summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/spaces.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/spaces.cc')
-rw-r--r--src/3rdparty/v8/src/spaces.cc3147
1 files changed, 3147 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/spaces.cc b/src/3rdparty/v8/src/spaces.cc
new file mode 100644
index 0000000..eb4fa7d
--- /dev/null
+++ b/src/3rdparty/v8/src/spaces.cc
@@ -0,0 +1,3147 @@
+// Copyright 2006-2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#include "liveobjectlist-inl.h"
+#include "macro-assembler.h"
+#include "mark-compact.h"
+#include "platform.h"
+
+namespace v8 {
+namespace internal {
+
+// For contiguous spaces, top should be in the space (or at the end) and limit
+// should be the end of the space.
+#define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \
+ ASSERT((space).low() <= (info).top \
+ && (info).top <= (space).high() \
+ && (info).limit == (space).high())
+
+// ----------------------------------------------------------------------------
+// HeapObjectIterator
+
+HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
+ Initialize(space->bottom(), space->top(), NULL);
+}
+
+
+HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
+ HeapObjectCallback size_func) {
+ Initialize(space->bottom(), space->top(), size_func);
+}
+
+
+HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start) {
+ Initialize(start, space->top(), NULL);
+}
+
+
+HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start,
+ HeapObjectCallback size_func) {
+ Initialize(start, space->top(), size_func);
+}
+
+
+HeapObjectIterator::HeapObjectIterator(Page* page,
+ HeapObjectCallback size_func) {
+ Initialize(page->ObjectAreaStart(), page->AllocationTop(), size_func);
+}
+
+
+void HeapObjectIterator::Initialize(Address cur, Address end,
+ HeapObjectCallback size_f) {
+ cur_addr_ = cur;
+ end_addr_ = end;
+ end_page_ = Page::FromAllocationTop(end);
+ size_func_ = size_f;
+ Page* p = Page::FromAllocationTop(cur_addr_);
+ cur_limit_ = (p == end_page_) ? end_addr_ : p->AllocationTop();
+
+#ifdef DEBUG
+ Verify();
+#endif
+}
+
+
+HeapObject* HeapObjectIterator::FromNextPage() {
+ if (cur_addr_ == end_addr_) return NULL;
+
+ Page* cur_page = Page::FromAllocationTop(cur_addr_);
+ cur_page = cur_page->next_page();
+ ASSERT(cur_page->is_valid());
+
+ cur_addr_ = cur_page->ObjectAreaStart();
+ cur_limit_ = (cur_page == end_page_) ? end_addr_ : cur_page->AllocationTop();
+
+ if (cur_addr_ == end_addr_) return NULL;
+ ASSERT(cur_addr_ < cur_limit_);
+#ifdef DEBUG
+ Verify();
+#endif
+ return FromCurrentPage();
+}
+
+
+#ifdef DEBUG
+void HeapObjectIterator::Verify() {
+ Page* p = Page::FromAllocationTop(cur_addr_);
+ ASSERT(p == Page::FromAllocationTop(cur_limit_));
+ ASSERT(p->Offset(cur_addr_) <= p->Offset(cur_limit_));
+}
+#endif
+
+
+// -----------------------------------------------------------------------------
+// PageIterator
+
+PageIterator::PageIterator(PagedSpace* space, Mode mode) : space_(space) {
+ prev_page_ = NULL;
+ switch (mode) {
+ case PAGES_IN_USE:
+ stop_page_ = space->AllocationTopPage();
+ break;
+ case PAGES_USED_BY_MC:
+ stop_page_ = space->MCRelocationTopPage();
+ break;
+ case ALL_PAGES:
+#ifdef DEBUG
+ // Verify that the cached last page in the space is actually the
+ // last page.
+ for (Page* p = space->first_page_; p->is_valid(); p = p->next_page()) {
+ if (!p->next_page()->is_valid()) {
+ ASSERT(space->last_page_ == p);
+ }
+ }
+#endif
+ stop_page_ = space->last_page_;
+ break;
+ }
+}
+
+
+// -----------------------------------------------------------------------------
+// CodeRange
+
+
+CodeRange::CodeRange()
+ : code_range_(NULL),
+ free_list_(0),
+ allocation_list_(0),
+ current_allocation_block_index_(0),
+ isolate_(NULL) {
+}
+
+
+bool CodeRange::Setup(const size_t requested) {
+ ASSERT(code_range_ == NULL);
+
+ code_range_ = new VirtualMemory(requested);
+ CHECK(code_range_ != NULL);
+ if (!code_range_->IsReserved()) {
+ delete code_range_;
+ code_range_ = NULL;
+ return false;
+ }
+
+ // We are sure that we have mapped a block of requested addresses.
