summaryrefslogtreecommitdiff
path: root/src/3rdparty/javascriptcore/JavaScriptCore/jit/ExecutableAllocatorFixedVMPool.cpp
blob: e1237e41767973859823165d0ceb13cdd4fba2f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/*
 * Copyright (C) 2009 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"

#include "ExecutableAllocator.h"

#if ENABLE(EXECUTABLE_ALLOCATOR_FIXED)

#include <errno.h>

#include "TCSpinLock.h"
#include <sys/mman.h>
#include <unistd.h>
#include <wtf/AVLTree.h>
#include <wtf/VMTags.h>

#if CPU(X86_64)
    // These limits suitable on 64-bit platforms (particularly x86-64, where we require all jumps to have a 2Gb max range).
    #define VM_POOL_SIZE (2u * 1024u * 1024u * 1024u) // 2Gb
    #define COALESCE_LIMIT (16u * 1024u * 1024u) // 16Mb
#else
    // These limits are hopefully sensible on embedded platforms.
    #define VM_POOL_SIZE (32u * 1024u * 1024u) // 32Mb
    #define COALESCE_LIMIT (4u * 1024u * 1024u) // 4Mb
#endif

// ASLR currently only works on darwin (due to arc4random) & 64-bit (due to address space size).
#define VM_POOL_ASLR (OS(DARWIN) && CPU(X86_64))

using namespace WTF;

namespace JSC {

// FreeListEntry describes a free chunk of memory, stored in the freeList.
struct FreeListEntry {
    FreeListEntry(void* pointer, size_t size)
        : pointer(pointer)
        , size(size)
        , nextEntry(0)
        , less(0)
        , greater(0)
        , balanceFactor(0)
    {
    }

    // All entries of the same size share a single entry
    // in the AVLTree, and are linked together in a linked
    // list, using nextEntry.
    void* pointer;
    size_t size;
    FreeListEntry* nextEntry;

    // These fields are used by AVLTree.
    FreeListEntry* less;
    FreeListEntry* greater;
    int balanceFactor;
};

// Abstractor class for use in AVLTree.
// Nodes in the AVLTree are of type FreeListEntry, keyed on
// (and thus sorted by) their size.
struct AVLTreeAbstractorForFreeList {
    typedef FreeListEntry* handle;
    typedef int32_t size;
    typedef size_t key;

    handle get_less(handle h) { return h->less; }
    void set_less(handle h, handle lh) { h->less = lh; }
    handle get_greater(handle h) { return h->greater; }
    void set_greater(handle h, handle gh) { h->greater = gh; }
    int get_balance_factor(handle h) { return h->balanceFactor; }
    void set_balance_factor(handle h, int bf) { h->balanceFactor = bf; }

    static handle null() { return 0; }

    int compare_key_key(key va, key vb) { return va - vb; }
    int compare_key_node(key k, handle h) { return compare_key_key(k, h->size); }
    int compare_node_node(handle h1, handle h2) { return compare_key_key(h1->size, h2->size); }
};

// Used to reverse sort an array of FreeListEntry pointers.
static int reverseSortFreeListEntriesByPointer(const void* leftPtr, const void* rightPtr)
{
    FreeListEntry* left = *(FreeListEntry**)leftPtr;
    FreeListEntry* right = *(FreeListEntry**)rightPtr;

    return (intptr_t)(right->pointer) - (intptr_t)(left->pointer);
}

// Used to reverse sort an array of pointers.
static int reverseSortCommonSizedAllocations(const void* leftPtr, const void* rightPtr)
{
    void* left = *(void**)leftPtr;
    void* right = *(void**)rightPtr;

    return (intptr_t)right - (intptr_t)left;
}

class FixedVMPoolAllocator
{
    // The free list is stored in a sorted tree.
    typedef AVLTree<AVLTreeAbstractorForFreeList, 40> SizeSortedFreeTree;

    // Use madvise as apropriate to prevent freed pages from being spilled,
    // and to attempt to ensure that used memory is reported correctly.
#if HAVE(MADV_FREE_REUSE)
    void release(void* position, size_t size)
    {
        while (madvise(position, size, MADV_FREE_REUSABLE) == -1 && errno == EAGAIN) { }
    }

    void reuse(void* position, size_t size)
    {
        while (madvise(position, size, MADV_FREE_REUSE) == -1 && errno == EAGAIN) { }
    }
#elif HAVE(MADV_DONTNEED)
    void release(void* position, size_t size)
    {
        while (madvise(position, size, MADV_DONTNEED) == -1 && errno == EAGAIN) { }
    }

    void reuse(void*, size_t) {}
#else
    void release(void*, size_t) {}
    void reuse(void*, size_t) {}
#endif

