summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/mips/macro-assembler-mips.h
blob: 7ff9e17bc94dc17ba041676e9486493f96358435 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
#define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_

#include "assembler.h"
#include "mips/assembler-mips.h"

namespace v8 {
namespace internal {

// Forward declaration.
class JumpTarget;
class PostCallGenerator;

// Reserved Register Usage Summary.
//
// Registers t8, t9, and at are reserved for use by the MacroAssembler.
//
// The programmer should know that the MacroAssembler may clobber these three,
// but won't touch other registers except in special cases.
//
// Per the MIPS ABI, register t9 must be used for indirect function call
// via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
// trying to update gp register for position-independent-code. Whenever
// MIPS generated code calls C code, it must be via t9 register.

// Registers aliases
// cp is assumed to be a callee saved register.
const Register roots = s6;  // Roots array pointer.
const Register cp = s7;     // JavaScript context pointer
const Register fp = s8_fp;  // Alias fp
// Register used for condition evaluation.
const Register condReg1 = s4;
const Register condReg2 = s5;

enum InvokeJSFlags {
  CALL_JS,
  JUMP_JS
};


// Flags used for the AllocateInNewSpace functions.
enum AllocationFlags {
  // No special flags.
  NO_ALLOCATION_FLAGS = 0,
  // Return the pointer to the allocated already tagged as a heap object.
  TAG_OBJECT = 1 << 0,
  // The content of the result register already contains the allocation top in
  // new space.
  RESULT_CONTAINS_TOP = 1 << 1,
  // Specify that the requested size of the space to allocate is specified in
  // words instead of bytes.
  SIZE_IN_WORDS = 1 << 2
};

// Flags used for the ObjectToDoubleFPURegister function.
enum ObjectToDoubleFlags {
  // No special flags.
  NO_OBJECT_TO_DOUBLE_FLAGS = 0,
  // Object is known to be a non smi.
  OBJECT_NOT_SMI = 1 << 0,
  // Don't load NaNs or infinities, branch to the non number case instead.
  AVOID_NANS_AND_INFINITIES = 1 << 1
};

// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
enum BranchDelaySlot {
  USE_DELAY_SLOT,
  PROTECT
};

// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
 public:
  MacroAssembler(void* buffer, int size);

// Arguments macros
#define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
#define COND_ARGS cond, r1, r2

// ** Prototypes

// * Prototypes for functions with no target (eg Ret()).
#define DECLARE_NOTARGET_PROTOTYPE(Name) \
  void Name(BranchDelaySlot bd = PROTECT); \
  void Name(COND_TYPED_ARGS, BranchDelaySlot bd = PROTECT); \
  inline void Name(BranchDelaySlot bd, COND_TYPED_ARGS) { \
    Name(COND_ARGS, bd); \
  }

// * Prototypes for functions with a target.

// Cases when relocation may be needed.
#define DECLARE_RELOC_PROTOTYPE(Name, target_type) \
  void Name(target_type target, \
            RelocInfo::Mode rmode, \
            BranchDelaySlot bd = PROTECT); \
  inline void Name(BranchDelaySlot bd, \
                   target_type target, \
                   RelocInfo::Mode rmode) { \
    Name(target, rmode, bd); \
  } \
  void Name(target_type target, \
            RelocInfo::Mode rmode, \
            COND_TYPED_ARGS, \
            BranchDelaySlot bd = PROTECT); \
  inline void Name(BranchDelaySlot bd, \
                   target_type target, \
                   RelocInfo::Mode rmode, \
                   COND_TYPED_ARGS) { \
    Name(target, rmode, COND_ARGS, bd); \
  }

// Cases when relocation is not needed.
#define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
  void Name(target_type target, BranchDelaySlot bd = PROTECT); \
  inline void Name(BranchDelaySlot bd, target_type target) { \
    Name(target, bd); \
  } \
  void Name(target_type target, \
            COND_TYPED_ARGS, \
            BranchDelaySlot bd = PROTECT); \
  inline void Name(BranchDelaySlot bd, \
                   target_type target, \
                   COND_TYPED_ARGS) { \
    Name(target, COND_ARGS, bd); \
  }

// ** Target prototypes.

