summaryrefslogtreecommitdiff
path: root/src/3rdparty/javascriptcore/JavaScriptCore/bytecompiler/BytecodeGenerator.h
blob: af74e60c81425c93e4b01e5ac2beebd2ad1b8a77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/*
 * Copyright (C) 2008, 2009 Apple Inc. All rights reserved.
 * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef BytecodeGenerator_h
#define BytecodeGenerator_h

#include "CodeBlock.h"
#include "HashTraits.h"
#include "Instruction.h"
#include "Label.h"
#include "LabelScope.h"
#include "Interpreter.h"
#include "RegisterID.h"
#include "SymbolTable.h"
#include "Debugger.h"
#include "Nodes.h"
#include <wtf/FastAllocBase.h>
#include <wtf/PassRefPtr.h>
#include <wtf/SegmentedVector.h>
#include <wtf/Vector.h>

namespace JSC {

    class Identifier;
    class ScopeChain;
    class ScopeNode;

    struct FinallyContext {
        Label* finallyAddr;
        RegisterID* retAddrDst;
    };

    struct ControlFlowContext {
        bool isFinallyBlock;
        FinallyContext finallyContext;
    };

    struct ForInContext {
        RefPtr<RegisterID> expectedSubscriptRegister;
        RefPtr<RegisterID> iterRegister;
        RefPtr<RegisterID> indexRegister;
        RefPtr<RegisterID> propertyRegister;
    };

    class BytecodeGenerator : public FastAllocBase {
    public:
        typedef DeclarationStacks::VarStack VarStack;
        typedef DeclarationStacks::FunctionStack FunctionStack;

        static void setDumpsGeneratedCode(bool dumpsGeneratedCode);
        static bool dumpsGeneratedCode();

        BytecodeGenerator(ProgramNode*, const Debugger*, const ScopeChain&, SymbolTable*, ProgramCodeBlock*);
        BytecodeGenerator(FunctionBodyNode*, const Debugger*, const ScopeChain&, SymbolTable*, CodeBlock*);
        BytecodeGenerator(EvalNode*, const Debugger*, const ScopeChain&, SymbolTable*, EvalCodeBlock*);

        JSGlobalData* globalData() const { return m_globalData; }
        const CommonIdentifiers& propertyNames() const { return *m_globalData->propertyNames; }

        void generate();

        // Returns the register corresponding to a local variable, or 0 if no
        // such register exists. Registers returned by registerFor do not
        // require explicit reference counting.
        RegisterID* registerFor(const Identifier&);
        
        bool willResolveToArguments(const Identifier&);
        RegisterID* uncheckedRegisterForArguments();

        // Behaves as registerFor does, but ignores dynamic scope as
        // dynamic scope should not interfere with const initialisation
        RegisterID* constRegisterFor(const Identifier&);

        // Searches the scope chain in an attempt to  statically locate the requested
        // property.  Returns false if for any reason the property cannot be safely
        // optimised at all.  Otherwise it will return the index and depth of the
        // VariableObject that defines the property.  If the property cannot be found
        // statically, depth will contain the depth of the scope chain where dynamic
        // lookup must begin.
        //
        // NB: depth does _not_ include the local scope.  eg. a depth of 0 refers
        // to the scope containing this codeblock.
        bool findScopedProperty(const Identifier&, int& index, size_t& depth, bool forWriting, JSObject*& globalObject);

        // Returns the register storing "this"
        RegisterID* thisRegister() { return &m_thisRegister; }

        bool isLocal(const Identifier&);
        bool isLocalConstant(const Identifier&);

        // Returns the next available temporary register. Registers returned by
        // newTemporary require a modified form of reference counting: any
        // register with a refcount of 0 is considered "available", meaning that
        // the next instruction may overwrite it.
        RegisterID* newTemporary();

        RegisterID* highestUsedRegister();