    // All addition to the free list should go through this method, rather than
    // calling insert directly, to avoid multiple entries beging added with the
    // same key.  All nodes being added should be singletons, they should not
    // already be a part of a chain.
    void addToFreeList(FreeListEntry* entry)
    {
        ASSERT(!entry->nextEntry);

        if (entry->size == m_commonSize) {
            m_commonSizedAllocations.append(entry->pointer);
            delete entry;
        } else if (FreeListEntry* entryInFreeList = m_freeList.search(entry->size, m_freeList.EQUAL)) {
            // m_freeList already contain an entry for this size - insert this node into the chain.
            entry->nextEntry = entryInFreeList->nextEntry;
            entryInFreeList->nextEntry = entry;
        } else
            m_freeList.insert(entry);
    }

    // We do not attempt to coalesce addition, which may lead to fragmentation;
    // instead we periodically perform a sweep to try to coalesce neigboring
    // entries in m_freeList.  Presently this is triggered at the point 16MB
    // of memory has been released.
    void coalesceFreeSpace()
    {
        Vector<FreeListEntry*> freeListEntries;
        SizeSortedFreeTree::Iterator iter;
        iter.start_iter_least(m_freeList);

        // Empty m_freeList into a Vector.
        for (FreeListEntry* entry; (entry = *iter); ++iter) {
            // Each entry in m_freeList might correspond to multiple
            // free chunks of memory (of the same size).  Walk the chain
            // (this is likely of couse only be one entry long!) adding
            // each entry to the Vector (at reseting the next in chain
            // pointer to separate each node out).
            FreeListEntry* next;
            do {
                next = entry->nextEntry;
                entry->nextEntry = 0;
                freeListEntries.append(entry);
            } while ((entry = next));
        }
        // All entries are now in the Vector; purge the tree.
        m_freeList.purge();

        // Reverse-sort the freeListEntries and m_commonSizedAllocations Vectors.
        // We reverse-sort so that we can logically work forwards through memory,
        // whilst popping items off the end of the Vectors using last() and removeLast().
        qsort(freeListEntries.begin(), freeListEntries.size(), sizeof(FreeListEntry*), reverseSortFreeListEntriesByPointer);
        qsort(m_commonSizedAllocations.begin(), m_commonSizedAllocations.size(), sizeof(void*), reverseSortCommonSizedAllocations);

        // The entries from m_commonSizedAllocations that cannot be
        // coalesced into larger chunks will be temporarily stored here.
        Vector<void*> newCommonSizedAllocations;

        // Keep processing so long as entries remain in either of the vectors.
        while (freeListEntries.size() || m_commonSizedAllocations.size()) {
            // We're going to try to find a FreeListEntry node that we can coalesce onto.
            FreeListEntry* coalescionEntry = 0;

            // Is the lowest addressed chunk of free memory of common-size, or is it in the free list?
            if (m_commonSizedAllocations.size() && (!freeListEntries.size() || (m_commonSizedAllocations.last() < freeListEntries.last()->pointer))) {
                // Pop an item from the m_commonSizedAllocations vector - this is the lowest
                // addressed free chunk.  Find out the begin and end addresses of the memory chunk.
                void* begin = m_commonSizedAllocations.last();
                void* end = (void*)((intptr_t)begin + m_commonSize);
                m_commonSizedAllocations.removeLast();

