summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/x64/codegen-x64.h
blob: 9a70907cc83513281f635166973e180b93f43b46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_X64_CODEGEN_X64_H_
#define V8_X64_CODEGEN_X64_H_

#include "ast.h"
#include "ic-inl.h"
#include "jump-target-heavy.h"

namespace v8 {
namespace internal {

// Forward declarations
class CompilationInfo;
class DeferredCode;
class RegisterAllocator;
class RegisterFile;

enum InitState { CONST_INIT, NOT_CONST_INIT };
enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };


// -------------------------------------------------------------------------
// Reference support

// A reference is a C++ stack-allocated object that puts a
// reference on the virtual frame.  The reference may be consumed
// by GetValue, TakeValue, SetValue, and Codegen::UnloadReference.
// When the lifetime (scope) of a valid reference ends, it must have
// been consumed, and be in state UNLOADED.
class Reference BASE_EMBEDDED {
 public:
  // The values of the types is important, see size().
  enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };

  Reference(CodeGenerator* cgen,
            Expression* expression,
            bool persist_after_get = false);
  ~Reference();

  Expression* expression() const { return expression_; }
  Type type() const { return type_; }
  void set_type(Type value) {
    ASSERT_EQ(ILLEGAL, type_);
    type_ = value;
  }

  void set_unloaded() {
    ASSERT_NE(ILLEGAL, type_);
    ASSERT_NE(UNLOADED, type_);
    type_ = UNLOADED;
  }
  // The size the reference takes up on the stack.
  int size() const {
    return (type_ < SLOT) ? 0 : type_;
  }

  bool is_illegal() const { return type_ == ILLEGAL; }
  bool is_slot() const { return type_ == SLOT; }
  bool is_property() const { return type_ == NAMED || type_ == KEYED; }
  bool is_unloaded() const { return type_ == UNLOADED; }

  // Return the name.  Only valid for named property references.
  Handle<String> GetName();

  // Generate code to push the value of the reference on top of the
  // expression stack.  The reference is expected to be already on top of
  // the expression stack, and it is consumed by the call unless the
  // reference is for a compound assignment.
  // If the reference is not consumed, it is left in place under its value.
  void GetValue();

  // Like GetValue except that the slot is expected to be written to before
  // being read from again.  The value of the reference may be invalidated,
  // causing subsequent attempts to read it to fail.
  void TakeValue();

  // Generate code to store the value on top of the expression stack in the
  // reference.  The reference is expected to be immediately below the value
  // on the expression stack.  The  value is stored in the location specified
  // by the reference, and is left on top of the stack, after the reference
  // is popped from beneath it (unloaded).
  void SetValue(InitState init_state);

 private:
  CodeGenerator* cgen_;
  Expression* expression_;
  Type type_;
  bool persist_after_get_;
};


// -------------------------------------------------------------------------
// Control destinations.

// A control destination encapsulates a pair of jump targets and a
// flag indicating which one is the preferred fall-through.  The
// preferred fall-through must be unbound, the other may be already
// bound (ie, a backward target).
//
// The true and false targets may be jumped to unconditionally or
// control may split conditionally.  Unconditional jumping and
// splitting should be emitted in tail position (as the last thing
// when compiling an expression) because they can cause either label
// to be bound or the non-fall through to be jumped to leaving an
// invalid virtual frame.
//
// The labels in the control destination can be extracted and
// manipulated normally without affecting the state of the
// destination.

class ControlDestination BASE_EMBEDDED {
 public:
  ControlDestination(JumpTarget* true_target,
                     JumpTarget* false_target,
                     bool true_is_fall_through)
      : true_target_(true_target),
        false_target_(false_target),
        true_is_fall_through_(true_is_fall_through),
        is_used_(false) {
    ASSERT(true_is_fall_through ? !true_target->is_bound()
                                : !false_target->is_bound());
  }

  // Accessors for the jump targets.  Directly jumping or branching to
  // or binding the targets will not update the destination's state.
  JumpTarget* true_target() const { return true_target_; }
  JumpTarget* false_target() const { return false_target_; }