        // The same as newTemporary(), but this function returns "suggestion" if
        // "suggestion" is a temporary. This function is helpful in situations
        // where you've put "suggestion" in a RefPtr, but you'd like to allow
        // the next instruction to overwrite it anyway.
        RegisterID* newTemporaryOr(RegisterID* suggestion) { return suggestion->isTemporary() ? suggestion : newTemporary(); }

        // Functions for handling of dst register

        RegisterID* ignoredResult() { return &m_ignoredResultRegister; }

        // Returns a place to write intermediate values of an operation
        // which reuses dst if it is safe to do so.
        RegisterID* tempDestination(RegisterID* dst)
        {
            return (dst && dst != ignoredResult() && dst->isTemporary()) ? dst : newTemporary();
        }

        // Returns the place to write the final output of an operation.
        RegisterID* finalDestination(RegisterID* originalDst, RegisterID* tempDst = 0)
        {
            if (originalDst && originalDst != ignoredResult())
                return originalDst;
            ASSERT(tempDst != ignoredResult());
            if (tempDst && tempDst->isTemporary())
                return tempDst;
            return newTemporary();
        }

        RegisterID* destinationForAssignResult(RegisterID* dst)
        {
            if (dst && dst != ignoredResult() && m_codeBlock->needsFullScopeChain())
                return dst->isTemporary() ? dst : newTemporary();
            return 0;
        }

        // Moves src to dst if dst is not null and is different from src, otherwise just returns src.
        RegisterID* moveToDestinationIfNeeded(RegisterID* dst, RegisterID* src)
        {
            return dst == ignoredResult() ? 0 : (dst && dst != src) ? emitMove(dst, src) : src;
        }

        PassRefPtr<LabelScope> newLabelScope(LabelScope::Type, const Identifier* = 0);
        PassRefPtr<Label> newLabel();

        // The emitNode functions are just syntactic sugar for calling
        // Node::emitCode. These functions accept a 0 for the register,
        // meaning that the node should allocate a register, or ignoredResult(),
        // meaning that the node need not put the result in a register.
        // Other emit functions do not accept 0 or ignoredResult().
        RegisterID* emitNode(RegisterID* dst, Node* n)
        {
            // Node::emitCode assumes that dst, if provided, is either a local or a referenced temporary.
            ASSERT(!dst || dst == ignoredResult() || !dst->isTemporary() || dst->refCount());
            if (!m_codeBlock->numberOfLineInfos() || m_codeBlock->lastLineInfo().lineNumber != n->lineNo()) {
                LineInfo info = { static_cast<uint32_t>(instructions().size()), n->lineNo() };
                m_codeBlock->addLineInfo(info);
            }
            if (m_emitNodeDepth >= s_maxEmitNodeDepth)
                return emitThrowExpressionTooDeepException();
            ++m_emitNodeDepth;
            RegisterID* r = n->emitBytecode(*this, dst);
            --m_emitNodeDepth;
            return r;
        }

        RegisterID* emitNode(Node* n)
        {
            return emitNode(0, n);
        }

        void emitNodeInConditionContext(ExpressionNode* n, Label* trueTarget, Label* falseTarget, bool fallThroughMeansTrue)
        {
            if (!m_codeBlock->numberOfLineInfos() || m_codeBlock->lastLineInfo().lineNumber != n->lineNo()) {
                LineInfo info = { static_cast<uint32_t>(instructions().size()), n->lineNo() };
                m_codeBlock->addLineInfo(info);
            }
            if (m_emitNodeDepth >= s_maxEmitNodeDepth)
                emitThrowExpressionTooDeepException();
            ++m_emitNodeDepth;
            n->emitBytecodeInConditionContext(*this, trueTarget, falseTarget, fallThroughMeansTrue);
            --m_emitNodeDepth;
        }