                // Try to find another free chunk abutting onto the end of the one we have already found.
                if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
                    // There is an existing FreeListEntry for the next chunk of memory!
                    // we can reuse this.  Pop it off the end of m_freeList.
                    coalescionEntry = freeListEntries.last();
                    freeListEntries.removeLast();
                    // Update the existing node to include the common-sized chunk that we also found. 
                    coalescionEntry->pointer = (void*)((intptr_t)coalescionEntry->pointer - m_commonSize);
                    coalescionEntry->size += m_commonSize;
                } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
                    // There is a second common-sized chunk that can be coalesced.
                    // Allocate a new node.
                    m_commonSizedAllocations.removeLast();
                    coalescionEntry = new FreeListEntry(begin, 2 * m_commonSize);
                } else {
                    // Nope - this poor little guy is all on his own. :-(
                    // Add him into the newCommonSizedAllocations vector for now, we're
                    // going to end up adding him back into the m_commonSizedAllocations
                    // list when we're done.
                    newCommonSizedAllocations.append(begin);
                    continue;
                }
            } else {
                ASSERT(freeListEntries.size());
                ASSERT(!m_commonSizedAllocations.size() || (freeListEntries.last()->pointer < m_commonSizedAllocations.last()));
                // The lowest addressed item is from m_freeList; pop it from the Vector.
                coalescionEntry = freeListEntries.last();
                freeListEntries.removeLast();
            }
            
            // Right, we have a FreeListEntry, we just need check if there is anything else
            // to coalesce onto the end.
            ASSERT(coalescionEntry);
            while (true) {
                // Calculate the end address of the chunk we have found so far.
                void* end = (void*)((intptr_t)coalescionEntry->pointer - coalescionEntry->size);

                // Is there another chunk adjacent to the one we already have?
                if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) {
                    // Yes - another FreeListEntry -pop it from the list.
                    FreeListEntry* coalescee = freeListEntries.last();
                    freeListEntries.removeLast();
                    // Add it's size onto our existing node.
                    coalescionEntry->size += coalescee->size;
                    delete coalescee;
                } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) {
                    // We can coalesce the next common-sized chunk.
                    m_commonSizedAllocations.removeLast();
                    coalescionEntry->size += m_commonSize;
                } else
                    break; // Nope, nothing to be added - stop here.
            }

            // We've coalesced everything we can onto the current chunk.
            // Add it back into m_freeList.
            addToFreeList(coalescionEntry);
        }

        // All chunks of free memory larger than m_commonSize should be
        // back in m_freeList by now.  All that remains to be done is to
        // copy the contents on the newCommonSizedAllocations back into
        // the m_commonSizedAllocations Vector.
        ASSERT(m_commonSizedAllocations.size() == 0);
        m_commonSizedAllocations.append(newCommonSizedAllocations);
    }

public:

    FixedVMPoolAllocator(size_t commonSize, size_t totalHeapSize)
        : m_commonSize(commonSize)
        , m_countFreedSinceLastCoalesce(0)
        , m_totalHeapSize(totalHeapSize)
    {
        // Cook up an address to allocate at, using the following recipe:
        //   17 bits of zero, stay in userspace kids.
        //   26 bits of randomness for ASLR.
        //   21 bits of zero, at least stay aligned within one level of the pagetables.
        //
        // But! - as a temporary workaround for some plugin problems (rdar://problem/6812854),
        // for now instead of 2^26 bits of ASLR lets stick with 25 bits of randomization plus
        // 2^24, which should put up somewhere in the middle of usespace (in the address range
        // 0x200000000000 .. 0x5fffffffffff).
        intptr_t randomLocation = 0;
#if VM_POOL_ASLR
        randomLocation = arc4random() & ((1 << 25) - 1);
        randomLocation += (1 << 24);
        randomLocation <<= 21;
#endif
        m_base = mmap(reinterpret_cast<void*>(randomLocation), m_totalHeapSize, INITIAL_PROTECTION_FLAGS, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, VM_TAG_FOR_EXECUTABLEALLOCATOR_MEMORY, 0);
        if (m_base == MAP_FAILED)
            CRASH();

        // For simplicity, we keep all memory in m_freeList in a 'released' state.
        // This means that we can simply reuse all memory when allocating, without
        // worrying about it's previous state, and also makes coalescing m_freeList
        // simpler since we need not worry about the possibility of coalescing released
        // chunks with non-released ones.
        release(m_base, m_totalHeapSize);
        m_freeList.insert(new FreeListEntry(m_base, m_totalHeapSize));
    }

    void* alloc(size_t size)
    {
        void* result;

        // Freed allocations of the common size are not stored back into the main
        // m_freeList, but are instead stored in a separate vector.  If the request
        // is for a common sized allocation, check this list.
        if ((size == m_commonSize) && m_commonSizedAllocations.size()) {
            result = m_commonSizedAllocations.last();
            m_commonSizedAllocations.removeLast();
        } else {
            // Serach m_freeList for a suitable sized chunk to allocate memory from.
            FreeListEntry* entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);