  // True if the the destination has been jumped to unconditionally or
  // control has been split to both targets.  This predicate does not
  // test whether the targets have been extracted and manipulated as
  // raw jump targets.
  bool is_used() const { return is_used_; }

  // True if the destination is used and the true target (respectively
  // false target) was the fall through.  If the target is backward,
  // "fall through" included jumping unconditionally to it.
  bool true_was_fall_through() const {
    return is_used_ && true_is_fall_through_;
  }

  bool false_was_fall_through() const {
    return is_used_ && !true_is_fall_through_;
  }

  // Emit a branch to one of the true or false targets, and bind the
  // other target.  Because this binds the fall-through target, it
  // should be emitted in tail position (as the last thing when
  // compiling an expression).
  void Split(Condition cc) {
    ASSERT(!is_used_);
    if (true_is_fall_through_) {
      false_target_->Branch(NegateCondition(cc));
      true_target_->Bind();
    } else {
      true_target_->Branch(cc);
      false_target_->Bind();
    }
    is_used_ = true;
  }

  // Emit an unconditional jump in tail position, to the true target
  // (if the argument is true) or the false target.  The "jump" will
  // actually bind the jump target if it is forward, jump to it if it
  // is backward.
  void Goto(bool where) {
    ASSERT(!is_used_);
    JumpTarget* target = where ? true_target_ : false_target_;
    if (target->is_bound()) {
      target->Jump();
    } else {
      target->Bind();
    }
    is_used_ = true;
    true_is_fall_through_ = where;
  }

  // Mark this jump target as used as if Goto had been called, but
  // without generating a jump or binding a label (the control effect
  // should have already happened).  This is used when the left
  // subexpression of the short-circuit boolean operators are
  // compiled.
  void Use(bool where) {
    ASSERT(!is_used_);
    ASSERT((where ? true_target_ : false_target_)->is_bound());
    is_used_ = true;
    true_is_fall_through_ = where;
  }

  // Swap the true and false targets but keep the same actual label as
  // the fall through.  This is used when compiling negated
  // expressions, where we want to swap the targets but preserve the
  // state.
  void Invert() {
    JumpTarget* temp_target = true_target_;
    true_target_ = false_target_;
    false_target_ = temp_target;

    true_is_fall_through_ = !true_is_fall_through_;
  }

 private:
  // True and false jump targets.
  JumpTarget* true_target_;
  JumpTarget* false_target_;

  // Before using the destination: true if the true target is the
  // preferred fall through, false if the false target is.  After
  // using the destination: true if the true target was actually used
  // as the fall through, false if the false target was.
  bool true_is_fall_through_;

  // True if the Split or Goto functions have been called.
  bool is_used_;
};


// -------------------------------------------------------------------------
// Code generation state

// The state is passed down the AST by the code generator (and back up, in
// the form of the state of the jump target pair).  It is threaded through
// the call stack.  Constructing a state implicitly pushes it on the owning
// code generator's stack of states, and destroying one implicitly pops it.
//
// The code generator state is only used for expressions, so statements have
// the initial state.

class CodeGenState BASE_EMBEDDED {
 public:
  // Create an initial code generator state.  Destroying the initial state
  // leaves the code generator with a NULL state.
  explicit CodeGenState(CodeGenerator* owner);

  // Create a code generator state based on a code generator's current
  // state.  The new state has its own control destination.
  CodeGenState(CodeGenerator* owner, ControlDestination* destination);

  // Destroy a code generator state and restore the owning code generator's
  // previous state.
  ~CodeGenState();

  // Accessors for the state.
  ControlDestination* destination() const { return destination_; }

 private:
  // The owning code generator.
  CodeGenerator* owner_;

  // A control destination in case the expression has a control-flow
  // effect.
  ControlDestination* destination_;

  // The previous state of the owning code generator, restored when
  // this state is destroyed.
  CodeGenState* previous_;
};


// -------------------------------------------------------------------------
// Arguments allocation mode

enum ArgumentsAllocationMode {
  NO_ARGUMENTS_ALLOCATION,
  EAGER_ARGUMENTS_ALLOCATION,
  LAZY_ARGUMENTS_ALLOCATION
};