+ ASSERT(code_range_->size() == requested);
+ LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested));
+ allocation_list_.Add(FreeBlock(code_range_->address(), code_range_->size()));
+ current_allocation_block_index_ = 0;
+ return true;
+}
+
+
+int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
+ const FreeBlock* right) {
+ // The entire point of CodeRange is that the difference between two
+ // addresses in the range can be represented as a signed 32-bit int,
+ // so the cast is semantically correct.
+ return static_cast<int>(left->start - right->start);
+}
+
+
+void CodeRange::GetNextAllocationBlock(size_t requested) {
+ for (current_allocation_block_index_++;
+ current_allocation_block_index_ < allocation_list_.length();
+ current_allocation_block_index_++) {
+ if (requested <= allocation_list_[current_allocation_block_index_].size) {
+ return; // Found a large enough allocation block.
+ }
+ }
+
+ // Sort and merge the free blocks on the free list and the allocation list.
+ free_list_.AddAll(allocation_list_);
+ allocation_list_.Clear();
+ free_list_.Sort(&CompareFreeBlockAddress);
+ for (int i = 0; i < free_list_.length();) {
+ FreeBlock merged = free_list_[i];
+ i++;
+ // Add adjacent free blocks to the current merged block.
+ while (i < free_list_.length() &&
+ free_list_[i].start == merged.start + merged.size) {
+ merged.size += free_list_[i].size;
+ i++;
+ }
+ if (merged.size > 0) {
+ allocation_list_.Add(merged);
+ }
+ }
+ free_list_.Clear();
+
+ for (current_allocation_block_index_ = 0;
+ current_allocation_block_index_ < allocation_list_.length();
+ current_allocation_block_index_++) {
+ if (requested <= allocation_list_[current_allocation_block_index_].size) {
+ return; // Found a large enough allocation block.
+ }
+ }
+
+ // Code range is full or too fragmented.
+ V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock");
+}
+
+
+
+void* CodeRange::AllocateRawMemory(const size_t requested, size_t* allocated) {
+ ASSERT(current_allocation_block_index_ < allocation_list_.length());
+ if (requested > allocation_list_[current_allocation_block_index_].size) {
+ // Find an allocation block large enough. This function call may
+ // call V8::FatalProcessOutOfMemory if it cannot find a large enough block.
+ GetNextAllocationBlock(requested);
+ }
+ // Commit the requested memory at the start of the current allocation block.
+ *allocated = RoundUp(requested, Page::kPageSize);
+ FreeBlock current = allocation_list_[current_allocation_block_index_];
+ if (*allocated >= current.size - Page::kPageSize) {
+ // Don't leave a small free block, useless for a large object or chunk.
+ *allocated = current.size;
+ }
+ ASSERT(*allocated <= current.size);
+ if (!code_range_->Commit(current.start, *allocated, true)) {
+ *allocated = 0;
+ return NULL;
+ }
+ allocation_list_[current_allocation_block_index_].start += *allocated;
+ allocation_list_[current_allocation_block_index_].size -= *allocated;
+ if (*allocated == current.size) {
+ GetNextAllocationBlock(0); // This block is used up, get the next one.
+ }
+ return current.start;
+}
+
+
+void CodeRange::FreeRawMemory(void* address, size_t length) {
+ free_list_.Add(FreeBlock(address, length));
+ code_range_->Uncommit(address, length);
+}
+
+
+void CodeRange::TearDown() {
+ delete code_range_; // Frees all memory in the virtual memory range.
+ code_range_ = NULL;
+ free_list_.Free();
+ allocation_list_.Free();
+}
+
+
+// -----------------------------------------------------------------------------
+// MemoryAllocator
+//
+
+// 270 is an estimate based on the static default heap size of a pair of 256K
+// semispaces and a 64M old generation.
