summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/utils.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/utils.h')
-rw-r--r--src/3rdparty/v8/src/utils.h796
1 files changed, 796 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/utils.h b/src/3rdparty/v8/src/utils.h
new file mode 100644
index 0000000..b89f284
--- /dev/null
+++ b/src/3rdparty/v8/src/utils.h
@@ -0,0 +1,796 @@
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef V8_UTILS_H_
+#define V8_UTILS_H_
+
+#include <stdlib.h>
+#include <string.h>
+
+#include "globals.h"
+#include "checks.h"
+#include "allocation.h"
+
+namespace v8 {
+namespace internal {
+
+// ----------------------------------------------------------------------------
+// General helper functions
+
+#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
+
+// Returns true iff x is a power of 2 (or zero). Cannot be used with the
+// maximally negative value of the type T (the -1 overflows).
+template <typename T>
+static inline bool IsPowerOf2(T x) {
+ return IS_POWER_OF_TWO(x);
+}
+
+
+// X must be a power of 2. Returns the number of trailing zeros.
+template <typename T>
+static inline int WhichPowerOf2(T x) {
+ ASSERT(IsPowerOf2(x));
+ ASSERT(x != 0);
+ if (x < 0) return 31;
+ int bits = 0;
+#ifdef DEBUG
+ int original_x = x;
+#endif
+ if (x >= 0x10000) {
+ bits += 16;
+ x >>= 16;
+ }
+ if (x >= 0x100) {
+ bits += 8;
+ x >>= 8;
+ }
+ if (x >= 0x10) {
+ bits += 4;
+ x >>= 4;
+ }
+ switch (x) {
+ default: UNREACHABLE();
+ case 8: bits++; // Fall through.
+ case 4: bits++; // Fall through.
+ case 2: bits++; // Fall through.
+ case 1: break;
+ }
+ ASSERT_EQ(1 << bits, original_x);
+ return bits;
+ return 0;
+}
+
+
+// The C++ standard leaves the semantics of '>>' undefined for
+// negative signed operands. Most implementations do the right thing,
+// though.
+static inline int ArithmeticShiftRight(int x, int s) {
+ return x >> s;
+}
+
+
+// Compute the 0-relative offset of some absolute value x of type T.
+// This allows conversion of Addresses and integral types into
+// 0-relative int offsets.
+template <typename T>
+static inline intptr_t OffsetFrom(T x) {
+ return x - static_cast<T>(0);
+}
+
+
+// Compute the absolute value of type T for some 0-relative offset x.
+// This allows conversion of 0-relative int offsets into Addresses and
+// integral types.
+template <typename T>
+static inline T AddressFrom(intptr_t x) {
+ return static_cast<T>(static_cast<T>(0) + x);
+}
+
+
+// Return the largest multiple of m which is <= x.
+template <typename T>
+static inline T RoundDown(T x, int m) {
+ ASSERT(IsPowerOf2(m));
+ return AddressFrom<T>(OffsetFrom(x) & -m);
+}
+
+
+// Return the smallest multiple of m which is >= x.
+template <typename T>
+static inline T RoundUp(T x, int m) {
+ return RoundDown(x + m - 1, m);
+}
+
+
+template <typename T>
+static int Compare(const T& a, const T& b) {
+ if (a == b)
+ return 0;
+ else if (a < b)
+ return -1;
+ else
+ return 1;
+}
+
+
+template <typename T>
+static int PointerValueCompare(const T* a, const T* b) {
+ return Compare<T>(*a, *b);
+}
+
+
+// Returns the smallest power of two which is >= x. If you pass in a
+// number that is already a power of two, it is returned as is.
+// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
+// figure 3-3, page 48, where the function is called clp2.