#define DECLARE_JUMP_CALL_PROTOTYPES(Name) \
  DECLARE_NORELOC_PROTOTYPE(Name, Register) \
  DECLARE_NORELOC_PROTOTYPE(Name, const Operand&) \
  DECLARE_RELOC_PROTOTYPE(Name, byte*) \
  DECLARE_RELOC_PROTOTYPE(Name, Handle<Code>)

#define DECLARE_BRANCH_PROTOTYPES(Name) \
  DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
  DECLARE_NORELOC_PROTOTYPE(Name, int16_t)


DECLARE_JUMP_CALL_PROTOTYPES(Jump)
DECLARE_JUMP_CALL_PROTOTYPES(Call)

DECLARE_BRANCH_PROTOTYPES(Branch)
DECLARE_BRANCH_PROTOTYPES(BranchAndLink)

DECLARE_NOTARGET_PROTOTYPE(Ret)

#undef COND_TYPED_ARGS
#undef COND_ARGS
#undef DECLARE_NOTARGET_PROTOTYPE
#undef DECLARE_NORELOC_PROTOTYPE
#undef DECLARE_RELOC_PROTOTYPE
#undef DECLARE_JUMP_CALL_PROTOTYPES
#undef DECLARE_BRANCH_PROTOTYPES

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the sp register.
  void Drop(int count,
            Condition cond = cc_always,
            Register reg = no_reg,
            const Operand& op = Operand(no_reg));

  void DropAndRet(int drop = 0,
                  Condition cond = cc_always,
                  Register reg = no_reg,
                  const Operand& op = Operand(no_reg));

  // Swap two registers.  If the scratch register is omitted then a slightly
  // less efficient form using xor instead of mov is emitted.
  void Swap(Register reg1, Register reg2, Register scratch = no_reg);

  void Call(Label* target);
  // May do nothing if the registers are identical.
  void Move(Register dst, Register src);


  // Jump unconditionally to given label.
  // We NEED a nop in the branch delay slot, as it used by v8, for example in
  // CodeGenerator::ProcessDeferred().
  // Currently the branch delay slot is filled by the MacroAssembler.
  // Use rather b(Label) for code generation.
  void jmp(Label* L) {
    Branch(L);
  }

  // Load an object from the root table.
  void LoadRoot(Register destination,
                Heap::RootListIndex index);
  void LoadRoot(Register destination,
                Heap::RootListIndex index,
                Condition cond, Register src1, const Operand& src2);

  // Store an object to the root table.
  void StoreRoot(Register source,
                 Heap::RootListIndex index);
  void StoreRoot(Register source,
                 Heap::RootListIndex index,
                 Condition cond, Register src1, const Operand& src2);


  // Check if object is in new space.
  // scratch can be object itself, but it will be clobbered.
  void InNewSpace(Register object,
                  Register scratch,
                  Condition cc,  // eq for new space, ne otherwise.
                  Label* branch);


  // For the page containing |object| mark the region covering [address]
  // dirty. The object address must be in the first 8K of an allocated page.
  void RecordWriteHelper(Register object,
                         Register address,
                         Register scratch);

  // For the page containing |object| mark the region covering
  // [object+offset] dirty. The object address must be in the first 8K
  // of an allocated page.  The 'scratch' registers are used in the
  // implementation and all 3 registers are clobbered by the
  // operation, as well as the 'at' register. RecordWrite updates the
  // write barrier even when storing smis.
  void RecordWrite(Register object,
                   Operand offset,
                   Register scratch0,
                   Register scratch1);

  // For the page containing |object| mark the region covering
  // [address] dirty. The object address must be in the first 8K of an
  // allocated page.  All 3 registers are clobbered by the operation,
  // as well as the ip register. RecordWrite updates the write barrier
  // even when storing smis.
  void RecordWrite(Register object,
                   Register address,
                   Register scratch);


  // ---------------------------------------------------------------------------
  // Inline caching support