// -------------------------------------------------------------------------
// CodeGenerator

class CodeGenerator: public AstVisitor {
 public:
  static bool MakeCode(CompilationInfo* info);

  // Printing of AST, etc. as requested by flags.
  static void MakeCodePrologue(CompilationInfo* info);

  // Allocate and install the code.
  static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm,
                                       Code::Flags flags,
                                       CompilationInfo* info);

  // Print the code after compiling it.
  static void PrintCode(Handle<Code> code, CompilationInfo* info);

#ifdef ENABLE_LOGGING_AND_PROFILING
  static bool ShouldGenerateLog(Expression* type);
#endif

  static bool RecordPositions(MacroAssembler* masm,
                              int pos,
                              bool right_here = false);

  // Accessors
  MacroAssembler* masm() { return masm_; }
  VirtualFrame* frame() const { return frame_; }
  inline Handle<Script> script();

  bool has_valid_frame() const { return frame_ != NULL; }

  // Set the virtual frame to be new_frame, with non-frame register
  // reference counts given by non_frame_registers.  The non-frame
  // register reference counts of the old frame are returned in
  // non_frame_registers.
  void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);

  void DeleteFrame();

  RegisterAllocator* allocator() const { return allocator_; }

  CodeGenState* state() { return state_; }
  void set_state(CodeGenState* state) { state_ = state; }

  void AddDeferred(DeferredCode* code) { deferred_.Add(code); }

  bool in_spilled_code() const { return in_spilled_code_; }
  void set_in_spilled_code(bool flag) { in_spilled_code_ = flag; }

 private:
  // Type of a member function that generates inline code for a native function.
  typedef void (CodeGenerator::*InlineFunctionGenerator)
      (ZoneList<Expression*>*);

  static const InlineFunctionGenerator kInlineFunctionGenerators[];

  // Construction/Destruction
  explicit CodeGenerator(MacroAssembler* masm);

  // Accessors
  inline bool is_eval();
  inline Scope* scope();
  inline bool is_strict_mode();
  inline StrictModeFlag strict_mode_flag();

  // Generating deferred code.
  void ProcessDeferred();

  // State
  ControlDestination* destination() const { return state_->destination(); }

  // Track loop nesting level.
  int loop_nesting() const { return loop_nesting_; }
  void IncrementLoopNesting() { loop_nesting_++; }
  void DecrementLoopNesting() { loop_nesting_--; }


  // Node visitors.
  void VisitStatements(ZoneList<Statement*>* statements);

  virtual void VisitSlot(Slot* node);
#define DEF_VISIT(type)                         \
  virtual void Visit##type(type* node);
  AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT

  // Visit a statement and then spill the virtual frame if control flow can
  // reach the end of the statement (ie, it does not exit via break,
  // continue, return, or throw).  This function is used temporarily while
  // the code generator is being transformed.
  void VisitAndSpill(Statement* statement);

  // Visit a list of statements and then spill the virtual frame if control
  // flow can reach the end of the list.
  void VisitStatementsAndSpill(ZoneList<Statement*>* statements);

  // Main code generation function
  void Generate(CompilationInfo* info);

  // Generate the return sequence code.  Should be called no more than
  // once per compiled function, immediately after binding the return
  // target (which can not be done more than once).
  void GenerateReturnSequence(Result* return_value);

  // Generate code for a fast smi loop.
  void GenerateFastSmiLoop(ForStatement* node);

  // Returns the arguments allocation mode.
  ArgumentsAllocationMode ArgumentsMode();

  // Store the arguments object and allocate it if necessary.
  Result StoreArgumentsObject(bool initial);

  // The following are used by class Reference.
  void LoadReference(Reference* ref);
  void UnloadReference(Reference* ref);

  Operand SlotOperand(Slot* slot, Register tmp);

  Operand ContextSlotOperandCheckExtensions(Slot* slot,
                                            Result tmp,
                                            JumpTarget* slow);

  // Expressions
  void LoadCondition(Expression* x,
                     ControlDestination* destination,
                     bool force_control);
  void Load(Expression* expr);
  void LoadGlobal();
  void LoadGlobalReceiver();