        void emitExpressionInfo(unsigned divot, unsigned startOffset, unsigned endOffset)
        { 
            divot -= m_codeBlock->sourceOffset();
            if (divot > ExpressionRangeInfo::MaxDivot) {
                // Overflow has occurred, we can only give line number info for errors for this region
                divot = 0;
                startOffset = 0;
                endOffset = 0;
            } else if (startOffset > ExpressionRangeInfo::MaxOffset) {
                // If the start offset is out of bounds we clear both offsets
                // so we only get the divot marker.  Error message will have to be reduced
                // to line and column number.
                startOffset = 0;
                endOffset = 0;
            } else if (endOffset > ExpressionRangeInfo::MaxOffset) {
                // The end offset is only used for additional context, and is much more likely
                // to overflow (eg. function call arguments) so we are willing to drop it without
                // dropping the rest of the range.
                endOffset = 0;
            }
            
            ExpressionRangeInfo info;
            info.instructionOffset = instructions().size();
            info.divotPoint = divot;
            info.startOffset = startOffset;
            info.endOffset = endOffset;
            m_codeBlock->addExpressionInfo(info);
        }

        void emitGetByIdExceptionInfo(OpcodeID opcodeID)
        {
            // Only op_construct and op_instanceof need exception info for
            // a preceding op_get_by_id.
            ASSERT(opcodeID == op_construct || opcodeID == op_instanceof);
            GetByIdExceptionInfo info;
            info.bytecodeOffset = instructions().size();
            info.isOpConstruct = (opcodeID == op_construct);
            m_codeBlock->addGetByIdExceptionInfo(info);
        }
        
        ALWAYS_INLINE bool leftHandSideNeedsCopy(bool rightHasAssignments, bool rightIsPure)
        {
            return (m_codeType != FunctionCode || m_codeBlock->needsFullScopeChain() || rightHasAssignments) && !rightIsPure;
        }

        ALWAYS_INLINE PassRefPtr<RegisterID> emitNodeForLeftHandSide(ExpressionNode* n, bool rightHasAssignments, bool rightIsPure)
        {
            if (leftHandSideNeedsCopy(rightHasAssignments, rightIsPure)) {
                PassRefPtr<RegisterID> dst = newTemporary();
                emitNode(dst.get(), n);
                return dst;
            }

            return PassRefPtr<RegisterID>(emitNode(n));
        }

        RegisterID* emitLoad(RegisterID* dst, bool);
        RegisterID* emitLoad(RegisterID* dst, double);
        RegisterID* emitLoad(RegisterID* dst, const Identifier&);
        RegisterID* emitLoad(RegisterID* dst, JSValue);

        RegisterID* emitUnaryOp(OpcodeID, RegisterID* dst, RegisterID* src);
        RegisterID* emitBinaryOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes);
        RegisterID* emitEqualityOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2);
        RegisterID* emitUnaryNoDstOp(OpcodeID, RegisterID* src);

        RegisterID* emitNewObject(RegisterID* dst);
        RegisterID* emitNewArray(RegisterID* dst, ElementNode*); // stops at first elision

        RegisterID* emitNewFunction(RegisterID* dst, FunctionBodyNode* body);
        RegisterID* emitNewFunctionExpression(RegisterID* dst, FuncExprNode* func);
        RegisterID* emitNewRegExp(RegisterID* dst, RegExp* regExp);

        RegisterID* emitMove(RegisterID* dst, RegisterID* src);

        RegisterID* emitToJSNumber(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_to_jsnumber, dst, src); }
        RegisterID* emitPreInc(RegisterID* srcDst);
        RegisterID* emitPreDec(RegisterID* srcDst);
        RegisterID* emitPostInc(RegisterID* dst, RegisterID* srcDst);
        RegisterID* emitPostDec(RegisterID* dst, RegisterID* srcDst);