  // Generate code for checking access rights - used for security checks
  // on access to global objects across environments. The holder register
  // is left untouched, whereas both scratch registers are clobbered.
  void CheckAccessGlobalProxy(Register holder_reg,
                              Register scratch,
                              Label* miss);

  inline void MarkCode(NopMarkerTypes type) {
    nop(type);
  }

  // Check if the given instruction is a 'type' marker.
  // ie. check if it is a sll zero_reg, zero_reg, <type> (referenced as
  // nop(type)). These instructions are generated to mark special location in
  // the code, like some special IC code.
  static inline bool IsMarkedCode(Instr instr, int type) {
    ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
    return IsNop(instr, type);
  }


  static inline int GetCodeMarker(Instr instr) {
    uint32_t opcode = ((instr & kOpcodeMask));
    uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
    uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
    uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);

    // Return <n> if we have a sll zero_reg, zero_reg, n
    // else return -1.
    bool sllzz = (opcode == SLL &&
                  rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
                  rs == static_cast<uint32_t>(ToNumber(zero_reg)));
    int type =
        (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
    ASSERT((type == -1) ||
           ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
    return type;
  }



  // ---------------------------------------------------------------------------
  // Allocation support

  // Allocate an object in new space. The object_size is specified
  // either in bytes or in words if the allocation flag SIZE_IN_WORDS
  // is passed. If the new space is exhausted control continues at the
  // gc_required label. The allocated object is returned in result. If
  // the flag tag_allocated_object is true the result is tagged as as
  // a heap object. All registers are clobbered also when control
  // continues at the gc_required label.
  void AllocateInNewSpace(int object_size,
                          Register result,
                          Register scratch1,
                          Register scratch2,
                          Label* gc_required,
                          AllocationFlags flags);
  void AllocateInNewSpace(Register object_size,
                          Register result,
                          Register scratch1,
                          Register scratch2,
                          Label* gc_required,
                          AllocationFlags flags);

  // Undo allocation in new space. The object passed and objects allocated after
  // it will no longer be allocated. The caller must make sure that no pointers
  // are left to the object(s) no longer allocated as they would be invalid when
  // allocation is undone.
  void UndoAllocationInNewSpace(Register object, Register scratch);


  void AllocateTwoByteString(Register result,
                             Register length,
                             Register scratch1,
                             Register scratch2,
                             Register scratch3,
                             Label* gc_required);
  void AllocateAsciiString(Register result,
                           Register length,
                           Register scratch1,
                           Register scratch2,
                           Register scratch3,
                           Label* gc_required);
  void AllocateTwoByteConsString(Register result,
                                 Register length,
                                 Register scratch1,
                                 Register scratch2,
                                 Label* gc_required);
  void AllocateAsciiConsString(Register result,
                               Register length,
                               Register scratch1,
                               Register scratch2,
                               Label* gc_required);

  // Allocates a heap number or jumps to the gc_required label if the young
  // space is full and a scavenge is needed. All registers are clobbered also
  // when control continues at the gc_required label.
  void AllocateHeapNumber(Register result,
                          Register scratch1,
                          Register scratch2,
                          Register heap_number_map,
                          Label* gc_required);
  void AllocateHeapNumberWithValue(Register result,
                                   FPURegister value,
                                   Register scratch1,
                                   Register scratch2,
                                   Label* gc_required);

  // ---------------------------------------------------------------------------
  // Instruction macros

#define DEFINE_INSTRUCTION(instr)                                              \
  void instr(Register rd, Register rs, const Operand& rt);                     \
  void instr(Register rd, Register rs, Register rt) {                          \
    instr(rd, rs, Operand(rt));                                                \
  }                                                                            \
  void instr(Register rs, Register rt, int32_t j) {                            \
    instr(rs, rt, Operand(j));                                                 \
  }

#define DEFINE_INSTRUCTION2(instr)                                             \
  void instr(Register rs, const Operand& rt);                                  \
  void instr(Register rs, Register rt) {                                       \
    instr(rs, Operand(rt));                                                    \
  }                                                                            \
  void instr(Register rs, int32_t j) {                                         \
    instr(rs, Operand(j));                                                     \
  }