  // Generate code to push the value of an expression on top of the frame
  // and then spill the frame fully to memory.  This function is used
  // temporarily while the code generator is being transformed.
  void LoadAndSpill(Expression* expression);

  // Read a value from a slot and leave it on top of the expression stack.
  void LoadFromSlot(Slot* slot, TypeofState typeof_state);
  void LoadFromSlotCheckForArguments(Slot* slot, TypeofState state);
  Result LoadFromGlobalSlotCheckExtensions(Slot* slot,
                                           TypeofState typeof_state,
                                           JumpTarget* slow);

  // Support for loading from local/global variables and arguments
  // whose location is known unless they are shadowed by
  // eval-introduced bindings. Generates no code for unsupported slot
  // types and therefore expects to fall through to the slow jump target.
  void EmitDynamicLoadFromSlotFastCase(Slot* slot,
                                       TypeofState typeof_state,
                                       Result* result,
                                       JumpTarget* slow,
                                       JumpTarget* done);

  // Store the value on top of the expression stack into a slot, leaving the
  // value in place.
  void StoreToSlot(Slot* slot, InitState init_state);

  // Support for compiling assignment expressions.
  void EmitSlotAssignment(Assignment* node);
  void EmitNamedPropertyAssignment(Assignment* node);
  void EmitKeyedPropertyAssignment(Assignment* node);

  // Receiver is passed on the frame and not consumed.
  Result EmitNamedLoad(Handle<String> name, bool is_contextual);

  // If the store is contextual, value is passed on the frame and consumed.
  // Otherwise, receiver and value are passed on the frame and consumed.
  Result EmitNamedStore(Handle<String> name, bool is_contextual);

  // Load a property of an object, returning it in a Result.
  // The object and the property name are passed on the stack, and
  // not changed.
  Result EmitKeyedLoad();

  // Receiver, key, and value are passed on the frame and consumed.
  Result EmitKeyedStore(StaticType* key_type);

  // Special code for typeof expressions: Unfortunately, we must
  // be careful when loading the expression in 'typeof'
  // expressions. We are not allowed to throw reference errors for
  // non-existing properties of the global object, so we must make it
  // look like an explicit property access, instead of an access
  // through the context chain.
  void LoadTypeofExpression(Expression* x);

  // Translate the value on top of the frame into control flow to the
  // control destination.
  void ToBoolean(ControlDestination* destination);

  // Generate code that computes a shortcutting logical operation.
  void GenerateLogicalBooleanOperation(BinaryOperation* node);

  void GenericBinaryOperation(BinaryOperation* expr,
                              OverwriteMode overwrite_mode);

  // Generate a stub call from the virtual frame.
  Result GenerateGenericBinaryOpStubCall(GenericBinaryOpStub* stub,
                                         Result* left,
                                         Result* right);

  // Emits code sequence that jumps to a JumpTarget if the inputs
  // are both smis.  Cannot be in MacroAssembler because it takes
  // advantage of TypeInfo to skip unneeded checks.
  void JumpIfBothSmiUsingTypeInfo(Result* left,
                                  Result* right,
                                  JumpTarget* both_smi);

  // Emits code sequence that jumps to deferred code if the input
  // is not a smi.  Cannot be in MacroAssembler because it takes
  // advantage of TypeInfo to skip unneeded checks.
  void JumpIfNotSmiUsingTypeInfo(Register reg,
                                 TypeInfo type,
                                 DeferredCode* deferred);

  // Emits code sequence that jumps to deferred code if the inputs
  // are not both smis.  Cannot be in MacroAssembler because it takes
  // advantage of TypeInfo to skip unneeded checks.
  void JumpIfNotBothSmiUsingTypeInfo(Register left,
                                     Register right,
                                     TypeInfo left_info,
                                     TypeInfo right_info,
                                     DeferredCode* deferred);

  // If possible, combine two constant smi values using op to produce
  // a smi result, and push it on the virtual frame, all at compile time.
  // Returns true if it succeeds.  Otherwise it has no effect.
  bool FoldConstantSmis(Token::Value op, int left, int right);

