharedFunctionInfo> result; + { + DisallowHeapAllocation no_gc; + Object* root; + VisitPointer(&root); + DeserializeDeferredObjects(); + FlushICacheForNewCodeObjects(); + result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root)); + isolate->heap()->RegisterReservationsForBlackAllocation(reservations_); + } + CommitPostProcessedObjects(isolate); + return scope.CloseAndEscape(result); + } +} + +Deserializer::~Deserializer() { + // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed. + // DCHECK(source_.AtEOF()); + attached_objects_.Dispose(); +} + +// This is called on the roots. It is the driver of the deserialization +// process. It is also called on the body of each function. +void Deserializer::VisitPointers(Object** start, Object** end) { + // The space must be new space. Any other space would cause ReadChunk to try + // to update the remembered using NULL as the address. + ReadData(start, end, NEW_SPACE, NULL); +} + +void Deserializer::Synchronize(VisitorSynchronization::SyncTag tag) { + static const byte expected = kSynchronize; + CHECK_EQ(expected, source_.Get()); +} + +void Deserializer::DeserializeDeferredObjects() { + for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) { + switch (code) { + case kAlignmentPrefix: + case kAlignmentPrefix + 1: + case kAlignmentPrefix + 2: + SetAlignment(code); + break; + default: { + int space = code & kSpaceMask; + DCHECK(space <= kNumberOfSpaces); + DCHECK(code - space == kNewObject); + HeapObject* object = GetBackReferencedObject(space); + int size = source_.GetInt() << kPointerSizeLog2; + Address obj_address = object->address(); + Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize); + Object** end = reinterpret_cast<Object**>(obj_address + size); + bool filled = ReadData(start, end, space, obj_address); + CHECK(filled); + DCHECK(CanBeDeferred(object)); + PostProcessNewObject(object, space); + } + } + } +} + +// Used to insert a deserialized internalized string into the string table. +class StringTableInsertionKey : public HashTableKey { + public: + explicit StringTableInsertionKey(String* string) + : string_(string), hash_(HashForObject(string)) { + DCHECK(string->IsInternalizedString()); + } + + bool IsMatch(Object* string) override { + // We know that all entries in a hash table had their hash keys created. + // Use that knowledge to have fast failure. + if (hash_ != HashForObject(string)) return false; + // We want to compare the content of two internalized strings here. + return string_->SlowEquals(String::cast(string)); + } + + uint32_t Hash() override { return hash_; } + + uint32_t HashForObject(Object* key) override { + return String::cast(key)->Hash(); + } + + MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override { + return handle(string_, isolate); + } + + private: + String* string_; + uint32_t hash_; + DisallowHeapAllocation no_gc; +}; + +HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) { + if (deserializing_user_code()) { + if (obj->IsString()) { + String* string = String::cast(obj); + // Uninitialize hash field as the hash seed may have changed. + string->set_hash_field(String::kEmptyHashField); + if (string->IsInternalizedString()) { + // Canonicalize the internalized string. If it already exists in the + // string table, set it to forward to the existing one. + StringTableInsertionKey key(string); + String* canonical = StringTable::LookupKeyIfExists(isolate_, &key); + if (canonical == NULL) { + new_internalized_strings_.Add(handle(string)); + return string; + } else { + string->SetForwardedInternalizedString(canonical); + return canonical; + } + } + } else if (obj->IsScript()) { + new_scripts_.Add(handle(Script::cast(obj))); + } else { + DCHECK(CanBeDeferred(obj)); + } + } + if (obj->IsAllocationSite()) { + DCHECK(obj->IsAllocationSite()); + // Allocation sites are present in the snapshot, and must be linked into + // a list at deserialization time. + AllocationSite* site = AllocationSite::cast(obj); + // TODO(mvstanton): consider treating the heap()->allocation_sites_list() + // as a (weak) root. If this root is relocated correctly, this becomes + // unnecessary. + if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { + site->set_weak_next(isolate_->heap()->undefined_value()); + } else { + site->set_weak_next(isolate_->heap()->allocation_sites_list()); + } + isolate_->heap()->set_allocation_sites_list(site); + } else if (obj->IsCode()) { + // We flush all code pages after deserializing the startup snapshot. In that + // case, we only need to remember code objects in the large object space. + // When deserializing user code, remember each individual code object. + if (deserializing_user_code() || space == LO_SPACE) { + new_code_objects_.Add(Code::cast(obj)); + } + } + // Check alignment. + DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment())); + return obj; +} + +void Deserializer::CommitPostProcessedObjects(Isolate* isolate) { + StringTable::EnsureCapacityForDeserialization( + isolate, new_internalized_strings_.length()); + for (Handle<String> string : new_internalized_strings_) { + StringTableInsertionKey key(*string); + DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key)); + StringTable::LookupKey(isolate, &key); + } + + Heap* heap = isolate->heap(); + Factory* factory = isolate->factory(); + for (Handle<Script> script : new_scripts_) { + // Assign a new script id to avoid collision. + script->set_id(isolate_->heap()->NextScriptId()); + // Add script to list. + Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script); + heap->SetRootScriptList(*list); + } +} + +HeapObject* Deserializer::GetBackReferencedObject(int space) { + HeapObject* obj; + BackReference back_reference(source_.GetInt()); + if (space == LO_SPACE) { + CHECK(back_reference.chunk_index() == 0); + uint32_t index = back_reference.large_object_index(); + obj = deserialized_large_objects_[index]; + } else { + DCHECK(space < kNumberOfPreallocatedSpaces); + uint32_t chunk_index = back_reference.chunk_index(); + DCHECK_LE(chunk_index, current_chunk_[space]); + uint32_t chunk_offset = back_reference.chunk_offset(); + Address address = reservations_[space][chunk_index].start + chunk_offset; + if (next_alignment_ != kWordAligned) { + int padding = Heap::GetFillToAlign(address, next_alignment_); + next_alignment_ = kWordAligned; + DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller()); + address += padding; + } + obj = HeapObject::FromAddress(address); + } + if (deserializing_user_code() && obj->IsInternalizedString()) { + obj = String::cast(obj)->GetForwardedInternalizedString(); + } + hot_objects_.Add(obj); + return obj; +} + +// This routine writes the new object into the pointer provided and then +// returns true if the new object was in young space and false otherwise. +// The reason for this strange interface is that otherwise the object is +// written very late, which means the FreeSpace map is not set up by the +// time we need to use it to mark the space at the end of a page free. +void Deserializer::ReadObject(int space_number, Object** write_back) { + Address address; + HeapObject* obj; + int size = source_.GetInt() << kObjectAlignmentBits; + + if (next_alignment_ != kWordAligned) { + int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_); + address = Allocate(space_number, reserved); + obj = HeapObject::FromAddress(address); + // If one of the following assertions fails, then we are deserializing an + // aligned object when the filler maps have not been deserialized yet. + // We require filler maps as padding to align the object. + Heap* heap = isolate_->heap(); + DCHECK(heap->free_space_map()->IsMap()); + DCHECK(heap->one_pointer_filler_map()->IsMap()); + DCHECK(heap->two_pointer_filler_map()->IsMap()); + obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_); + address = obj->address(); + next_alignment_ = kWordAligned; + } else { + address = Allocate(space_number, size); + obj = HeapObject::FromAddress(address); + } + + isolate_->heap()->OnAllocationEvent(obj, size); + Object** current = reinterpret_cast<Object**>(address); + Object** limit = current + (size >> kPointerSizeLog2); + + if (ReadData(current, limit, space_number, address)) { + // Only post process if object content has not been deferred. + obj = PostProcessNewObject(obj, space_number); + } + + Object* write_back_obj = obj; + UnalignedCopy(write_back, &write_back_obj); +#ifdef DEBUG + if (obj->IsCode()) { + DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE); + } else { + DCHECK(space_number != CODE_SPACE); + } +#endif // DEBUG +} + +// We know the space requirements before deserialization and can +// pre-allocate that reserved space. During deserialization, all we need +// to do is to bump up the pointer for each space in the reserved +// space. This is also used for fixing back references. +// We may have to split up the pre-allocation into several chunks +// because it would not fit onto a single page. We do not have to keep +// track of when to move to the next chunk. An opcode will signal this. +// Since multiple large objects cannot be folded into one large object +// space allocation, we have to do an actual allocation when deserializing +// each large object. Instead of tracking offset for back references, we +// reference large objects by index. +Address Deserializer::Allocate(int space_index, int size) { + if (space_index == LO_SPACE) { + AlwaysAllocateScope scope(isolate_); + LargeObjectSpace* lo_space = isolate_->heap()->lo_space(); + Executability exec = static_cast<Executability>(source_.Get()); + AllocationResult result = lo_space->AllocateRaw(size, exec); + HeapObject* obj = HeapObject::cast(result.ToObjectChecked()); + deserialized_large_objects_.Add(obj); + return obj->address(); + } else { + DCHECK(space_index < kNumberOfPreallocatedSpaces); + Address address = high_water_[space_index]; + DCHECK_NOT_NULL(address); + high_water_[space_index] += size; +#ifdef DEBUG + // Assert that the current reserved chunk is still big enough. + const Heap::Reservation& reservation = reservations_[space_index]; + int chunk_index = current_chunk_[space_index]; + CHECK_LE(high_water_[space_index], reservation[chunk_index].end); +#endif + if (space_index == CODE_SPACE) SkipList::Update(address, size); + return address; + } +} + +Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector, + Object** current) { + DCHECK(!isolate_->heap()->deserialization_complete()); + NativesExternalStringResource* resource = new NativesExternalStringResource( + source_vector.start(), source_vector.length()); + Object* resource_obj = reinterpret_cast<Object*>(resource); + UnalignedCopy(current++, &resource_obj); + return current; +} + +bool Deserializer::ReadData(Object** current, Object** limit, int source_space, + Address current_object_address) { + Isolate* const isolate = isolate_; + // Write barrier support costs around 1% in startup time. In fact there + // are no new space objects in current boot snapshots, so it's not needed, + // but that may change. + bool write_barrier_needed = + (current_object_address != NULL && source_space != NEW_SPACE && + source_space != CODE_SPACE); + while (current < limit) { + byte data = source_.Get(); + switch (data) { +#define CASE_STATEMENT(where, how, within, space_number) \ + case where + how + within + space_number: \ + STATIC_ASSERT((where & ~kWhereMask) == 0); \ + STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \ + STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \ + STATIC_ASSERT((space_number & ~kSpaceMask) == 0); + +#define CASE_BODY(where, how, within, space_number_if_any) \ + { \ + bool emit_write_barrier = false; \ + bool current_was_incremented = false; \ + int space_number = space_number_if_any == kAnyOldSpace \ + ? (data & kSpaceMask) \ + : space_number_if_any; \ + if (where == kNewObject && how == kPlain && within == kStartOfObject) { \ + ReadObject(space_number, current); \ + emit_write_barrier = (space_number == NEW_SPACE); \ + } else { \ + Object* new_object = NULL; /* May not be a real Object pointer. */ \ + if (where == kNewObject) { \ + ReadObject(space_number, &new_object); \ + } else if (where == kBackref) { \ + emit_write_barrier = (space_number == NEW_SPACE); \ + new_object = GetBackReferencedObject(data & kSpaceMask); \ + } else if (where == kBackrefWithSkip) { \ + int skip = source_.GetInt(); \ + current = reinterpret_cast<Object**>( \ + reinterpret_cast<Address>(current) + skip); \ + emit_write_barrier = (space_number == NEW_SPACE); \ + new_object = GetBackReferencedObject(data & kSpaceMask); \ + } else if (where == kRootArray) { \ + int id = source_.GetInt(); \ + Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \ + new_object = isolate->heap()->root(root_index); \ + emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ + } else if (where == kPartialSnapshotCache) { \ + int cache_index = source_.GetInt(); \ + new_object = isolate->partial_snapshot_cache()->at(cache_index); \ + emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ + } else if (where == kExternalReference) { \ + int skip = source_.GetInt(); \ + current = reinterpret_cast<Object**>( \ + reinterpret_cast<Address>(current) + skip); \ + int reference_id = source_.GetInt(); \ + Address address = external_reference_table_->address(reference_id); \ + new_object = reinterpret_cast<Object*>(address); \ + } else if (where == kAttachedReference) { \ + int index = source_.GetInt(); \ + DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \ + new_object = *attached_objects_[index]; \ + emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ + } else { \ + DCHECK(where == kBuiltin); \ + DCHECK(deserializing_user_code()); \ + int builtin_id = source_.GetInt(); \ + DCHECK_LE(0, builtin_id); \ + DCHECK_LT(builtin_id, Builtins::builtin_count); \ + Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \ + new_object = isolate->builtins()->builtin(name); \ + emit_write_barrier = false; \ + } \ + if (within == kInnerPointer) { \ + if (space_number != CODE_SPACE || new_object->IsCode()) { \ + Code* new_code_object = reinterpret_cast<Code*>(new_object); \ + new_object = \ + reinterpret_cast<Object*>(new_code_object->instruction_start()); \ + } else { \ + DCHECK(space_number == CODE_SPACE); \ + Cell* cell = Cell::cast(new_object); \ + new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \ + } \ + } \ + if (how == kFromCode) { \ + Address location_of_branch_data = reinterpret_cast<Address>(current); \ + Assembler::deserialization_set_special_target_at( \ + isolate, location_of_branch_data, \ + Code::cast(HeapObject::FromAddress(current_object_address)), \ + reinterpret_cast<Address>(new_object)); \ + location_of_branch_data += Assembler::kSpecialTargetSize; \ + current = reinterpret_cast<Object**>(location_of_branch_data); \ + current_was_incremented = true; \ + } else { \ + UnalignedCopy(current, &new_object); \ + } \ + } \ + if (emit_write_barrier && write_barrier_needed) { \ + Address current_address = reinterpret_cast<Address>(current); \ + SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address)); \ + isolate->heap()->RecordWrite( \ + HeapObject::FromAddress(current_object_address), \ + static_cast<int>(current_address - current_object_address), \ + *reinterpret_cast<Object**>(current_address)); \ + } \ + if (!current_was_incremented) { \ + current++; \ + } \ + break; \ + } + +// This generates a case and a body for the new space (which has to do extra +// write barrier handling) and handles the other spaces with fall-through cases +// and one body. +#define ALL_SPACES(where, how, within) \ + CASE_STATEMENT(where, how, within, NEW_SPACE) \ + CASE_BODY(where, how, within, NEW_SPACE) \ + CASE_STATEMENT(where, how, within, OLD_SPACE) \ + CASE_STATEMENT(where, how, within, CODE_SPACE) \ + CASE_STATEMENT(where, how, within, MAP_SPACE) \ + CASE_STATEMENT(where, how, within, LO_SPACE) \ + CASE_BODY(where, how, within, kAnyOldSpace) + +#define FOUR_CASES(byte_code) \ + case byte_code: \ + case byte_code + 1: \ + case byte_code + 2: \ + case byte_code + 3: + +#define SIXTEEN_CASES(byte_code) \ + FOUR_CASES(byte_code) \ + FOUR_CASES(byte_code + 4) \ + FOUR_CASES(byte_code + 8) \ + FOUR_CASES(byte_code + 12) + +#define SINGLE_CASE(where, how, within, space) \ + CASE_STATEMENT(where, how, within, space) \ + CASE_BODY(where, how, within, space) + + // Deserialize a new object and write a pointer to it to the current + // object. + ALL_SPACES(kNewObject, kPlain, kStartOfObject) + // Support for direct instruction pointers in functions. It's an inner + // pointer because it points at the entry point, not at the start of the + // code object. + SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE) + // Deserialize a new code object and write a pointer to its first + // instruction to the current code object. + ALL_SPACES(kNewObject, kFromCode, kInnerPointer) + // Find a recently deserialized object using its offset from the current + // allocation point and write a pointer to it to the current object. + ALL_SPACES(kBackref, kPlain, kStartOfObject) + ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject) +#if V8_CODE_EMBEDS_OBJECT_POINTER + // Deserialize a new object from pointer found in code and write + // a pointer to it to the current object. Required only for MIPS, PPC, ARM + // or S390 with embedded constant pool, and omitted on the other + // architectures because it is fully unrolled and would cause bloat. + ALL_SPACES(kNewObject, kFromCode, kStartOfObject) + // Find a recently deserialized code object using its offset from the + // current allocation point and write a pointer to it to the current + // object. Required only for MIPS, PPC, ARM or S390 with embedded + // constant pool. + ALL_SPACES(kBackref, kFromCode, kStartOfObject) + ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject) +#endif + // Find a recently deserialized code object using its offset from the + // current allocation point and write a pointer to its first instruction + // to the current code object or the instruction pointer in a function + // object. + ALL_SPACES(kBackref, kFromCode, kInnerPointer) + ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer) + ALL_SPACES(kBackref, kPlain, kInnerPointer) + ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer) + // Find an object in the roots array and write a pointer to it to the + // current object. + SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0) +#if V8_CODE_EMBEDS_OBJECT_POINTER + // Find an object in the roots array and write a pointer to it to in code. + SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0) +#endif + // Find an object in the partial snapshots cache and write a pointer to it + // to the current object. + SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0) + // Find an code entry in the partial snapshots cache and + // write a pointer to it to the current object. + SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0) + // Find an external reference and write a pointer to it to the current + // object. + SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0) + // Find an external reference and write a pointer to it in the current + // code object. + SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0) + // Find an object in the attached references and write a pointer to it to + // the current object. + SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0) + SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0) + SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0) + // Find a builtin and write a pointer to it to the current object. + SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0) + SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0) + SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0) + +#undef CASE_STATEMENT +#undef CASE_BODY +#undef ALL_SPACES + + case kSkip: { + int size = source_.GetInt(); + current = reinterpret_cast<Object**>( + reinterpret_cast<intptr_t>(current) + size); + break; + } + + case kInternalReferenceEncoded: + case kInternalReference: { + // Internal reference address is not encoded via skip, but by offset + // from code entry. + int pc_offset = source_.GetInt(); + int target_offset = source_.GetInt(); + Code* code = + Code::cast(HeapObject::FromAddress(current_object_address)); + DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size()); + DCHECK(0 <= target_offset && target_offset <= code->instruction_size()); + Address pc = code->entry() + pc_offset; + Address target = code->entry() + target_offset; + Assembler::deserialization_set_target_internal_reference_at( + isolate, pc, target, data == kInternalReference + ? RelocInfo::INTERNAL_REFERENCE + : RelocInfo::INTERNAL_REFERENCE_ENCODED); + break; + } + + case kNop: + break; + + case kNextChunk: { + int space = source_.Get(); + DCHECK(space < kNumberOfPreallocatedSpaces); + int chunk_index = current_chunk_[space]; + const Heap::Reservation& reservation = reservations_[space]; + // Make sure the current chunk is indeed exhausted. + CHECK_EQ(reservation[chunk_index].end, high_water_[space]); + // Move to next reserved chunk. + chunk_index = ++current_chunk_[space]; + CHECK_LT(chunk_index, reservation.length()); + high_water_[space] = reservation[chunk_index].start; + break; + } + + case kDeferred: { + // Deferred can only occur right after the heap object header. + DCHECK(current == reinterpret_cast<Object**>(current_object_address + + kPointerSize)); + HeapObject* obj = HeapObject::FromAddress(current_object_address); + // If the deferred object is a map, its instance type may be used + // during deserialization. Initialize it with a temporary value. + if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE); + current = limit; + return false; + } + + case kSynchronize: + // If we get here then that indicates that you have a mismatch between + // the number of GC roots when serializing and deserializing. + CHECK(false); + break; + + case kNativesStringResource: + current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()), + current); + break; + + case kExtraNativesStringResource: + current = CopyInNativesSource( + ExtraNatives::GetScriptSource(source_.Get()), current); + break; + + // Deserialize raw data of variable length. + case kVariableRawData: { + int size_in_bytes = source_.GetInt(); + byte* raw_data_out = reinterpret_cast<byte*>(current); + source_.CopyRaw(raw_data_out, size_in_bytes); + break; + } + + case kVariableRepeat: { + int repeats = source_.GetInt(); + Object* object = current[-1]; + DCHECK(!isolate->heap()->InNewSpace(object)); + for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); + break; + } + + case kAlignmentPrefix: + case kAlignmentPrefix + 1: + case kAlignmentPrefix + 2: + SetAlignment(data); + break; + + STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots); + STATIC_ASSERT(kNumberOfRootArrayConstants == 32); + SIXTEEN_CASES(kRootArrayConstantsWithSkip) + SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) { + int skip = source_.GetInt(); + current = reinterpret_cast<Object**>( + reinterpret_cast<intptr_t>(current) + skip); + // Fall through. + } + + SIXTEEN_CASES(kRootArrayConstants) + SIXTEEN_CASES(kRootArrayConstants + 16) { + int id = data & kRootArrayConstantsMask; + Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); + Object* object = isolate->heap()->root(root_index); + DCHECK(!isolate->heap()->InNewSpace(object)); + UnalignedCopy(current++, &object); + break; + } + + STATIC_ASSERT(kNumberOfHotObjects == 8); + FOUR_CASES(kHotObjectWithSkip) + FOUR_CASES(kHotObjectWithSkip + 4) { + int skip = source_.GetInt(); + current = reinterpret_cast<Object**>( + reinterpret_cast<Address>(current) + skip); + // Fall through. + } + + FOUR_CASES(kHotObject) + FOUR_CASES(kHotObject + 4) { + int index = data & kHotObjectMask; + Object* hot_object = hot_objects_.Get(index); + UnalignedCopy(current, &hot_object); + if (write_barrier_needed) { + Address current_address = reinterpret_cast<Address>(current); + SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address)); + isolate->heap()->RecordWrite( + HeapObject::FromAddress(current_object_address), + static_cast<int>(current_address - current_object_address), + hot_object); + } + current++; + break; + } + + // Deserialize raw data of fixed length from 1 to 32 words. + STATIC_ASSERT(kNumberOfFixedRawData == 32); + SIXTEEN_CASES(kFixedRawData) + SIXTEEN_CASES(kFixedRawData + 16) { + byte* raw_data_out = reinterpret_cast<byte*>(current); + int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2; + source_.CopyRaw(raw_data_out, size_in_bytes); + current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes); + break; + } + + STATIC_ASSERT(kNumberOfFixedRepeat == 16); + SIXTEEN_CASES(kFixedRepeat) { + int repeats = data - kFixedRepeatStart; + Object* object; + UnalignedCopy(&object, current - 1); + DCHECK(!isolate->heap()->InNewSpace(object)); + for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); + break; + } + +#undef SIXTEEN_CASES +#undef FOUR_CASES +#undef SINGLE_CASE + + default: + CHECK(false); + } + } + CHECK_EQ(limit, current); + return true; +} +} // namespace internal +} // namespace v8 diff --git a/chromium/v8/src/snapshot/deserializer.h b/chromium/v8/src/snapshot/deserializer.h new file mode 100644 index 00000000000..58c481cc798 --- /dev/null +++ b/chromium/v8/src/snapshot/deserializer.h @@ -0,0 +1,150 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_SNAPSHOT_DESERIALIZER_H_ +#define V8_SNAPSHOT_DESERIALIZER_H_ + +#include "src/heap/heap.h" +#include "src/objects.h" +#include "src/snapshot/serializer-common.h" +#include "src/snapshot/snapshot-source-sink.h" + +namespace v8 { +namespace internal { + +// Used for platforms with embedded constant pools to trigger deserialization +// of objects found in code. +#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ + defined(V8_TARGET_ARCH_PPC) || defined(V8_TARGET_ARCH_S390) || \ + V8_EMBEDDED_CONSTANT_POOL +#define V8_CODE_EMBEDS_OBJECT_POINTER 1 +#else +#define V8_CODE_EMBEDS_OBJECT_POINTER 0 +#endif + +class Heap; + +// A Deserializer reads a snapshot and reconstructs the Object graph it defines. +class Deserializer : public SerializerDeserializer { + public: + // Create a deserializer from a snapshot byte source. + template <class Data> + explicit Deserializer(Data* data) + : isolate_(NULL), + source_(data->Payload()), + magic_number_(data->GetMagicNumber()), + external_reference_table_(NULL), + deserialized_large_objects_(0), + deserializing_user_code_(false), + next_alignment_(kWordAligned) { + DecodeReservation(data->Reservations()); + } + + ~Deserializer() override; + + // Deserialize the snapshot into an empty heap. + void Deserialize(Isolate* isolate); + + // Deserialize a single object and the objects reachable from it. + MaybeHandle<Object> DeserializePartial(Isolate* isolate, + Handle<JSGlobalProxy> global_proxy); + + // Deserialize a shared function info. Fail gracefully. + MaybeHandle<SharedFunctionInfo> DeserializeCode(Isolate* isolate); + + // Pass a vector of externally-provided objects referenced by the snapshot. + // The ownership to its backing store is handed over as well. + void SetAttachedObjects(Vector<Handle<Object> > attached_objects) { + attached_objects_ = attached_objects; + } + + private: + void VisitPointers(Object** start, Object** end) override; + + void Synchronize(VisitorSynchronization::SyncTag tag) override; + + void VisitRuntimeEntry(RelocInfo* rinfo) override { UNREACHABLE(); } + + void Initialize(Isolate* isolate); + + bool deserializing_user_code() { return deserializing_user_code_; } + + void DecodeReservation(Vector<const SerializedData::Reservation> res); + + bool ReserveSpace(); + + void UnalignedCopy(Object** dest, Object** src) { + memcpy(dest, src, sizeof(*src)); + } + + void SetAlignment(byte data) { + DCHECK_EQ(kWordAligned, next_alignment_); + int alignment = data - (kAlignmentPrefix - 1); + DCHECK_LE(kWordAligned, alignment); + DCHECK_LE(alignment, kSimd128Unaligned); + next_alignment_ = static_cast<AllocationAlignment>(alignment); + } + + void DeserializeDeferredObjects(); + + void FlushICacheForNewIsolate(); + void FlushICacheForNewCodeObjects(); + + void CommitPostProcessedObjects(Isolate* isolate); + + // Fills in some heap data in an area from start to end (non-inclusive). The + // space id is used for the write barrier. The object_address is the address + // of the object we are writing into, or NULL if we are not writing into an + // object, i.e. if we are writing a series of tagged values that are not on + // the heap. Return false