  DEFINE_INSTRUCTION(Addu);
  DEFINE_INSTRUCTION(Subu);
  DEFINE_INSTRUCTION(Mul);
  DEFINE_INSTRUCTION2(Mult);
  DEFINE_INSTRUCTION2(Multu);
  DEFINE_INSTRUCTION2(Div);
  DEFINE_INSTRUCTION2(Divu);

  DEFINE_INSTRUCTION(And);
  DEFINE_INSTRUCTION(Or);
  DEFINE_INSTRUCTION(Xor);
  DEFINE_INSTRUCTION(Nor);

  DEFINE_INSTRUCTION(Slt);
  DEFINE_INSTRUCTION(Sltu);

  // MIPS32 R2 instruction macro.
  DEFINE_INSTRUCTION(Ror);

#undef DEFINE_INSTRUCTION
#undef DEFINE_INSTRUCTION2


  //------------Pseudo-instructions-------------

  void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }


  // load int32 in the rd register
  void li(Register rd, Operand j, bool gen2instr = false);
  inline void li(Register rd, int32_t j, bool gen2instr = false) {
    li(rd, Operand(j), gen2instr);
  }
  inline void li(Register dst, Handle<Object> value, bool gen2instr = false) {
    li(dst, Operand(value), gen2instr);
  }

  // Exception-generating instructions and debugging support
  void stop(const char* msg);


  // Push multiple registers on the stack.
  // Registers are saved in numerical order, with higher numbered registers
  // saved in higher memory addresses
  void MultiPush(RegList regs);
  void MultiPushReversed(RegList regs);

  void Push(Register src) {
    Addu(sp, sp, Operand(-kPointerSize));
    sw(src, MemOperand(sp, 0));
  }

  // Push two registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Condition cond = al) {
    ASSERT(cond == al);  // Do not support conditional versions yet.
    Subu(sp, sp, Operand(2 * kPointerSize));
    sw(src1, MemOperand(sp, 1 * kPointerSize));
    sw(src2, MemOperand(sp, 0 * kPointerSize));
  }

  // Push three registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Condition cond = al) {
    ASSERT(cond == al);  // Do not support conditional versions yet.
    Addu(sp, sp, Operand(3 * -kPointerSize));
    sw(src1, MemOperand(sp, 2 * kPointerSize));
    sw(src2, MemOperand(sp, 1 * kPointerSize));
    sw(src3, MemOperand(sp, 0 * kPointerSize));
  }

  // Push four registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2,
            Register src3, Register src4, Condition cond = al) {
    ASSERT(cond == al);  // Do not support conditional versions yet.
    Addu(sp, sp, Operand(4 * -kPointerSize));
    sw(src1, MemOperand(sp, 3 * kPointerSize));
    sw(src2, MemOperand(sp, 2 * kPointerSize));
    sw(src3, MemOperand(sp, 1 * kPointerSize));
    sw(src4, MemOperand(sp, 0 * kPointerSize));
  }

  inline void push(Register src) { Push(src); }
  inline void pop(Register src) { Pop(src); }

  void Push(Register src, Condition cond, Register tst1, Register tst2) {
    // Since we don't have conditionnal execution we use a Branch.
    Branch(3, cond, tst1, Operand(tst2));
    Addu(sp, sp, Operand(-kPointerSize));
    sw(src, MemOperand(sp, 0));
  }


  // Pops multiple values from the stack and load them in the
  // registers specified in regs. Pop order is the opposite as in MultiPush.
  void MultiPop(RegList regs);
  void MultiPopReversed(RegList regs);
  void Pop(Register dst) {
    lw(dst, MemOperand(sp, 0));
    Addu(sp, sp, Operand(kPointerSize));
  }
  void Pop(uint32_t count = 1) {
    Addu(sp, sp, Operand(count * kPointerSize));
  }

  // ---------------------------------------------------------------------------
  // These functions are only used by crankshaft, so they are currently
  // unimplemented.