  // Emit code to perform a binary operation on a constant
  // smi and a likely smi.  Consumes the Result *operand.
  Result ConstantSmiBinaryOperation(BinaryOperation* expr,
                                    Result* operand,
                                    Handle<Object> constant_operand,
                                    bool reversed,
                                    OverwriteMode overwrite_mode);

  // Emit code to perform a binary operation on two likely smis.
  // The code to handle smi arguments is produced inline.
  // Consumes the Results *left and *right.
  Result LikelySmiBinaryOperation(BinaryOperation* expr,
                                  Result* left,
                                  Result* right,
                                  OverwriteMode overwrite_mode);

  void Comparison(AstNode* node,
                  Condition cc,
                  bool strict,
                  ControlDestination* destination);

  // If at least one of the sides is a constant smi, generate optimized code.
  void ConstantSmiComparison(Condition cc,
                             bool strict,
                             ControlDestination* destination,
                             Result* left_side,
                             Result* right_side,
                             bool left_side_constant_smi,
                             bool right_side_constant_smi,
                             bool is_loop_condition);

  void GenerateInlineNumberComparison(Result* left_side,
                                      Result* right_side,
                                      Condition cc,
                                      ControlDestination* dest);

  // To prevent long attacker-controlled byte sequences, integer constants
  // from the JavaScript source are loaded in two parts if they are larger
  // than 16 bits.
  static const int kMaxSmiInlinedBits = 16;
  bool IsUnsafeSmi(Handle<Object> value);
  // Load an integer constant x into a register target using
  // at most 16 bits of user-controlled data per assembly operation.
  void LoadUnsafeSmi(Register target, Handle<Object> value);

  void CallWithArguments(ZoneList<Expression*>* arguments,
                         CallFunctionFlags flags,
                         int position);

  // An optimized implementation of expressions of the form
  // x.apply(y, arguments).  We call x the applicand and y the receiver.
  // The optimization avoids allocating an arguments object if possible.
  void CallApplyLazy(Expression* applicand,
                     Expression* receiver,
                     VariableProxy* arguments,
                     int position);

  void CheckStack();

  bool CheckForInlineRuntimeCall(CallRuntime* node);

  void ProcessDeclarations(ZoneList<Declaration*>* declarations);

  // Declare global variables and functions in the given array of
  // name/value pairs.
  void DeclareGlobals(Handle<FixedArray> pairs);

  // Instantiate the function based on the shared function info.
  void InstantiateFunction(Handle<SharedFunctionInfo> function_info,
                           bool pretenure);

  // Support for type checks.
  void GenerateIsSmi(ZoneList<Expression*>* args);
  void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
  void GenerateIsArray(ZoneList<Expression*>* args);
  void GenerateIsRegExp(ZoneList<Expression*>* args);
  void GenerateIsObject(ZoneList<Expression*>* args);
  void GenerateIsSpecObject(ZoneList<Expression*>* args);
  void GenerateIsFunction(ZoneList<Expression*>* args);
  void GenerateIsUndetectableObject(ZoneList<Expression*>* args);
  void GenerateIsStringWrapperSafeForDefaultValueOf(
      ZoneList<Expression*>* args);

  // Support for construct call checks.
  void GenerateIsConstructCall(ZoneList<Expression*>* args);

  // Support for arguments.length and arguments[?].
  void GenerateArgumentsLength(ZoneList<Expression*>* args);
  void GenerateArguments(ZoneList<Expression*>* args);

  // Support for accessing the class and value fields of an object.
  void GenerateClassOf(ZoneList<Expression*>* args);
  void GenerateValueOf(ZoneList<Expression*>* args);
  void GenerateSetValueOf(ZoneList<Expression*>* args);

  // Fast support for charCodeAt(n).
  void GenerateStringCharCodeAt(ZoneList<Expression*>* args);

  // Fast support for string.charAt(n) and string[n].
  void GenerateStringCharFromCode(ZoneList<Expression*>* args);

  // Fast support for string.charAt(n) and string[n].
  void GenerateStringCharAt(ZoneList<Expression*>* args);

  // Fast support for object equality testing.
  void GenerateObjectEquals(ZoneList<Expression*>* args);

  void GenerateLog(ZoneList<Expression*>* args);

  void GenerateGetFramePointer(ZoneList<Expression*>* args);