+static inline uint32_t RoundUpToPowerOf2(uint32_t x) {
+ ASSERT(x <= 0x80000000u);
+ x = x - 1;
+ x = x | (x >> 1);
+ x = x | (x >> 2);
+ x = x | (x >> 4);
+ x = x | (x >> 8);
+ x = x | (x >> 16);
+ return x + 1;
+}
+
+
+
+template <typename T>
+static inline bool IsAligned(T value, T alignment) {
+ ASSERT(IsPowerOf2(alignment));
+ return (value & (alignment - 1)) == 0;
+}
+
+
+// Returns true if (addr + offset) is aligned.
+static inline bool IsAddressAligned(Address addr,
+ intptr_t alignment,
+ int offset) {
+ intptr_t offs = OffsetFrom(addr + offset);
+ return IsAligned(offs, alignment);
+}
+
+
+// Returns the maximum of the two parameters.
+template <typename T>
+static T Max(T a, T b) {
+ return a < b ? b : a;
+}
+
+
+// Returns the minimum of the two parameters.
+template <typename T>
+static T Min(T a, T b) {
+ return a < b ? a : b;
+}
+
+
+inline int StrLength(const char* string) {
+ size_t length = strlen(string);
+ ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
+ return static_cast<int>(length);
+}
+
+
+// ----------------------------------------------------------------------------
+// BitField is a help template for encoding and decode bitfield with
+// unsigned content.
+template<class T, int shift, int size>
+class BitField {
+ public:
+ // Tells whether the provided value fits into the bit field.
+ static bool is_valid(T value) {
+ return (static_cast<uint32_t>(value) & ~((1U << (size)) - 1)) == 0;
+ }
+
+ // Returns a uint32_t mask of bit field.
+ static uint32_t mask() {
+ // To use all bits of a uint32 in a bitfield without compiler warnings we
+ // have to compute 2^32 without using a shift count of 32.
+ return ((1U << shift) << size) - (1U << shift);
+ }
+
+ // Returns a uint32_t with the bit field value encoded.
+ static uint32_t encode(T value) {
+ ASSERT(is_valid(value));
+ return static_cast<uint32_t>(value) << shift;
+ }
+
+ // Extracts the bit field from the value.
+ static T decode(uint32_t value) {
+ return static_cast<T>((value & mask()) >> shift);
+ }
+
+ // Value for the field with all bits set.
+ static T max() {
+ return decode(mask());
+ }
+};
+
+
+// ----------------------------------------------------------------------------
+// Hash function.
+
+// Thomas Wang, Integer Hash Functions.
+// http://www.concentric.net/~Ttwang/tech/inthash.htm
+static inline uint32_t ComputeIntegerHash(uint32_t key) {
+ uint32_t hash = key;
+ hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1;
+ hash = hash ^ (hash >> 12);
+ hash = hash + (hash << 2);
+ hash = hash ^ (hash >> 4);
+ hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11);
+ hash = hash ^ (hash >> 16);
+ return hash;
+}
+
+
+// ----------------------------------------------------------------------------
+// Miscellaneous
+
+// A static resource holds a static instance that can be reserved in
+// a local scope using an instance of Access. Attempts to re-reserve
+// the instance will cause an error.
+template <typename T>
+class StaticResource {
+ public:
+ StaticResource() : is_reserved_(false) {}
+
+ private:
+ template <typename S> friend class Access;
+ T instance_;
+ bool is_reserved_;
+};
+
+
+// Locally scoped access to a static resource.
+template <typename T>
+class Access {
+ public:
+ explicit Access(StaticResource<T>* resource)
+ : resource_(resource)
+ , instance_(&resource->instance_) {
+ ASSERT(!resource->is_reserved_);
+ resource->is_reserved_ = true;
+ }
+
+ ~Access() {
+ resource_->is_reserved_ = false;
+ resource_ = NULL;
+ instance_ = NULL;
+ }
+
+ T* value() { return instance_; }
+ T* operator -> () { return instance_; }
+
+ private:
+ StaticResource<T>* resource_;
+ T* instance_;
+};
+
+
+template <typename T>
+class Vector {
+ public:
+ Vector() : start_(NULL), length_(0) {}
+ Vector(T* data, int length) : start_(data), length_(length) {
+ ASSERT(length == 0 || (length > 0 && data != NULL));
+ }
+
+ static Vector<T> New(int length) {
+ return Vector<T>(NewArray<T>(length), length);
+ }
+
+ // Returns a vector using the same backing storage as this one,
+ // spanning from and including 'from', to but not including 'to'.