        RegisterID* emitInstanceOf(RegisterID* dst, RegisterID* value, RegisterID* base, RegisterID* basePrototype);
        RegisterID* emitTypeOf(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_typeof, dst, src); }
        RegisterID* emitIn(RegisterID* dst, RegisterID* property, RegisterID* base) { return emitBinaryOp(op_in, dst, property, base, OperandTypes()); }

        RegisterID* emitResolve(RegisterID* dst, const Identifier& property);
        RegisterID* emitGetScopedVar(RegisterID* dst, size_t skip, int index, JSValue globalObject);
        RegisterID* emitPutScopedVar(size_t skip, int index, RegisterID* value, JSValue globalObject);

        RegisterID* emitResolveBase(RegisterID* dst, const Identifier& property);
        RegisterID* emitResolveWithBase(RegisterID* baseDst, RegisterID* propDst, const Identifier& property);

        void emitMethodCheck();

        RegisterID* emitGetById(RegisterID* dst, RegisterID* base, const Identifier& property);
        RegisterID* emitPutById(RegisterID* base, const Identifier& property, RegisterID* value);
        RegisterID* emitDeleteById(RegisterID* dst, RegisterID* base, const Identifier&);
        RegisterID* emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
        RegisterID* emitPutByVal(RegisterID* base, RegisterID* property, RegisterID* value);
        RegisterID* emitDeleteByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
        RegisterID* emitPutByIndex(RegisterID* base, unsigned index, RegisterID* value);
        RegisterID* emitPutGetter(RegisterID* base, const Identifier& property, RegisterID* value);
        RegisterID* emitPutSetter(RegisterID* base, const Identifier& property, RegisterID* value);

        RegisterID* emitCall(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, ArgumentsNode*, unsigned divot, unsigned startOffset, unsigned endOffset);
        RegisterID* emitCallEval(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, ArgumentsNode*, unsigned divot, unsigned startOffset, unsigned endOffset);
        RegisterID* emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* argCount, unsigned divot, unsigned startOffset, unsigned endOffset);
        RegisterID* emitLoadVarargs(RegisterID* argCountDst, RegisterID* args);

        RegisterID* emitReturn(RegisterID* src);
        RegisterID* emitEnd(RegisterID* src) { return emitUnaryNoDstOp(op_end, src); }

        RegisterID* emitConstruct(RegisterID* dst, RegisterID* func, ArgumentsNode*, unsigned divot, unsigned startOffset, unsigned endOffset);
        RegisterID* emitStrcat(RegisterID* dst, RegisterID* src, int count);
        void emitToPrimitive(RegisterID* dst, RegisterID* src);

        PassRefPtr<Label> emitLabel(Label*);
        PassRefPtr<Label> emitJump(Label* target);
        PassRefPtr<Label> emitJumpIfTrue(RegisterID* cond, Label* target);
        PassRefPtr<Label> emitJumpIfFalse(RegisterID* cond, Label* target);
        PassRefPtr<Label> emitJumpIfNotFunctionCall(RegisterID* cond, Label* target);
        PassRefPtr<Label> emitJumpIfNotFunctionApply(RegisterID* cond, Label* target);
        PassRefPtr<Label> emitJumpScopes(Label* target, int targetScopeDepth);

        PassRefPtr<Label> emitJumpSubroutine(RegisterID* retAddrDst, Label*);
        void emitSubroutineReturn(RegisterID* retAddrSrc);

        RegisterID* emitGetPropertyNames(RegisterID* dst, RegisterID* base, RegisterID* i, RegisterID* size, Label* breakTarget);
        RegisterID* emitNextPropertyName(RegisterID* dst, RegisterID* base, RegisterID* i, RegisterID* size, RegisterID* iter, Label* target);

        RegisterID* emitCatch(RegisterID*, Label* start, Label* end);
        void emitThrow(RegisterID* exc) { emitUnaryNoDstOp(op_throw, exc); }
        RegisterID* emitNewError(RegisterID* dst, ErrorType type, JSValue message);
        void emitPushNewScope(RegisterID* dst, const Identifier& property, RegisterID* value);