+const int kEstimatedNumberOfChunks = 270;
+
+
+MemoryAllocator::MemoryAllocator()
+ : capacity_(0),
+ capacity_executable_(0),
+ size_(0),
+ size_executable_(0),
+ initial_chunk_(NULL),
+ chunks_(kEstimatedNumberOfChunks),
+ free_chunk_ids_(kEstimatedNumberOfChunks),
+ max_nof_chunks_(0),
+ top_(0),
+ isolate_(NULL) {
+}
+
+
+void MemoryAllocator::Push(int free_chunk_id) {
+ ASSERT(max_nof_chunks_ > 0);
+ ASSERT(top_ < max_nof_chunks_);
+ free_chunk_ids_[top_++] = free_chunk_id;
+}
+
+
+int MemoryAllocator::Pop() {
+ ASSERT(top_ > 0);
+ return free_chunk_ids_[--top_];
+}
+
+
+bool MemoryAllocator::Setup(intptr_t capacity, intptr_t capacity_executable) {
+ capacity_ = RoundUp(capacity, Page::kPageSize);
+ capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
+ ASSERT_GE(capacity_, capacity_executable_);
+
+ // Over-estimate the size of chunks_ array. It assumes the expansion of old
+ // space is always in the unit of a chunk (kChunkSize) except the last
+ // expansion.
+ //
+ // Due to alignment, allocated space might be one page less than required
+ // number (kPagesPerChunk) of pages for old spaces.
+ //
+ // Reserve two chunk ids for semispaces, one for map space, one for old
+ // space, and one for code space.
+ max_nof_chunks_ =
+ static_cast<int>((capacity_ / (kChunkSize - Page::kPageSize))) + 5;
+ if (max_nof_chunks_ > kMaxNofChunks) return false;
+
+ size_ = 0;
+ size_executable_ = 0;
+ ChunkInfo info; // uninitialized element.
+ for (int i = max_nof_chunks_ - 1; i >= 0; i--) {
+ chunks_.Add(info);
+ free_chunk_ids_.Add(i);
+ }
+ top_ = max_nof_chunks_;
+ return true;
+}
+
+
+void MemoryAllocator::TearDown() {
+ for (int i = 0; i < max_nof_chunks_; i++) {
+ if (chunks_[i].address() != NULL) DeleteChunk(i);
+ }
+ chunks_.Clear();
+ free_chunk_ids_.Clear();
+
+ if (initial_chunk_ != NULL) {
+ LOG(isolate_, DeleteEvent("InitialChunk", initial_chunk_->address()));
+ delete initial_chunk_;
+ initial_chunk_ = NULL;
+ }
+
+ ASSERT(top_ == max_nof_chunks_); // all chunks are free
+ top_ = 0;
+ capacity_ = 0;
+ capacity_executable_ = 0;
+ size_ = 0;
+ max_nof_chunks_ = 0;
+}
+
+
+void* MemoryAllocator::AllocateRawMemory(const size_t requested,
+ size_t* allocated,
+ Executability executable) {
+ if (size_ + static_cast<size_t>(requested) > static_cast<size_t>(capacity_)) {
+ return NULL;
+ }
+
+ void* mem;
+ if (executable == EXECUTABLE) {
+ // Check executable memory limit.
+ if (size_executable_ + requested >
+ static_cast<size_t>(capacity_executable_)) {
+ LOG(isolate_,
+ StringEvent("MemoryAllocator::AllocateRawMemory",
+ "V8 Executable Allocation capacity exceeded"));
+ return NULL;
+ }
+ // Allocate executable memory either from code range or from the
+ // OS.
+ if (isolate_->code_range()->exists()) {
+ mem = isolate_->code_range()->AllocateRawMemory(requested, allocated);
+ } else {
+ mem = OS::Allocate(requested, allocated, true);
+ }
+ // Update executable memory size.