+ Vector<T> SubVector(int from, int to) {
+ ASSERT(to <= length_);
+ ASSERT(from < to);
+ ASSERT(0 <= from);
+ return Vector<T>(start() + from, to - from);
+ }
+
+ // Returns the length of the vector.
+ int length() const { return length_; }
+
+ // Returns whether or not the vector is empty.
+ bool is_empty() const { return length_ == 0; }
+
+ // Returns the pointer to the start of the data in the vector.
+ T* start() const { return start_; }
+
+ // Access individual vector elements - checks bounds in debug mode.
+ T& operator[](int index) const {
+ ASSERT(0 <= index && index < length_);
+ return start_[index];
+ }
+
+ const T& at(int index) const { return operator[](index); }
+
+ T& first() { return start_[0]; }
+
+ T& last() { return start_[length_ - 1]; }
+
+ // Returns a clone of this vector with a new backing store.
+ Vector<T> Clone() const {
+ T* result = NewArray<T>(length_);
+ for (int i = 0; i < length_; i++) result[i] = start_[i];
+ return Vector<T>(result, length_);
+ }
+
+ void Sort(int (*cmp)(const T*, const T*)) {
+ typedef int (*RawComparer)(const void*, const void*);
+ qsort(start(),
+ length(),
+ sizeof(T),
+ reinterpret_cast<RawComparer>(cmp));
+ }
+
+ void Sort() {
+ Sort(PointerValueCompare<T>);
+ }
+
+ void Truncate(int length) {
+ ASSERT(length <= length_);
+ length_ = length;
+ }
+
+ // Releases the array underlying this vector. Once disposed the
+ // vector is empty.
+ void Dispose() {
+ DeleteArray(start_);
+ start_ = NULL;
+ length_ = 0;
+ }
+
+ inline Vector<T> operator+(int offset) {
+ ASSERT(offset < length_);
+ return Vector<T>(start_ + offset, length_ - offset);
+ }
+
+ // Factory method for creating empty vectors.
+ static Vector<T> empty() { return Vector<T>(NULL, 0); }
+
+ template<typename S>
+ static Vector<T> cast(Vector<S> input) {
+ return Vector<T>(reinterpret_cast<T*>(input.start()),
+ input.length() * sizeof(S) / sizeof(T));
+ }
+
+ protected:
+ void set_start(T* start) { start_ = start; }
+
+ private:
+ T* start_;
+ int length_;
+};
+
+
+// A pointer that can only be set once and doesn't allow NULL values.
+template<typename T>
+class SetOncePointer {
+ public:
+ SetOncePointer() : pointer_(NULL) { }
+
+ bool is_set() const { return pointer_ != NULL; }
+
+ T* get() const {
+ ASSERT(pointer_ != NULL);
+ return pointer_;
+ }
+
+ void set(T* value) {
+ ASSERT(pointer_ == NULL && value != NULL);
+ pointer_ = value;
+ }
+
+ private:
+ T* pointer_;
+};
+
+
+template <typename T, int kSize>
+class EmbeddedVector : public Vector<T> {
+ public:
+ EmbeddedVector() : Vector<T>(buffer_, kSize) { }
+
+ explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) {
+ for (int i = 0; i < kSize; ++i) {
+ buffer_[i] = initial_value;
+ }
+ }
+
+ // When copying, make underlying Vector to reference our buffer.