        RegisterID* emitPushScope(RegisterID* scope);
        void emitPopScope();

        void emitDebugHook(DebugHookID, int firstLine, int lastLine);

        int scopeDepth() { return m_dynamicScopeDepth + m_finallyDepth; }
        bool hasFinaliser() { return m_finallyDepth != 0; }

        void pushFinallyContext(Label* target, RegisterID* returnAddrDst);
        void popFinallyContext();

        void pushOptimisedForIn(RegisterID* expectedBase, RegisterID* iter, RegisterID* index, RegisterID* propertyRegister)
        {
            ForInContext context = { expectedBase, iter, index, propertyRegister };
            m_forInContextStack.append(context);
        }

        void popOptimisedForIn()
        {
            m_forInContextStack.removeLast();
        }

        LabelScope* breakTarget(const Identifier&);
        LabelScope* continueTarget(const Identifier&);

        void beginSwitch(RegisterID*, SwitchInfo::SwitchType);
        void endSwitch(uint32_t clauseCount, RefPtr<Label>*, ExpressionNode**, Label* defaultLabel, int32_t min, int32_t range);

        CodeType codeType() const { return m_codeType; }

        void setRegeneratingForExceptionInfo(CodeBlock* originalCodeBlock)
        {
            m_regeneratingForExceptionInfo = true;
            m_codeBlockBeingRegeneratedFrom = originalCodeBlock;
        }

    private:
        void emitOpcode(OpcodeID);
        void retrieveLastBinaryOp(int& dstIndex, int& src1Index, int& src2Index);
        void retrieveLastUnaryOp(int& dstIndex, int& srcIndex);
        void rewindBinaryOp();
        void rewindUnaryOp();

        PassRefPtr<Label> emitComplexJumpScopes(Label* target, ControlFlowContext* topScope, ControlFlowContext* bottomScope);

        typedef HashMap<EncodedJSValue, unsigned, EncodedJSValueHash, EncodedJSValueHashTraits> JSValueMap;

        struct IdentifierMapIndexHashTraits {
            typedef int TraitType;
            typedef IdentifierMapIndexHashTraits StorageTraits;
            static int emptyValue() { return std::numeric_limits<int>::max(); }
            static const bool emptyValueIsZero = false;
            static const bool needsDestruction = false;
            static const bool needsRef = false;
        };

        typedef HashMap<RefPtr<UString::Rep>, int, IdentifierRepHash, HashTraits<RefPtr<UString::Rep> >, IdentifierMapIndexHashTraits> IdentifierMap;
        typedef HashMap<double, JSValue> NumberMap;
        typedef HashMap<UString::Rep*, JSString*, IdentifierRepHash> IdentifierStringMap;
        
        RegisterID* emitCall(OpcodeID, RegisterID* dst, RegisterID* func, RegisterID* thisRegister, ArgumentsNode*, unsigned divot, unsigned startOffset, unsigned endOffset);
        
        RegisterID* newRegister();

        // Returns the RegisterID corresponding to ident.
        RegisterID* addVar(const Identifier& ident, bool isConstant)
        {
            RegisterID* local;
            addVar(ident, isConstant, local);
            return local;
        }
        // Returns true if a new RegisterID was added, false if a pre-existing RegisterID was re-used.
        bool addVar(const Identifier&, bool isConstant, RegisterID*&);

        // Returns the RegisterID corresponding to ident.
        RegisterID* addGlobalVar(const Identifier& ident, bool isConstant)
        {
            RegisterID* local;
            addGlobalVar(ident, isConstant, local);
            return local;
        }
        // Returns true if a new RegisterID was added, false if a pre-existing RegisterID was re-used.
        bool addGlobalVar(const Identifier&, bool isConstant, RegisterID*&);

        RegisterID* addParameter(const Identifier&);
        
        void preserveLastVar();