  // Push and pop the registers that can hold pointers, as defined by the
  // RegList constant kSafepointSavedRegisters.
  void PushSafepointRegisters() {
    UNIMPLEMENTED_MIPS();
  }

  void PopSafepointRegisters() {
    UNIMPLEMENTED_MIPS();
  }

  void PushSafepointRegistersAndDoubles() {
    UNIMPLEMENTED_MIPS();
  }

  void PopSafepointRegistersAndDoubles() {
    UNIMPLEMENTED_MIPS();
  }

  static int SafepointRegisterStackIndex(int reg_code) {
    UNIMPLEMENTED_MIPS();
    return 0;
  }

  // ---------------------------------------------------------------------------

  // MIPS32 R2 instruction macro.
  void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
  void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);

  // Convert unsigned word to double.
  void Cvt_d_uw(FPURegister fd, FPURegister fs);
  void Cvt_d_uw(FPURegister fd, Register rs);

  // Convert double to unsigned word.
  void Trunc_uw_d(FPURegister fd, FPURegister fs);
  void Trunc_uw_d(FPURegister fd, Register rs);

  // Convert the HeapNumber pointed to by source to a 32bits signed integer
  // dest. If the HeapNumber does not fit into a 32bits signed integer branch
  // to not_int32 label. If FPU is available double_scratch is used but not
  // scratch2.
  void ConvertToInt32(Register source,
                      Register dest,
                      Register scratch,
                      Register scratch2,
                      FPURegister double_scratch,
                      Label *not_int32);

  // -------------------------------------------------------------------------
  // Activation frames

  void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
  void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }

  void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
  void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }

  // Enter exit frame.
  // Expects the number of arguments in register a0 and
  // the builtin function to call in register a1.
  // On output hold_argc, hold_function, and hold_argv are setup.
  void EnterExitFrame(Register hold_argc,
                      Register hold_argv,
                      Register hold_function,
                      bool save_doubles);

  // Leave the current exit frame. Expects the return value in v0.
  void LeaveExitFrame(bool save_doubles);

  // Align the stack by optionally pushing a Smi zero.
  void AlignStack(int offset);    // TODO(mips) : remove this function.

  // Get the actual activation frame alignment for target environment.
  static int ActivationFrameAlignment();

  void LoadContext(Register dst, int context_chain_length);

  void LoadGlobalFunction(int index, Register function);

  // Load the initial map from the global function. The registers
  // function and map can be the same, function is then overwritten.
  void LoadGlobalFunctionInitialMap(Register function,
                                    Register map,
                                    Register scratch);

  // -------------------------------------------------------------------------
  // JavaScript invokes

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeCode(Register code,
                  const ParameterCount& expected,
                  const ParameterCount& actual,
                  InvokeFlag flag,
                  PostCallGenerator* post_call_generator = NULL);

  void InvokeCode(Handle<Code> code,
                  const ParameterCount& expected,
                  const ParameterCount& actual,
                  RelocInfo::Mode rmode,
                  InvokeFlag flag);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunction(Register function,
                      const ParameterCount& actual,
                      InvokeFlag flag,
                      PostCallGenerator* post_call_generator = NULL);

  void InvokeFunction(JSFunction* function,
                      const ParameterCount& actual,
                      InvokeFlag flag);


  void IsObjectJSObjectType(Register heap_object,
                            Register map,
                            Register scratch,
                            Label* fail);

  void IsInstanceJSObjectType(Register map,
                              Register scratch,
                              Label* fail);

  void IsObjectJSStringType(Register object,
                            Register scratch,
                            Label* fail);

#ifdef ENABLE_DEBUGGER_SUPPORT
  // -------------------------------------------------------------------------
  // Debugger Support

  void DebugBreak();
#endif


  // -------------------------------------------------------------------------
  // Exception handling

  // Push a new try handler and link into try handler chain.
  // The return address must be passed in register ra.
  // Clobber t0, t1, t2.
  void PushTryHandler(CodeLocation try_location, HandlerType type);

  // Unlink the stack handler on top of the stack from the try handler chain.
  // Must preserve the result register.
  void PopTryHandler();

  // Copies a fixed number of fields of heap objects from src to dst.
  void CopyFields(Register dst, Register src, RegList temps, int field_count);

  // -------------------------------------------------------------------------
  // Support functions.