            // This would be bad news.
            if (!entry) {
                // Errk!  Lets take a last-ditch desparation attempt at defragmentation...
                coalesceFreeSpace();
                // Did that free up a large enough chunk?
                entry = m_freeList.search(size, m_freeList.GREATER_EQUAL);
                // No?...  *BOOM!*
                if (!entry)
                    CRASH();
            }
            ASSERT(entry->size != m_commonSize);

            // Remove the entry from m_freeList.  But! -
            // Each entry in the tree may represent a chain of multiple chunks of the
            // same size, and we only want to remove one on them.  So, if this entry
            // does have a chain, just remove the first-but-one item from the chain.
            if (FreeListEntry* next = entry->nextEntry) {
                // We're going to leave 'entry' in the tree; remove 'next' from its chain.
                entry->nextEntry = next->nextEntry;
                next->nextEntry = 0;
                entry = next;
            } else
                m_freeList.remove(entry->size);

            // Whoo!, we have a result!
            ASSERT(entry->size >= size);
            result = entry->pointer;

            // If the allocation exactly fits the chunk we found in the,
            // m_freeList then the FreeListEntry node is no longer needed.
            if (entry->size == size)
                delete entry;
            else {
                // There is memory left over, and it is not of the common size.
                // We can reuse the existing FreeListEntry node to add this back
                // into m_freeList.
                entry->pointer = (void*)((intptr_t)entry->pointer + size);
                entry->size -= size;
                addToFreeList(entry);
            }
        }

        // Call reuse to report to the operating system that this memory is in use.
        ASSERT(isWithinVMPool(result, size));
        reuse(result, size);
        return result;
    }

    void free(void* pointer, size_t size)
    {
        // Call release to report to the operating system that this
        // memory is no longer in use, and need not be paged out.
        ASSERT(isWithinVMPool(pointer, size));
        release(pointer, size);

        // Common-sized allocations are stored in the m_commonSizedAllocations
        // vector; all other freed chunks are added to m_freeList.
        if (size == m_commonSize)
            m_commonSizedAllocations.append(pointer);
        else
            addToFreeList(new FreeListEntry(pointer, size));

        // Do some housekeeping.  Every time we reach a point that
        // 16MB of allocations have been freed, sweep m_freeList
        // coalescing any neighboring fragments.
        m_countFreedSinceLastCoalesce += size;
        if (m_countFreedSinceLastCoalesce >= COALESCE_LIMIT) {
            m_countFreedSinceLastCoalesce = 0;
            coalesceFreeSpace();
        }
    }

private:

#ifndef NDEBUG
    bool isWithinVMPool(void* pointer, size_t size)
    {
        return pointer >= m_base && (reinterpret_cast<char*>(pointer) + size <= reinterpret_cast<char*>(m_base) + m_totalHeapSize);
    }
#endif

    // Freed space from the most common sized allocations will be held in this list, ...
    const size_t m_commonSize;
    Vector<void*> m_commonSizedAllocations;

    // ... and all other freed allocations are held in m_freeList.
    SizeSortedFreeTree m_freeList;

    // This is used for housekeeping, to trigger defragmentation of the freed lists.
    size_t m_countFreedSinceLastCoalesce;

    void* m_base;
    size_t m_totalHeapSize;
};

void ExecutableAllocator::intializePageSize()
{
    ExecutableAllocator::pageSize = getpagesize();
}

static FixedVMPoolAllocator* allocator = 0;
static SpinLock spinlock = SPINLOCK_INITIALIZER;

ExecutablePool::Allocation ExecutablePool::systemAlloc(size_t size)
{
  SpinLockHolder lock_holder(&spinlock);

    if (!allocator)
        allocator = new FixedVMPoolAllocator(JIT_ALLOCATOR_LARGE_ALLOC_SIZE, VM_POOL_SIZE);
    ExecutablePool::Allocation alloc = {reinterpret_cast<char*>(allocator->alloc(size)), size};
    return alloc;
}

void ExecutablePool::systemRelease(const ExecutablePool::Allocation& allocation) 
{
  SpinLockHolder lock_holder(&spinlock);

    ASSERT(allocator);
    allocator->free(allocation.pages, allocation.size);
}

}

#endif // HAVE(ASSEMBLER)