if the object content has been deferred. + bool ReadData(Object** start, Object** end, int space, + Address object_address); + void ReadObject(int space_number, Object** write_back); + Address Allocate(int space_index, int size); + + // Special handling for serialized code like hooking up internalized strings. + HeapObject* PostProcessNewObject(HeapObject* obj, int space); + + // This returns the address of an object that has been described in the + // snapshot by chunk index and offset. + HeapObject* GetBackReferencedObject(int space); + + Object** CopyInNativesSource(Vector<const char> source_vector, + Object** current); + + // Cached current isolate. + Isolate* isolate_; + + // Objects from the attached object descriptions in the serialized user code. + Vector<Handle<Object> > attached_objects_; + + SnapshotByteSource source_; + uint32_t magic_number_; + + // The address of the next object that will be allocated in each space. + // Each space has a number of chunks reserved by the GC, with each chunk + // fitting into a page. Deserialized objects are allocated into the + // current chunk of the target space by bumping up high water mark. + Heap::Reservation reservations_[kNumberOfSpaces]; + uint32_t current_chunk_[kNumberOfPreallocatedSpaces]; + Address high_water_[kNumberOfPreallocatedSpaces]; + + ExternalReferenceTable* external_reference_table_; + + List<HeapObject*> deserialized_large_objects_; + List<Code*> new_code_objects_; + List<Handle<String> > new_internalized_strings_; + List<Handle<Script> > new_scripts_; + + bool deserializing_user_code_; + + AllocationAlignment next_alignment_; + + DISALLOW_COPY_AND_ASSIGN(Deserializer); +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_SNAPSHOT_DESERIALIZER_H_ diff --git a/chromium/v8/src/snapshot/mksnapshot.cc b/chromium/v8/src/snapshot/mksnapshot.cc index c69025adcaa..c38f92f5b17 100644 --- a/chromium/v8/src/snapshot/mksnapshot.cc +++ b/chromium/v8/src/snapshot/mksnapshot.cc @@ -12,8 +12,8 @@ #include "src/flags.h" #include "src/list.h" #include "src/snapshot/natives.h" -#include "src/snapshot/serialize.h" - +#include "src/snapshot/partial-serializer.h" +#include "src/snapshot/startup-serializer.h" using namespace v8; @@ -109,10 +109,9 @@ class SnapshotWriter { FILE* startup_blob_file_; }; - -char* GetExtraCode(char* filename) { +char* GetExtraCode(char* filename, const char* description) { if (filename == NULL || strlen(filename) == 0) return NULL; - ::printf("Embedding extra script: %s\n", filename); + ::printf("Loading script for %s: %s\n", description, filename); FILE* file = base::OS::FOpen(filename, "rb"); if (file == NULL) { fprintf(stderr, "Failed to open '%s': errno %d\n", filename, errno); @@ -137,14 +136,13 @@ char* GetExtraCode(char* filename) { int main(int argc, char** argv) { - // By default, log code create information in the snapshot. - i::FLAG_log_code = true; - i::FLAG_logfile_per_isolate = false; + // Make mksnapshot runs predictable to create reproducible snapshots. + i::FLAG_predictable = true; // Print the usage if an error occurs when parsing the command line // flags or if the help flag is set. int result = i::FlagList::SetFlagsFromCommandLine(&argc, argv, true); - if (result > 0 || (argc != 1 && argc != 2) || i::FLAG_help) { + if (result > 0 || (argc > 3) || i::FLAG_help) { ::printf("Usage: %s --startup_src=... --startup_blob=... [extras]\n", argv[0]); i::FlagList::PrintHelp(); @@ -161,11 +159,21 @@ int main(int argc, char** argv) { SnapshotWriter writer; if (i::FLAG_startup_src) writer.SetSnapshotFile(i::FLAG_startup_src); if (i::FLAG_startup_blob) writer.SetStartupBlobFile(i::FLAG_startup_blob); - char* extra_code = GetExtraCode(argc == 2 ? argv[1] : NULL); - StartupData blob = v8::V8::CreateSnapshotDataBlob(extra_code); + + char* embed_script = GetExtraCode(argc >= 2 ? argv[1] : NULL, "embedding"); + StartupData blob = v8::V8::CreateSnapshotDataBlob(embed_script); + delete[] embed_script; + + char* warmup_script = GetExtraCode(argc >= 3 ? argv[2] : NULL, "warm up"); + if (warmup_script) { + StartupData cold = blob; + blob = v8::V8::WarmUpSnapshotDataBlob(cold, warmup_script); + delete[] cold.data; + delete[] warmup_script; + } + CHECK(blob.data); writer.WriteSnapshot(blob); - delete[] extra_code; delete[] blob.data; } diff --git a/chromium/v8/src/snapshot/partial-serializer.cc b/chromium/v8/src/snapshot/partial-serializer.cc new file mode 100644 index 00000000000..0f1f133edc0 --- /dev/null +++ b/chromium/v8/src/snapshot/partial-serializer.cc @@ -0,0 +1,123 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "src/snapshot/partial-serializer.h" + +#include "src/objects-inl.h" + +namespace v8 { +namespace internal { + +PartialSerializer::PartialSerializer(Isolate* isolate, + Serializer* startup_snapshot_serializer, + SnapshotByteSink* sink) + : Serializer(isolate, sink), + startup_serializer_(startup_snapshot_serializer), + global_object_(NULL), + next_partial_cache_index_(0) { + InitializeCodeAddressMap(); +} + +PartialSerializer::~PartialSerializer() { + OutputStatistics("PartialSerializer"); +} + +void PartialSerializer::Serialize(Object** o) { + if ((*o)->IsContext()) { + Context* context = Context::cast(*o); + global_object_ = context->global_object(); + back_reference_map()->AddGlobalProxy(context->global_proxy()); + // The bootstrap snapshot has a code-stub context. When serializing the + // partial snapshot, it is chained into the weak context list on the isolate + // and it's next context pointer may point to the code-stub context. Clear + // it before serializing, it will get re-added to the context list + // explicitly when it's loaded. + if (context->IsNativeContext()) { + context->set(Context::NEXT_CONTEXT_LINK, + isolate_->heap()->undefined_value()); + DCHECK(!context->global_object()->IsUndefined()); + } + } + VisitPointer(o); + SerializeDeferredObjects(); + Pad(); +} + +void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, + WhereToPoint where_to_point, int skip) { + if (obj->IsMap()) { + // The code-caches link to context-specific code objects, which + // the startup and context serializes cannot currently handle. + DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array()); + } + + // Replace typed arrays by undefined. + if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value(); + + int root_index = root_index_map_.Lookup(obj); + if (root_index != RootIndexMap::kInvalidRootIndex) { + PutRoot(root_index, obj, how_to_code, where_to_point, skip); + return; + } + + if (ShouldBeInThePartialSnapshotCache(obj)) { + FlushSkip(skip); + + int cache_index = PartialSnapshotCacheIndex(obj); + sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point, + "PartialSnapshotCache"); + sink_->PutInt(cache_index, "partial_snapshot_cache_index"); + return; + } + + // Pointers from the partial snapshot to the objects in the startup snapshot + // should go through the root array or through the partial snapshot cache. + // If this is not the case you may have to add something to the root array. + DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid()); + // All the internalized strings that the partial snapshot needs should be + // either in the root table or in the partial snapshot cache. + DCHECK(!obj->IsInternalizedString()); + + if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; + + FlushSkip(skip); + + // Clear literal boilerplates. + if (obj->IsJSFunction()) { + FixedArray* literals = JSFunction::cast(obj)->literals(); + for (int i = 0; i < literals->length(); i++) literals->set_undefined(i); + } + + // Object has not yet been serialized. Serialize it here. + ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point); + serializer.Serialize(); +} + +int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) { + int index = partial_cache_index_map_.LookupOrInsert( + heap_object, next_partial_cache_index_); + if (index == PartialCacheIndexMap::kInvalidIndex) { + // This object is not part of the partial snapshot cache yet. Add it to the + // startup snapshot so we can refer to it via partial snapshot index from + // the partial snapshot. + startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object)); + return next_partial_cache_index_++; + } + return index; +} + +bool PartialSerializer::ShouldBeInThePartialSnapshotCache(HeapObject* o) { + // Scripts should be referred only through shared function infos. We can't + // allow them to be part of the partial snapshot because they contain a + // unique ID, and deserializing several partial snapshots containing script + // would cause dupes. + DCHECK(!o->IsScript()); + return o->IsName() || o->IsSharedFunctionInfo() || o->IsHeapNumber() || + o->IsCode() || o->IsScopeInfo() || o->IsAccessorInfo() || + o->map() == + startup_serializer_->isolate()->heap()->fixed_cow_array_map(); +} + +} // namespace internal +} // namespace v8 diff --git a/chromium/v8/src/snapshot/partial-serializer.h b/chromium/v8/src/snapshot/partial-serializer.h new file mode 100644 index 00000000000..0bf61dd0555 --- /dev/null +++ b/chromium/v8/src/snapshot/partial-serializer.h @@ -0,0 +1,62 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_SNAPSHOT_PARTIAL_SERIALIZER_H_ +#define V8_SNAPSHOT_PARTIAL_SERIALIZER_H_ + +#include "src/address-map.h" +#include "src/snapshot/serializer.h" + +namespace v8 { +namespace internal { + +class PartialSerializer : public Serializer { + public: + PartialSerializer(Isolate* isolate, Serializer* startup_snapshot_serializer, + SnapshotByteSink* sink); + + ~PartialSerializer() override; + + // Serialize the objects reachable from a single object pointer. + void Serialize(Object** o); + + private: + class PartialCacheIndexMap : public AddressMapBase { + public: + PartialCacheIndexMap() : map_(HashMap::PointersMatch) {} + + static const int kInvalidIndex = -1; + + // Lookup object in the map. Return its index if found, or create + // a new entry with new_index as value, and return kInvalidIndex. + int LookupOrInsert(HeapObject* obj, int new_index) { + HashMap::Entry* entry = LookupEntry(&map_, obj, false); + if (entry != NULL) return GetValue(entry); + SetValue(LookupEntry(&map_, obj, true), static_cast<uint32_t>(new_index)); + return kInvalidIndex; + } + + private: + HashMap map_; + + DISALLOW_COPY_AND_ASSIGN(PartialCacheIndexMap); + }; + + void SerializeObject(HeapObject* o, HowToCode how_to_code, + WhereToPoint where_to_point, int skip) override; + + int PartialSnapshotCacheIndex(HeapObject* o); + bool ShouldBeInThePartialSnapshotCache(HeapObject* o); + + Serializer* startup_serializer_; + Object* global_object_; + PartialCacheIndexMap partial_cache_index_map_; + int next_partial_cache_index_; + DISALLOW_COPY_AND_ASSIGN(PartialSerializer); +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_SNAPSHOT_PARTIAL_SERIALIZER_H_ diff --git a/chromium/v8/src/snapshot/serialize.cc b/chromium/v8/src/snapshot/serialize.cc deleted file mode 100644 index 421cf0721cd..00000000000 --- a/chromium/v8/src/snapshot/serialize.cc +++ /dev/null @@ -1,2804 +0,0 @@ -// Copyright 2012 the V8 project authors. All rights reserved. -// Use of this source code is governed by a BSD-style license that can be -// found in the LICENSE file. - -#include "src/snapshot/serialize.h" - -#include "src/accessors.h" -#include "src/api.h" -#include "src/base/platform/platform.h" -#include "src/bootstrapper.h" -#include "src/code-stubs.h" -#include "src/deoptimizer.h" -#include "src/execution.h" -#include "src/global-handles.h" -#include "src/ic/ic.h" -#include "src/ic/stub-cache.h" -#include "src/objects.h" -#include "src/parsing/parser.h" -#include "src/profiler/cpu-profiler.h" -#include "src/runtime/runtime.h" -#include "src/snapshot/natives.h" -#include "src/snapshot/snapshot.h" -#include "src/snapshot/snapshot-source-sink.h" -#include "src/v8.h" -#include "src/v8threads.h" -#include "src/version.h" - -namespace v8 { -namespace internal { - - -// ----------------------------------------------------------------------------- -// Coding of external references. - - -ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) { - ExternalReferenceTable* external_reference_table = - isolate->external_reference_table(); - if (external_reference_table == NULL) { - external_reference_table = new ExternalReferenceTable(isolate); - isolate->set_external_reference_table(external_reference_table); - } - return external_reference_table; -} - - -ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) { - // Miscellaneous - Add(ExternalReference::roots_array_start(isolate).address(), - "Heap::roots_array_start()"); - Add(ExternalReference::address_of_stack_limit(isolate).address(), - "StackGuard::address_of_jslimit()"); - Add(ExternalReference::address_of_real_stack_limit(isolate).address(), - "StackGuard::address_of_real_jslimit()"); - Add(ExternalReference::new_space_start(isolate).address(), - "Heap::NewSpaceStart()"); - Add(ExternalReference::new_space_mask(isolate).address(), - "Heap::NewSpaceMask()"); - Add(ExternalReference::new_space_allocation_limit_address(isolate).address(), - "Heap::NewSpaceAllocationLimitAddress()"); - Add(ExternalReference::new_space_allocation_top_address(isolate).address(), - "Heap::NewSpaceAllocationTopAddress()"); - Add(ExternalReference::mod_two_doubles_operation(isolate).address(), - "mod_two_doubles"); - // Keyed lookup cache. - Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(), - "KeyedLookupCache::keys()"); - Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(), - "KeyedLookupCache::field_offsets()"); - Add(ExternalReference::handle_scope_next_address(isolate).address(), - "HandleScope::next"); - Add(ExternalReference::handle_scope_limit_address(isolate).address(), - "HandleScope::limit"); - Add(ExternalReference::handle_scope_level_address(isolate).address(), - "HandleScope::level"); - Add(ExternalReference::new_deoptimizer_function(isolate).address(), - "Deoptimizer::New()"); - Add(ExternalReference::compute_output_frames_function(isolate).address(), - "Deoptimizer::ComputeOutputFrames()"); - Add(ExternalReference::address_of_min_int().address(), - "LDoubleConstant::min_int"); - Add(ExternalReference::address_of_one_half().address(), - "LDoubleConstant::one_half"); - Add(ExternalReference::isolate_address(isolate).address(), "isolate"); - Add(ExternalReference::address_of_negative_infinity().address(), - "LDoubleConstant::negative_infinity"); - Add(ExternalReference::power_double_double_function(isolate).address(), - "power_double_double_function"); - Add(ExternalReference::power_double_int_function(isolate).address(), - "power_double_int_function"); - Add(ExternalReference::math_log_double_function(isolate).address(), - "std::log"); - Add(ExternalReference::store_buffer_top(isolate).address(), - "store_buffer_top"); - Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan"); - Add(ExternalReference::get_date_field_function(isolate).address(), - "JSDate::GetField"); - Add(ExternalReference::date_cache_stamp(isolate).address(), - "date_cache_stamp"); - Add(ExternalReference::address_of_pending_message_obj(isolate).address(), - "address_of_pending_message_obj"); - Add(ExternalReference::get_make_code_young_function(isolate).address(), - "Code::MakeCodeYoung"); - Add(ExternalReference::cpu_features().address(), "cpu_features"); - Add(ExternalReference::old_space_allocation_top_address(isolate).address(), - "Heap::OldSpaceAllocationTopAddress"); - Add(ExternalReference::old_space_allocation_limit_address(isolate).address(), - "Heap::OldSpaceAllocationLimitAddress"); - Add(ExternalReference::allocation_sites_list_address(isolate).address(), - "Heap::allocation_sites_list_address()"); - Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias"); - Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(), - "Code::MarkCodeAsExecuted"); - Add(ExternalReference::is_profiling_address(isolate).address(), - "CpuProfiler::is_profiling"); - Add(ExternalReference::scheduled_exception_address(isolate).address(), - "Isolate::scheduled_exception"); - Add(ExternalReference::invoke_function_callback(isolate).address(), - "InvokeFunctionCallback"); - Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(), - "InvokeAccessorGetterCallback"); - Add(ExternalReference::log_enter_external_function(isolate).address(), - "Logger::EnterExternal"); - Add(ExternalReference::log_leave_external_function(isolate).address(), - "Logger::LeaveExternal"); - Add(ExternalReference::address_of_minus_one_half().address(), - "double_constants.minus_one_half"); - Add(ExternalReference::stress_deopt_count(isolate).address(), - "Isolate::stress_deopt_count_address()"); - Add(ExternalReference::virtual_handler_register(isolate).address(), - "Isolate::virtual_handler_register()"); - Add(ExternalReference::virtual_slot_register(isolate).address(), - "Isolate::virtual_slot_register()"); - Add(ExternalReference::runtime_function_table_address(isolate).address(), - "Runtime::runtime_function_table_address()"); - - // Debug addresses - Add(ExternalReference::debug_after_break_target_address(isolate).address(), - "Debug::after_break_target_address()"); - Add(ExternalReference::debug_is_active_address(isolate).address(), - "Debug::is_active_address()"); - Add(ExternalReference::debug_step_in_enabled_address(isolate).address(), - "Debug::step_in_enabled_address()"); - -#ifndef V8_INTERPRETED_REGEXP - Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(), - "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()"); - Add(ExternalReference::re_check_stack_guard_state(isolate).address(), - "RegExpMacroAssembler*::CheckStackGuardState()"); - Add(ExternalReference::re_grow_stack(isolate).address(), - "NativeRegExpMacroAssembler::GrowStack()"); - Add(ExternalReference::re_word_character_map().address(), - "NativeRegExpMacroAssembler::word_character_map"); - Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(), - "RegExpStack::limit_address()"); - Add(ExternalReference::address_of_regexp_stack_memory_address(isolate) - .address(), - "RegExpStack::memory_address()"); - Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(), - "RegExpStack::memory_size()"); - Add(ExternalReference::address_of_static_offsets_vector(isolate).address(), - "OffsetsVector::static_offsets_vector"); -#endif // V8_INTERPRETED_REGEXP - - // The following populates all of the different type of external references - // into the ExternalReferenceTable. - // - // NOTE: This function was originally 100k of code. It has since been - // rewritten to be mostly table driven, as the callback macro style tends to - // very easily cause code bloat. Please be careful in the future when adding - // new references. - - struct RefTableEntry { - uint16_t id; - const char* name; - }; - - static const RefTableEntry c_builtins[] = { -#define DEF_ENTRY_C(name, ignored) \ - { Builtins::c_##name, "Builtins::" #name } \ - , - BUILTIN_LIST_C(DEF_ENTRY_C) -#undef DEF_ENTRY_C - }; - - for (unsigned i = 0; i < arraysize(c_builtins); ++i) { - ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id), - isolate); - Add(ref.address(), c_builtins[i].name); - } - - static const RefTableEntry builtins[] = { -#define DEF_ENTRY_C(name, ignored) \ - { Builtins::k##name, "Builtins::" #name } \ - , -#define DEF_ENTRY_A(name, i1, i2, i3) \ - { Builtins::k##name, "Builtins::" #name } \ - , - BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A) - BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A) -#undef DEF_ENTRY_C -#undef DEF_ENTRY_A - }; - - for (unsigned i = 0; i < arraysize(builtins); ++i) { - ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate); - Add(ref.address(), builtins[i].name); - } - - static const RefTableEntry runtime_functions[] = { -#define RUNTIME_ENTRY(name, i1, i2) \ - { Runtime::k##name, "Runtime::" #name } \ - , - FOR_EACH_INTRINSIC(RUNTIME_ENTRY) -#undef RUNTIME_ENTRY - }; - - for (unsigned i = 0; i < arraysize(runtime_functions); ++i) { - ExternalReference ref( - static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate); - Add(ref.address(), runtime_functions[i].name); - } - - // Stat counters - struct StatsRefTableEntry { - StatsCounter* (Counters::*counter)(); - const char* name; - }; - - static const StatsRefTableEntry stats_ref_table[] = { -#define COUNTER_ENTRY(name, caption) \ - { &Counters::name, "Counters::" #name } \ - , - STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY) -#undef COUNTER_ENTRY - }; - - Counters* counters = isolate->counters(); - for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) { - // To make sure the indices are not dependent on whether counters are - // enabled, use a dummy address as filler. - Address address = NotAvailable(); - StatsCounter* counter = (counters->*(stats_ref_table[i].counter))(); - if (counter->Enabled()) { - address = reinterpret_cast<Address>(counter->GetInternalPointer()); - } - Add(address, stats_ref_table[i].name); - } - - // Top addresses - static const char* address_names[] = { -#define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address", - FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL -#undef BUILD_NAME_LITERAL - }; - - for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) { - Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)), - address_names[i]); - } - - // Accessors - struct AccessorRefTable { - Address address; - const char* name; - }; - - static const AccessorRefTable accessors[] = { -#define ACCESSOR_INFO_DECLARATION(name) \ - { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \ - , {FUNCTION_ADDR(&Accessors::name##Setter), "Accessors::" #name "Setter"}, - ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION) -#undef ACCESSOR_INFO_DECLARATION - }; - - for (unsigned i = 0; i < arraysize(accessors); ++i) { - Add(accessors[i].address, accessors[i].name); - } - - StubCache* stub_cache = isolate->stub_cache(); - - // Stub cache tables - Add(stub_cache->key_reference(StubCache::kPrimary).address(), - "StubCache::primary_->key"); - Add(stub_cache->value_reference(StubCache::kPrimary).address(), - "StubCache::primary_->value"); - Add(stub_cache->map_reference(StubCache::kPrimary).address(), - "StubCache::primary_->map"); - Add(stub_cache->key_reference(StubCache::kSecondary).address(), - "StubCache::secondary_->key"); - Add(stub_cache->value_reference(StubCache::kSecondary).address(), - "StubCache::secondary_->value"); - Add(stub_cache->map_reference(StubCache::kSecondary).address(), - "StubCache::secondary_->map"); - - // Runtime entries - Add(ExternalReference::delete_handle_scope_extensions(isolate).address(), - "HandleScope::DeleteExtensions"); - Add(ExternalReference::incremental_marking_record_write_function(isolate) - .address(), - "IncrementalMarking::RecordWrite"); - Add(ExternalReference::store_buffer_overflow_function(isolate).address(), - "StoreBuffer::StoreBufferOverflow"); - - // Add a small set of deopt entry addresses to encoder without generating the - // deopt table code, which isn't possible at deserialization time. - HandleScope scope(isolate); - for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) { - Address address = Deoptimizer::GetDeoptimizationEntry( - isolate, - entry, - Deoptimizer::LAZY, - Deoptimizer::CALCULATE_ENTRY_ADDRESS); - Add(address, "lazy_deopt"); - } -} - - -ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) { - map_ = isolate->external_reference_map(); - if (map_ != NULL) return; - map_ = new HashMap(HashMap::PointersMatch); - ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate); - for (int i = 0; i < table->size(); ++i) { - Address addr = table->address(i); - if (addr == ExternalReferenceTable::NotAvailable()) continue; - // We expect no duplicate external references entries in the table. - DCHECK_NULL(map_->Lookup(addr, Hash(addr))); - map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i); - } - isolate->set_external_reference_map(map_); -} - - -uint32_t ExternalReferenceEncoder::Encode(Address address) const { - DCHECK_NOT_NULL(address); - HashMap::Entry* entry = - const_cast<HashMap*>(map_)->Lookup(address, Hash(address)); - DCHECK_NOT_NULL(entry); - return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value)); -} - - -const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate, - Address address) const { - HashMap::Entry* entry = - const_cast<HashMap*>(map_)->Lookup(address, Hash(address)); - if (entry == NULL) return "<unknown>"; - uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value)); - return ExternalReferenceTable::instance(isolate)->name(i); -} - - -class CodeAddressMap: public CodeEventLogger { - public: - explicit CodeAddressMap(Isolate* isolate) - : isolate_(isolate) { - isolate->logger()->addCodeEventListener(this); - } - - ~CodeAddressMap() override { - isolate_->logger()->removeCodeEventListener(this); - } - - void CodeMoveEvent(Address from, Address to) override { - address_to_name_map_.Move(from, to); - } - - void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) override {} - - void CodeDeleteEvent(Address from) override { - address_to_name_map_.Remove(from); - } - - const char* Lookup(Address address) { - return address_to_name_map_.Lookup(address); - } - - private: - class NameMap { - public: - NameMap() : impl_(HashMap::PointersMatch) {} - - ~NameMap() { - for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) { - DeleteArray(static_cast<const char*>(p->value)); - } - } - - void Insert(Address code_address, const char* name, int name_size) { - HashMap::Entry* entry = FindOrCreateEntry(code_address); - if (entry->value == NULL) { - entry->value = CopyName(name, name_size); - } - } - - const char* Lookup(Address code_address) { - HashMap::Entry* entry = FindEntry(code_address); - return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL; - } - - void Remove(Address code_address) { - HashMap::Entry* entry = FindEntry(code_address); - if (entry != NULL) { - DeleteArray(static_cast<char*>(entry->value)); - RemoveEntry(entry); - } - } - - void Move(Address from, Address to) { - if (from == to) return; - HashMap::Entry* from_entry = FindEntry(from); - DCHECK(from_entry != NULL); - void* value = from_entry->value; - RemoveEntry(from_entry); - HashMap::Entry* to_entry = FindOrCreateEntry(to); - DCHECK(to_entry->value == NULL); - to_entry->value = value; - } - - private: - static char* CopyName(const char* name, int name_size) { - char* result = NewArray<char>(name_size + 1); - for (int i = 0; i < name_size; ++i) { - char c = name[i]; - if (c == '\0') c = ' '; - result[i] = c; - } - result[name_size] = '\0'; - return result; - } - - HashMap::Entry* FindOrCreateEntry(Address code_address) { - return impl_.LookupOrInsert(code_address, - ComputePointerHash(code_address)); - } - - HashMap::Entry* FindEntry(Address code_address) { - return impl_.Lookup(code_address, ComputePointerHash(code_address)); - } - - void RemoveEntry(HashMap::Entry* entry) { - impl_.Remove(entry->key, entry->hash); - } - - HashMap impl_; - - DISALLOW_COPY_AND_ASSIGN(NameMap); - }; - - void LogRecordedBuffer(Code* code, SharedFunctionInfo*, const char* name, - int length) override { - address_to_name_map_.Insert(code->address(), name, length); - } - - NameMap address_to_name_map_; - Isolate* isolate_; -}; - - -void Deserializer::DecodeReservation( - Vector<const SerializedData::Reservation> res) { - DCHECK_EQ(0, reservations_[NEW_SPACE].length()); - STATIC_ASSERT(NEW_SPACE == 0); - int current_space = NEW_SPACE; - for (auto& r : res) { - reservations_[current_space].Add({r.chunk_size(), NULL, NULL}); - if (r.is_last()) current_space++; - } - DCHECK_EQ(kNumberOfSpaces, current_space); - for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0; -} - - -void Deserializer::FlushICacheForNewIsolate() { - DCHECK(!deserializing_user_code_); - // The entire isolate is newly deserialized. Simply flush all code pages. - PageIterator it(isolate_->heap()->code_space()); - while (it.has_next()) { - Page* p = it.next(); - Assembler::FlushICache(isolate_, p->area_start(), - p->area_end() - p->area_start()); - } -} - - -void Deserializer::FlushICacheForNewCodeObjects() { - DCHECK(deserializing_user_code_); - for (Code* code : new_code_objects_) { - Assembler::FlushICache(isolate_, code->instruction_start(), - code->instruction_size()); - } -} - - -bool Deserializer::ReserveSpace() { -#ifdef DEBUG - for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) { - CHECK(reservations_[i].length() > 0); - } -#endif // DEBUG - if (!isolate_->heap()->ReserveSpace(reservations_)) return false; - for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { - high_water_[i] = reservations_[i][0].start; - } - return true; -} - - -void