+ size_executable_ += static_cast<int>(*allocated);
+ } else {
+ mem = OS::Allocate(requested, allocated, false);
+ }
+ int alloced = static_cast<int>(*allocated);
+ size_ += alloced;
+
+#ifdef DEBUG
+ ZapBlock(reinterpret_cast<Address>(mem), alloced);
+#endif
+ isolate_->counters()->memory_allocated()->Increment(alloced);
+ return mem;
+}
+
+
+void MemoryAllocator::FreeRawMemory(void* mem,
+ size_t length,
+ Executability executable) {
+#ifdef DEBUG
+ ZapBlock(reinterpret_cast<Address>(mem), length);
+#endif
+ if (isolate_->code_range()->contains(static_cast<Address>(mem))) {
+ isolate_->code_range()->FreeRawMemory(mem, length);
+ } else {
+ OS::Free(mem, length);
+ }
+ isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(length));
+ size_ -= static_cast<int>(length);
+ if (executable == EXECUTABLE) size_executable_ -= static_cast<int>(length);
+
+ ASSERT(size_ >= 0);
+ ASSERT(size_executable_ >= 0);
+}
+
+
+void MemoryAllocator::PerformAllocationCallback(ObjectSpace space,
+ AllocationAction action,
+ size_t size) {
+ for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
+ MemoryAllocationCallbackRegistration registration =
+ memory_allocation_callbacks_[i];
+ if ((registration.space & space) == space &&
+ (registration.action & action) == action)
+ registration.callback(space, action, static_cast<int>(size));
+ }
+}
+
+
+bool MemoryAllocator::MemoryAllocationCallbackRegistered(
+ MemoryAllocationCallback callback) {
+ for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
+ if (memory_allocation_callbacks_[i].callback == callback) return true;
+ }
+ return false;
+}
+
+
+void MemoryAllocator::AddMemoryAllocationCallback(
+ MemoryAllocationCallback callback,
+ ObjectSpace space,
+ AllocationAction action) {
+ ASSERT(callback != NULL);
+ MemoryAllocationCallbackRegistration registration(callback, space, action);
+ ASSERT(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback));
+ return memory_allocation_callbacks_.Add(registration);
+}
+
+
+void MemoryAllocator::RemoveMemoryAllocationCallback(
+ MemoryAllocationCallback callback) {
+ ASSERT(callback != NULL);
+ for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) {
+ if (memory_allocation_callbacks_[i].callback == callback) {
+ memory_allocation_callbacks_.Remove(i);
+ return;
+ }
+ }
+ UNREACHABLE();
+}
+
+void* MemoryAllocator::ReserveInitialChunk(const size_t requested) {
+ ASSERT(initial_chunk_ == NULL);
+
+ initial_chunk_ = new VirtualMemory(requested);
+ CHECK(initial_chunk_ != NULL);
+ if (!initial_chunk_->IsReserved()) {
+ delete initial_chunk_;
+ initial_chunk_ = NULL;
+ return NULL;
+ }
+
+ // We are sure that we have mapped a block of requested addresses.
+ ASSERT(initial_chunk_->size() == requested);
+ LOG(isolate_,
+ NewEvent("InitialChunk", initial_chunk_->address(), requested));
+ size_ += static_cast<int>(requested);
+ return initial_chunk_->address();
+}
+
+
+static int PagesInChunk(Address start, size_t size) {
+ // The first page starts on the first page-aligned address from start onward
+ // and the last page ends on the last page-aligned address before
+ // start+size. Page::kPageSize is a power of two so we can divide by
+ // shifting.
+ return static_cast<int>((RoundDown(start + size, Page::kPageSize)
+ - RoundUp(start, Page::kPageSize)) >> kPageSizeBits);
+}
+
+
+Page* MemoryAllocator::AllocatePages(int requested_pages,
+ int* allocated_pages,
+ PagedSpace* owner) {
+ if (requested_pages <= 0) return Page::FromAddress(NULL);
+ size_t chunk_size = requested_pages * Page::kPageSize;
+
+ void* chunk = AllocateRawMemory(chunk_size, &chunk_size, owner->executable());
+ if (chunk == NULL) return Page::FromAddress(NULL);
+ LOG(isolate_, NewEvent("PagedChunk", chunk, chunk_size));
+
+ *allocated_pages = PagesInChunk(static_cast<Address>(chunk), chunk_size);
+ // We may 'lose' a page due to alignment.