+ EmbeddedVector(const EmbeddedVector& rhs)
+ : Vector<T>(rhs) {
+ memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
+ set_start(buffer_);
+ }
+
+ EmbeddedVector& operator=(const EmbeddedVector& rhs) {
+ if (this == &rhs) return *this;
+ Vector<T>::operator=(rhs);
+ memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
+ this->set_start(buffer_);
+ return *this;
+ }
+
+ private:
+ T buffer_[kSize];
+};
+
+
+template <typename T>
+class ScopedVector : public Vector<T> {
+ public:
+ explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
+ ~ScopedVector() {
+ DeleteArray(this->start());
+ }
+
+ private:
+ DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
+};
+
+
+inline Vector<const char> CStrVector(const char* data) {
+ return Vector<const char>(data, StrLength(data));
+}
+
+inline Vector<char> MutableCStrVector(char* data) {
+ return Vector<char>(data, StrLength(data));
+}
+
+inline Vector<char> MutableCStrVector(char* data, int max) {
+ int length = StrLength(data);
+ return Vector<char>(data, (length < max) ? length : max);
+}
+
+
+/*
+ * A class that collects values into a backing store.
+ * Specialized versions of the class can allow access to the backing store
+ * in different ways.
+ * There is no guarantee that the backing store is contiguous (and, as a
+ * consequence, no guarantees that consecutively added elements are adjacent
+ * in memory). The collector may move elements unless it has guaranteed not
+ * to.
+ */
+template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
+class Collector {
+ public:
+ explicit Collector(int initial_capacity = kMinCapacity)
+ : index_(0), size_(0) {
+ if (initial_capacity < kMinCapacity) {
+ initial_capacity = kMinCapacity;
+ }
+ current_chunk_ = Vector<T>::New(initial_capacity);
+ }
+
+ virtual ~Collector() {
+ // Free backing store (in reverse allocation order).
+ current_chunk_.Dispose();
+ for (int i = chunks_.length() - 1; i >= 0; i--) {
+ chunks_.at(i).Dispose();
+ }
+ }
+
+ // Add a single element.
+ inline void Add(T value) {
+ if (index_ >= current_chunk_.length()) {
+ Grow(1);
+ }
+ current_chunk_[index_] = value;
+ index_++;
+ size_++;
+ }
+
+ // Add a block of contiguous elements and return a Vector backed by the
+ // memory area.
+ // A basic Collector will keep this vector valid as long as the Collector
+ // is alive.
+ inline Vector<T> AddBlock(int size, T initial_value) {
+ ASSERT(size > 0);
+ if (size > current_chunk_.length() - index_) {
+ Grow(size);
+ }
+ T* position = current_chunk_.start() + index_;
+ index_ += size;
+ size_ += size;
+ for (int i = 0; i < size; i++) {
+ position[i] = initial_value;
+ }
+ return Vector<T>(position, size);
+ }
+
+
+ // Add a contiguous block of elements and return a vector backed
+ // by the added block.
+ // A basic Collector will keep this vector valid as long as the Collector
+ // is alive.
+ inline Vector<T> AddBlock(Vector<const T> source) {
+ if (source.length() > current_chunk_.length() - index_) {
+ Grow(source.length());
+ }
+ T* position = current_chunk_.start() + index_;
+ index_ += source.length();
+ size_ += source.length();
+ for (int i = 0; i < source.length(); i++) {
+ position[i] = source[i];
+ }
+ return Vector<T>(position, source.length());
+ }
+
+
+ // Write the contents of the collector into the provided vector.
+ void WriteTo(Vector<T> destination) {
+ ASSERT(size_ <= destination.length());
+ int position = 0;
+ for (int i = 0; i < chunks_.length(); i++) {
+ Vector<T> chunk = chunks_.at(i);
+ for (int j = 0; j < chunk.length(); j++) {
+ destination[position] = chunk[j];
+ position++;
+ }
+ }
+ for (int i = 0; i < index_; i++) {
+ destination[position] = current_chunk_[i];
+ position++;
+ }
+ }
+
+ // Allocate a single contiguous vector, copy all the collected
+ // elements to the vector, and return it.
+ // The caller is responsible for freeing the memory of the returned
+ // vector (e.g., using Vector::Dispose).