        RegisterID& registerFor(int index)
        {
            if (index >= 0)
                return m_calleeRegisters[index];

            if (index == RegisterFile::OptionalCalleeArguments)
                return m_argumentsRegister;

            if (m_parameters.size()) {
                ASSERT(!m_globals.size());
                return m_parameters[index + m_parameters.size() + RegisterFile::CallFrameHeaderSize];
            }

            return m_globals[-index - 1];
        }

        unsigned addConstant(const Identifier&);
        RegisterID* addConstantValue(JSValue);
        unsigned addRegExp(RegExp*);

        PassRefPtr<FunctionExecutable> makeFunction(ExecState* exec, FunctionBodyNode* body)
        {
            return FunctionExecutable::create(exec, body->ident(), body->source(), body->usesArguments(), body->parameters(), body->lineNo(), body->lastLine());
        }

        PassRefPtr<FunctionExecutable> makeFunction(JSGlobalData* globalData, FunctionBodyNode* body)
        {
            return FunctionExecutable::create(globalData, body->ident(), body->source(), body->usesArguments(), body->parameters(), body->lineNo(), body->lastLine());
        }

        Vector<Instruction>& instructions() { return m_codeBlock->instructions(); }
        SymbolTable& symbolTable() { return *m_symbolTable; }

        bool shouldOptimizeLocals() { return (m_codeType != EvalCode) && !m_dynamicScopeDepth; }
        bool canOptimizeNonLocals() { return (m_codeType == FunctionCode) && !m_dynamicScopeDepth && !m_codeBlock->usesEval(); }

        RegisterID* emitThrowExpressionTooDeepException();

        void createArgumentsIfNecessary();

        bool m_shouldEmitDebugHooks;
        bool m_shouldEmitProfileHooks;

        const ScopeChain* m_scopeChain;
        SymbolTable* m_symbolTable;

        ScopeNode* m_scopeNode;
        CodeBlock* m_codeBlock;

        // Some of these objects keep pointers to one another. They are arranged
        // to ensure a sane destruction order that avoids references to freed memory.
        HashSet<RefPtr<UString::Rep>, IdentifierRepHash> m_functions;
        RegisterID m_ignoredResultRegister;
        RegisterID m_thisRegister;
        RegisterID m_argumentsRegister;
        int m_activationRegisterIndex;
        SegmentedVector<RegisterID, 32> m_constantPoolRegisters;
        SegmentedVector<RegisterID, 32> m_calleeRegisters;
        SegmentedVector<RegisterID, 32> m_parameters;
        SegmentedVector<RegisterID, 32> m_globals;
        SegmentedVector<Label, 32> m_labels;
        SegmentedVector<LabelScope, 8> m_labelScopes;
        RefPtr<RegisterID> m_lastVar;
        int m_finallyDepth;
        int m_dynamicScopeDepth;
        int m_baseScopeDepth;
        CodeType m_codeType;

        Vector<ControlFlowContext> m_scopeContextStack;
        Vector<SwitchInfo> m_switchContextStack;
        Vector<ForInContext> m_forInContextStack;

        int m_nextGlobalIndex;
        int m_nextParameterIndex;
        int m_firstConstantIndex;
        int m_nextConstantOffset;
        unsigned m_globalConstantIndex;

        int m_globalVarStorageOffset;

        // Constant pool
        IdentifierMap m_identifierMap;
        JSValueMap m_jsValueMap;
        NumberMap m_numberMap;
        IdentifierStringMap m_stringMap;

        JSGlobalData* m_globalData;

        OpcodeID m_lastOpcodeID;

        unsigned m_emitNodeDepth;

        bool m_regeneratingForExceptionInfo;
        CodeBlock* m_codeBlockBeingRegeneratedFrom;

        static const unsigned s_maxEmitNodeDepth = 5000;
    };

}

#endif // BytecodeGenerator_h