Deserializer::Initialize(Isolate* isolate) { - DCHECK_NULL(isolate_); - DCHECK_NOT_NULL(isolate); - isolate_ = isolate; - DCHECK_NULL(external_reference_table_); - external_reference_table_ = ExternalReferenceTable::instance(isolate); - CHECK_EQ(magic_number_, - SerializedData::ComputeMagicNumber(external_reference_table_)); -} - - -void Deserializer::Deserialize(Isolate* isolate) { - Initialize(isolate); - if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context"); - // No active threads. - DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse()); - // No active handles. - DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty()); - - { - DisallowHeapAllocation no_gc; - isolate_->heap()->IterateSmiRoots(this); - isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); - isolate_->heap()->RepairFreeListsAfterDeserialization(); - isolate_->heap()->IterateWeakRoots(this, VISIT_ALL); - DeserializeDeferredObjects(); - FlushICacheForNewIsolate(); - } - - isolate_->heap()->set_native_contexts_list( - isolate_->heap()->undefined_value()); - // The allocation site list is build during root iteration, but if no sites - // were encountered then it needs to be initialized to undefined. - if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { - isolate_->heap()->set_allocation_sites_list( - isolate_->heap()->undefined_value()); - } - - // Update data pointers to the external strings containing natives sources. - Natives::UpdateSourceCache(isolate_->heap()); - ExtraNatives::UpdateSourceCache(isolate_->heap()); - - // Issue code events for newly deserialized code objects. - LOG_CODE_EVENT(isolate_, LogCodeObjects()); - LOG_CODE_EVENT(isolate_, LogCompiledFunctions()); -} - - -MaybeHandle<Object> Deserializer::DeserializePartial( - Isolate* isolate, Handle<JSGlobalProxy> global_proxy) { - Initialize(isolate); - if (!ReserveSpace()) { - V8::FatalProcessOutOfMemory("deserialize context"); - return MaybeHandle<Object>(); - } - - Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1); - attached_objects[kGlobalProxyReference] = global_proxy; - SetAttachedObjects(attached_objects); - - DisallowHeapAllocation no_gc; - // Keep track of the code space start and end pointers in case new - // code objects were unserialized - OldSpace* code_space = isolate_->heap()->code_space(); - Address start_address = code_space->top(); - Object* root; - VisitPointer(&root); - DeserializeDeferredObjects(); - - // There's no code deserialized here. If this assert fires then that's - // changed and logging should be added to notify the profiler et al of the - // new code, which also has to be flushed from instruction cache. - CHECK_EQ(start_address, code_space->top()); - return Handle<Object>(root, isolate); -} - - -MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode( - Isolate* isolate) { - Initialize(isolate); - if (!ReserveSpace()) { - return Handle<SharedFunctionInfo>(); - } else { - deserializing_user_code_ = true; - HandleScope scope(isolate); - Handle<SharedFunctionInfo> result; - { - DisallowHeapAllocation no_gc; - Object* root; - VisitPointer(&root); - DeserializeDeferredObjects(); - FlushICacheForNewCodeObjects(); - result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root)); - } - CommitPostProcessedObjects(isolate); - return scope.CloseAndEscape(result); - } -} - - -Deserializer::~Deserializer() { - // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed. - // DCHECK(source_.AtEOF()); - attached_objects_.Dispose(); -} - - -// This is called on the roots. It is the driver of the deserialization -// process. It is also called on the body of each function. -void Deserializer::VisitPointers(Object** start, Object** end) { - // The space must be new space. Any other space would cause ReadChunk to try - // to update the remembered using NULL as the address. - ReadData(start, end, NEW_SPACE, NULL); -} - - -void Deserializer::DeserializeDeferredObjects() { - for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) { - switch (code) { - case kAlignmentPrefix: - case kAlignmentPrefix + 1: - case kAlignmentPrefix + 2: - SetAlignment(code); - break; - default: { - int space = code & kSpaceMask; - DCHECK(space <= kNumberOfSpaces); - DCHECK(code - space == kNewObject); - HeapObject* object = GetBackReferencedObject(space); - int size = source_.GetInt() << kPointerSizeLog2; - Address obj_address = object->address(); - Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize); - Object** end = reinterpret_cast<Object**>(obj_address + size); - bool filled = ReadData(start, end, space, obj_address); - CHECK(filled); - DCHECK(CanBeDeferred(object)); - PostProcessNewObject(object, space); - } - } - } -} - - -// Used to insert a deserialized internalized string into the string table. -class StringTableInsertionKey : public HashTableKey { - public: - explicit StringTableInsertionKey(String* string) - : string_(string), hash_(HashForObject(string)) { - DCHECK(string->IsInternalizedString()); - } - - bool IsMatch(Object* string) override { - // We know that all entries in a hash table had their hash keys created. - // Use that knowledge to have fast failure. - if (hash_ != HashForObject(string)) return false; - // We want to compare the content of two internalized strings here. - return string_->SlowEquals(String::cast(string)); - } - - uint32_t Hash() override { return hash_; } - - uint32_t HashForObject(Object* key) override { - return String::cast(key)->Hash(); - } - - MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override { - return handle(string_, isolate); - } - - private: - String* string_; - uint32_t hash_; - DisallowHeapAllocation no_gc; -}; - - -HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) { - if (deserializing_user_code()) { - if (obj->IsString()) { - String* string = String::cast(obj); - // Uninitialize hash field as the hash seed may have changed. - string->set_hash_field(String::kEmptyHashField); - if (string->IsInternalizedString()) { - // Canonicalize the internalized string. If it already exists in the - // string table, set it to forward to the existing one. - StringTableInsertionKey key(string); - String* canonical = StringTable::LookupKeyIfExists(isolate_, &key); - if (canonical == NULL) { - new_internalized_strings_.Add(handle(string)); - return string; - } else { - string->SetForwardedInternalizedString(canonical); - return canonical; - } - } - } else if (obj->IsScript()) { - new_scripts_.Add(handle(Script::cast(obj))); - } else { - DCHECK(CanBeDeferred(obj)); - } - } - if (obj->IsAllocationSite()) { - DCHECK(obj->IsAllocationSite()); - // Allocation sites are present in the snapshot, and must be linked into - // a list at deserialization time. - AllocationSite* site = AllocationSite::cast(obj); - // TODO(mvstanton): consider treating the heap()->allocation_sites_list() - // as a (weak) root. If this root is relocated correctly, this becomes - // unnecessary. - if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) { - site->set_weak_next(isolate_->heap()->undefined_value()); - } else { - site->set_weak_next(isolate_->heap()->allocation_sites_list()); - } - isolate_->heap()->set_allocation_sites_list(site); - } else if (obj->IsCode()) { - // We flush all code pages after deserializing the startup snapshot. In that - // case, we only need to remember code objects in the large object space. - // When deserializing user code, remember each individual code object. - if (deserializing_user_code() || space == LO_SPACE) { - new_code_objects_.Add(Code::cast(obj)); - } - } - // Check alignment. - DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment())); - return obj; -} - - -void Deserializer::CommitPostProcessedObjects(Isolate* isolate) { - StringTable::EnsureCapacityForDeserialization( - isolate, new_internalized_strings_.length()); - for (Handle<String> string : new_internalized_strings_) { - StringTableInsertionKey key(*string); - DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key)); - StringTable::LookupKey(isolate, &key); - } - - Heap* heap = isolate->heap(); - Factory* factory = isolate->factory(); - for (Handle<Script> script : new_scripts_) { - // Assign a new script id to avoid collision. - script->set_id(isolate_->heap()->NextScriptId()); - // Add script to list. - Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script); - heap->SetRootScriptList(*list); - } -} - - -HeapObject* Deserializer::GetBackReferencedObject(int space) { - HeapObject* obj; - BackReference back_reference(source_.GetInt()); - if (space == LO_SPACE) { - CHECK(back_reference.chunk_index() == 0); - uint32_t index = back_reference.large_object_index(); - obj = deserialized_large_objects_[index]; - } else { - DCHECK(space < kNumberOfPreallocatedSpaces); - uint32_t chunk_index = back_reference.chunk_index(); - DCHECK_LE(chunk_index, current_chunk_[space]); - uint32_t chunk_offset = back_reference.chunk_offset(); - Address address = reservations_[space][chunk_index].start + chunk_offset; - if (next_alignment_ != kWordAligned) { - int padding = Heap::GetFillToAlign(address, next_alignment_); - next_alignment_ = kWordAligned; - DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller()); - address += padding; - } - obj = HeapObject::FromAddress(address); - } - if (deserializing_user_code() && obj->IsInternalizedString()) { - obj = String::cast(obj)->GetForwardedInternalizedString(); - } - hot_objects_.Add(obj); - return obj; -} - - -// This routine writes the new object into the pointer provided and then -// returns true if the new object was in young space and false otherwise. -// The reason for this strange interface is that otherwise the object is -// written very late, which means the FreeSpace map is not set up by the -// time we need to use it to mark the space at the end of a page free. -void Deserializer::ReadObject(int space_number, Object** write_back) { - Address address; - HeapObject* obj; - int size = source_.GetInt() << kObjectAlignmentBits; - - if (next_alignment_ != kWordAligned) { - int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_); - address = Allocate(space_number, reserved); - obj = HeapObject::FromAddress(address); - // If one of the following assertions fails, then we are deserializing an - // aligned object when the filler maps have not been deserialized yet. - // We require filler maps as padding to align the object. - Heap* heap = isolate_->heap(); - DCHECK(heap->free_space_map()->IsMap()); - DCHECK(heap->one_pointer_filler_map()->IsMap()); - DCHECK(heap->two_pointer_filler_map()->IsMap()); - obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_); - address = obj->address(); - next_alignment_ = kWordAligned; - } else { - address = Allocate(space_number, size); - obj = HeapObject::FromAddress(address); - } - - isolate_->heap()->OnAllocationEvent(obj, size); - Object** current = reinterpret_cast<Object**>(address); - Object** limit = current + (size >> kPointerSizeLog2); - if (FLAG_log_snapshot_positions) { - LOG(isolate_, SnapshotPositionEvent(address, source_.position())); - } - - if (ReadData(current, limit, space_number, address)) { - // Only post process if object content has not been deferred. - obj = PostProcessNewObject(obj, space_number); - } - - Object* write_back_obj = obj; - UnalignedCopy(write_back, &write_back_obj); -#ifdef DEBUG - if (obj->IsCode()) { - DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE); - } else { - DCHECK(space_number != CODE_SPACE); - } -#endif // DEBUG -} - - -// We know the space requirements before deserialization and can -// pre-allocate that reserved space. During deserialization, all we need -// to do is to bump up the pointer for each space in the reserved -// space. This is also used for fixing back references. -// We may have to split up the pre-allocation into several chunks -// because it would not fit onto a single page. We do not have to keep -// track of when to move to the next chunk. An opcode will signal this. -// Since multiple large objects cannot be folded into one large object -// space allocation, we have to do an actual allocation when deserializing -// each large object. Instead of tracking offset for back references, we -// reference large objects by index. -Address Deserializer::Allocate(int space_index, int size) { - if (space_index == LO_SPACE) { - AlwaysAllocateScope scope(isolate_); - LargeObjectSpace* lo_space = isolate_->heap()->lo_space(); - Executability exec = static_cast<Executability>(source_.Get()); - AllocationResult result = lo_space->AllocateRaw(size, exec); - HeapObject* obj = HeapObject::cast(result.ToObjectChecked()); - deserialized_large_objects_.Add(obj); - return obj->address(); - } else { - DCHECK(space_index < kNumberOfPreallocatedSpaces); - Address address = high_water_[space_index]; - DCHECK_NOT_NULL(address); - high_water_[space_index] += size; -#ifdef DEBUG - // Assert that the current reserved chunk is still big enough. - const Heap::Reservation& reservation = reservations_[space_index]; - int chunk_index = current_chunk_[space_index]; - CHECK_LE(high_water_[space_index], reservation[chunk_index].end); -#endif - return address; - } -} - - -Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector, - Object** current) { - DCHECK(!isolate_->heap()->deserialization_complete()); - NativesExternalStringResource* resource = new NativesExternalStringResource( - source_vector.start(), source_vector.length()); - Object* resource_obj = reinterpret_cast<Object*>(resource); - UnalignedCopy(current++, &resource_obj); - return current; -} - - -bool Deserializer::ReadData(Object** current, Object** limit, int source_space, - Address current_object_address) { - Isolate* const isolate = isolate_; - // Write barrier support costs around 1% in startup time. In fact there - // are no new space objects in current boot snapshots, so it's not needed, - // but that may change. - bool write_barrier_needed = - (current_object_address != NULL && source_space != NEW_SPACE && - source_space != CODE_SPACE); - while (current < limit) { - byte data = source_.Get(); - switch (data) { -#define CASE_STATEMENT(where, how, within, space_number) \ - case where + how + within + space_number: \ - STATIC_ASSERT((where & ~kWhereMask) == 0); \ - STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \ - STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \ - STATIC_ASSERT((space_number & ~kSpaceMask) == 0); - -#define CASE_BODY(where, how, within, space_number_if_any) \ - { \ - bool emit_write_barrier = false; \ - bool current_was_incremented = false; \ - int space_number = space_number_if_any == kAnyOldSpace \ - ? (data & kSpaceMask) \ - : space_number_if_any; \ - if (where == kNewObject && how == kPlain && within == kStartOfObject) { \ - ReadObject(space_number, current); \ - emit_write_barrier = (space_number == NEW_SPACE); \ - } else { \ - Object* new_object = NULL; /* May not be a real Object pointer. */ \ - if (where == kNewObject) { \ - ReadObject(space_number, &new_object); \ - } else if (where == kBackref) { \ - emit_write_barrier = (space_number == NEW_SPACE); \ - new_object = GetBackReferencedObject(data & kSpaceMask); \ - } else if (where == kBackrefWithSkip) { \ - int skip = source_.GetInt(); \ - current = reinterpret_cast<Object**>( \ - reinterpret_cast<Address>(current) + skip); \ - emit_write_barrier = (space_number == NEW_SPACE); \ - new_object = GetBackReferencedObject(data & kSpaceMask); \ - } else if (where == kRootArray) { \ - int id = source_.GetInt(); \ - Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \ - new_object = isolate->heap()->root(root_index); \ - emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ - } else if (where == kPartialSnapshotCache) { \ - int cache_index = source_.GetInt(); \ - new_object = isolate->partial_snapshot_cache()->at(cache_index); \ - emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ - } else if (where == kExternalReference) { \ - int skip = source_.GetInt(); \ - current = reinterpret_cast<Object**>( \ - reinterpret_cast<Address>(current) + skip); \ - int reference_id = source_.GetInt(); \ - Address address = external_reference_table_->address(reference_id); \ - new_object = reinterpret_cast<Object*>(address); \ - } else if (where == kAttachedReference) { \ - int index = source_.GetInt(); \ - DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \ - new_object = *attached_objects_[index]; \ - emit_write_barrier = isolate->heap()->InNewSpace(new_object); \ - } else { \ - DCHECK(where == kBuiltin); \ - DCHECK(deserializing_user_code()); \ - int builtin_id = source_.GetInt(); \ - DCHECK_LE(0, builtin_id); \ - DCHECK_LT(builtin_id, Builtins::builtin_count); \ - Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \ - new_object = isolate->builtins()->builtin(name); \ - emit_write_barrier = false; \ - } \ - if (within == kInnerPointer) { \ - if (space_number != CODE_SPACE || new_object->IsCode()) { \ - Code* new_code_object = reinterpret_cast<Code*>(new_object); \ - new_object = \ - reinterpret_cast<Object*>(new_code_object->instruction_start()); \ - } else { \ - DCHECK(space_number == CODE_SPACE); \ - Cell* cell = Cell::cast(new_object); \ - new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \ - } \ - } \ - if (how == kFromCode) { \ - Address location_of_branch_data = reinterpret_cast<Address>(current); \ - Assembler::deserialization_set_special_target_at( \ - isolate, location_of_branch_data, \ - Code::cast(HeapObject::FromAddress(current_object_address)), \ - reinterpret_cast<Address>(new_object)); \ - location_of_branch_data += Assembler::kSpecialTargetSize; \ - current = reinterpret_cast<Object**>(location_of_branch_data); \ - current_was_incremented = true; \ - } else { \ - UnalignedCopy(current, &new_object); \ - } \ - } \ - if (emit_write_barrier && write_barrier_needed) { \ - Address current_address = reinterpret_cast<Address>(current); \ - isolate->heap()->RecordWrite( \ - current_object_address, \ - static_cast<int>(current_address - current_object_address)); \ - } \ - if (!current_was_incremented) { \ - current++; \ - } \ - break; \ - } - -// This generates a case and a body for the new space (which has to do extra -// write barrier handling) and handles the other spaces with fall-through cases -// and one body. -#define ALL_SPACES(where, how, within) \ - CASE_STATEMENT(where, how, within, NEW_SPACE) \ - CASE_BODY(where, how, within, NEW_SPACE) \ - CASE_STATEMENT(where, how, within, OLD_SPACE) \ - CASE_STATEMENT(where, how, within, CODE_SPACE) \ - CASE_STATEMENT(where, how, within, MAP_SPACE) \ - CASE_STATEMENT(where, how, within, LO_SPACE) \ - CASE_BODY(where, how, within, kAnyOldSpace) - -#define FOUR_CASES(byte_code) \ - case byte_code: \ - case byte_code + 1: \ - case byte_code + 2: \ - case byte_code + 3: - -#define SIXTEEN_CASES(byte_code) \ - FOUR_CASES(byte_code) \ - FOUR_CASES(byte_code + 4) \ - FOUR_CASES(byte_code + 8) \ - FOUR_CASES(byte_code + 12) - -#define SINGLE_CASE(where, how, within, space) \ - CASE_STATEMENT(where, how, within, space) \ - CASE_BODY(where, how, within, space) - - // Deserialize a new object and write a pointer to it to the current - // object. - ALL_SPACES(kNewObject, kPlain, kStartOfObject) - // Support for direct instruction pointers in functions. It's an inner - // pointer because it points at the entry point, not at the start of the - // code object. - SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE) - // Deserialize a new code object and write a pointer to its first - // instruction to the current code object. - ALL_SPACES(kNewObject, kFromCode, kInnerPointer) - // Find a recently deserialized object using its offset from the current - // allocation point and write a pointer to it to the current object. - ALL_SPACES(kBackref, kPlain, kStartOfObject) - ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject) -#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ - defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL - // Deserialize a new object from pointer found in code and write - // a pointer to it to the current object. Required only for MIPS, PPC or - // ARM with embedded constant pool, and omitted on the other architectures - // because it is fully unrolled and would cause bloat. - ALL_SPACES(kNewObject, kFromCode, kStartOfObject) - // Find a recently deserialized code object using its offset from the - // current allocation point and write a pointer to it to the current - // object. Required only for MIPS, PPC or ARM with embedded constant pool. - ALL_SPACES(kBackref, kFromCode, kStartOfObject) - ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject) -#endif - // Find a recently deserialized code object using its offset from the - // current allocation point and write a pointer to its first instruction - // to the current code object or the instruction pointer in a function - // object. - ALL_SPACES(kBackref, kFromCode, kInnerPointer) - ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer) - ALL_SPACES(kBackref, kPlain, kInnerPointer) - ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer) - // Find an object in the roots array and write a pointer to it to the - // current object. - SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0) -#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \ - defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL - // Find an object in the roots array and write a pointer to it to in code. - SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0) -#endif - // Find an object in the partial snapshots cache and write a pointer to it - // to the current object. - SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0) - // Find an code entry in the partial snapshots cache and - // write a pointer to it to the current object. - SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0) - // Find an external reference and write a pointer to it to the current - // object. - SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0) - // Find an external reference and write a pointer to it in the current - // code object. - SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0) - // Find an object in the attached references and write a pointer to it to - // the current object. - SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0) - SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0) - SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0) - // Find a builtin and write a pointer to it to the current object. - SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0) - SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0) - SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0) - -#undef CASE_STATEMENT -#undef CASE_BODY -#undef ALL_SPACES - - case kSkip: { - int size = source_.GetInt(); - current = reinterpret_cast<Object**>( - reinterpret_cast<intptr_t>(current) + size); - break; - } - - case kInternalReferenceEncoded: - case kInternalReference: { - // Internal reference address is not encoded via skip, but by offset - // from code entry. - int pc_offset = source_.GetInt(); - int target_offset = source_.GetInt(); - Code* code = - Code::cast(HeapObject::FromAddress(current_object_address)); - DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size()); - DCHECK(0 <= target_offset && target_offset <= code->instruction_size()); - Address pc = code->entry() + pc_offset; - Address target = code->entry() + target_offset; - Assembler::deserialization_set_target_internal_reference_at( - isolate, pc, target, data == kInternalReference - ? RelocInfo::INTERNAL_REFERENCE - : RelocInfo::INTERNAL_REFERENCE_ENCODED); - break; - } - - case kNop: - break; - - case kNextChunk: { - int space = source_.Get(); - DCHECK(space < kNumberOfPreallocatedSpaces); - int chunk_index = current_chunk_[space]; - const Heap::Reservation& reservation = reservations_[space]; - // Make sure the current chunk is indeed exhausted. - CHECK_EQ(reservation[chunk_index].end, high_water_[space]); - // Move to next reserved chunk. - chunk_index = ++current_chunk_[space]; - CHECK_LT(chunk_index, reservation.length()); - high_water_[space] = reservation[chunk_index].start; - break; - } - - case kDeferred: { - // Deferred can only occur right after the heap object header. - DCHECK(current == reinterpret_cast<Object**>(current_object_address + - kPointerSize)); - HeapObject* obj = HeapObject::FromAddress(current_object_address); - // If the deferred object is a map, its instance type may be used - // during deserialization. Initialize it with a temporary value. - if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE); - current = limit; - return false; - } - - case kSynchronize: - // If we get here then that indicates that you have a mismatch between - // the number of GC roots when serializing and deserializing. - CHECK(false); - break; - - case kNativesStringResource: - current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()), - current); - break; - - case kExtraNativesStringResource: - current = CopyInNativesSource( - ExtraNatives::GetScriptSource(source_.Get()), current); - break; - - // Deserialize raw data of variable length. - case kVariableRawData: { - int size_in_bytes = source_.GetInt(); - byte* raw_data_out = reinterpret_cast<byte*>(current); - source_.CopyRaw(raw_data_out, size_in_bytes); - break; - } - - case kVariableRepeat: { - int repeats = source_.GetInt(); - Object* object = current[-1]; - DCHECK(!isolate->heap()->InNewSpace(object)); - for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); - break; - } - - case kAlignmentPrefix: - case kAlignmentPrefix + 1: - case kAlignmentPrefix + 2: - SetAlignment(data); - break; - - STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots); - STATIC_ASSERT(kNumberOfRootArrayConstants == 32); - SIXTEEN_CASES(kRootArrayConstantsWithSkip) - SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) { - int skip = source_.GetInt(); - current = reinterpret_cast<Object**>( - reinterpret_cast<intptr_t>(current) + skip); - // Fall through. - } - - SIXTEEN_CASES(kRootArrayConstants) - SIXTEEN_CASES(kRootArrayConstants + 16) { - int id = data & kRootArrayConstantsMask; - Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); - Object* object = isolate->heap()->root(root_index); - DCHECK(!isolate->heap()->InNewSpace(object)); - UnalignedCopy(current++, &object); - break; - } - - STATIC_ASSERT(kNumberOfHotObjects == 8); - FOUR_CASES(kHotObjectWithSkip) - FOUR_CASES(kHotObjectWithSkip + 4) { - int skip = source_.GetInt(); - current = reinterpret_cast<Object**>( - reinterpret_cast<Address>(current) + skip); - // Fall through. - } - - FOUR_CASES(kHotObject) - FOUR_CASES(kHotObject + 4) { - int index = data & kHotObjectMask; - Object* hot_object = hot_objects_.Get(index); - UnalignedCopy(current, &hot_object); - if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) { - Address current_address = reinterpret_cast<Address>(current); - isolate->heap()->RecordWrite( - current_object_address, - static_cast<int>(current_address - current_object_address)); - } - current++; - break; - } - - // Deserialize raw data of fixed length from 1 to 32 words. - STATIC_ASSERT(kNumberOfFixedRawData == 32); - SIXTEEN_CASES(kFixedRawData) - SIXTEEN_CASES(kFixedRawData + 16) { - byte* raw_data_out = reinterpret_cast<byte*>(current); - int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2; - source_.CopyRaw(raw_data_out, size_in_bytes); - current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes); - break; - } - - STATIC_ASSERT(kNumberOfFixedRepeat == 16); - SIXTEEN_CASES(kFixedRepeat) { - int repeats = data - kFixedRepeatStart; - Object* object; - UnalignedCopy(&object, current - 1); - DCHECK(!isolate->heap()->InNewSpace(object)); - for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); - break; - } - -#undef SIXTEEN_CASES -#undef FOUR_CASES -#undef SINGLE_CASE - - default: - CHECK(false); - } - } - CHECK_EQ(limit, current); - return true; -} - - -Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink) - : isolate_(isolate), - sink_(sink), - external_reference_encoder_(isolate), - root_index_map_(isolate), - recursion_depth_(0), - code_address_map_(NULL), - large_objects_total_size_(0), - seen_large_objects_index_(0) { - // The serializer is meant to be used only to generate initial heap images - // from a context in which there is only one isolate. - for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { - pending_chunk_[i] = 0; - max_chunk_size_[i] = static_cast<uint32_t>( - MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i))); - } - -#ifdef OBJECT_PRINT - if (FLAG_serialization_statistics) { - instance_type_count_ = NewArray<int>(kInstanceTypes); - instance_type_size_ = NewArray<size_t>(kInstanceTypes); - for (int i = 0; i < kInstanceTypes; i++) { - instance_type_count_[i] = 0; - instance_type_size_[i] = 0; - } - } else { - instance_type_count_ = NULL; - instance_type_size_ = NULL; - } -#endif // OBJECT_PRINT -} - - -Serializer::~Serializer() { - if (code_address_map_ != NULL) delete code_address_map_; -#ifdef OBJECT_PRINT - if (instance_type_count_ != NULL) { - DeleteArray(instance_type_count_); - DeleteArray(instance_type_size_); - } -#endif // OBJECT_PRINT -} - - -#ifdef OBJECT_PRINT -void Serializer::CountInstanceType(Map* map, int size) { - int instance_type = map->instance_type(); - instance_type_count_[instance_type]++; - instance_type_size_[instance_type] += size; -} -#endif // OBJECT_PRINT - - -void Serializer::OutputStatistics(const char* name) { - if (!FLAG_serialization_statistics) return; - PrintF("%s:\n", name); - PrintF(" Spaces (bytes):\n"); - for (int space = 0; space < kNumberOfSpaces; space++) { - PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space))); - } - PrintF("\n"); - for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) { - size_t s = pending_chunk_[space]; - for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size; - PrintF("%16" V8_PTR_PREFIX "d", s); - } - PrintF("%16d\n", large_objects_total_size_); -#ifdef OBJECT_PRINT - PrintF(" Instance types (count and bytes):\n"); -#define PRINT_INSTANCE_TYPE(Name) \ - if (instance_type_count_[Name]) { \ - PrintF("%10d %10" V8_PTR_PREFIX "d %s\n", instance_type_count_[Name], \ - instance_type_size_[Name], #Name); \ - } - INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE) -#undef PRINT_INSTANCE_TYPE - PrintF("\n"); -#endif // OBJECT_PRINT -} - - -class Serializer::ObjectSerializer : public ObjectVisitor { - public: - ObjectSerializer(Serializer* serializer, Object* o, SnapshotByteSink* sink, - HowToCode how_to_code, WhereToPoint where_to_point) - : serializer_(serializer), - object_(HeapObject::cast(o)), - sink_(sink), - reference_representation_(how_to_code + where_to_point), - bytes_processed_so_far_(0), - is_code_object_(o->IsCode()), - code_has_been_output_(false) {} - void Serialize(); - void SerializeDeferred(); - void VisitPointers(Object** start, Object** end) override; - void VisitEmbeddedPointer(RelocInfo* target) override; - void VisitExternalReference(Address* p) override; - void VisitExternalReference(RelocInfo* rinfo) override; - void VisitInternalReference(RelocInfo* rinfo) override; - void VisitCodeTarget(RelocInfo* target) override; - void VisitCodeEntry(Address entry_address) override; - void VisitCell(RelocInfo* rinfo) override; - void VisitRuntimeEntry(RelocInfo* reloc) override; - // Used for seralizing the external strings that hold the natives source. - void VisitExternalOneByteString( - v8::String::ExternalOneByteStringResource** resource) override; - // We can't serialize a heap with external two byte strings. - void VisitExternalTwoByteString( - v8::String::ExternalStringResource** resource) override { - UNREACHABLE(); - } - - private: - void SerializePrologue(AllocationSpace space, int size, Map* map); - - bool SerializeExternalNativeSourceString( - int builtin_count, - v8::String::ExternalOneByteStringResource** resource_pointer, - FixedArray* source_cache, int resource_index); - - enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn }; - // This function outputs or skips the raw data between the last pointer and - // up to the current position. It optionally can just return the number of - // bytes to skip instead of performing a skip instruction, in case the skip - // can be merged into the next instruction. - int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn); - // External strings are serialized in a way to resemble sequential strings. - void SerializeExternalString(); - - Address PrepareCode(); - - Serializer* serializer_; - HeapObject* object_; - SnapshotByteSink* sink_; - int reference_representation_; - int bytes_processed_so_far_; - bool is_code_object_; - bool code_has_been_output_; -}; - - -void Serializer::SerializeDeferredObjects() { - while (deferred_objects_.length() > 0) { - HeapObject* obj = deferred_objects_.RemoveLast(); - ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject); - obj_serializer.SerializeDeferred(); - } - sink_->Put(kSynchronize, "Finished with deferred objects"); -} - - -void StartupSerializer::SerializeStrongReferences() { - Isolate* isolate = this->isolate(); - // No active threads. - CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse()); - // No active or weak handles. - CHECK(isolate->handle_scope_implementer()->blocks()->is_empty()); - CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles()); - CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles()); - // We don't support serializing installed extensions. - CHECK(!isolate->has_installed_extensions()); - isolate->heap()->IterateSmiRoots(this); - isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG); -} - - -void StartupSerializer::VisitPointers(Object** start, Object** end) { - for (Object** current = start; current < end; current++) { - if (start == isolate()->heap()->roots_array_start()) { - root_index_wave_front_ = - Max(root_index_wave_front_, static_cast<intptr_t>(current - start)); - } - if (ShouldBeSkipped(current)) { - sink_->Put(kSkip, "Skip"); - sink_->PutInt(kPointerSize, "SkipOneWord"); - } else if ((*current)->IsSmi()) { - sink_->Put(kOnePointerRawData, "Smi"); - for (int i = 0; i < kPointerSize; i++) { - sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); - } - } else { - SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0); - } - } -} - - -void PartialSerializer::Serialize(Object** o) { - if ((*o)->IsContext()) { - Context* context = Context::cast(*o); - global_object_ = context->global_object(); - back_reference_map()->AddGlobalProxy(context->global_proxy()); - // The bootstrap snapshot has a code-stub context. When serializing the - // partial snapshot, it is chained into the weak context list on the isolate - // and it's next context pointer may point to the code-stub context. Clear - // it before serializing, it will get re-added to the context list - // explicitly when it's loaded. - if (context->IsNativeContext()) { - context->set(Context::NEXT_CONTEXT_LINK, - isolate_->heap()->undefined_value()); - DCHECK(!context->global_object()->IsUndefined()); - } - } - VisitPointer(o); - SerializeDeferredObjects(); - Pad(); -} - - -bool Serializer::ShouldBeSkipped(Object** current) { - Object** roots = isolate()->heap()->roots_array_start(); - return current == &roots[Heap::kStoreBufferTopRootIndex] - || current == &roots[Heap::kStackLimitRootIndex] - || current == &roots[Heap::kRealStackLimitRootIndex]; -} - - -void Serializer::VisitPointers(Object** start, Object** end) { - for (Object** current = start; current < end; current++) { - if ((*current)->IsSmi()) { - sink_->Put(kOnePointerRawData, "Smi"); - for (int i = 0; i < kPointerSize; i++) { - sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte"); - } - } else { - SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0); - } - } -} - - -void Serializer::EncodeReservations( - List<SerializedData::Reservation>* out) const { - for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { - for (int j = 0; j < completed_chunks_[i].length(); j++) { - out->Add(SerializedData::Reservation(completed_chunks_[i][j])); - } - - if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) { - out->Add(SerializedData::Reservation(pending_chunk_[i])); - } - out->last().mark_as_last(); - } - - out->Add(SerializedData::Reservation(large_objects_total_size_)); - out->last().mark_as_last(); -} - - -// This ensures that the partial snapshot cache keeps things alive during GC and -// tracks their movement. When it is called during serialization of the startup -// snapshot nothing happens. When the partial (context) snapshot is created, -// this array is populated with the pointers that the partial snapshot will -// need. As that happens we emit serialized objects to the startup snapshot -// that correspond to the elements of this cache array. On deserialization we -// therefore need to visit the cache array. This fills it up with pointers to -// deserialized objects. -void SerializerDeserializer::Iterate(Isolate* isolate, - ObjectVisitor* visitor) { - if (isolate->serializer_enabled()) return; - List<Object*>* cache = isolate->partial_snapshot_cache(); - for (int i = 0;; ++i) { - // Extend the array ready to get a value when deserializing. - if (cache->length() <= i) cache->Add(Smi::FromInt(0)); - visitor->VisitPointer(&cache->at(i)); - // Sentinel is the undefined object, which is a root so it will not normally - // be found in the cache. - if (cache->at(i)->IsUndefined()) break; - } -} - - -bool SerializerDeserializer::CanBeDeferred(HeapObject* o) { - return !o->IsString() && !o->IsScript(); -} - - -int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) { - Isolate* isolate = this->isolate(); - List<Object*>* cache = isolate->partial_snapshot_cache(); - int new_index = cache->length(); - - int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index); - if (index == PartialCacheIndexMap::kInvalidIndex) { - // We didn't find the object in the cache. So we add it to the cache and - // then visit the pointer so that it becomes part of the startup snapshot - // and we can refer to it from the partial snapshot. - cache->Add(heap_object); - startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object)); - // We don't recurse from the startup snapshot generator into the partial - // snapshot generator. - return new_index; - } - return index; -} - - -bool PartialSerializer::ShouldBeInThePartialSnapshotCache(HeapObject* o) { - // Scripts should be referred only through shared function infos. We can't - // allow them to be part of the partial snapshot because they contain a - // unique ID, and deserializing several partial snapshots containing script - // would cause dupes. - DCHECK(!o->IsScript()); - return o->IsName() || o->IsSharedFunctionInfo() || o->IsHeapNumber() || - o->IsCode() || o->IsScopeInfo() || o->IsExecutableAccessorInfo() || - o->map() == - startup_serializer_->isolate()->heap()->fixed_cow_array_map(); -} - - -#ifdef DEBUG -bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) { - DCHECK(reference.is_valid()); - DCHECK(!reference.is_source()); - DCHECK(!reference.is_global_proxy()); - AllocationSpace space = reference.space(); - int chunk_index = reference.chunk_index(); - if (space == LO_SPACE) { - return chunk_index == 0 && - reference.large_object_index() < seen_large_objects_index_; - } else if (chunk_index == completed_chunks_[space].length()) { - return reference.chunk_offset() < pending_chunk_[space]; - } else { - return chunk_index < completed_chunks_[space].length() && - reference.chunk_offset() < completed_chunks_[space][chunk_index]; - } -} -#endif // DEBUG - - -bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code, - WhereToPoint where_to_point, int skip) { - if (how_to_code == kPlain && where_to_point == kStartOfObject) { - // Encode a reference to a hot object by its index in the working set. - int index = hot_objects_.Find(obj); - if (index != HotObjectsList::kNotFound) { - DCHECK(index >= 0 && index < kNumberOfHotObjects); - if (FLAG_trace_serializer) { - PrintF(" Encoding hot object %d:", index); - obj->ShortPrint(); - PrintF("\n"); - } - if (skip != 0) { - sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip"); - sink_->PutInt(skip, "HotObjectSkipDistance"); - } else { - sink_->Put(kHotObject + index, "HotObject"); - } - return true; - } - } - BackReference back_reference = back_reference_map_.Lookup(obj); - if (back_reference.is_valid()) { - // Encode the location of an already deserialized object in order to write - // its location into a later object. We can encode the location as an - // offset fromthe start of the deserialized objects or as an offset - // backwards from thecurrent allocation pointer. - if (back_reference.is_source()) { - FlushSkip(skip); - if (FLAG_trace_serializer) PrintF(" Encoding source object\n"); - DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject); - sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source"); - sink_->PutInt(kSourceObjectReference, "kSourceObjectReference"); - } else if (back_reference.is_global_proxy()) { - FlushSkip(skip); - if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n"); - DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject); - sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy"); - sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference"); - } else { - if (FLAG_trace_serializer) { - PrintF(" Encoding back reference to: "); - obj->ShortPrint(); - PrintF("\n"); - } - - PutAlignmentPrefix(obj); - AllocationSpace space = back_reference.space(); - if (skip == 0) { - sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef"); - } else { - sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space, - "BackRefWithSkip"); - sink_->PutInt(skip, "BackRefSkipDistance"); - } - PutBackReference(obj, back_reference); - } - return true; - } - return false; -} - - -StartupSerializer::StartupSerializer(Isolate* isolate, SnapshotByteSink* sink) - : Serializer(isolate, sink), root_index_wave_front_(0) { - // Clear the cache of objects used by the partial snapshot. After the - // strong roots have been serialized we can create a partial snapshot - // which will repopulate the cache with objects needed by that partial - // snapshot. - isolate->partial_snapshot_cache()->Clear(); - InitializeCodeAddressMap(); -} - - -void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, - WhereToPoint where_to_point, int skip) { - DCHECK(!obj->IsJSFunction()); - - int root_index = root_index_map_.Lookup(obj); - // We can only encode roots as such if it has already been serialized. - // That applies to root indices below the wave front. - if (root_index != RootIndexMap::kInvalidRootIndex && - root_index < root_index_wave_front_) { - PutRoot(root_index, obj, how_to_code, where_to_point, skip); - return; - } - - if (obj->IsCode() && Code::cast(obj)->kind() == Code::FUNCTION) { - obj = isolate()->builtins()->builtin(Builtins::kCompileLazy); - } - - if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; - - FlushSkip(skip); - - // Object has not yet been serialized. Serialize it here. - ObjectSerializer object_serializer(this, obj, sink_, how_to_code, - where_to_point); - object_serializer.Serialize(); -} - - -void StartupSerializer::SerializeWeakReferencesAndDeferred() { - // This phase comes right after the serialization (of the snapshot). - // After we have done the partial serialization the partial snapshot cache - // will contain some references needed to decode the partial snapshot. We - // add one entry with 'undefined' which is the sentinel that the deserializer - // uses to know it is done deserializing the array. - Object* undefined = isolate()->heap()->undefined_value(); - VisitPointer(&undefined); - isolate()->heap()->IterateWeakRoots(this, VISIT_ALL); - SerializeDeferredObjects(); - Pad(); -} - - -void Serializer::PutRoot(int root_index, - HeapObject* object, - SerializerDeserializer::HowToCode how_to_code, - SerializerDeserializer::WhereToPoint where_to_point, - int skip) { - if (FLAG_trace_serializer) { - PrintF(" Encoding root %d:", root_index); - object->ShortPrint(); - PrintF("\n"); - } - - if (how_to_code == kPlain && where_to_point == kStartOfObject && - root_index < kNumberOfRootArrayConstants && - !isolate()->heap()->InNewSpace(object)) { - if (skip == 0) { - sink_->Put(kRootArrayConstants + root_index, "RootConstant"); - } else { - sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant"); - sink_->PutInt(skip, "SkipInPutRoot"); - } - } else { - FlushSkip(skip); - sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization"); - sink_->PutInt(root_index, "root_index"); - } -} - - -void Serializer::PutBackReference(HeapObject* object, BackReference reference) { - DCHECK(BackReferenceIsAlreadyAllocated(reference)); - sink_->PutInt(reference.reference(), "BackRefValue"); - hot_objects_.Add(object); -} - - -int Serializer::PutAlignmentPrefix(HeapObject* object) { - AllocationAlignment alignment = object->RequiredAlignment(); - if (alignment != kWordAligned) { - DCHECK(1 <= alignment && alignment <= 3); - byte prefix = (kAlignmentPrefix - 1) + alignment; - sink_->Put(prefix, "Alignment"); - return Heap::GetMaximumFillToAlign(alignment); - } - return 0; -} - - -void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, - WhereToPoint where_to_point, int skip) { - if (obj->IsMap()) { - // The code-caches link to context-specific code objects, which - // the startup and context serializes cannot currently handle. - DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array()); - } - - // Replace typed arrays by undefined. - if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value(); - - int root_index = root_index_map_.Lookup(obj); - if (root_index != RootIndexMap::kInvalidRootIndex) { - PutRoot(root_index, obj, how_to_code, where_to_point, skip); - return; - } - - if (ShouldBeInThePartialSnapshotCache(obj)) { - FlushSkip(skip); - - int cache_index = PartialSnapshotCacheIndex(obj); - sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point, - "PartialSnapshotCache"); - sink_->PutInt(cache_index, "partial_snapshot_cache_index"); - return; - } - - // Pointers from the partial snapshot to the objects in the startup snapshot - // should go through the root array or through the partial snapshot cache. - // If this is not the case you may have to add something to the root array. - DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid()); - // All the internalized strings that the partial snapshot needs should be - // either in the root table or in the partial snapshot cache. - DCHECK(!obj->IsInternalizedString()); - - if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; - - FlushSkip(skip); - - // Clear literal boilerplates. - if (obj->IsJSFunction()) { - FixedArray* literals = JSFunction::cast(obj)->literals(); - for (int i = 0; i < literals->length(); i++) literals->set_undefined(i); - } - - // Object has not yet been serialized. Serialize it here. - ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point); - serializer.Serialize(); -} - - -void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space, - int size, Map* map) { - if (serializer_->code_address_map_) { - const char* code_name = - serializer_->code_address_map_->Lookup(object_->address()); - LOG(serializer_->isolate_, - CodeNameEvent(object_->address(), sink_->Position(), code_name)); - LOG(serializer_->isolate_, - SnapshotPositionEvent(object_->address(), sink_->Position())); - } - - BackReference back_reference; - if (space == LO_SPACE) { - sink_->Put(kNewObject + reference_representation_ + space, - "NewLargeObject"); - sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords"); - if (object_->IsCode()) { - sink_->Put(EXECUTABLE, "executable large object"); - } else { - sink_->Put(NOT_EXECUTABLE, "not executable large object"); - } - back_reference = serializer_->AllocateLargeObject(size); - } else { - int fill = serializer_->PutAlignmentPrefix(object_); - back_reference = serializer_->Allocate(space, size + fill); - sink_->Put(kNewObject + reference_representation_ + space, "NewObject"); - sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords"); - } - -#ifdef OBJECT_PRINT - if (FLAG_serialization_statistics) { - serializer_->CountInstanceType(map, size); - } -#endif // OBJECT_PRINT - - // Mark this object as already serialized. - serializer_->back_reference_map()->Add(object_, back_reference); - - // Serialize the map (first word of the object). - serializer_->SerializeObject(map, kPlain, kStartOfObject, 0); -} - - -void Serializer::ObjectSerializer::SerializeExternalString() { - // Instead of serializing this as an external string, we serialize - // an imaginary sequential string with the same content. - Isolate* isolate = serializer_->isolate(); - DCHECK(object_->IsExternalString()); - DCHECK(object_->map() != isolate->heap()->native_source_string_map()); - ExternalString* string = ExternalString::cast(object_); - int length = string->length(); - Map* map; - int content_size; - int allocation_size; - const byte* resource; - // Find the map and size for the imaginary sequential string. - bool internalized = object_->IsInternalizedString(); - if (object_->IsExternalOneByteString()) { - map = internalized ? isolate->heap()->one_byte_internalized_string_map() - : isolate->heap()->one_byte_string_map(); - allocation_size = SeqOneByteString::SizeFor(length); - content_size = length * kCharSize; - resource = reinterpret_cast<const byte*>( - ExternalOneByteString::cast(string)->resource()->data()); - } else { - map = internalized ? isolate->heap()->internalized_string_map() - : isolate->heap()->string_map(); - allocation_size = SeqTwoByteString::SizeFor(length); - content_size = length * kShortSize; - resource = reinterpret_cast<const byte*>( - ExternalTwoByteString::cast(string)->resource()->data()); - } - - AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize) - ? LO_SPACE - : OLD_SPACE; - SerializePrologue(space, allocation_size, map); - - // Output the rest of the imaginary string. - int bytes_to_output = allocation_size - HeapObject::kHeaderSize; - - // Output raw data header. Do not bother with common raw length cases here. - sink_->Put(kVariableRawData, "RawDataForString"); - sink_->PutInt(bytes_to_output, "length"); - - // Serialize string header (except for map). - Address string_start = string->address(); - for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) { - sink_->PutSection(string_start[i], "StringHeader"); - } - - // Serialize string content. - sink_->PutRaw(resource, content_size, "StringContent"); - - // Since the allocation size is rounded up to object alignment, there - // maybe left-over bytes that need to be padded. - int padding_size = allocation_size - SeqString::kHeaderSize - content_size; - DCHECK(0 <= padding_size && padding_size < kObjectAlignment); - for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding"); - - sink_->Put(kSkip, "SkipAfterString"); - sink_->PutInt(bytes_to_output, "SkipDistance"); -} - - -// Clear and later restore the next link in the weak cell, if the object is one. -class UnlinkWeakCellScope { - public: - explicit UnlinkWeakCellScope(HeapObject* object) : weak_cell_(NULL) { - if (object->IsWeakCell()) { - weak_cell_ = WeakCell::cast(object); - next_ = weak_cell_->next(); - weak_cell_->clear_next(object->GetHeap()->the_hole_value()); - } - } - - ~UnlinkWeakCellScope() { - if (weak_cell_) weak_cell_->set_next(next_, UPDATE_WEAK_WRITE_BARRIER); - } - - private: - WeakCell* weak_cell_; - Object* next_; - DisallowHeapAllocation no_gc_; -}; - - -void Serializer::ObjectSerializer::Serialize() { - if (FLAG_trace_serializer) { - PrintF(" Encoding heap object: "); - object_->ShortPrint(); - PrintF("\n"); - } - - // We cannot serialize typed array objects correctly. - DCHECK(!object_->IsJSTypedArray()); - - // We don't expect fillers. - DCHECK(!object_->IsFiller()); - - if (object_->IsScript()) { - // Clear cached line ends. - Object* undefined = serializer_->isolate()->heap()->undefined_value(); - Script::cast(object_)->set_line_ends(undefined); - } - - if (object_->IsExternalString()) { - Heap* heap = serializer_->isolate()->heap(); - if (object_->map() != heap->native_source_string_map()) { - // Usually we cannot recreate resources for external strings. To work - // around this, external strings are serialized to look like ordinary - // sequential strings. - // The exception are native source code strings, since we can recreate - // their resources. In that case we fall through and leave it to - // VisitExternalOneByteString further down. - SerializeExternalString(); - return; - } - } - - int size = object_->Size(); - Map* map = object_->map(); - AllocationSpace space = - MemoryChunk::FromAddress(object_->address())->owner()->identity(); - SerializePrologue(space, size, map); - - // Serialize the rest of the object. - CHECK_EQ(0, bytes_processed_so_far_); - bytes_processed_so_far_ = kPointerSize; - - RecursionScope recursion(serializer_); - // Objects that are immediately post processed during deserialization - // cannot be deferred, since post processing requires the object content. - if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) { - serializer_->QueueDeferredObject(object_); - sink_->Put(kDeferred, "Deferring object content"); - return; - } - - UnlinkWeakCellScope unlink_weak_cell(object_); - - object_->IterateBody(map->instance_type(), size, this); - OutputRawData(object_->address() + size); -} - - -void Serializer::ObjectSerializer::SerializeDeferred() { - if (FLAG_trace_serializer) { - PrintF(" Encoding deferred heap object: "); - object_->ShortPrint(); - PrintF("\n"); - } - - int size = object_->Size(); - Map* map = object_->map(); - BackReference reference = serializer_->back_reference_map()->Lookup(object_); - - // Serialize the rest of the object. - CHECK_EQ(0, bytes_processed_so_far_); - bytes_processed_so_far_ = kPointerSize; - - serializer_->PutAlignmentPrefix(object_); - sink_->Put(kNewObject + reference.space(), "deferred object"); - serializer_->PutBackReference(object_, reference); - sink_->PutInt(size >> kPointerSizeLog2, "deferred object size"); - - UnlinkWeakCellScope unlink_weak_cell(object_); - - object_->IterateBody(map->instance_type(), size, this); - OutputRawData(object_->address() + size); -} - - -void Serializer::ObjectSerializer::VisitPointers(Object** start, - Object** end) { - Object** current = start; - while (current < end) { - while (current < end && (*current)->IsSmi()) current++; - if (current < end) OutputRawData(reinterpret_cast<Address>(current)); - - while (current < end && !