+ Vector<T> ToVector() {
+ Vector<T> new_store = Vector<T>::New(size_);
+ WriteTo(new_store);
+ return new_store;
+ }
+
+ // Resets the collector to be empty.
+ virtual void Reset() {
+ for (int i = chunks_.length() - 1; i >= 0; i--) {
+ chunks_.at(i).Dispose();
+ }
+ chunks_.Rewind(0);
+ index_ = 0;
+ size_ = 0;
+ }
+
+ // Total number of elements added to collector so far.
+ inline int size() { return size_; }
+
+ protected:
+ static const int kMinCapacity = 16;
+ List<Vector<T> > chunks_;
+ Vector<T> current_chunk_; // Block of memory currently being written into.
+ int index_; // Current index in current chunk.
+ int size_; // Total number of elements in collector.
+
+ // Creates a new current chunk, and stores the old chunk in the chunks_ list.
+ void Grow(int min_capacity) {
+ ASSERT(growth_factor > 1);
+ int growth = current_chunk_.length() * (growth_factor - 1);
+ if (growth > max_growth) {
+ growth = max_growth;
+ }
+ int new_capacity = current_chunk_.length() + growth;
+ if (new_capacity < min_capacity) {
+ new_capacity = min_capacity + growth;
+ }
+ Vector<T> new_chunk = Vector<T>::New(new_capacity);
+ int new_index = PrepareGrow(new_chunk);
+ if (index_ > 0) {
+ chunks_.Add(current_chunk_.SubVector(0, index_));
+ } else {
+ // Can happen if the call to PrepareGrow moves everything into
+ // the new chunk.
+ current_chunk_.Dispose();
+ }
+ current_chunk_ = new_chunk;
+ index_ = new_index;
+ ASSERT(index_ + min_capacity <= current_chunk_.length());
+ }
+
+ // Before replacing the current chunk, give a subclass the option to move
+ // some of the current data into the new chunk. The function may update
+ // the current index_ value to represent data no longer in the current chunk.
+ // Returns the initial index of the new chunk (after copied data).
+ virtual int PrepareGrow(Vector<T> new_chunk) {
+ return 0;
+ }
+};
+
+
+/*
+ * A collector that allows sequences of values to be guaranteed to
+ * stay consecutive.
+ * If the backing store grows while a sequence is active, the current
+ * sequence might be moved, but after the sequence is ended, it will
+ * not move again.
+ * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
+ * as well, if inside an active sequence where another element is added.
+ */
+template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
+class SequenceCollector : public Collector<T, growth_factor, max_growth> {
+ public:
+ explicit SequenceCollector(int initial_capacity)
+ : Collector<T, growth_factor, max_growth>(initial_capacity),
+ sequence_start_(kNoSequence) { }
+
+ virtual ~SequenceCollector() {}
+
+ void StartSequence() {
+ ASSERT(sequence_start_ == kNoSequence);
+ sequence_start_ = this->index_;
+ }
+
+ Vector<T> EndSequence() {
+ ASSERT(sequence_start_ != kNoSequence);
+ int sequence_start = sequence_start_;
+ sequence_start_ = kNoSequence;
+ if (sequence_start == this->index_) return Vector<T>();
+ return this->current_chunk_.SubVector(sequence_start, this->index_);
+ }
+
+ // Drops the currently added sequence, and all collected elements in it.
+ void DropSequence() {
+ ASSERT(sequence_start_ != kNoSequence);
+ int sequence_length = this->index_ - sequence_start_;
+ this->index_ = sequence_start_;
+ this->size_ -= sequence_length;
+ sequence_start_ = kNoSequence;
+ }
+
+ virtual void Reset() {
+ sequence_start_ = kNoSequence;
+ this->Collector<T, growth_factor, max_growth>::Reset();
+ }
+
+ private:
+ static const int kNoSequence = -1;
+ int sequence_start_;
+
+ // Move the currently active sequence to the new chunk.