  // Fast support for Math.random().
  void GenerateRandomHeapNumber(ZoneList<Expression*>* args);

  // Fast support for StringAdd.
  void GenerateStringAdd(ZoneList<Expression*>* args);

  // Fast support for SubString.
  void GenerateSubString(ZoneList<Expression*>* args);

  // Fast support for StringCompare.
  void GenerateStringCompare(ZoneList<Expression*>* args);

  // Support for direct calls from JavaScript to native RegExp code.
  void GenerateRegExpExec(ZoneList<Expression*>* args);

  void GenerateRegExpConstructResult(ZoneList<Expression*>* args);

  // Support for fast native caches.
  void GenerateGetFromCache(ZoneList<Expression*>* args);

  // Fast support for number to string.
  void GenerateNumberToString(ZoneList<Expression*>* args);

  // Fast swapping of elements. Takes three expressions, the object and two
  // indices. This should only be used if the indices are known to be
  // non-negative and within bounds of the elements array at the call site.
  void GenerateSwapElements(ZoneList<Expression*>* args);

  // Fast call for custom callbacks.
  void GenerateCallFunction(ZoneList<Expression*>* args);

  // Fast call to math functions.
  void GenerateMathPow(ZoneList<Expression*>* args);
  void GenerateMathSin(ZoneList<Expression*>* args);
  void GenerateMathCos(ZoneList<Expression*>* args);
  void GenerateMathSqrt(ZoneList<Expression*>* args);
  void GenerateMathLog(ZoneList<Expression*>* args);

  // Check whether two RegExps are equivalent.
  void GenerateIsRegExpEquivalent(ZoneList<Expression*>* args);

  void GenerateHasCachedArrayIndex(ZoneList<Expression*>* args);
  void GenerateGetCachedArrayIndex(ZoneList<Expression*>* args);
  void GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args);

  // Simple condition analysis.
  enum ConditionAnalysis {
    ALWAYS_TRUE,
    ALWAYS_FALSE,
    DONT_KNOW
  };
  ConditionAnalysis AnalyzeCondition(Expression* cond);

  // Methods used to indicate which source code is generated for. Source
  // positions are collected by the assembler and emitted with the relocation
  // information.
  void CodeForFunctionPosition(FunctionLiteral* fun);
  void CodeForReturnPosition(FunctionLiteral* fun);
  void CodeForStatementPosition(Statement* node);
  void CodeForDoWhileConditionPosition(DoWhileStatement* stmt);
  void CodeForSourcePosition(int pos);

  void SetTypeForStackSlot(Slot* slot, TypeInfo info);

#ifdef DEBUG
  // True if the registers are valid for entry to a block.  There should
  // be no frame-external references to (non-reserved) registers.
  bool HasValidEntryRegisters();
#endif

  ZoneList<DeferredCode*> deferred_;

  // Assembler
  MacroAssembler* masm_;  // to generate code

  CompilationInfo* info_;

  // Code generation state
  VirtualFrame* frame_;
  RegisterAllocator* allocator_;
  CodeGenState* state_;
  int loop_nesting_;

  // Jump targets.
  // The target of the return from the function.
  BreakTarget function_return_;

  // True if the function return is shadowed (ie, jumping to the target
  // function_return_ does not jump to the true function return, but rather
  // to some unlinking code).
  bool function_return_is_shadowed_;

  // True when we are in code that expects the virtual frame to be fully
  // spilled.  Some virtual frame function are disabled in DEBUG builds when
  // called from spilled code, because they do not leave the virtual frame
  // in a spilled state.
  bool in_spilled_code_;

  friend class VirtualFrame;
  friend class Isolate;
  friend class JumpTarget;
  friend class Reference;
  friend class Result;
  friend class FastCodeGenerator;
  friend class FullCodeGenerator;
  friend class FullCodeGenSyntaxChecker;

  friend class CodeGeneratorPatcher;  // Used in test-log-stack-tracer.cc
  friend class InlineRuntimeFunctionsTable;

  DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
};


} }  // namespace v8::internal

#endif  // V8_X64_CODEGEN_X64_H_