(*current)->IsSmi()) { - HeapObject* current_contents = HeapObject::cast(*current); - int root_index = serializer_->root_index_map()->Lookup(current_contents); - // Repeats are not subject to the write barrier so we can only use - // immortal immovable root members. They are never in new space. - if (current != start && root_index != RootIndexMap::kInvalidRootIndex && - Heap::RootIsImmortalImmovable(root_index) && - current_contents == current[-1]) { - DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents)); - int repeat_count = 1; - while (¤t[repeat_count] < end - 1 && - current[repeat_count] == current_contents) { - repeat_count++; - } - current += repeat_count; - bytes_processed_so_far_ += repeat_count * kPointerSize; - if (repeat_count > kNumberOfFixedRepeat) { - sink_->Put(kVariableRepeat, "VariableRepeat"); - sink_->PutInt(repeat_count, "repeat count"); - } else { - sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat"); - } - } else { - serializer_->SerializeObject( - current_contents, kPlain, kStartOfObject, 0); - bytes_processed_so_far_ += kPointerSize; - current++; - } - } - } -} - - -void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) { - int skip = OutputRawData(rinfo->target_address_address(), - kCanReturnSkipInsteadOfSkipping); - HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; - Object* object = rinfo->target_object(); - serializer_->SerializeObject(HeapObject::cast(object), how_to_code, - kStartOfObject, skip); - bytes_processed_so_far_ += rinfo->target_address_size(); -} - - -void Serializer::ObjectSerializer::VisitExternalReference(Address* p) { - int skip = OutputRawData(reinterpret_cast<Address>(p), - kCanReturnSkipInsteadOfSkipping); - sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef"); - sink_->PutInt(skip, "SkipB4ExternalRef"); - Address target = *p; - sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); - bytes_processed_so_far_ += kPointerSize; -} - - -void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) { - int skip = OutputRawData(rinfo->target_address_address(), - kCanReturnSkipInsteadOfSkipping); - HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; - sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); - sink_->PutInt(skip, "SkipB4ExternalRef"); - Address target = rinfo->target_external_reference(); - sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); - bytes_processed_so_far_ += rinfo->target_address_size(); -} - - -void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) { - // We can only reference to internal references of code that has been output. - DCHECK(is_code_object_ && code_has_been_output_); - // We do not use skip from last patched pc to find the pc to patch, since - // target_address_address may not return addresses in ascending order when - // used for internal references. External references may be stored at the - // end of the code in the constant pool, whereas internal references are - // inline. That would cause the skip to be negative. Instead, we store the - // offset from code entry. - Address entry = Code::cast(object_)->entry(); - intptr_t pc_offset = rinfo->target_internal_reference_address() - entry; - intptr_t target_offset = rinfo->target_internal_reference() - entry; - DCHECK(0 <= pc_offset && - pc_offset <= Code::cast(object_)->instruction_size()); - DCHECK(0 <= target_offset && - target_offset <= Code::cast(object_)->instruction_size()); - sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE - ? kInternalReference - : kInternalReferenceEncoded, - "InternalRef"); - sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address"); - sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value"); -} - - -void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) { - int skip = OutputRawData(rinfo->target_address_address(), - kCanReturnSkipInsteadOfSkipping); - HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; - sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); - sink_->PutInt(skip, "SkipB4ExternalRef"); - Address target = rinfo->target_address(); - sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); - bytes_processed_so_far_ += rinfo->target_address_size(); -} - - -void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) { - int skip = OutputRawData(rinfo->target_address_address(), - kCanReturnSkipInsteadOfSkipping); - Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address()); - serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip); - bytes_processed_so_far_ += rinfo->target_address_size(); -} - - -void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) { - int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping); - Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address)); - serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); - bytes_processed_so_far_ += kPointerSize; -} - - -void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) { - int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping); - Cell* object = Cell::cast(rinfo->target_cell()); - serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); - bytes_processed_so_far_ += kPointerSize; -} - - -bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString( - int builtin_count, - v8::String::ExternalOneByteStringResource** resource_pointer, - FixedArray* source_cache, int resource_index) { - for (int i = 0; i < builtin_count; i++) { - Object* source = source_cache->get(i); - if (!source->IsUndefined()) { - ExternalOneByteString* string = ExternalOneByteString::cast(source); - typedef v8::String::ExternalOneByteStringResource Resource; - const Resource* resource = string->resource(); - if (resource == *resource_pointer) { - sink_->Put(resource_index, "NativesStringResource"); - sink_->PutSection(i, "NativesStringResourceEnd"); - bytes_processed_so_far_ += sizeof(resource); - return true; - } - } - } - return false; -} - - -void Serializer::ObjectSerializer::VisitExternalOneByteString( - v8::String::ExternalOneByteStringResource** resource_pointer) { - Address references_start = reinterpret_cast<Address>(resource_pointer); - OutputRawData(references_start); - if (SerializeExternalNativeSourceString( - Natives::GetBuiltinsCount(), resource_pointer, - Natives::GetSourceCache(serializer_->isolate()->heap()), - kNativesStringResource)) { - return; - } - if (SerializeExternalNativeSourceString( - ExtraNatives::GetBuiltinsCount(), resource_pointer, - ExtraNatives::GetSourceCache(serializer_->isolate()->heap()), - kExtraNativesStringResource)) { - return; - } - // One of the strings in the natives cache should match the resource. We - // don't expect any other kinds of external strings here. - UNREACHABLE(); -} - - -Address Serializer::ObjectSerializer::PrepareCode() { - // To make snapshots reproducible, we make a copy of the code object - // and wipe all pointers in the copy, which we then serialize. - Code* original = Code::cast(object_); - Code* code = serializer_->CopyCode(original); - // Code age headers are not serializable. - code->MakeYoung(serializer_->isolate()); - int mode_mask = RelocInfo::kCodeTargetMask | - RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | - RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) | - RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) | - RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | - RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED); - for (RelocIterator it(code, mode_mask); !it.done(); it.next()) { - RelocInfo* rinfo = it.rinfo(); - rinfo->WipeOut(); - } - // We need to wipe out the header fields *after* wiping out the - // relocations, because some of these fields are needed for the latter. - code->WipeOutHeader(); - return code->address(); -} - - -int Serializer::ObjectSerializer::OutputRawData( - Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) { - Address object_start = object_->address(); - int base = bytes_processed_so_far_; - int up_to_offset = static_cast<int>(up_to - object_start); - int to_skip = up_to_offset - bytes_processed_so_far_; - int bytes_to_output = to_skip; - bytes_processed_so_far_ += to_skip; - // This assert will fail if the reloc info gives us the target_address_address - // locations in a non-ascending order. Luckily that doesn't happen. - DCHECK(to_skip >= 0); - bool outputting_code = false; - if (to_skip != 0 && is_code_object_ && !code_has_been_output_) { - // Output the code all at once and fix later. - bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_; - outputting_code = true; - code_has_been_output_ = true; - } - if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) { - if (!outputting_code && bytes_to_output == to_skip && - IsAligned(bytes_to_output, kPointerAlignment) && - bytes_to_output <= kNumberOfFixedRawData * kPointerSize) { - int size_in_words = bytes_to_output >> kPointerSizeLog2; - sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData"); - to_skip = 0; // This instruction includes skip. - } else { - // We always end up here if we are outputting the code of a code object. - sink_->Put(kVariableRawData, "VariableRawData"); - sink_->PutInt(bytes_to_output, "length"); - } - - if (is_code_object_) object_start = PrepareCode(); - - const char* description = is_code_object_ ? "Code" : "Byte"; - sink_->PutRaw(object_start + base, bytes_to_output, description); - } - if (to_skip != 0 && return_skip == kIgnoringReturn) { - sink_->Put(kSkip, "Skip"); - sink_->PutInt(to_skip, "SkipDistance"); - to_skip = 0; - } - return to_skip; -} - - -BackReference Serializer::AllocateLargeObject(int size) { - // Large objects are allocated one-by-one when deserializing. We do not - // have to keep track of multiple chunks. - large_objects_total_size_ += size; - return BackReference::LargeObjectReference(seen_large_objects_index_++); -} - - -BackReference Serializer::Allocate(AllocationSpace space, int size) { - DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces); - DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space))); - uint32_t new_chunk_size = pending_chunk_[space] + size; - if (new_chunk_size > max_chunk_size(space)) { - // The new chunk size would not fit onto a single page. Complete the - // current chunk and start a new one. - sink_->Put(kNextChunk, "NextChunk"); - sink_->Put(space, "NextChunkSpace"); - completed_chunks_[space].Add(pending_chunk_[space]); - DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex); - pending_chunk_[space] = 0; - new_chunk_size = size; - } - uint32_t offset = pending_chunk_[space]; - pending_chunk_[space] = new_chunk_size; - return BackReference::Reference(space, completed_chunks_[space].length(), - offset); -} - - -void Serializer::Pad() { - // The non-branching GetInt will read up to 3 bytes too far, so we need - // to pad the snapshot to make sure we don't read over the end. - for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) { - sink_->Put(kNop, "Padding"); - } - // Pad up to pointer size for checksum. - while (!IsAligned(sink_->Position(), kPointerAlignment)) { - sink_->Put(kNop, "Padding"); - } -} - - -void Serializer::InitializeCodeAddressMap() { - isolate_->InitializeLoggingAndCounters(); - code_address_map_ = new CodeAddressMap(isolate_); -} - - -Code* Serializer::CopyCode(Code* code) { - code_buffer_.Rewind(0); // Clear buffer without deleting backing store. - int size = code->CodeSize(); - code_buffer_.AddAll(Vector<byte>(code->address(), size)); - return Code::cast(HeapObject::FromAddress(&code_buffer_.first())); -} - - -ScriptData* CodeSerializer::Serialize(Isolate* isolate, - Handle<SharedFunctionInfo> info, - Handle<String> source) { - base::ElapsedTimer timer; - if (FLAG_profile_deserialization) timer.Start(); - if (FLAG_trace_serializer) { - PrintF("[Serializing from"); - Object* script = info->script(); - if (script->IsScript()) Script::cast(script)->name()->ShortPrint(); - PrintF("]\n"); - } - - // Serialize code object. - SnapshotByteSink sink(info->code()->CodeSize() * 2); - CodeSerializer cs(isolate, &sink, *source); - DisallowHeapAllocation no_gc; - Object** location = Handle<Object>::cast(info).location(); - cs.VisitPointer(location); - cs.SerializeDeferredObjects(); - cs.Pad(); - - SerializedCodeData data(sink.data(), cs); - ScriptData* script_data = data.GetScriptData(); - - if (FLAG_profile_deserialization) { - double ms = timer.Elapsed().InMillisecondsF(); - int length = script_data->length(); - PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms); - } - - return script_data; -} - - -void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, - WhereToPoint where_to_point, int skip) { - int root_index = root_index_map_.Lookup(obj); - if (root_index != RootIndexMap::kInvalidRootIndex) { - PutRoot(root_index, obj, how_to_code, where_to_point, skip); - return; - } - - if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; - - FlushSkip(skip); - - if (obj->IsCode()) { - Code* code_object = Code::cast(obj); - switch (code_object->kind()) { - case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet. - case Code::HANDLER: // No handlers patched in yet. - case Code::REGEXP: // No regexp literals initialized yet. - case Code::NUMBER_OF_KINDS: // Pseudo enum value. - CHECK(false); - case Code::BUILTIN: - SerializeBuiltin(code_object->builtin_index(), how_to_code, - where_to_point); - return; - case Code::STUB: - SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point); - return; -#define IC_KIND_CASE(KIND) case Code::KIND: - IC_KIND_LIST(IC_KIND_CASE) -#undef IC_KIND_CASE - SerializeIC(code_object, how_to_code, where_to_point); - return; - case Code::FUNCTION: - DCHECK(code_object->has_reloc_info_for_serialization()); - SerializeGeneric(code_object, how_to_code, where_to_point); - return; - case Code::WASM_FUNCTION: - UNREACHABLE(); - } - UNREACHABLE(); - } - - // Past this point we should not see any (context-specific) maps anymore. - CHECK(!obj->IsMap()); - // There should be no references to the global object embedded. - CHECK(!obj->IsJSGlobalProxy() && !obj->IsJSGlobalObject()); - // There should be no hash table embedded. They would require rehashing. - CHECK(!obj->IsHashTable()); - // We expect no instantiated function objects or contexts. - CHECK(!obj->IsJSFunction() && !obj->IsContext()); - - SerializeGeneric(obj, how_to_code, where_to_point); -} - - -void CodeSerializer::SerializeGeneric(HeapObject* heap_object, - HowToCode how_to_code, - WhereToPoint where_to_point) { - // Object has not yet been serialized. Serialize it here. - ObjectSerializer serializer(this, heap_object, sink_, how_to_code, - where_to_point); - serializer.Serialize(); -} - - -void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code, - WhereToPoint where_to_point) { - DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || - (how_to_code == kPlain && where_to_point == kInnerPointer) || - (how_to_code == kFromCode && where_to_point == kInnerPointer)); - DCHECK_LT(builtin_index, Builtins::builtin_count); - DCHECK_LE(0, builtin_index); - - if (FLAG_trace_serializer) { - PrintF(" Encoding builtin: %s\n", - isolate()->builtins()->name(builtin_index)); - } - - sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin"); - sink_->PutInt(builtin_index, "builtin_index"); -} - - -void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code, - WhereToPoint where_to_point) { - DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) || - (how_to_code == kPlain && where_to_point == kInnerPointer) || - (how_to_code == kFromCode && where_to_point == kInnerPointer)); - DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache); - DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null()); - - int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex; - - if (FLAG_trace_serializer) { - PrintF(" Encoding code stub %s as %d\n", - CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key)), index); - } - - sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub"); - sink_->PutInt(index, "CodeStub key"); -} - - -void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code, - WhereToPoint where_to_point) { - // The IC may be implemented as a stub. - uint32_t stub_key = ic->stub_key(); - if (stub_key != CodeStub::NoCacheKey()) { - if (FLAG_trace_serializer) { - PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind())); - } - SerializeCodeStub(stub_key, how_to_code, where_to_point); - return; - } - // The IC may be implemented as builtin. Only real builtins have an - // actual builtin_index value attached (otherwise it's just garbage). - // Compare to make sure we are really dealing with a builtin. - int builtin_index = ic->builtin_index(); - if (builtin_index < Builtins::builtin_count) { - Builtins::Name name = static_cast<Builtins::Name>(builtin_index); - Code* builtin = isolate()->builtins()->builtin(name); - if (builtin == ic) { - if (FLAG_trace_serializer) { - PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind())); - } - DCHECK(ic->kind() == Code::KEYED_LOAD_IC || - ic->kind() == Code::KEYED_STORE_IC); - SerializeBuiltin(builtin_index, how_to_code, where_to_point); - return; - } - } - // The IC may also just be a piece of code kept in the non_monomorphic_cache. - // In that case, just serialize as a normal code object. - if (FLAG_trace_serializer) { - PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind())); - } - DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC); - SerializeGeneric(ic, how_to_code, where_to_point); -} - - -int CodeSerializer::AddCodeStubKey(uint32_t stub_key) { - // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2). - int index = 0; - while (index < stub_keys_.length()) { - if (stub_keys_[index] == stub_key) return index; - index++; - } - stub_keys_.Add(stub_key); - return index; -} - - -MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize( - Isolate* isolate, ScriptData* cached_data, Handle<String> source) { - base::ElapsedTimer timer; - if (FLAG_profile_deserialization) timer.Start(); - - HandleScope scope(isolate); - - base::SmartPointer<SerializedCodeData> scd( - SerializedCodeData::FromCachedData(isolate, cached_data, *source)); - if (scd.is_empty()) { - if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n"); - DCHECK(cached_data->rejected()); - return MaybeHandle<SharedFunctionInfo>(); - } - - // Prepare and register list of attached objects. - Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys(); - Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New( - code_stub_keys.length() + kCodeStubsBaseIndex); - attached_objects[kSourceObjectIndex] = source; - for (int i = 0; i < code_stub_keys.length(); i++) { - attached_objects[i + kCodeStubsBaseIndex] = - CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked(); - } - - Deserializer deserializer(scd.get()); - deserializer.SetAttachedObjects(attached_objects); - - // Deserialize. - Handle<SharedFunctionInfo> result; - if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) { - // Deserializing may fail if the reservations cannot be fulfilled. - if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n"); - return MaybeHandle<SharedFunctionInfo>(); - } - - if (FLAG_profile_deserialization) { - double ms = timer.Elapsed().InMillisecondsF(); - int length = cached_data->length(); - PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms); - } - result->set_deserialized(true); - - if (isolate->logger()->is_logging_code_events() || - isolate->cpu_profiler()->is_profiling()) { - String* name = isolate->heap()->empty_string(); - if (result->script()->IsScript()) { - Script* script = Script::cast(result->script()); - if (script->name()->IsString()) name = String::cast(script->name()); - } - isolate->logger()->CodeCreateEvent(Logger::SCRIPT_TAG, result->code(), - *result, NULL, name); - } - return scope.CloseAndEscape(result); -} - - -void SerializedData::AllocateData(int size) { - DCHECK(!owns_data_); - data_ = NewArray<byte>(size); - size_ = size; - owns_data_ = true; - DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment)); -} - - -SnapshotData::SnapshotData(const Serializer& ser) { - DisallowHeapAllocation no_gc; - List<Reservation> reservations; - ser.EncodeReservations(&reservations); - const List<byte>& payload = ser.sink()->data(); - - // Calculate sizes. - int reservation_size = reservations.length() * kInt32Size; - int size = kHeaderSize + reservation_size + payload.length(); - - // Allocate backing store and create result data. - AllocateData(size); - - // Set header values. - SetMagicNumber(ser.isolate()); - SetHeaderValue(kCheckSumOffset, Version::Hash()); - SetHeaderValue(kNumReservationsOffset, reservations.length()); - SetHeaderValue(kPayloadLengthOffset, payload.length()); - - // Copy reservation chunk sizes. - CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()), - reservation_size); - - // Copy serialized data. - CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(), - static_cast<size_t>(payload.length())); -} - - -bool SnapshotData::IsSane() { - return GetHeaderValue(kCheckSumOffset) == Version::Hash(); -} - - -Vector<const SerializedData::Reservation> SnapshotData::Reservations() const { - return Vector<const Reservation>( - reinterpret_cast<const Reservation*>(data_ + kHeaderSize), - GetHeaderValue(kNumReservationsOffset)); -} - - -Vector<const byte> SnapshotData::Payload() const { - int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; - const byte* payload = data_ + kHeaderSize + reservations_size; - int length = GetHeaderValue(kPayloadLengthOffset); - DCHECK_EQ(data_ + size_, payload + length); - return Vector<const byte>(payload, length); -} - - -class Checksum { - public: - explicit Checksum(Vector<const byte> payload) { -#ifdef MEMORY_SANITIZER - // Computing the checksum includes padding bytes for objects like strings. - // Mark every object as initialized in the code serializer. - MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length()); -#endif // MEMORY_SANITIZER - // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit. - uintptr_t a = 1; - uintptr_t b = 0; - const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start()); - DCHECK(IsAligned(payload.length(), kIntptrSize)); - const uintptr_t* end = cur + payload.length() / kIntptrSize; - while (cur < end) { - // Unsigned overflow expected and intended. - a += *cur++; - b += a; - } -#if V8_HOST_ARCH_64_BIT - a ^= a >> 32; - b ^= b >> 32; -#endif // V8_HOST_ARCH_64_BIT - a_ = static_cast<uint32_t>(a); - b_ = static_cast<uint32_t>(b); - } - - bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; } - - uint32_t a() const { return a_; } - uint32_t b() const { return b_; } - - private: - uint32_t a_; - uint32_t b_; - - DISALLOW_COPY_AND_ASSIGN(Checksum); -}; - - -SerializedCodeData::SerializedCodeData(const List<byte>& payload, - const CodeSerializer& cs) { - DisallowHeapAllocation no_gc; - const List<uint32_t>* stub_keys = cs.stub_keys(); - - List<Reservation> reservations; - cs.EncodeReservations(&reservations); - - // Calculate sizes. - int reservation_size = reservations.length() * kInt32Size; - int num_stub_keys = stub_keys->length(); - int stub_keys_size = stub_keys->length() * kInt32Size; - int payload_offset = kHeaderSize + reservation_size + stub_keys_size; - int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); - int size = padded_payload_offset + payload.length(); - - // Allocate backing store and create result data. - AllocateData(size); - - // Set header values. - SetMagicNumber(cs.isolate()); - SetHeaderValue(kVersionHashOffset, Version::Hash()); - SetHeaderValue(kSourceHashOffset, SourceHash(cs.source())); - SetHeaderValue(kCpuFeaturesOffset, - static_cast<uint32_t>(CpuFeatures::SupportedFeatures())); - SetHeaderValue(kFlagHashOffset, FlagList::Hash()); - SetHeaderValue(kNumReservationsOffset, reservations.length()); - SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys); - SetHeaderValue(kPayloadLengthOffset, payload.length()); - - Checksum checksum(payload.ToConstVector()); - SetHeaderValue(kChecksum1Offset, checksum.a()); - SetHeaderValue(kChecksum2Offset, checksum.b()); - - // Copy reservation chunk sizes. - CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()), - reservation_size); - - // Copy code stub keys. - CopyBytes(data_ + kHeaderSize + reservation_size, - reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size); - - memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset); - - // Copy serialized data. - CopyBytes(data_ + padded_payload_offset, payload.begin(), - static_cast<size_t>(payload.length())); -} - - -SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck( - Isolate* isolate, String* source) const { - uint32_t magic_number = GetMagicNumber(); - if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH; - uint32_t version_hash = GetHeaderValue(kVersionHashOffset); - uint32_t source_hash = GetHeaderValue(kSourceHashOffset); - uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset); - uint32_t flags_hash = GetHeaderValue(kFlagHashOffset); - uint32_t c1 = GetHeaderValue(kChecksum1Offset); - uint32_t c2 = GetHeaderValue(kChecksum2Offset); - if (version_hash != Version::Hash()) return VERSION_MISMATCH; - if (source_hash != SourceHash(source)) return SOURCE_MISMATCH; - if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) { - return CPU_FEATURES_MISMATCH; - } - if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH; - if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH; - return CHECK_SUCCESS; -} - - -uint32_t SerializedCodeData::SourceHash(String* source) const { - return source->length(); -} - - -// Return ScriptData object and relinquish ownership over it to the caller. -ScriptData* SerializedCodeData::GetScriptData() { - DCHECK(owns_data_); - ScriptData* result = new ScriptData(data_, size_); - result->AcquireDataOwnership(); - owns_data_ = false; - data_ = NULL; - return result; -} - - -Vector<const SerializedData::Reservation> SerializedCodeData::Reservations() - const { - return Vector<const Reservation>( - reinterpret_cast<const Reservation*>(data_ + kHeaderSize), - GetHeaderValue(kNumReservationsOffset)); -} - - -Vector<const byte> SerializedCodeData::Payload() const { - int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; - int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size; - int payload_offset = kHeaderSize + reservations_size + code_stubs_size; - int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset); - const byte* payload = data_ + padded_payload_offset; - DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment)); - int length = GetHeaderValue(kPayloadLengthOffset); - DCHECK_EQ(data_ + size_, payload + length); - return Vector<const byte>(payload, length); -} - - -Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const { - int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; - const byte* start = data_ + kHeaderSize + reservations_size; - return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start), - GetHeaderValue(kNumCodeStubKeysOffset)); -} - - -SerializedCodeData::SerializedCodeData(ScriptData* data) - : SerializedData(const_cast<byte*>(data->data()), data->length()) {} - - -SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate, - ScriptData* cached_data, - String* source) { - DisallowHeapAllocation no_gc; - SerializedCodeData* scd = new SerializedCodeData(cached_data); - SanityCheckResult r = scd->SanityCheck(isolate, source); - if (r == CHECK_SUCCESS) return scd; - cached_data->Reject(); - source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r); - delete scd; - return NULL; -} -} // namespace internal -} // namespace v8 diff --git a/chromium/v8/src/snapshot/serialize.h b/chromium/v8/src/snapshot/serialize.h deleted file mode 100644 index 7f4676eafa0..00000000000 --- a/chromium/v8/src/snapshot/serialize.h +++ /dev/null @@ -1,810 +0,0 @@ -// Copyright 2012 the V8 project authors. All rights reserved. -// Use of this source code is governed by a BSD-style license that can be -// found in the LICENSE file. - -#ifndef V8_SNAPSHOT_SERIALIZE_H_ -#define V8_SNAPSHOT_SERIALIZE_H_ - -#include "src/address-map.h" -#include "src/heap/heap.h" -#include "src/objects.h" -#include "src/snapshot/snapshot-source-sink.h" - -namespace v8 { -namespace internal { - -class Isolate; -class ScriptData; - -static const int kDeoptTableSerializeEntryCount = 64; - -// ExternalReferenceTable is a helper class that defines the relationship -// between external references and their encodings. It is used to build -// hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder. -class ExternalReferenceTable { - public: - static ExternalReferenceTable* instance(Isolate* isolate); - - int size() const { return refs_.length(); } - Address address(int i) { return refs_[i].address; } - const char* name(int i) { return refs_[i].name; } - - inline static Address NotAvailable() { return NULL; } - - private: - struct ExternalReferenceEntry { - Address address; - const char* name; - }; - - explicit ExternalReferenceTable(Isolate* isolate); - - void Add(Address address, const char* name) { - ExternalReferenceEntry entry = {address, name}; - refs_.Add(entry); - } - - List<ExternalReferenceEntry> refs_; - - DISALLOW_COPY_AND_ASSIGN(ExternalReferenceTable); -}; - - -class ExternalReferenceEncoder { - public: - explicit ExternalReferenceEncoder(Isolate* isolate); - - uint32_t Encode(Address key) const; - - const char* NameOfAddress(Isolate* isolate, Address address) const; - - private: - static uint32_t Hash(Address key) { - return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key) >> - kPointerSizeLog2); - } - - HashMap* map_; - - DISALLOW_COPY_AND_ASSIGN(ExternalReferenceEncoder); -}; - - -class PartialCacheIndexMap : public AddressMapBase { - public: - PartialCacheIndexMap() : map_(HashMap::PointersMatch) {} - - static const int kInvalidIndex = -1; - - // Lookup object in the map. Return its index if found, or create - // a new entry with new_index as value, and return kInvalidIndex. - int LookupOrInsert(HeapObject* obj, int new_index) { - HashMap::Entry* entry = LookupEntry(&map_, obj, false); - if (entry != NULL) return GetValue(entry); - SetValue(LookupEntry(&map_, obj, true), static_cast<uint32_t>(new_index)); - return kInvalidIndex; - } - - private: - HashMap map_; - - DISALLOW_COPY_AND_ASSIGN(PartialCacheIndexMap); -}; - - -class HotObjectsList { - public: - HotObjectsList() : index_(0) { - for (int i = 0; i < kSize; i++) circular_queue_[i] = NULL; - } - - void Add(HeapObject* object) { - circular_queue_[index_] = object; - index_ = (index_ + 1) & kSizeMask; - } - - HeapObject* Get(int index) { - DCHECK_NOT_NULL(circular_queue_[index]); - return circular_queue_[index]; - } - - static const int kNotFound = -1; - - int Find(HeapObject* object) { - for (int i = 0; i < kSize; i++) { - if (circular_queue_[i] == object) return i; - } - return kNotFound; - } - - static const int kSize = 8; - - private: - STATIC_ASSERT(IS_POWER_OF_TWO(kSize)); - static const int kSizeMask = kSize - 1; - HeapObject* circular_queue_[kSize]; - int index_; - - DISALLOW_COPY_AND_ASSIGN(HotObjectsList); -}; - - -// The Serializer/Deserializer class is a common superclass for Serializer and -// Deserializer which is used to store common constants and methods used by -// both. -class SerializerDeserializer: public ObjectVisitor { - public: - static void Iterate(Isolate* isolate, ObjectVisitor* visitor); - - // No reservation for large object space necessary. - static const int kNumberOfPreallocatedSpaces = LAST_PAGED_SPACE + 1; - static const int kNumberOfSpaces = LAST_SPACE + 1; - - protected: - static bool CanBeDeferred(HeapObject* o); - - // ---------- byte code range 0x00..0x7f ---------- - // Byte codes in this range represent Where, HowToCode and WhereToPoint. - // Where the pointed-to object can be found: - // The static assert below will trigger when the number of preallocated spaces - // changed. If that happens, update the bytecode ranges in the comments below. - STATIC_ASSERT(5 == kNumberOfSpaces); - enum Where { - // 0x00..0x04 Allocate new object, in specified space. - kNewObject = 0, - // 0x05 Unused (including 0x25, 0x45, 0x65). - // 0x06 Unused (including 0x26, 0x46, 0x66). - // 0x07 Unused (including 0x27, 0x47, 0x67). - // 0x08..0x0c Reference to previous object from space. - kBackref = 0x08, - // 0x0d Unused (including 0x2d, 0x4d, 0x6d). - // 0x0e Unused (including 0x2e, 0x4e, 0x6e). - // 0x0f Unused (including 0x2f, 0x4f, 0x6f). - // 0x10..0x14 Reference to previous object from space after skip. - kBackrefWithSkip = 0x10, - // 0x15 Unused (including 0x35, 0x55, 0x75). - // 0x16 Unused (including 0x36, 0x56, 0x76). - // 0x17 Misc (including 0x37, 0x57, 0x77). - // 0x18 Root array item. - kRootArray = 0x18, - // 0x19 Object in the partial snapshot cache. - kPartialSnapshotCache = 0x19, - // 0x1a External reference referenced by id. - kExternalReference = 0x1a, - // 0x1b Object provided in the attached list. - kAttachedReference = 0x1b, - // 0x1c Builtin code referenced by index. - kBuiltin = 0x1c - // 0x1d..0x1f Misc (including 0x3d..0x3f, 0x5d..0x5f, 0x7d..0x7f) - }; - - static const int kWhereMask = 0x1f; - static const int kSpaceMask = 7; - STATIC_ASSERT(kNumberOfSpaces <= kSpaceMask + 1); - - // How to code the pointer to the object. - enum HowToCode { - // Straight pointer. - kPlain = 0, - // A pointer inlined in code. What this means depends on the architecture. - kFromCode = 0x20 - }; - - static const int kHowToCodeMask = 0x20; - - // Where to point within the object. - enum WhereToPoint { - // Points to start of object - kStartOfObject = 0, - // Points to instruction in code object or payload of cell. - kInnerPointer = 0x40 - }; - - static const int kWhereToPointMask = 0x40; - - // ---------- Misc ---------- - // Skip. - static const int kSkip = 0x1d; - // Internal reference encoded as offsets of pc and target from code entry. - static const int kInternalReference = 0x1e; - static const int kInternalReferenceEncoded = 0x1f; - // Do nothing, used for padding. - static const int kNop = 0x3d; - // Move to next reserved chunk. - static const int kNextChunk = 0x3e; - // Deferring object content. - static const int kDeferred = 0x3f; - // Used for the source code of the natives, which is in the executable, but - // is referred to from external strings in the snapshot. - static const int kNativesStringResource = 0x5d; - // Used for the source code for compiled stubs, which is in the executable, - // but is referred to from external strings in the snapshot. - static const int kExtraNativesStringResource = 0x5e; - // A tag emitted at strategic points in the snapshot to delineate sections. - // If the deserializer does not find these at the expected moments then it - // is an indication that the snapshot and the VM do not fit together. - // Examine the build process for architecture, version or configuration - // mismatches. - static const int kSynchronize = 0x17; - // Repeats of variable length. - static const int kVariableRepeat = 0x37; - // Raw data of variable length. - static const int kVariableRawData = 0x57; - // Alignment prefixes 0x7d..0x7f - static const int kAlignmentPrefix = 0x7d; - - // 0x77 unused - - // ---------- byte code range 0x80..0xff ---------- - // First 32 root array items. - static const int kNumberOfRootArrayConstants = 0x20; - // 0x80..0x9f - static const int kRootArrayConstants = 0x80; - // 0xa0..0xbf - static const int kRootArrayConstantsWithSkip = 0xa0; - static const int kRootArrayConstantsMask = 0x1f; - - // 8 hot (recently seen or back-referenced) objects with optional skip. - static const int kNumberOfHotObjects = 0x08; - // 0xc0..0xc7 - static const int kHotObject = 0xc0; - // 0xc8..0xcf - static const int kHotObjectWithSkip = 0xc8; - static const int kHotObjectMask = 0x07; - - // 32 common raw data lengths. - static const int kNumberOfFixedRawData = 0x20; - // 0xd0..0xef - static const int kFixedRawData = 0xd0; - static const int kOnePointerRawData = kFixedRawData; - static const int kFixedRawDataStart = kFixedRawData - 1; - - // 16 repeats lengths. - static const int kNumberOfFixedRepeat = 0x10; - // 0xf0..0xff - static const int kFixedRepeat = 0xf0; - static const int kFixedRepeatStart = kFixedRepeat - 1; - - // ---------- special values ---------- - static const int kAnyOldSpace = -1; - - // Sentinel after a new object to indicate that double alignment is needed. - static const int kDoubleAlignmentSentinel = 0; - - // Used as index for the attached reference representing the source object. - static const int kSourceObjectReference = 0; - - // Used as index for the attached reference representing the global proxy. - static const int kGlobalProxyReference = 0; - - // ---------- member variable ---------- - HotObjectsList hot_objects_; -}; - - -class SerializedData { - public: - class Reservation { - public: - explicit Reservation(uint32_t size) - : reservation_(ChunkSizeBits::encode(size)) {} - - uint32_t chunk_size() const { return ChunkSizeBits::decode(reservation_); } - bool is_last() const { return IsLastChunkBits::decode(reservation_); } - - void mark_as_last() { reservation_ |= IsLastChunkBits::encode(true); } - - private: - uint32_t reservation_; - }; - - SerializedData(byte* data, int size) - : data_(data), size_(size), owns_data_(false) {} - SerializedData() : data_(NULL), size_(0), owns_data_(false) {} - - ~SerializedData() { - if (owns_data_) DeleteArray<byte>(data_); - } - - uint32_t GetMagicNumber() const { return GetHeaderValue(kMagicNumberOffset); } - - class ChunkSizeBits : public BitField<uint32_t, 0, 31> {}; - class IsLastChunkBits : public BitField<bool, 31, 1> {}; - - static uint32_t ComputeMagicNumber(ExternalReferenceTable* table) { - uint32_t external_refs = table->size(); - return 0xC0DE0000 ^ external_refs; - } - - protected: - void SetHeaderValue(int offset, uint32_t value) { - uint32_t* address = reinterpret_cast<uint32_t*>(data_ + offset); - memcpy(reinterpret_cast<uint32_t*>(address), &value, sizeof(value)); - } - - uint32_t GetHeaderValue(int offset) const { - uint32_t value; - memcpy(&value, reinterpret_cast<int*>(data_ + offset), sizeof(value)); - return value; - } - - void AllocateData(int size); - - static uint32_t ComputeMagicNumber(Isolate* isolate) { - return ComputeMagicNumber(ExternalReferenceTable::instance(isolate)); - } - - void SetMagicNumber(Isolate* isolate) { - SetHeaderValue(kMagicNumberOffset, ComputeMagicNumber(isolate)); - } - - static const int kMagicNumberOffset = 0; - - byte* data_; - int size_; - bool owns_data_; -}; - - -// A Deserializer reads a snapshot and reconstructs the Object graph it defines. -class Deserializer: public SerializerDeserializer { - public: - // Create a deserializer from a snapshot byte source. - template <class Data> - explicit Deserializer(Data* data) - : isolate_(NULL), - source_(data->Payload()), - magic_number_(data->GetMagicNumber()), - external_reference_table_(NULL), - deserialized_large_objects_(0), - deserializing_user_code_(false), - next_alignment_(kWordAligned) { - DecodeReservation(data->Reservations()); - } - - ~Deserializer() override; - - // Deserialize the snapshot into an empty heap. - void Deserialize(Isolate* isolate); - - // Deserialize a single object and the objects reachable from it. - MaybeHandle<Object> DeserializePartial(Isolate* isolate, - Handle<JSGlobalProxy> global_proxy); - - // Deserialize a shared function info. Fail gracefully. - MaybeHandle<SharedFunctionInfo> DeserializeCode(Isolate* isolate); - - // Pass a vector of externally-provided objects referenced by the snapshot. - // The ownership to its backing store is handed over as well. - void SetAttachedObjects(Vector<Handle<Object> > attached_objects) { - attached_objects_ = attached_objects; - } - - private: - void VisitPointers(Object** start, Object** end) override; - - void VisitRuntimeEntry(RelocInfo* rinfo) override { UNREACHABLE(); } - - void Initialize(Isolate* isolate); - - bool deserializing_user_code() { return deserializing_user_code_; } - - void DecodeReservation(Vector<const SerializedData::Reservation> res); - - bool ReserveSpace(); - - void UnalignedCopy(Object** dest, Object** src) { - memcpy(dest, src, sizeof(*src)); - } - - void SetAlignment(byte data) { - DCHECK_EQ(kWordAligned, next_alignment_); - int alignment = data - (kAlignmentPrefix - 1); - DCHECK_LE(kWordAligned, alignment); - DCHECK_LE(alignment, kSimd128Unaligned); - next_alignment_ = static_cast<AllocationAlignment>(alignment); - } - - void DeserializeDeferredObjects(); - - void FlushICacheForNewIsolate(); - void FlushICacheForNewCodeObjects(); - - void CommitPostProcessedObjects(Isolate* isolate); - - // Fills in some heap data in an area from start to end (non-inclusive). The - // space id is used for the write barrier. The object_address is the address - // of the object we are writing into, or NULL if we are not writing into an - // object, i.e. if we are writing a series of tagged values that are not on - // the heap. Return false if the object content has been deferred. - bool ReadData(Object** start, Object** end, int space, - Address object_address); - void ReadObject(int space_number, Object** write_back); - Address Allocate(int space_index, int size); - - // Special handling for serialized code like hooking up internalized strings. - HeapObject* PostProcessNewObject(HeapObject* obj, int space); - - // This returns the address of an object that has been described in the - // snapshot by chunk index and offset. - HeapObject* GetBackReferencedObject(int space); - - Object** CopyInNativesSource(Vector<const char> source_vector, - Object** current); - - // Cached current isolate. - Isolate* isolate_; - - // Objects from the attached object descriptions in the serialized user code. - Vector<Handle<Object> > attached_objects_; - - SnapshotByteSource source_; - uint32_t magic_number_; - - // The address of the next object that will be allocated in each space. - // Each space has a number of chunks reserved by the GC, with each chunk - // fitting into a page. Deserialized objects are allocated into the - // current chunk of the target space by bumping up high water mark. - Heap::Reservation reservations_[kNumberOfSpaces]; - uint32_t current_chunk_[kNumberOfPreallocatedSpaces]; - Address high_water_[kNumberOfPreallocatedSpaces]; - - ExternalReferenceTable* external_reference_table_; - - List<HeapObject*> deserialized_large_objects_; - List<Code*> new_code_objects_; - List<Handle<String> > new_internalized_strings_; - List<Handle<Script> > new_scripts_; - - bool deserializing_user_code_; - - AllocationAlignment next_alignment_; - - DISALLOW_COPY_AND_ASSIGN(Deserializer); -}; - - -class CodeAddressMap; - -// There can be only one serializer per V8 process. -class Serializer : public SerializerDeserializer { - public: - Serializer(Isolate* isolate, SnapshotByteSink* sink); - ~Serializer() override; - void VisitPointers(Object** start, Object** end) override; - - void EncodeReservations(List<SerializedData::Reservation>* out) const; - - void SerializeDeferredObjects(); - - Isolate* isolate() const { return isolate_; } - - BackReferenceMap* back_reference_map() { return &back_reference_map_; } - RootIndexMap* root_index_map() { return &root_index_map_; } - -#ifdef OBJECT_PRINT - void CountInstanceType(Map* map, int size); -#endif // OBJECT_PRINT - - protected: - class ObjectSerializer; - class RecursionScope { - public: - explicit RecursionScope(Serializer* serializer) : serializer_(serializer) { - serializer_->recursion_depth_++; - } - ~RecursionScope() { serializer_->recursion_depth_--; } - bool ExceedsMaximum() { - return serializer_->recursion_depth_ >= kMaxRecursionDepth; - } - - private: - static const int kMaxRecursionDepth = 32; - Serializer* serializer_; - }; - - virtual void SerializeObject(HeapObject* o, HowToCode how_to_code, - WhereToPoint where_to_point, int skip) = 0; - - void PutRoot(int index, HeapObject* object, HowToCode how, WhereToPoint where, - int skip); - - void PutBackReference(HeapObject* object, BackReference reference); - - // Emit alignment prefix if necessary, return required padding space in bytes. - int PutAlignmentPrefix(HeapObject* object); - - // Returns true if the object was successfully serialized. - bool SerializeKnownObject(HeapObject* obj, HowToCode how_to_code, - WhereToPoint where_to_point, int skip); - - inline void FlushSkip(int skip) { - if (skip != 0) { - sink_->Put(kSkip, "SkipFromSerializeObject"); - sink_->PutInt(skip, "SkipDistanceFromSerializeObject"); - } - } - - bool BackReferenceIsAlreadyAllocated(BackReference back_reference); - - // This will return the space for an object. - BackReference AllocateLargeObject(int size); - BackReference Allocate(AllocationSpace space, int size); - int EncodeExternalReference(Address addr) { - return external_reference_encoder_.Encode(addr); - } - - // GetInt reads 4 bytes at once, requiring padding at the end. - void Pad(); - - // Some roots should not be serialized, because their actual value depends on - // absolute addresses and they are reset after deserialization, anyway. - bool ShouldBeSkipped(Object** current); - - // We may not need the code address map for logging for every instance - // of the serializer. Initialize it on demand. - void InitializeCodeAddressMap(); - - Code* CopyCode(Code* code); - - inline uint32_t max_chunk_size(int space) const { - DCHECK_LE(0, space); - DCHECK_LT(space, kNumberOfSpaces); - return max_chunk_size_[space]; - } - - SnapshotByteSink* sink() const { return sink_; } - - void QueueDeferredObject(HeapObject* obj) { - DCHECK(back_reference_map_.Lookup(obj).is_valid()); - deferred_objects_.Add(obj); - } - - void OutputStatistics(const char* name); - - Isolate* isolate_; - - SnapshotByteSink* sink_; - ExternalReferenceEncoder external_reference_encoder_; - - BackReferenceMap back_reference_map_; - RootIndexMap root_index_map_; - - int recursion_depth_; - - friend class Deserializer; - friend class ObjectSerializer; - friend class RecursionScope; - friend class SnapshotData; - - private: - CodeAddressMap* code_address_map_; - // Objects from the same space are put into chunks for bulk-allocation - // when deserializing. We have to make sure that each chunk fits into a - // page. So we track the chunk size in pending_chunk_ of a space, but - // when it exceeds a page, we complete the current chunk and start a new one. - uint32_t pending_chunk_[kNumberOfPreallocatedSpaces]; - List<uint32_t> completed_chunks_[kNumberOfPreallocatedSpaces]; - uint32_t max_chunk_size_[kNumberOfPreallocatedSpaces]; - - // We map serialized large objects to indexes for back-referencing. - uint32_t large_objects_total_size_; - uint32_t seen_large_objects_index_; - - List<byte> code_buffer_; - - // To handle stack overflow. - List<HeapObject*> deferred_objects_; - -#ifdef OBJECT_PRINT - static const int kInstanceTypes = 256; - int* instance_type_count_; - size_t* instance_type_size_; -#endif // OBJECT_PRINT - - DISALLOW_COPY_AND_ASSIGN(Serializer); -}; - - -class PartialSerializer : public Serializer { - public: - PartialSerializer(Isolate* isolate, Serializer* startup_snapshot_serializer, - SnapshotByteSink* sink) - : Serializer(isolate, sink), - startup_serializer_(startup_snapshot_serializer), - global_object_(NULL) { - InitializeCodeAddressMap(); - } - - ~PartialSerializer() override { OutputStatistics("PartialSerializer"); } - - // Serialize the objects reachable from a single object pointer. - void Serialize(Object** o); - void SerializeObject(HeapObject* o, HowToCode how_to_code, - WhereToPoint where_to_point, int skip) override; - - private: - int PartialSnapshotCacheIndex(HeapObject* o); - bool ShouldBeInThePartialSnapshotCache(HeapObject* o); - - Serializer* startup_serializer_; - Object* global_object_; - PartialCacheIndexMap partial_cache_index_map_; - DISALLOW_COPY_AND_ASSIGN(PartialSerializer); -}; - - -class StartupSerializer : public Serializer { - public: - StartupSerializer(Isolate* isolate, SnapshotByteSink* sink); - ~StartupSerializer() override { OutputStatistics("StartupSerializer"); } - - // The StartupSerializer has to serialize the root array, which is slightly - // different. - void VisitPointers(Object** start, Object** end) override; - - // Serialize the current state of the heap. The order is: - // 1) Strong references. - // 2) Partial snapshot cache. - // 3) Weak references (e.g. the string table). - virtual void SerializeStrongReferences(); - void SerializeObject(HeapObject* o, HowToCode how_to_code, - WhereToPoint where_to_point, int skip) override; - void SerializeWeakReferencesAndDeferred(); - - private: - intptr_t root_index_wave_front_; - DISALLOW_COPY_AND_ASSIGN(StartupSerializer); -}; - - -class CodeSerializer : public Serializer { - public: - static ScriptData* Serialize(Isolate* isolate, - Handle<SharedFunctionInfo> info, - Handle<String> source); - - MUST_USE_RESULT static MaybeHandle<SharedFunctionInfo> Deserialize( - Isolate* isolate, ScriptData* cached_data, Handle<String> source); - - static const int kSourceObjectIndex = 0; - STATIC_ASSERT(kSourceObjectReference == kSourceObjectIndex); - - static const int kCodeStubsBaseIndex = 1; - - String* source() const { - DCHECK(!AllowHeapAllocation::IsAllowed()); - return source_; - } - - const List<uint32_t>* stub_keys() const { return &stub_keys_; } - - private: - CodeSerializer(Isolate* isolate, SnapshotByteSink* sink, String* source) - : Serializer(isolate, sink), source_(source) { - back_reference_map_.AddSourceString(source); - } - - ~CodeSerializer() override { OutputStatistics("CodeSerializer"); } - - void SerializeObject(HeapObject* o, HowToCode how_to_code, - WhereToPoint where_to_point, int skip) override; - - void SerializeBuiltin(int builtin_index, HowToCode how_to_code, - WhereToPoint where_to_point); - void SerializeIC(Code* ic, HowToCode how_to_code, - WhereToPoint where_to_point); - void SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code, - WhereToPoint where_to_point); - void SerializeGeneric(HeapObject* heap_object, HowToCode how_to_code, - WhereToPoint where_to_point); - int AddCodeStubKey(uint32_t stub_key); - - DisallowHeapAllocation no_gc_; - String* source_; - List<uint32_t> stub_keys_; - DISALLOW_COPY_AND_ASSIGN(CodeSerializer); -}; - - -// Wrapper around reservation sizes and the serialization payload. -class SnapshotData : public SerializedData { - public: - // Used when producing. - explicit SnapshotData(const Serializer& ser); - - // Used when consuming. - explicit SnapshotData(const Vector<const byte> snapshot) - : SerializedData(const_cast<byte*>(snapshot.begin()), snapshot.length()) { - CHECK(IsSane()); - } - - Vector<const Reservation> Reservations() const; - Vector<const byte> Payload() const; - - Vector<const byte> RawData() const { - return Vector<const byte>(data_, size_); - } - - private: - bool IsSane(); - - // The data header consists of uint32_t-sized entries: - // [0] magic number and external reference count - // [1] version hash - // [2] number of reservation size entries - // [3] payload length - // ... reservations - // ... serialized payload - static const int kCheckSumOffset = kMagicNumberOffset + kInt32Size; - static const int kNumReservationsOffset = kCheckSumOffset + kInt32Size; - static const int kPayloadLengthOffset = kNumReservationsOffset + kInt32Size; - static const int kHeaderSize = kPayloadLengthOffset + kInt32Size; -}; - - -// Wrapper around ScriptData to provide code-serializer-specific functionality. -class SerializedCodeData : public SerializedData { - public: - // Used when consuming. - static SerializedCodeData* FromCachedData(Isolate* isolate, - ScriptData* cached_data, - String* source); - - // Used when producing. - SerializedCodeData(const List<byte>& payload, const CodeSerializer& cs); - - // Return ScriptData object and relinquish ownership over it to the caller. - ScriptData* GetScriptData(); - - Vector<const Reservation> Reservations() const; - Vector<const byte> Payload() const; - - Vector<const uint32_t> CodeStubKeys() const; - - private: - explicit SerializedCodeData(ScriptData* data); - - enum SanityCheckResult { - CHECK_SUCCESS = 0, - MAGIC_NUMBER_MISMATCH = 1, - VERSION_MISMATCH = 2, - SOURCE_MISMATCH = 3, - CPU_FEATURES_MISMATCH = 4, - FLAGS_MISMATCH = 5, - CHECKSUM_MISMATCH = 6 - }; - - SanityCheckResult SanityCheck(Isolate* isolate, String* source) const; - - uint32_t SourceHash(String* source) const; - - // The data header consists of uint32_t-sized entries: - // [0] magic number and external reference count - // [1] version hash - // [2] source hash - // [3] cpu features - // [4] flag hash - // [5] number of code stub keys - // [6] number of reservation size entries - // [7] payload length - // [8] payload checksum part 1 - // [9] payload checksum part 2 - // ... reservations - // ... code stub keys - // ... serialized payload - static const int kVersionHashOffset = kMagicNumberOffset + kInt32Size; - static const int kSourceHashOffset = kVersionHashOffset + kInt32Size; - static const int kCpuFeaturesOffset = kSourceHashOffset + kInt32Size; - static const int kFlagHashOffset = kCpuFeaturesOffset + kInt32Size; - static const int kNumReservationsOffset = kFlagHashOffset + kInt32Size; - static const int kNumCodeStubKeysOffset = kNumReservationsOffset + kInt32Size; - static const int kPayloadLengthOffset = kNumCodeStubKeysOffset + kInt32Size; - static const int kChecksum1Offset = kPayloadLengthOffset + kInt32Size; - static const int kChecksum2Offset = kChecksum1Offset + kInt32Size; - static const int kHeaderSize = kChecksum2Offset + kInt32Size; -}; -} // namespace internal -} // namespace v8 - -#endif // V8_SNAPSHOT_SERIALIZE_H_ diff --git a/chromium/v8/src/snapshot/serializer-common.cc b/chromium/v8/src/snapshot/serializer-common.cc new file mode 100644 index 00000000000..eeb7eb73fa4 --- /dev/null +++ b/chromium/v8/src/snapshot/serializer-common.cc @@ -0,0 +1,76 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "src/snapshot/serializer-common.h" + +#include "src/external-reference-table.h" +#include "src/ic/stub-cache.h" +#include "src/list-inl.h" + +namespace v8 { +namespace internal { + +ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) { + map_ = isolate->external_reference_map(); + if (map_ != NULL) return; + map_ = new HashMap(HashMap::PointersMatch); + ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate); + for (int i = 0; i < table->size(); ++i) { + Address addr = table->address(i); + if (addr == ExternalReferenceTable::NotAvailable()) continue; + // We expect no duplicate external references entries in the table. + DCHECK_NULL(map_->Lookup(addr, Hash(addr))); + map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i); + } + isolate->set_external_reference_map(map_); +} + +uint32_t ExternalReferenceEncoder::Encode(Address address) const { + DCHECK_NOT_NULL(address); + HashMap::Entry* entry = + const_cast<HashMap*>(map_)->Lookup(address, Hash(address)); + DCHECK_NOT_NULL(entry); + return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value)); +} + +const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate, + Address address) const { + HashMap::Entry* entry = + const_cast<HashMap*>(map_)->Lookup(address, Hash(address)); + if (entry == NULL) return "<unknown>"; + uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value)); + return ExternalReferenceTable::instance(isolate)->name(i); +} + +void SerializedData::AllocateData(int size) { + DCHECK(!owns_data_); + data_ = NewArray<byte>(size); + size_ = size; + owns_data_ = true; + DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment)); +} + +// The partial snapshot cache is terminated by undefined. We visit the +// partial snapshot... +// - during deserialization to populate it. +// - during normal GC to keep its content alive. +// - not during serialization. The partial serializer adds to it explicitly. +void SerializerDeserializer::Iterate(Isolate* isolate, ObjectVisitor* visitor) { + List<Object*>* cache = isolate->partial_snapshot_cache(); + for (int i = 0;; ++i) { + // Extend the array ready to get a value when deserializing. + if (cache->length() <= i) cache->Add(Smi::FromInt(0)); + // During deserialization, the visitor populates the partial snapshot cache + // and eventually terminates the cache with undefined. + visitor->VisitPointer(&cache->at(i)); + if (cache->at(i)->IsUndefined()) break; + } +} + +bool SerializerDeserializer::CanBeDeferred(HeapObject* o) { + return !o->IsString() && !o->IsScript(); +} + +} // namespace internal +} // namespace v8 diff --git a/chromium/v8/src/snapshot/serializer-common.h b/chromium/v8/src/snapshot/serializer-common.h new file mode 100644 index 00000000000..645a9af3bf6 --- /dev/null +++ b/chromium/v8/src/snapshot/serializer-common.h @@ -0,0 +1,290 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_SNAPSHOT_SERIALIZER_COMMON_H_ +#define V8_SNAPSHOT_SERIALIZER_COMMON_H_ + +#include "src/address-map.h" +#include "src/external-reference-table.h" +#include "src/globals.h" + +namespace v8 { +namespace internal { + +class Isolate; + +class ExternalReferenceEncoder { + public: + explicit ExternalReferenceEncoder(Isolate* isolate); + + uint32_t Encode(Address key) const; + + const char* NameOfAddress(Isolate* isolate, Address address) const; + + private: + static uint32_t Hash(Address key) { + return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key) >> + kPointerSizeLog2); + } + + HashMap* map_; + + DISALLOW_COPY_AND_ASSIGN(ExternalReferenceEncoder); +}; + +class HotObjectsList { + public: + HotObjectsList() : index_(0) { + for (int i = 0; i < kSize; i++) circular_queue_[i] = NULL; + } + + void Add(HeapObject* object) { + circular_queue_[index_] = object; + index_ = (index_ + 1) & kSizeMask; + } + + HeapObject* Get(int index) { + DCHECK_NOT_NULL(circular_queue_[index]); + return circular_queue_[index]; + } + + static const int kNotFound = -1; + + int Find(HeapObject* object) { + for (int i = 0; i < kSize; i++) { + if (circular_queue_[i] == object) return i; + } + return kNotFound; + } + + static const int kSize = 8; + + private: + STATIC_ASSERT(IS_POWER_OF_TWO(kSize)); + static const int kSizeMask = kSize - 1; + HeapObject* circular_queue_[kSize]; + int index_; + + DISALLOW_COPY_AND_ASSIGN(HotObjectsList); +}; + +// The Serializer/Deserializer class is a common superclass for Serializer and +// Deserializer which is used to store common constants and methods used by +// both. +class SerializerDeserializer : public ObjectVisitor { + public: + static void Iterate(Isolate* isolate, ObjectVisitor* visitor); + + // No reservation for large object space necessary. + static const int kNumberOfPreallocatedSpaces = LAST_PAGED_SPACE + 1; + static const int kNumberOfSpaces = LAST_SPACE + 1; + + protected: + static bool CanBeDeferred(HeapObject* o); + + // ---------- byte code range 0x00..0x7f ---------- + // Byte codes in this range represent Where, HowToCode and WhereToPoint. + // Where the pointed-to object can be found: + // The static assert below will trigger when the number of preallocated spaces + // changed. If that happens, update the bytecode ranges in the comments below. + STATIC_ASSERT(5 == kNumberOfSpaces); + enum Where { + // 0x00..0x04 Allocate new object, in specified space. + kNewObject = 0, + // 0x05 Unused (including 0x25, 0x45, 0x65). + // 0x06 Unused (including 0x26, 0x46, 0x66). + // 0x07 Unused (including 0x27, 0x47, 0x67). + // 0x08..0x0c Reference to previous object from space. + kBackref = 0x08, + // 0x0d Unused (including 0x2d, 0x4d, 0x6d). + // 0x0e Unused (including 0x2e, 0x4e, 0x6e). + // 0x0f Unused (including 0x2f, 0x4f, 0x6f). + // 0x10..0x14 Reference to previous object from space after skip. + kBackrefWithSkip = 0x10, + // 0x15 Unused (including 0x35, 0x55, 0x75). + // 0x16 Unused (including 0x36, 0x56, 0x76). + // 0x17 