+ virtual int PrepareGrow(Vector<T> new_chunk) {
+ if (sequence_start_ != kNoSequence) {
+ int sequence_length = this->index_ - sequence_start_;
+ // The new chunk is always larger than the current chunk, so there
+ // is room for the copy.
+ ASSERT(sequence_length < new_chunk.length());
+ for (int i = 0; i < sequence_length; i++) {
+ new_chunk[i] = this->current_chunk_[sequence_start_ + i];
+ }
+ this->index_ = sequence_start_;
+ sequence_start_ = 0;
+ return sequence_length;
+ }
+ return 0;
+ }
+};
+
+
+// Compare ASCII/16bit chars to ASCII/16bit chars.
+template <typename lchar, typename rchar>
+static inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
+ const lchar* limit = lhs + chars;
+#ifdef V8_HOST_CAN_READ_UNALIGNED
+ if (sizeof(*lhs) == sizeof(*rhs)) {
+ // Number of characters in a uintptr_t.
+ static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs); // NOLINT
+ while (lhs <= limit - kStepSize) {
+ if (*reinterpret_cast<const uintptr_t*>(lhs) !=
+ *reinterpret_cast<const uintptr_t*>(rhs)) {
+ break;
+ }
+ lhs += kStepSize;
+ rhs += kStepSize;
+ }
+ }
+#endif
+ while (lhs < limit) {
+ int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
+ if (r != 0) return r;
+ ++lhs;
+ ++rhs;
+ }
+ return 0;
+}
+
+
+// Calculate 10^exponent.
+static inline int TenToThe(int exponent) {
+ ASSERT(exponent <= 9);
+ ASSERT(exponent >= 1);
+ int answer = 10;
+ for (int i = 1; i < exponent; i++) answer *= 10;
+ return answer;
+}
+
+
+// The type-based aliasing rule allows the compiler to assume that pointers of
+// different types (for some definition of different) never alias each other.
+// Thus the following code does not work:
+//
+// float f = foo();
+// int fbits = *(int*)(&f);
+//
+// The compiler 'knows' that the int pointer can't refer to f since the types
+// don't match, so the compiler may cache f in a register, leaving random data
+// in fbits. Using C++ style casts makes no difference, however a pointer to
+// char data is assumed to alias any other pointer. This is the 'memcpy
+// exception'.
+//
+// Bit_cast uses the memcpy exception to move the bits from a variable of one
+// type of a variable of another type. Of course the end result is likely to
+// be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005)
+// will completely optimize BitCast away.
+//
+// There is an additional use for BitCast.
+// Recent gccs will warn when they see casts that may result in breakage due to
+// the type-based aliasing rule. If you have checked that there is no breakage
+// you can use BitCast to cast one pointer type to another. This confuses gcc
+// enough that it can no longer see that you have cast one pointer type to
+// another thus avoiding the warning.
+
+// We need different implementations of BitCast for pointer and non-pointer
+// values. We use partial specialization of auxiliary struct to work around
+// issues with template functions overloading.
+template <class Dest, class Source>
+struct BitCastHelper {
+ STATIC_ASSERT(sizeof(Dest) == sizeof(Source));
+
+ INLINE(static Dest cast(const Source& source)) {
+ Dest dest;
+ memcpy(&dest, &source, sizeof(dest));
+ return dest;
+ }
+};
+
+template <class Dest, class Source>
+struct BitCastHelper<Dest, Source*> {
+ INLINE(static Dest cast(Source* source)) {
+ return BitCastHelper<Dest, uintptr_t>::
+ cast(reinterpret_cast<uintptr_t>(source));
+ }
+};
+
+template <class Dest, class Source>
+INLINE(Dest BitCast(const Source& source));
+
+template <class Dest, class Source>
+inline Dest BitCast(const Source& source) {
+ return BitCastHelper<Dest, Source>::cast(source);
+}
+
+} } // namespace v8::internal
+
+#endif // V8_UTILS_H_