  // Try to get function prototype of a function and puts the value in
  // the result register. Checks that the function really is a
  // function and jumps to the miss label if the fast checks fail. The
  // function register will be untouched; the other registers may be
  // clobbered.
  void TryGetFunctionPrototype(Register function,
                               Register result,
                               Register scratch,
                               Label* miss);

  void GetObjectType(Register function,
                     Register map,
                     Register type_reg);

  // Check if the map of an object is equal to a specified map (either
  // given directly or as an index into the root list) and branch to
  // label if not. Skip the smi check if not required (object is known
  // to be a heap object)
  void CheckMap(Register obj,
                Register scratch,
                Handle<Map> map,
                Label* fail,
                bool is_heap_object);

  void CheckMap(Register obj,
                Register scratch,
                Heap::RootListIndex index,
                Label* fail,
                bool is_heap_object);

  // Generates code for reporting that an illegal operation has
  // occurred.
  void IllegalOperation(int num_arguments);

  // Picks out an array index from the hash field.
  // Register use:
  //   hash - holds the index's hash. Clobbered.
  //   index - holds the overwritten index on exit.
  void IndexFromHash(Register hash, Register index);

  // Load the value of a number object into a FPU double register. If the
  // object is not a number a jump to the label not_number is performed
  // and the FPU double register is unchanged.
  void ObjectToDoubleFPURegister(
      Register object,
      FPURegister value,
      Register scratch1,
      Register scratch2,
      Register heap_number_map,
      Label* not_number,
      ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);

  // Load the value of a smi object into a FPU double register. The register
  // scratch1 can be the same register as smi in which case smi will hold the
  // untagged value afterwards.
  void SmiToDoubleFPURegister(Register smi,
                              FPURegister value,
                              Register scratch1);

  // -------------------------------------------------------------------------
  // Runtime calls

  // Call a code stub.
  void CallStub(CodeStub* stub, Condition cond = cc_always,
                Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg));

  // Tail call a code stub (jump).
  void TailCallStub(CodeStub* stub);

  void CallJSExitStub(CodeStub* stub);

  // Call a runtime routine.
  void CallRuntime(const Runtime::Function* f, int num_arguments);
  void CallRuntimeSaveDoubles(Runtime::FunctionId id);

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid, int num_arguments);

  // Convenience function: call an external reference.
  void CallExternalReference(const ExternalReference& ext,
                             int num_arguments);

  // Tail call of a runtime routine (jump).
  // Like JumpToExternalReference, but also takes care of passing the number
  // of parameters.
  void TailCallExternalReference(const ExternalReference& ext,
                                 int num_arguments,
                                 int result_size);

  // Convenience function: tail call a runtime routine (jump).
  void TailCallRuntime(Runtime::FunctionId fid,
                       int num_arguments,
                       int result_size);

  // Before calling a C-function from generated code, align arguments on stack
  // and add space for the four mips argument slots.
  // After aligning the frame, non-register arguments must be stored on the
  // stack, after the argument-slots using helper: CFunctionArgumentOperand().
  // The argument count assumes all arguments are word sized.
  // Some compilers/platforms require the stack to be aligned when calling
  // C++ code.
  // Needs a scratch register to do some arithmetic. This register will be
  // trashed.
  void PrepareCallCFunction(int num_arguments, Register scratch);

  // Arguments 1-4 are placed in registers a0 thru a3 respectively.
  // Arguments 5..n are stored to stack using following:
  //  sw(t0, CFunctionArgumentOperand(5));

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, Register scratch, int num_arguments);

  // Jump to the builtin routine.
  void JumpToExternalReference(const ExternalReference& builtin);

  // Invoke specified builtin JavaScript function. Adds an entry to
  // the unresolved list if the name does not resolve.
  void InvokeBuiltin(Builtins::JavaScript id,
                     InvokeJSFlags flags,
                     PostCallGenerator* post_call_generator = NULL);

  // Store the code object for the given builtin in the target register and
  // setup the function in a1.
  void GetBuiltinEntry(Register target, Builtins::JavaScript id);