Misc (including 0x37, 0x57, 0x77). + // 0x18 Root array item. + kRootArray = 0x18, + // 0x19 Object in the partial snapshot cache. + kPartialSnapshotCache = 0x19, + // 0x1a External reference referenced by id. + kExternalReference = 0x1a, + // 0x1b Object provided in the attached list. + kAttachedReference = 0x1b, + // 0x1c Builtin code referenced by index. + kBuiltin = 0x1c + // 0x1d..0x1f Misc (including 0x3d..0x3f, 0x5d..0x5f, 0x7d..0x7f) + }; + + static const int kWhereMask = 0x1f; + static const int kSpaceMask = 7; + STATIC_ASSERT(kNumberOfSpaces <= kSpaceMask + 1); + + // How to code the pointer to the object. + enum HowToCode { + // Straight pointer. + kPlain = 0, + // A pointer inlined in code. What this means depends on the architecture. + kFromCode = 0x20 + }; + + static const int kHowToCodeMask = 0x20; + + // Where to point within the object. + enum WhereToPoint { + // Points to start of object + kStartOfObject = 0, + // Points to instruction in code object or payload of cell. + kInnerPointer = 0x40 + }; + + static const int kWhereToPointMask = 0x40; + + // ---------- Misc ---------- + // Skip. + static const int kSkip = 0x1d; + // Internal reference encoded as offsets of pc and target from code entry. + static const int kInternalReference = 0x1e; + static const int kInternalReferenceEncoded = 0x1f; + // Do nothing, used for padding. + static const int kNop = 0x3d; + // Move to next reserved chunk. + static const int kNextChunk = 0x3e; + // Deferring object content. + static const int kDeferred = 0x3f; + // Used for the source code of the natives, which is in the executable, but + // is referred to from external strings in the snapshot. + static const int kNativesStringResource = 0x5d; + // Used for the source code for compiled stubs, which is in the executable, + // but is referred to from external strings in the snapshot. + static const int kExtraNativesStringResource = 0x5e; + // A tag emitted at strategic points in the snapshot to delineate sections. + // If the deserializer does not find these at the expected moments then it + // is an indication that the snapshot and the VM do not fit together. + // Examine the build process for architecture, version or configuration + // mismatches. + static const int kSynchronize = 0x17; + // Repeats of variable length. + static const int kVariableRepeat = 0x37; + // Raw data of variable length. + static const int kVariableRawData = 0x57; + // Alignment prefixes 0x7d..0x7f + static const int kAlignmentPrefix = 0x7d; + + // 0x77 unused + + // ---------- byte code range 0x80..0xff ---------- + // First 32 root array items. + static const int kNumberOfRootArrayConstants = 0x20; + // 0x80..0x9f + static const int kRootArrayConstants = 0x80; + // 0xa0..0xbf + static const int kRootArrayConstantsWithSkip = 0xa0; + static const int kRootArrayConstantsMask = 0x1f; + + // 8 hot (recently seen or back-referenced) objects with optional skip. + static const int kNumberOfHotObjects = 0x08; + // 0xc0..0xc7 + static const int kHotObject = 0xc0; + // 0xc8..0xcf + static const int kHotObjectWithSkip = 0xc8; + static const int kHotObjectMask = 0x07; + + // 32 common raw data lengths. + static const int kNumberOfFixedRawData = 0x20; + // 0xd0..0xef + static const int kFixedRawData = 0xd0; + static const int kOnePointerRawData = kFixedRawData; + static const int kFixedRawDataStart = kFixedRawData - 1; + + // 16 repeats lengths. + static const int kNumberOfFixedRepeat = 0x10; + // 0xf0..0xff + static const int kFixedRepeat = 0xf0; + static const int kFixedRepeatStart = kFixedRepeat - 1; + + // ---------- special values ---------- + static const int kAnyOldSpace = -1; + + // Sentinel after a new object to indicate that double alignment is needed. + static const int kDoubleAlignmentSentinel = 0; + + // Used as index for the attached reference representing the source object. + static const int kSourceObjectReference = 0; + + // Used as index for the attached reference representing the global proxy. + static const int kGlobalProxyReference = 0; + + // ---------- member variable ---------- + HotObjectsList hot_objects_; +}; + +class SerializedData { + public: + class Reservation { + public: + explicit Reservation(uint32_t size) + : reservation_(ChunkSizeBits::encode(size)) {} + + uint32_t chunk_size() const { return ChunkSizeBits::decode(reservation_); } + bool is_last() const { return IsLastChunkBits::decode(reservation_); } + + void mark_as_last() { reservation_ |= IsLastChunkBits::encode(true); } + + private: + uint32_t reservation_; + }; + + SerializedData(byte* data, int size) + : data_(data), size_(size), owns_data_(false) {} + SerializedData() : data_(NULL), size_(0), owns_data_(false) {} + + ~SerializedData() { + if (owns_data_) DeleteArray<byte>(data_); + } + + uint32_t GetMagicNumber() const { return GetHeaderValue(kMagicNumberOffset); } + + class ChunkSizeBits : public BitField<uint32_t, 0, 31> {}; + class IsLastChunkBits : public BitField<bool, 31, 1> {}; + + static uint32_t ComputeMagicNumber(ExternalReferenceTable* table) { + uint32_t external_refs = table->size(); + return 0xC0DE0000 ^ external_refs; + } + + protected: + void SetHeaderValue(int offset, uint32_t value) { + uint32_t* address = reinterpret_cast<uint32_t*>(data_ + offset); + memcpy(reinterpret_cast<uint32_t*>(address), &value, sizeof(value)); + } + + uint32_t GetHeaderValue(int offset) const { + uint32_t value; + memcpy(&value, reinterpret_cast<int*>(data_ + offset), sizeof(value)); + return value; + } + + void AllocateData(int size); + + static uint32_t ComputeMagicNumber(Isolate* isolate) { + return ComputeMagicNumber(ExternalReferenceTable::instance(isolate)); + } + + void SetMagicNumber(Isolate* isolate) { + SetHeaderValue(kMagicNumberOffset, ComputeMagicNumber(isolate)); + } + + static const int kMagicNumberOffset = 0; + + byte* data_; + int size_; + bool owns_data_; +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_SNAPSHOT_SERIALIZER_COMMON_H_ diff --git a/chromium/v8/src/snapshot/serializer.cc b/chromium/v8/src/snapshot/serializer.cc new file mode 100644 index 00000000000..41693384f36 --- /dev/null +++ b/chromium/v8/src/snapshot/serializer.cc @@ -0,0 +1,770 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "src/snapshot/serializer.h" + +#include "src/macro-assembler.h" +#include "src/snapshot/natives.h" + +namespace v8 { +namespace internal { + +Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink) + : isolate_(isolate), + sink_(sink), + external_reference_encoder_(isolate), + root_index_map_(isolate), + recursion_depth_(0), + code_address_map_(NULL), + large_objects_total_size_(0), + seen_large_objects_index_(0) { + // The serializer is meant to be used only to generate initial heap images + // from a context in which there is only one isolate. + for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { + pending_chunk_[i] = 0; + max_chunk_size_[i] = static_cast<uint32_t>( + MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i))); + } + +#ifdef OBJECT_PRINT + if (FLAG_serialization_statistics) { + instance_type_count_ = NewArray<int>(kInstanceTypes); + instance_type_size_ = NewArray<size_t>(kInstanceTypes); + for (int i = 0; i < kInstanceTypes; i++) { + instance_type_count_[i] = 0; + instance_type_size_[i] = 0; + } + } else { + instance_type_count_ = NULL; + instance_type_size_ = NULL; + } +#endif // OBJECT_PRINT +} + +Serializer::~Serializer() { + if (code_address_map_ != NULL) delete code_address_map_; +#ifdef OBJECT_PRINT + if (instance_type_count_ != NULL) { + DeleteArray(instance_type_count_); + DeleteArray(instance_type_size_); + } +#endif // OBJECT_PRINT +} + +#ifdef OBJECT_PRINT +void Serializer::CountInstanceType(Map* map, int size) { + int instance_type = map->instance_type(); + instance_type_count_[instance_type]++; + instance_type_size_[instance_type] += size; +} +#endif // OBJECT_PRINT + +void Serializer::OutputStatistics(const char* name) { + if (!FLAG_serialization_statistics) return; + PrintF("%s:\n", name); + PrintF(" Spaces (bytes):\n"); + for (int space = 0; space < kNumberOfSpaces; space++) { + PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space))); + } + PrintF("\n"); + for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) { + size_t s = pending_chunk_[space]; + for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size; + PrintF("%16" V8_SIZET_PREFIX V8_PTR_PREFIX "d", s); + } + PrintF("%16d\n", large_objects_total_size_); +#ifdef OBJECT_PRINT + PrintF(" Instance types (count and bytes):\n"); +#define PRINT_INSTANCE_TYPE(Name) \ + if (instance_type_count_[Name]) { \ + PrintF("%10d %10" V8_SIZET_PREFIX V8_PTR_PREFIX "d %s\n", \ + instance_type_count_[Name], instance_type_size_[Name], #Name); \ + } + INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE) +#undef PRINT_INSTANCE_TYPE + PrintF("\n"); +#endif // OBJECT_PRINT +} + +void Serializer::SerializeDeferredObjects() { + while (deferred_objects_.length() > 0) { + HeapObject* obj = deferred_objects_.RemoveLast(); + ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject); + obj_serializer.SerializeDeferred(); + } + sink_->Put(kSynchronize, "Finished with deferred objects"); +} + +void Serializer::VisitPointers(Object** start, Object** end) { + for (Object** current = start; current < end; current++) { + if ((*current)->IsSmi()) { + PutSmi(Smi::cast(*current)); + } else { + SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0); + } + } +} + +void Serializer::EncodeReservations( + List<SerializedData::Reservation>* out) const { + for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { + for (int j = 0; j < completed_chunks_[i].length(); j++) { + out->Add(SerializedData::Reservation(completed_chunks_[i][j])); + } + + if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) { + out->Add(SerializedData::Reservation(pending_chunk_[i])); + } + out->last().mark_as_last(); + } + + out->Add(SerializedData::Reservation(large_objects_total_size_)); + out->last().mark_as_last(); +} + +#ifdef DEBUG +bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) { + DCHECK(reference.is_valid()); + DCHECK(!reference.is_source()); + DCHECK(!reference.is_global_proxy()); + AllocationSpace space = reference.space(); + int chunk_index = reference.chunk_index(); + if (space == LO_SPACE) { + return chunk_index == 0 && + reference.large_object_index() < seen_large_objects_index_; + } else if (chunk_index == completed_chunks_[space].length()) { + return reference.chunk_offset() < pending_chunk_[space]; + } else { + return chunk_index < completed_chunks_[space].length() && + reference.chunk_offset() < completed_chunks_[space][chunk_index]; + } +} +#endif // DEBUG + +bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code, + WhereToPoint where_to_point, int skip) { + if (how_to_code == kPlain && where_to_point == kStartOfObject) { + // Encode a reference to a hot object by its index in the working set. + int index = hot_objects_.Find(obj); + if (index != HotObjectsList::kNotFound) { + DCHECK(index >= 0 && index < kNumberOfHotObjects); + if (FLAG_trace_serializer) { + PrintF(" Encoding hot object %d:", index); + obj->ShortPrint(); + PrintF("\n"); + } + if (skip != 0) { + sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip"); + sink_->PutInt(skip, "HotObjectSkipDistance"); + } else { + sink_->Put(kHotObject + index, "HotObject"); + } + return true; + } + } + BackReference back_reference = back_reference_map_.Lookup(obj); + if (back_reference.is_valid()) { + // Encode the location of an already deserialized object in order to write + // its location into a later object. We can encode the location as an + // offset fromthe start of the deserialized objects or as an offset + // backwards from thecurrent allocation pointer. + if (back_reference.is_source()) { + FlushSkip(skip); + if (FLAG_trace_serializer) PrintF(" Encoding source object\n"); + DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject); + sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source"); + sink_->PutInt(kSourceObjectReference, "kSourceObjectReference"); + } else if (back_reference.is_global_proxy()) { + FlushSkip(skip); + if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n"); + DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject); + sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy"); + sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference"); + } else { + if (FLAG_trace_serializer) { + PrintF(" Encoding back reference to: "); + obj->ShortPrint(); + PrintF("\n"); + } + + PutAlignmentPrefix(obj); + AllocationSpace space = back_reference.space(); + if (skip == 0) { + sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef"); + } else { + sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space, + "BackRefWithSkip"); + sink_->PutInt(skip, "BackRefSkipDistance"); + } + PutBackReference(obj, back_reference); + } + return true; + } + return false; +} + +void Serializer::PutRoot(int root_index, HeapObject* object, + SerializerDeserializer::HowToCode how_to_code, + SerializerDeserializer::WhereToPoint where_to_point, + int skip) { + if (FLAG_trace_serializer) { + PrintF(" Encoding root %d:", root_index); + object->ShortPrint(); + PrintF("\n"); + } + + if (how_to_code == kPlain && where_to_point == kStartOfObject && + root_index < kNumberOfRootArrayConstants && + !isolate()->heap()->InNewSpace(object)) { + if (skip == 0) { + sink_->Put(kRootArrayConstants + root_index, "RootConstant"); + } else { + sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant"); + sink_->PutInt(skip, "SkipInPutRoot"); + } + } else { + FlushSkip(skip); + sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization"); + sink_->PutInt(root_index, "root_index"); + } +} + +void Serializer::PutSmi(Smi* smi) { + sink_->Put(kOnePointerRawData, "Smi"); + byte* bytes = reinterpret_cast<byte*>(&smi); + for (int i = 0; i < kPointerSize; i++) sink_->Put(bytes[i], "Byte"); +} + +void Serializer::PutBackReference(HeapObject* object, BackReference reference) { + DCHECK(BackReferenceIsAlreadyAllocated(reference)); + sink_->PutInt(reference.reference(), "BackRefValue"); + hot_objects_.Add(object); +} + +int Serializer::PutAlignmentPrefix(HeapObject* object) { + AllocationAlignment alignment = object->RequiredAlignment(); + if (alignment != kWordAligned) { + DCHECK(1 <= alignment && alignment <= 3); + byte prefix = (kAlignmentPrefix - 1) + alignment; + sink_->Put(prefix, "Alignment"); + return Heap::GetMaximumFillToAlign(alignment); + } + return 0; +} + +BackReference Serializer::AllocateLargeObject(int size) { + // Large objects are allocated one-by-one when deserializing. We do not + // have to keep track of multiple chunks. + large_objects_total_size_ += size; + return BackReference::LargeObjectReference(seen_large_objects_index_++); +} + +BackReference Serializer::Allocate(AllocationSpace space, int size) { + DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces); + DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space))); + uint32_t new_chunk_size = pending_chunk_[space] + size; + if (new_chunk_size > max_chunk_size(space)) { + // The new chunk size would not fit onto a single page. Complete the + // current chunk and start a new one. + sink_->Put(kNextChunk, "NextChunk"); + sink_->Put(space, "NextChunkSpace"); + completed_chunks_[space].Add(pending_chunk_[space]); + DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex); + pending_chunk_[space] = 0; + new_chunk_size = size; + } + uint32_t offset = pending_chunk_[space]; + pending_chunk_[space] = new_chunk_size; + return BackReference::Reference(space, completed_chunks_[space].length(), + offset); +} + +void Serializer::Pad() { + // The non-branching GetInt will read up to 3 bytes too far, so we need + // to pad the snapshot to make sure we don't read over the end. + for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) { + sink_->Put(kNop, "Padding"); + } + // Pad up to pointer size for checksum. + while (!IsAligned(sink_->Position(), kPointerAlignment)) { + sink_->Put(kNop, "Padding"); + } +} + +void Serializer::InitializeCodeAddressMap() { + isolate_->InitializeLoggingAndCounters(); + code_address_map_ = new CodeAddressMap(isolate_); +} + +Code* Serializer::CopyCode(Code* code) { + code_buffer_.Rewind(0); // Clear buffer without deleting backing store. + int size = code->CodeSize(); + code_buffer_.AddAll(Vector<byte>(code->address(), size)); + return Code::cast(HeapObject::FromAddress(&code_buffer_.first())); +} + +bool Serializer::HasNotExceededFirstPageOfEachSpace() { + for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { + if (!completed_chunks_[i].is_empty()) return false; + } + return true; +} + +void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space, + int size, Map* map) { + if (serializer_->code_address_map_) { + const char* code_name = + serializer_->code_address_map_->Lookup(object_->address()); + LOG(serializer_->isolate_, + CodeNameEvent(object_->address(), sink_->Position(), code_name)); + } + + BackReference back_reference; + if (space == LO_SPACE) { + sink_->Put(kNewObject + reference_representation_ + space, + "NewLargeObject"); + sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords"); + if (object_->IsCode()) { + sink_->Put(EXECUTABLE, "executable large object"); + } else { + sink_->Put(NOT_EXECUTABLE, "not executable large object"); + } + back_reference = serializer_->AllocateLargeObject(size); + } else { + int fill = serializer_->PutAlignmentPrefix(object_); + back_reference = serializer_->Allocate(space, size + fill); + sink_->Put(kNewObject + reference_representation_ + space, "NewObject"); + sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords"); + } + +#ifdef OBJECT_PRINT + if (FLAG_serialization_statistics) { + serializer_->CountInstanceType(map, size); + } +#endif // OBJECT_PRINT + + // Mark this object as already serialized. + serializer_->back_reference_map()->Add(object_, back_reference); + + // Serialize the map (first word of the object). + serializer_->SerializeObject(map, kPlain, kStartOfObject, 0); +} + +void Serializer::ObjectSerializer::SerializeExternalString() { + // Instead of serializing this as an external string, we serialize + // an imaginary sequential string with the same content. + Isolate* isolate = serializer_->isolate(); + DCHECK(object_->IsExternalString()); + DCHECK(object_->map() != isolate->heap()->native_source_string_map()); + ExternalString* string = ExternalString::cast(object_); + int length = string->length(); + Map* map; + int content_size; + int allocation_size; + const byte* resource; + // Find the map and size for the imaginary sequential string. + bool internalized = object_->IsInternalizedString(); + if (object_->IsExternalOneByteString()) { + map = internalized ? isolate->heap()->one_byte_internalized_string_map() + : isolate->heap()->one_byte_string_map(); + allocation_size = SeqOneByteString::SizeFor(length); + content_size = length * kCharSize; + resource = reinterpret_cast<const byte*>( + ExternalOneByteString::cast(string)->resource()->data()); + } else { + map = internalized ? isolate->heap()->internalized_string_map() + : isolate->heap()->string_map(); + allocation_size = SeqTwoByteString::SizeFor(length); + content_size = length * kShortSize; + resource = reinterpret_cast<const byte*>( + ExternalTwoByteString::cast(string)->resource()->data()); + } + + AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize) + ? LO_SPACE + : OLD_SPACE; + SerializePrologue(space, allocation_size, map); + + // Output the rest of the imaginary string. + int bytes_to_output = allocation_size - HeapObject::kHeaderSize; + + // Output raw data header. Do not bother with common raw length cases here. + sink_->Put(kVariableRawData, "RawDataForString"); + sink_->PutInt(bytes_to_output, "length"); + + // Serialize string header (except for map). + Address string_start = string->address(); + for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) { + sink_->PutSection(string_start[i], "StringHeader"); + } + + // Serialize string content. + sink_->PutRaw(resource, content_size, "StringContent"); + + // Since the allocation size is rounded up to object alignment, there + // maybe left-over bytes that need to be padded. + int padding_size = allocation_size - SeqString::kHeaderSize - content_size; + DCHECK(0 <= padding_size && padding_size < kObjectAlignment); + for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding"); + + sink_->Put(kSkip, "SkipAfterString"); + sink_->PutInt(bytes_to_output, "SkipDistance"); +} + +// Clear and later restore the next link in the weak cell or allocation site. +// TODO(all): replace this with proper iteration of weak slots in serializer. +class UnlinkWeakNextScope { + public: + explicit UnlinkWeakNextScope(HeapObject* object) : object_(nullptr) { + if (object->IsWeakCell()) { + object_ = object; + next_ = WeakCell::cast(object)->next(); + WeakCell::cast(object)->clear_next(object->GetHeap()->the_hole_value()); + } else if (object->IsAllocationSite()) { + object_ = object; + next_ = AllocationSite::cast(object)->weak_next(); + AllocationSite::cast(object)->set_weak_next( + object->GetHeap()->undefined_value()); + } + } + + ~UnlinkWeakNextScope() { + if (object_ != nullptr) { + if (object_->IsWeakCell()) { + WeakCell::cast(object_)->set_next(next_, UPDATE_WEAK_WRITE_BARRIER); + } else { + AllocationSite::cast(object_)->set_weak_next(next_, + UPDATE_WEAK_WRITE_BARRIER); + } + } + } + + private: + HeapObject* object_; + Object* next_; + DisallowHeapAllocation no_gc_; +}; + +void Serializer::ObjectSerializer::Serialize() { + if (FLAG_trace_serializer) { + PrintF(" Encoding heap object: "); + object_->ShortPrint(); + PrintF("\n"); + } + + // We cannot serialize typed array objects correctly. + DCHECK(!object_->IsJSTypedArray()); + + // We don't expect fillers. + DCHECK(!object_->IsFiller()); + + if (object_->IsScript()) { + // Clear cached line ends. + Object* undefined = serializer_->isolate()->heap()->undefined_value(); + Script::cast(object_)->set_line_ends(undefined); + } + + if (object_->IsExternalString()) { + Heap* heap = serializer_->isolate()->heap(); + if (object_->map() != heap->native_source_string_map()) { + // Usually we cannot recreate resources for external strings. To work + // around this, external strings are serialized to look like ordinary + // sequential strings. + // The exception are native source code strings, since we can recreate + // their resources. In that case we fall through and leave it to + // VisitExternalOneByteString further down. + SerializeExternalString(); + return; + } + } + + int size = object_->Size(); + Map* map = object_->map(); + AllocationSpace space = + MemoryChunk::FromAddress(object_->address())->owner()->identity(); + SerializePrologue(space, size, map); + + // Serialize the rest of the object. + CHECK_EQ(0, bytes_processed_so_far_); + bytes_processed_so_far_ = kPointerSize; + + RecursionScope recursion(serializer_); + // Objects that are immediately post processed during deserialization + // cannot be deferred, since post processing requires the object content. + if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) { + serializer_->QueueDeferredObject(object_); + sink_->Put(kDeferred, "Deferring object content"); + return; + } + + UnlinkWeakNextScope unlink_weak_next(object_); + + object_->IterateBody(map->instance_type(), size, this); + OutputRawData(object_->address() + size); +} + +void Serializer::ObjectSerializer::SerializeDeferred() { + if (FLAG_trace_serializer) { + PrintF(" Encoding deferred heap object: "); + object_->ShortPrint(); + PrintF("\n"); + } + + int size = object_->Size(); + Map* map = object_->map(); + BackReference reference = serializer_->back_reference_map()->Lookup(object_); + + // Serialize the rest of the object. + CHECK_EQ(0, bytes_processed_so_far_); + bytes_processed_so_far_ = kPointerSize; + + serializer_->PutAlignmentPrefix(object_); + sink_->Put(kNewObject + reference.space(), "deferred object"); + serializer_->PutBackReference(object_, reference); + sink_->PutInt(size >> kPointerSizeLog2, "deferred object size"); + + UnlinkWeakNextScope unlink_weak_next(object_); + + object_->IterateBody(map->instance_type(), size, this); + OutputRawData(object_->address() + size); +} + +void Serializer::ObjectSerializer::VisitPointers(Object** start, Object** end) { + Object** current = start; + while (current < end) { + while (current < end && (*current)->IsSmi()) current++; + if (current < end) OutputRawData(reinterpret_cast<Address>(current)); + + while (current < end && !