  // Store the function for the given builtin in the target register.
  void GetBuiltinFunction(Register target, Builtins::JavaScript id);

  struct Unresolved {
    int pc;
    uint32_t flags;  // see Bootstrapper::FixupFlags decoders/encoders.
    const char* name;
  };

  Handle<Object> CodeObject() { return code_object_; }

  // -------------------------------------------------------------------------
  // StatsCounter support

  void SetCounter(StatsCounter* counter, int value,
                  Register scratch1, Register scratch2);
  void IncrementCounter(StatsCounter* counter, int value,
                        Register scratch1, Register scratch2);
  void DecrementCounter(StatsCounter* counter, int value,
                        Register scratch1, Register scratch2);


  // -------------------------------------------------------------------------
  // Debugging

  // Calls Abort(msg) if the condition cc is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cc, const char* msg, Register rs, Operand rt);
  void AssertRegisterIsRoot(Register reg, Heap::RootListIndex index);
  void AssertFastElements(Register elements);

  // Like Assert(), but always enabled.
  void Check(Condition cc, const char* msg, Register rs, Operand rt);

  // Print a message to stdout and abort execution.
  void Abort(const char* msg);

  // Verify restrictions about code generated in stubs.
  void set_generating_stub(bool value) { generating_stub_ = value; }
  bool generating_stub() { return generating_stub_; }
  void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
  bool allow_stub_calls() { return allow_stub_calls_; }

  // ---------------------------------------------------------------------------
  // Number utilities

  // Check whether the value of reg is a power of two and not zero. If not
  // control continues at the label not_power_of_two. If reg is a power of two
  // the register scratch contains the value of (reg - 1) when control falls
  // through.
  void JumpIfNotPowerOfTwoOrZero(Register reg,
                                 Register scratch,
                                 Label* not_power_of_two_or_zero);

  // -------------------------------------------------------------------------
  // Smi utilities

  // Try to convert int32 to smi. If the value is to large, preserve
  // the original value and jump to not_a_smi. Destroys scratch and
  // sets flags.
  // This is only used by crankshaft atm so it is unimplemented on MIPS.
  void TrySmiTag(Register reg, Label* not_a_smi, Register scratch) {
    UNIMPLEMENTED_MIPS();
  }

  void SmiTag(Register reg) {
    Addu(reg, reg, reg);
  }

  void SmiTag(Register dst, Register src) {
    Addu(dst, src, src);
  }

  void SmiUntag(Register reg) {
    sra(reg, reg, kSmiTagSize);
  }

  void SmiUntag(Register dst, Register src) {
    sra(dst, src, kSmiTagSize);
  }

  // Jump the register contains a smi.
  inline void JumpIfSmi(Register value, Label* smi_label,
                        Register scratch = at) {
    ASSERT_EQ(0, kSmiTag);
    andi(scratch, value, kSmiTagMask);
    Branch(smi_label, eq, scratch, Operand(zero_reg));
  }

  // Jump if the register contains a non-smi.
  inline void JumpIfNotSmi(Register value, Label* not_smi_label,
                           Register scratch = at) {
    ASSERT_EQ(0, kSmiTag);
    andi(scratch, value, kSmiTagMask);
    Branch(not_smi_label, ne, scratch, Operand(zero_reg));
  }

  // Jump if either of the registers contain a non-smi.
  void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
  // Jump if either of the registers contain a smi.
  void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);

  // Abort execution if argument is a smi. Used in debug code.
  void AbortIfSmi(Register object);
  void AbortIfNotSmi(Register object);

  // Abort execution if argument is not the root value with the given index.
  void AbortIfNotRootValue(Register src,
                           Heap::RootListIndex root_value_index,
                           const char* message);

  // ---------------------------------------------------------------------------
  // HeapNumber utilities

  void JumpIfNotHeapNumber(Register object,
                           Register heap_number_map,
                           Register scratch,
                           Label* on_not_heap_number);

  // -------------------------------------------------------------------------
  // String utilities