(*current)->IsSmi()) { + HeapObject* current_contents = HeapObject::cast(*current); + int root_index = serializer_->root_index_map()->Lookup(current_contents); + // Repeats are not subject to the write barrier so we can only use + // immortal immovable root members. They are never in new space. + if (current != start && root_index != RootIndexMap::kInvalidRootIndex && + Heap::RootIsImmortalImmovable(root_index) && + current_contents == current[-1]) { + DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents)); + int repeat_count = 1; + while (¤t[repeat_count] < end - 1 && + current[repeat_count] == current_contents) { + repeat_count++; + } + current += repeat_count; + bytes_processed_so_far_ += repeat_count * kPointerSize; + if (repeat_count > kNumberOfFixedRepeat) { + sink_->Put(kVariableRepeat, "VariableRepeat"); + sink_->PutInt(repeat_count, "repeat count"); + } else { + sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat"); + } + } else { + serializer_->SerializeObject(current_contents, kPlain, kStartOfObject, + 0); + bytes_processed_so_far_ += kPointerSize; + current++; + } + } + } +} + +void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) { + int skip = OutputRawData(rinfo->target_address_address(), + kCanReturnSkipInsteadOfSkipping); + HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; + Object* object = rinfo->target_object(); + serializer_->SerializeObject(HeapObject::cast(object), how_to_code, + kStartOfObject, skip); + bytes_processed_so_far_ += rinfo->target_address_size(); +} + +void Serializer::ObjectSerializer::VisitExternalReference(Address* p) { + int skip = OutputRawData(reinterpret_cast<Address>(p), + kCanReturnSkipInsteadOfSkipping); + sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef"); + sink_->PutInt(skip, "SkipB4ExternalRef"); + Address target = *p; + sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); + bytes_processed_so_far_ += kPointerSize; +} + +void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) { + int skip = OutputRawData(rinfo->target_address_address(), + kCanReturnSkipInsteadOfSkipping); + HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; + sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); + sink_->PutInt(skip, "SkipB4ExternalRef"); + Address target = rinfo->target_external_reference(); + sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); + bytes_processed_so_far_ += rinfo->target_address_size(); +} + +void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) { + // We can only reference to internal references of code that has been output. + DCHECK(object_->IsCode() && code_has_been_output_); + // We do not use skip from last patched pc to find the pc to patch, since + // target_address_address may not return addresses in ascending order when + // used for internal references. External references may be stored at the + // end of the code in the constant pool, whereas internal references are + // inline. That would cause the skip to be negative. Instead, we store the + // offset from code entry. + Address entry = Code::cast(object_)->entry(); + intptr_t pc_offset = rinfo->target_internal_reference_address() - entry; + intptr_t target_offset = rinfo->target_internal_reference() - entry; + DCHECK(0 <= pc_offset && + pc_offset <= Code::cast(object_)->instruction_size()); + DCHECK(0 <= target_offset && + target_offset <= Code::cast(object_)->instruction_size()); + sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE + ? kInternalReference + : kInternalReferenceEncoded, + "InternalRef"); + sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address"); + sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value"); +} + +void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) { + int skip = OutputRawData(rinfo->target_address_address(), + kCanReturnSkipInsteadOfSkipping); + HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain; + sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef"); + sink_->PutInt(skip, "SkipB4ExternalRef"); + Address target = rinfo->target_address(); + sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id"); + bytes_processed_so_far_ += rinfo->target_address_size(); +} + +void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) { + int skip = OutputRawData(rinfo->target_address_address(), + kCanReturnSkipInsteadOfSkipping); + Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address()); + serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip); + bytes_processed_so_far_ += rinfo->target_address_size(); +} + +void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) { + int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping); + Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address)); + serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); + bytes_processed_so_far_ += kPointerSize; +} + +void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) { + int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping); + Cell* object = Cell::cast(rinfo->target_cell()); + serializer_->SerializeObject(object, kPlain, kInnerPointer, skip); + bytes_processed_so_far_ += kPointerSize; +} + +bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString( + int builtin_count, + v8::String::ExternalOneByteStringResource** resource_pointer, + FixedArray* source_cache, int resource_index) { + for (int i = 0; i < builtin_count; i++) { + Object* source = source_cache->get(i); + if (!source->IsUndefined()) { + ExternalOneByteString* string = ExternalOneByteString::cast(source); + typedef v8::String::ExternalOneByteStringResource Resource; + const Resource* resource = string->resource(); + if (resource == *resource_pointer) { + sink_->Put(resource_index, "NativesStringResource"); + sink_->PutSection(i, "NativesStringResourceEnd"); + bytes_processed_so_far_ += sizeof(resource); + return true; + } + } + } + return false; +} + +void Serializer::ObjectSerializer::VisitExternalOneByteString( + v8::String::ExternalOneByteStringResource** resource_pointer) { + Address references_start = reinterpret_cast<Address>(resource_pointer); + OutputRawData(references_start); + if (SerializeExternalNativeSourceString( + Natives::GetBuiltinsCount(), resource_pointer, + Natives::GetSourceCache(serializer_->isolate()->heap()), + kNativesStringResource)) { + return; + } + if (SerializeExternalNativeSourceString( + ExtraNatives::GetBuiltinsCount(), resource_pointer, + ExtraNatives::GetSourceCache(serializer_->isolate()->heap()), + kExtraNativesStringResource)) { + return; + } + // One of the strings in the natives cache should match the resource. We + // don't expect any other kinds of external strings here. + UNREACHABLE(); +} + +Address Serializer::ObjectSerializer::PrepareCode() { + // To make snapshots reproducible, we make a copy of the code object + // and wipe all pointers in the copy, which we then serialize. + Code* original = Code::cast(object_); + Code* code = serializer_->CopyCode(original); + // Code age headers are not serializable. + code->MakeYoung(serializer_->isolate()); + int mode_mask = RelocInfo::kCodeTargetMask | + RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | + RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) | + RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) | + RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) | + RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED); + for (RelocIterator it(code, mode_mask); !it.done(); it.next()) { + RelocInfo* rinfo = it.rinfo(); + rinfo->WipeOut(); + } + // We need to wipe out the header fields *after* wiping out the + // relocations, because some of these fields are needed for the latter. + code->WipeOutHeader(); + return code->address(); +} + +int Serializer::ObjectSerializer::OutputRawData( + Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) { + Address object_start = object_->address(); + int base = bytes_processed_so_far_; + int up_to_offset = static_cast<int>(up_to - object_start); + int to_skip = up_to_offset - bytes_processed_so_far_; + int bytes_to_output = to_skip; + bytes_processed_so_far_ += to_skip; + // This assert will fail if the reloc info gives us the target_address_address + // locations in a non-ascending order. Luckily that doesn't happen. + DCHECK(to_skip >= 0); + bool outputting_code = false; + bool is_code_object = object_->IsCode(); + if (to_skip != 0 && is_code_object && !code_has_been_output_) { + // Output the code all at once and fix later. + bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_; + outputting_code = true; + code_has_been_output_ = true; + } + if (bytes_to_output != 0 && (!is_code_object || outputting_code)) { + if (!outputting_code && bytes_to_output == to_skip && + IsAligned(bytes_to_output, kPointerAlignment) && + bytes_to_output <= kNumberOfFixedRawData * kPointerSize) { + int size_in_words = bytes_to_output >> kPointerSizeLog2; + sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData"); + to_skip = 0; // This instruction includes skip. + } else { + // We always end up here if we are outputting the code of a code object. + sink_->Put(kVariableRawData, "VariableRawData"); + sink_->PutInt(bytes_to_output, "length"); + } + + if (is_code_object) object_start = PrepareCode(); + + const char* description = is_code_object ? "Code" : "Byte"; + sink_->PutRaw(object_start + base, bytes_to_output, description); + } + if (to_skip != 0 && return_skip == kIgnoringReturn) { + sink_->Put(kSkip, "Skip"); + sink_->PutInt(to_skip, "SkipDistance"); + to_skip = 0; + } + return to_skip; +} + +} // namespace internal +} // namespace v8 diff --git a/chromium/v8/src/snapshot/serializer.h b/chromium/v8/src/snapshot/serializer.h new file mode 100644 index 00000000000..eccbaabf5b7 --- /dev/null +++ b/chromium/v8/src/snapshot/serializer.h @@ -0,0 +1,321 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_SNAPSHOT_SERIALIZER_H_ +#define V8_SNAPSHOT_SERIALIZER_H_ + +#include "src/isolate.h" +#include "src/log.h" +#include "src/objects.h" +#include "src/snapshot/serializer-common.h" +#include "src/snapshot/snapshot-source-sink.h" + +namespace v8 { +namespace internal { + +class CodeAddressMap : public CodeEventLogger { + public: + explicit CodeAddressMap(Isolate* isolate) : isolate_(isolate) { + isolate->logger()->addCodeEventListener(this); + } + + ~CodeAddressMap() override { + isolate_->logger()->removeCodeEventListener(this); + } + + void CodeMoveEvent(AbstractCode* from, Address to) override { + address_to_name_map_.Move(from->address(), to); + } + + void CodeDisableOptEvent(AbstractCode* code, + SharedFunctionInfo* shared) override {} + + const char* Lookup(Address address) { + return address_to_name_map_.Lookup(address); + } + + private: + class NameMap { + public: + NameMap() : impl_(HashMap::PointersMatch) {} + + ~NameMap() { + for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) { + DeleteArray(static_cast<const char*>(p->value)); + } + } + + void Insert(Address code_address, const char* name, int name_size) { + HashMap::Entry* entry = FindOrCreateEntry(code_address); + if (entry->value == NULL) { + entry->value = CopyName(name, name_size); + } + } + + const char* Lookup(Address code_address) { + HashMap::Entry* entry = FindEntry(code_address); + return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL; + } + + void Remove(Address code_address) { + HashMap::Entry* entry = FindEntry(code_address); + if (entry != NULL) { + DeleteArray(static_cast<char*>(entry->value)); + RemoveEntry(entry); + } + } + + void Move(Address from, Address to) { + if (from == to) return; + HashMap::Entry* from_entry = FindEntry(from); + DCHECK(from_entry != NULL); + void* value = from_entry->value; + RemoveEntry(from_entry); + HashMap::Entry* to_entry = FindOrCreateEntry(to); + DCHECK(to_entry->value == NULL); + to_entry->value = value; + } + + private: + static char* CopyName(const char* name, int name_size) { + char* result = NewArray<char>(name_size + 1); + for (int i = 0; i < name_size; ++i) { + char c = name[i]; + if (c == '\0') c = ' '; + result[i] = c; + } + result[name_size] = '\0'; + return result; + } + + HashMap::Entry* FindOrCreateEntry(Address code_address) { + return impl_.LookupOrInsert(code_address, + ComputePointerHash(code_address)); + } + + HashMap::Entry* FindEntry(Address code_address) { + return impl_.Lookup(code_address, ComputePointerHash(code_address)); + } + + void RemoveEntry(HashMap::Entry* entry) { + impl_.Remove(entry->key, entry->hash); + } + + HashMap impl_; + + DISALLOW_COPY_AND_ASSIGN(NameMap); + }; + + void LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo*, + const char* name, int length) override { + address_to_name_map_.Insert(code->address(), name, length); + } + + NameMap address_to_name_map_; + Isolate* isolate_; +}; + +// There can be only one serializer per V8 process. +class Serializer : public SerializerDeserializer { + public: + Serializer(Isolate* isolate, SnapshotByteSink* sink); + ~Serializer() override; + + void EncodeReservations(List<SerializedData::Reservation>* out) const; + + void SerializeDeferredObjects(); + + Isolate* isolate() const { return isolate_; } + + BackReferenceMap* back_reference_map() { return &back_reference_map_; } + RootIndexMap* root_index_map() { return &root_index_map_; } + +#ifdef OBJECT_PRINT + void CountInstanceType(Map* map, int size); +#endif // OBJECT_PRINT + + protected: + class ObjectSerializer; + class RecursionScope { + public: + explicit RecursionScope(Serializer* serializer) : serializer_(serializer) { + serializer_->recursion_depth_++; + } + ~RecursionScope() { serializer_->recursion_depth_--; } + bool ExceedsMaximum() { + return serializer_->recursion_depth_ >= kMaxRecursionDepth; + } + + private: + static const int kMaxRecursionDepth = 32; + Serializer* serializer_; + }; + + virtual void SerializeObject(HeapObject* o, HowToCode how_to_code, + WhereToPoint where_to_point, int skip) = 0; + + void VisitPointers(Object** start, Object** end) override; + + void PutRoot(int index, HeapObject* object, HowToCode how, WhereToPoint where, + int skip); + + void PutSmi(Smi* smi); + + void PutBackReference(HeapObject* object, BackReference reference); + + // Emit alignment prefix if necessary, return required padding space in bytes. + int PutAlignmentPrefix(HeapObject* object); + + // Returns true if the object was successfully serialized. + bool SerializeKnownObject(HeapObject* obj, HowToCode how_to_code, + WhereToPoint where_to_point, int skip); + + inline void FlushSkip(int skip) { + if (skip != 0) { + sink_->Put(kSkip, "SkipFromSerializeObject"); + sink_->PutInt(skip, "SkipDistanceFromSerializeObject"); + } + } + + bool BackReferenceIsAlreadyAllocated(BackReference back_reference); + + // This will return the space for an object. + BackReference AllocateLargeObject(int size); + BackReference Allocate(AllocationSpace space, int size); + int EncodeExternalReference(Address addr) { + return external_reference_encoder_.Encode(addr); + } + + bool HasNotExceededFirstPageOfEachSpace(); + + // GetInt reads 4 bytes at once, requiring padding at the end. + void Pad(); + + // We may not need the code address map for logging for every instance + // of the serializer. Initialize it on demand. + void InitializeCodeAddressMap(); + + Code* CopyCode(Code* code); + + inline uint32_t max_chunk_size(int space) const { + DCHECK_LE(0, space); + DCHECK_LT(space, kNumberOfSpaces); + return max_chunk_size_[space]; + } + + SnapshotByteSink* sink() const { return sink_; } + + void QueueDeferredObject(HeapObject* obj) { + DCHECK(back_reference_map_.Lookup(obj).is_valid()); + deferred_objects_.Add(obj); + } + + void OutputStatistics(const char* name); + + Isolate* isolate_; + + SnapshotByteSink* sink_; + ExternalReferenceEncoder external_reference_encoder_; + + BackReferenceMap back_reference_map_; + RootIndexMap root_index_map_; + + int recursion_depth_; + + friend class Deserializer; + friend class ObjectSerializer; + friend class RecursionScope; + friend class SnapshotData; + + private: + CodeAddressMap* code_address_map_; + // Objects from the same space are put into chunks for bulk-allocation + // when deserializing. We have to make sure that each chunk fits into a + // page. So we track the chunk size in pending_chunk_ of a space, but + // when it exceeds a page, we complete the current chunk and start a new one. + uint32_t pending_chunk_[kNumberOfPreallocatedSpaces]; + List<uint32_t> completed_chunks_[kNumberOfPreallocatedSpaces]; + uint32_t max_chunk_size_[kNumberOfPreallocatedSpaces]; + + // We map serialized large objects to indexes for back-referencing. + uint32_t large_objects_total_size_; + uint32_t seen_large_objects_index_; + + List<byte> code_buffer_; + + // To handle stack overflow. + List<HeapObject*> deferred_objects_; + +#ifdef OBJECT_PRINT + static const int kInstanceTypes = 256; + int* instance_type_count_; + size_t* instance_type_size_; +#endif // OBJECT_PRINT + + DISALLOW_COPY_AND_ASSIGN(Serializer); +}; + +class Serializer::ObjectSerializer : public ObjectVisitor { + public: + ObjectSerializer(Serializer* serializer, HeapObject* obj, + SnapshotByteSink* sink, HowToCode how_to_code, + WhereToPoint where_to_point) + : serializer_(serializer), + object_(obj), + sink_(sink), + reference_representation_(how_to_code + where_to_point), + bytes_processed_so_far_(0), + code_has_been_output_(false) {} + ~ObjectSerializer() override {} + void Serialize(); + void SerializeDeferred(); + void VisitPointers(Object** start, Object** end) override; + void VisitEmbeddedPointer(RelocInfo* target) override; + void VisitExternalReference(Address* p) override; + void VisitExternalReference(RelocInfo* rinfo) override; + void VisitInternalReference(RelocInfo* rinfo) override; + void VisitCodeTarget(RelocInfo* target) override; + void VisitCodeEntry(Address entry_address) override; + void VisitCell(RelocInfo* rinfo) override; + void VisitRuntimeEntry(RelocInfo* reloc) override; + // Used for seralizing the external strings that hold the natives source. + void VisitExternalOneByteString( + v8::String::ExternalOneByteStringResource** resource) override; + // We can't serialize a heap with external two byte strings. + void VisitExternalTwoByteString( + v8::String::ExternalStringResource** resource) override { + UNREACHABLE(); + } + + private: + void SerializePrologue(AllocationSpace space, int size, Map* map); + + bool SerializeExternalNativeSourceString( + int builtin_count, + v8::String::ExternalOneByteStringResource** resource_pointer, + FixedArray* source_cache, int resource_index); + + enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn }; + // This function outputs or skips the raw data between the last pointer and + // up to the current position. It optionally can just return the number of + // bytes to skip instead of performing a skip instruction, in case the skip + // can be merged into the next instruction. + int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn); + // External strings are serialized in a way to resemble sequential strings. + void SerializeExternalString(); + + Address PrepareCode(); + + Serializer* serializer_; + HeapObject* object_; + SnapshotByteSink* sink_; + int reference_representation_; + int bytes_processed_so_far_; + bool code_has_been_output_; +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_SNAPSHOT_SERIALIZER_H_ diff --git a/chromium/v8/src/snapshot/snapshot-common.cc b/chromium/v8/src/snapshot/snapshot-common.cc index 97e7c6b5065..eb3bdb56045 100644 --- a/chromium/v8/src/snapshot/snapshot-common.cc +++ b/chromium/v8/src/snapshot/snapshot-common.cc @@ -9,6 +9,9 @@ #include "src/api.h" #include "src/base/platform/platform.h" #include "src/full-codegen/full-codegen.h" +#include "src/snapshot/deserializer.h" +#include "src/snapshot/snapshot-source-sink.h" +#include "src/version.h" namespace v8 { namespace internal { @@ -228,5 +231,52 @@ Vector<const byte> Snapshot::ExtractContextData(const v8::StartupData* data) { int context_length = data->raw_size - context_offset; return Vector<const byte>(context_data, context_length); } + +SnapshotData::SnapshotData(const Serializer& ser) { + DisallowHeapAllocation no_gc; + List<Reservation> reservations; + ser.EncodeReservations(&reservations); + const List<byte>& payload = ser.sink()->data(); + + // Calculate sizes. + int reservation_size = reservations.length() * kInt32Size; + int size = kHeaderSize + reservation_size + payload.length(); + + // Allocate backing store and create result data. + AllocateData(size); + + // Set header values. + SetMagicNumber(ser.isolate()); + SetHeaderValue(kCheckSumOffset, Version::Hash()); + SetHeaderValue(kNumReservationsOffset, reservations.length()); + SetHeaderValue(kPayloadLengthOffset, payload.length()); + + // Copy reservation chunk sizes. + CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()), + reservation_size); + + // Copy serialized data. + CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(), + static_cast<size_t>(payload.length())); +} + +bool SnapshotData::IsSane() { + return GetHeaderValue(kCheckSumOffset) == Version::Hash(); +} + +Vector<const SerializedData::Reservation> SnapshotData::Reservations() const { + return Vector<const Reservation>( + reinterpret_cast<const Reservation*>(data_ + kHeaderSize), + GetHeaderValue(kNumReservationsOffset)); +} + +Vector<const byte> SnapshotData::Payload() const { + int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size; + const byte* payload = data_ + kHeaderSize + reservations_size; + int length = GetHeaderValue(kPayloadLengthOffset); + DCHECK_EQ(data_ + size_, payload + length); + return Vector<const byte>(payload, length); +} + } // namespace internal } // namespace v8 diff --git a/chromium/v8/src/snapshot/snapshot-external.cc b/chromium/v8/src/snapshot/snapshot-external.cc index 1d5476cb5ec..67dcb60f0b2 100644 --- a/chromium/v8/src/snapshot/snapshot-external.cc +++ b/chromium/v8/src/snapshot/snapshot-external.cc @@ -7,7 +7,6 @@ #include "src/snapshot/snapshot.h" #include "src/base/platform/mutex.h" -#include "src/snapshot/serialize.h" #include "src/snapshot/snapshot-source-sink.h" #include "src/v8.h" // for V8::Initialize diff --git a/chromium/v8/src/snapshot/snapshot-source-sink.cc b/chromium/v8/src/snapshot/snapshot-source-sink.cc index 812de5e2a82..cee58753107 100644 --- a/chromium/v8/src/snapshot/snapshot-source-sink.cc +++ b/chromium/v8/src/snapshot/snapshot-source-sink.cc @@ -7,7 +7,6 @@ #include "src/base/logging.h" #include "src/handles-inl.h" -#include "src/snapshot/serialize.h" // for SerializerDeserializer::nop() namespace v8 { diff --git a/chromium/v8/src/snapshot/snapshot.h b/chromium/v8/src/snapshot/snapshot.h index d99f118bff2..c648d7595e2 100644 --- a/chromium/v8/src/snapshot/snapshot.h +++ b/chromium/v8/src/snapshot/snapshot.h @@ -5,7 +5,8 @@ #ifndef V8_SNAPSHOT_SNAPSHOT_H_ #define V8_SNAPSHOT_SNAPSHOT_H_ -#include "src/snapshot/serialize.h" +#include "src/snapshot/partial-serializer.h" +#include "src/snapshot/startup-serializer.h" namespace v8 { namespace internal { @@ -88,6 +89,41 @@ class Snapshot : public AllStatic { void SetSnapshotFromFile(StartupData* snapshot_blob); #endif +// Wrapper around reservation sizes and the serialization payload. +class SnapshotData : public SerializedData { + public: + // Used when producing. + explicit SnapshotData(const Serializer& ser); + + // Used when consuming. + explicit SnapshotData(const Vector<const byte> snapshot) + : SerializedData(const_cast<byte*>(snapshot.begin()), snapshot.length()) { + CHECK(IsSane()); + } + + Vector<const Reservation> Reservations() const; + Vector<const byte> Payload() const; + + Vector<const byte> RawData() const { + return Vector<const byte>(data_, size_); + } + + private: + bool IsSane(); + + // The data header consists of uint32_t-sized entries: + // [0] magic number and external reference count + // [1] version hash + // [2] number of reservation size entries + // [3] payload length + // ... reservations + // ... serialized payload + static const int kCheckSumOffset = kMagicNumberOffset + kInt32Size; + static const int kNumReservationsOffset = kCheckSumOffset + kInt32Size; + static const int kPayloadLengthOffset = kNumReservationsOffset + kInt32Size; + static const int kHeaderSize = kPayloadLengthOffset + kInt32Size; +}; + } // namespace internal } // namespace v8 diff --git a/chromium/v8/src/snapshot/startup-serializer.cc b/chromium/v8/src/snapshot/startup-serializer.cc new file mode 100644 index 00000000000..fab01f51f80 --- /dev/null +++ b/chromium/v8/src/snapshot/startup-serializer.cc @@ -0,0 +1,167 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "src/snapshot/startup-serializer.h" + +#include "src/objects-inl.h" +#include "src/v8threads.h" + +namespace v8 { +namespace internal { + +StartupSerializer::StartupSerializer( + Isolate* isolate, SnapshotByteSink* sink, + FunctionCodeHandling function_code_handling) + : Serializer(isolate, sink), + function_code_handling_(function_code_handling), + serializing_builtins_(false) { + InitializeCodeAddressMap(); +} + +StartupSerializer::~StartupSerializer() { + OutputStatistics("StartupSerializer"); +} + +void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code, + WhereToPoint where_to_point, int skip) { + DCHECK(!obj->IsJSFunction()); + + if (function_code_handling_ == CLEAR_FUNCTION_CODE) { + if (obj->IsCode()) { + Code* code = Code::cast(obj); + // If the function code is compiled (either as native code or bytecode), + // replace it with lazy-compile builtin. Only exception is when we are + // serializing the canonical interpreter-entry-trampoline builtin. + if (code->kind() == Code::FUNCTION || + (!serializing_builtins_ && code->is_interpreter_entry_trampoline())) { + obj = isolate()->builtins()->builtin(Builtins::kCompileLazy); + } + } else if (obj->IsBytecodeArray()) { + obj = isolate()->heap()->undefined_value(); + } + } else if (obj->IsCode()) { + DCHECK_EQ(KEEP_FUNCTION_CODE, function_code_handling_); + Code* code = Code::cast(obj); + if (code->kind() == Code::FUNCTION) { + code->ClearInlineCaches(); + code->set_profiler_ticks(0); + } + } + + int root_index = root_index_map_.Lookup(obj); + // We can only encode roots as such if it has already been serialized. + // That applies to root indices below the wave front. + if (root_index != RootIndexMap::kInvalidRootIndex) { + if (root_has_been_serialized_.test(root_index)) { + PutRoot(root_index, obj, how_to_code, where_to_point, skip); + return; + } + } + + if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return; + + FlushSkip(skip); + + // Object has not yet been serialized. Serialize it here. + ObjectSerializer object_serializer(this, obj, sink_, how_to_code, + where_to_point); + object_serializer.Serialize(); + + if (serializing_immortal_immovables_roots_ && + root_index != RootIndexMap::kInvalidRootIndex) { + // Make sure that the immortal immovable root has been included in the first + // chunk of its reserved space , so that it is deserialized onto the first + // page of its space and stays immortal immovable. + BackReference ref = back_reference_map_.Lookup(obj); + CHECK(ref.is_valid() && ref.chunk_index() == 0); + } +} + +void StartupSerializer::SerializeWeakReferencesAndDeferred() { + // This comes right after serialization of the partial snapshot, where we + // add entries to the partial snapshot cache of the startup snapshot. Add + // one entry with 'undefined' to terminate the partial snapshot cache. + Object* undefined = isolate()->heap()->undefined_value(); + VisitPointer(&undefined); + isolate()->heap()->IterateWeakRoots(this, VISIT_ALL); + SerializeDeferredObjects(); + Pad(); +} + +void StartupSerializer::Synchronize(VisitorSynchronization::SyncTag tag) { + // We expect the builtins tag after builtins have been serialized. + DCHECK(!serializing_builtins_ || tag == VisitorSynchronization::kBuiltins); + serializing_builtins_ = (tag == VisitorSynchronization::kHandleScope); + sink_->Put(kSynchronize, "Synchronize"); +} + +void StartupSerializer::SerializeStrongReferences() { + Isolate* isolate = this->isolate(); + // No active threads. + CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse()); + // No active or weak handles. + CHECK(isolate->handle_scope_implementer()->blocks()->is_empty()); + CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles()); + CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles()); + // We don't support serializing installed extensions. + CHECK(!isolate->has_installed_extensions()); + // First visit immortal immovables to make sure they end up in the first page. + serializing_immortal_immovables_roots_ = true; + isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG_ROOT_LIST); + // Check that immortal immovable roots are allocated on the first page. + CHECK(HasNotExceededFirstPageOfEachSpace()); + serializing_immortal_immovables_roots_ = false; + // Visit the rest of the strong roots. + // Clear the stack limits to make the snapshot reproducible. + // Reset it again afterwards. + isolate->heap()->ClearStackLimits(); + isolate->heap()->IterateSmiRoots(this); + isolate->heap()->SetStackLimits(); + + isolate->heap()->IterateStrongRoots(this, + VISIT_ONLY_STRONG_FOR_SERIALIZATION); +} + +void StartupSerializer::VisitPointers(Object** start, Object** end) { + if (start == isolate()->heap()->roots_array_start()) { + // Serializing the root list needs special handling: + // - The first pass over the root list only serializes immortal immovables. + // - The second pass over the root list serializes the rest. + // - Only root list elements that have been fully serialized can be + // referenced via as root by using kRootArray bytecodes. + int skip = 0; + for (Object** current = start; current < end; current++) { + int root_index = static_cast<int>(current - start); + if (RootShouldBeSkipped(root_index)) { + skip += kPointerSize; + continue; + } else { + if ((*current)->IsSmi()) { + FlushSkip(skip); + PutSmi(Smi::cast(*current)); + } else { + SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, + skip); + } + root_has_been_serialized_.set(root_index); + skip = 0; + } + } + FlushSkip(skip); + } else { + Serializer::VisitPointers(start, end); + } +} + +bool StartupSerializer::RootShouldBeSkipped(int root_index) { + if (root_index == Heap::kStackLimitRootIndex || + root_index == Heap::kRealStackLimitRootIndex) { + return true; + } + return Heap::RootIsImmortalImmovable(root_index) != + serializing_immortal_immovables_roots_; +} + +} // namespace internal +} // namespace v8 diff --git a/chromium/v8/src/snapshot/startup-serializer.h b/chromium/v8/src/snapshot/startup-serializer.h new file mode 100644 index 00000000000..71b8475469a --- /dev/null +++ b/chromium/v8/src/snapshot/startup-serializer.h @@ -0,0 +1,55 @@ +// Copyright 2016 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#ifndef V8_SNAPSHOT_STARTUP_SERIALIZER_H_ +#define V8_SNAPSHOT_STARTUP_SERIALIZER_H_ + +#include <bitset> +#include "src/snapshot/serializer.h" + +namespace v8 { +namespace internal { + +class StartupSerializer : public Serializer { + public: + enum FunctionCodeHandling { CLEAR_FUNCTION_CODE, KEEP_FUNCTION_CODE }; + + StartupSerializer( + Isolate* isolate, SnapshotByteSink* sink, + FunctionCodeHandling function_code_handling = CLEAR_FUNCTION_CODE); + ~StartupSerializer() override; + + // Serialize the current state of the heap. The order is: + // 1) Immortal immovable roots + // 2) Remaining strong references. + // 3) Partial snapshot cache. + // 4) Weak references (e.g. the string table). + void SerializeStrongReferences(); + void SerializeWeakReferencesAndDeferred(); + + private: + // The StartupSerializer has to serialize the root array, which is slightly + // different. + void VisitPointers(Object** start, Object** end) override; + void SerializeObject(HeapObject* o, HowToCode how_to_code, + WhereToPoint where_to_point, int skip) override; + void Synchronize(VisitorSynchronization::SyncTag tag) override; + + // Some roots should not be serialized, because their actual value depends on + // absolute addresses and they are reset after deserialization, anyway. + // In the first pass over the root list, we only serialize immortal immovable + // roots. In the second pass, we serialize the rest. + bool RootShouldBeSkipped(int root_index); + + FunctionCodeHandling function_code_handling_; + bool serializing_builtins_; + bool serializing_immortal_immovables_roots_; + std::bitset<Heap::kStrongRootListLength> root_has_been_serialized_; + DISALLOW_COPY_AND_ASSIGN(StartupSerializer); +}; + +} // namespace internal +} // namespace v8 + +#endif // V8_SNAPSHOT_STARTUP_SERIALIZER_H_ |