  // Checks if both instance types are sequential ASCII strings and jumps to
  // label if either is not.
  void JumpIfBothInstanceTypesAreNotSequentialAscii(
      Register first_object_instance_type,
      Register second_object_instance_type,
      Register scratch1,
      Register scratch2,
      Label* failure);

  // Check if instance type is sequential ASCII string and jump to label if
  // it is not.
  void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
                                              Register scratch,
                                              Label* failure);

  // Test that both first and second are sequential ASCII strings.
  // Assume that they are non-smis.
  void JumpIfNonSmisNotBothSequentialAsciiStrings(Register first,
                                                  Register second,
                                                  Register scratch1,
                                                  Register scratch2,
                                                  Label* failure);

  // Test that both first and second are sequential ASCII strings.
  // Check that they are non-smis.
  void JumpIfNotBothSequentialAsciiStrings(Register first,
                                           Register second,
                                           Register scratch1,
                                           Register scratch2,
                                           Label* failure);

 private:
  void CallCFunctionHelper(Register function,
                           ExternalReference function_reference,
                           Register scratch,
                           int num_arguments);

  void Jump(intptr_t target, RelocInfo::Mode rmode,
            BranchDelaySlot bd = PROTECT);
  void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = cc_always,
            Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg),
            BranchDelaySlot bd = PROTECT);
  void Call(intptr_t target, RelocInfo::Mode rmode,
            BranchDelaySlot bd = PROTECT);
  void Call(intptr_t target, RelocInfo::Mode rmode, Condition cond = cc_always,
            Register r1 = zero_reg, const Operand& r2 = Operand(zero_reg),
            BranchDelaySlot bd = PROTECT);

  // Helper functions for generating invokes.
  void InvokePrologue(const ParameterCount& expected,
                      const ParameterCount& actual,
                      Handle<Code> code_constant,
                      Register code_reg,
                      Label* done,
                      InvokeFlag flag,
                      PostCallGenerator* post_call_generator = NULL);

  // Get the code for the given builtin. Returns if able to resolve
  // the function in the 'resolved' flag.
  Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);

  // Activation support.
  void EnterFrame(StackFrame::Type type);
  void LeaveFrame(StackFrame::Type type);

  void InitializeNewString(Register string,
                           Register length,
                           Heap::RootListIndex map_index,
                           Register scratch1,
                           Register scratch2);


  bool generating_stub_;
  bool allow_stub_calls_;
  // This handle will be patched with the code object on installation.
  Handle<Object> code_object_;
};


#ifdef ENABLE_DEBUGGER_SUPPORT
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. It is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion to fail.
class CodePatcher {
 public:
  CodePatcher(byte* address, int instructions);
  virtual ~CodePatcher();

  // Macro assembler to emit code.
  MacroAssembler* masm() { return &masm_; }

  // Emit an instruction directly.
  void Emit(Instr x);

  // Emit an address directly.
  void Emit(Address addr);

 private:
  byte* address_;  // The address of the code being patched.
  int instructions_;  // Number of instructions of the expected patch size.
  int size_;  // Number of bytes of the expected patch size.
  MacroAssembler masm_;  // Macro assembler used to generate the code.
};
#endif  // ENABLE_DEBUGGER_SUPPORT


// Helper class for generating code or data associated with the code
// right after a call instruction. As an example this can be used to
// generate safepoint data after calls for crankshaft.
class PostCallGenerator {
 public:
  PostCallGenerator() { }
  virtual ~PostCallGenerator() { }
  virtual void Generate() = 0;
};


// -----------------------------------------------------------------------------
// Static helper functions.

static MemOperand ContextOperand(Register context, int index) {
  return MemOperand(context, Context::SlotOffset(index));
}


static inline MemOperand GlobalObjectOperand()  {
  return ContextOperand(cp, Context::GLOBAL_INDEX);
}


// Generate a MemOperand for loading a field from an object.
static inline MemOperand FieldMemOperand(Register object, int offset) {
  return MemOperand(object, offset - kHeapObjectTag);
}



#ifdef GENERATED_CODE_COVERAGE
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
#else
#define ACCESS_MASM(masm) masm->
#endif

} }  // namespace v8::internal

#endif  // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_