+ ASSERT(*allocated_pages >= kPagesPerChunk - 1);
+ if (*allocated_pages == 0) {
+ FreeRawMemory(chunk, chunk_size, owner->executable());
+ LOG(isolate_, DeleteEvent("PagedChunk", chunk));
+ return Page::FromAddress(NULL);
+ }
+
+ int chunk_id = Pop();
+ chunks_[chunk_id].init(static_cast<Address>(chunk), chunk_size, owner);
+
+ ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
+ PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size);
+ Page* new_pages = InitializePagesInChunk(chunk_id, *allocated_pages, owner);
+
+ return new_pages;
+}
+
+
+Page* MemoryAllocator::CommitPages(Address start, size_t size,
+ PagedSpace* owner, int* num_pages) {
+ ASSERT(start != NULL);
+ *num_pages = PagesInChunk(start, size);
+ ASSERT(*num_pages > 0);
+ ASSERT(initial_chunk_ != NULL);
+ ASSERT(InInitialChunk(start));
+ ASSERT(InInitialChunk(start + size - 1));
+ if (!initial_chunk_->Commit(start, size, owner->executable() == EXECUTABLE)) {
+ return Page::FromAddress(NULL);
+ }
+#ifdef DEBUG
+ ZapBlock(start, size);
+#endif
+ isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
+
+ // So long as we correctly overestimated the number of chunks we should not
+ // run out of chunk ids.
+ CHECK(!OutOfChunkIds());
+ int chunk_id = Pop();
+ chunks_[chunk_id].init(start, size, owner);
+ return InitializePagesInChunk(chunk_id, *num_pages, owner);
+}
+
+
+bool MemoryAllocator::CommitBlock(Address start,
+ size_t size,
+ Executability executable) {
+ ASSERT(start != NULL);
+ ASSERT(size > 0);
+ ASSERT(initial_chunk_ != NULL);
+ ASSERT(InInitialChunk(start));
+ ASSERT(InInitialChunk(start + size - 1));
+
+ if (!initial_chunk_->Commit(start, size, executable)) return false;
+#ifdef DEBUG
+ ZapBlock(start, size);
+#endif
+ isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
+ return true;
+}
+
+
+bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
+ ASSERT(start != NULL);
+ ASSERT(size > 0);
+ ASSERT(initial_chunk_ != NULL);
+ ASSERT(InInitialChunk(start));
+ ASSERT(InInitialChunk(start + size - 1));
+
+ if (!initial_chunk_->Uncommit(start, size)) return false;
+ isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
+ return true;
+}
+
+
+void MemoryAllocator::ZapBlock(Address start, size_t size) {
+ for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
+ Memory::Address_at(start + s) = kZapValue;
+ }
+}
+
+
+Page* MemoryAllocator::InitializePagesInChunk(int chunk_id, int pages_in_chunk,
+ PagedSpace* owner) {
+ ASSERT(IsValidChunk(chunk_id));
+ ASSERT(pages_in_chunk > 0);
+
+ Address chunk_start = chunks_[chunk_id].address();
+
+ Address low = RoundUp(chunk_start, Page::kPageSize);
+
+#ifdef DEBUG
+ size_t chunk_size = chunks_[chunk_id].size();
+ Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
+ ASSERT(pages_in_chunk <=
+ ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize));
+#endif
+
+ Address page_addr = low;
+ for (int i = 0; i < pages_in_chunk; i++) {
+ Page* p = Page::FromAddress(page_addr);
+ p->heap_ = owner->heap();
+ p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
+ p->InvalidateWatermark(true);
+ p->SetIsLargeObjectPage(false);
+ p->SetAllocationWatermark(p->ObjectAreaStart());
+ p->SetCachedAllocationWatermark(p->ObjectAreaStart());
+ page_addr += Page::kPageSize;
+ }
+
+ // Set the next page of the last page to 0.
+ Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
+ last_page->opaque_header = OffsetFrom(0) | chunk_id;
+
+ return Page::FromAddress(low);
+}
+
+
+Page* MemoryAllocator::FreePages(Page* p) {
+ if (!p->is_valid()) return p;
+
+ // Find the first page in the same chunk as 'p'
+ Page* first_page = FindFirstPageInSameChunk(p);
+ Page* page_to_return = Page::FromAddress(NULL);
+
+ if (p != first_page) {
+ // Find the last page in the same chunk as 'prev'.
+ Page* last_page = FindLastPageInSameChunk(p);
+ first_page = GetNextPage(last_page); // first page in next chunk
+
+ // set the next_page of last_page to NULL
+ SetNextPage(last_page, Page::FromAddress(NULL));
+ page_to_return = p; // return 'p' when exiting
+ }
+
+ while (first_page->is_valid()) {
+ int chunk_id = GetChunkId(first_page);
+ ASSERT(IsValidChunk(chunk_id));
+
+ // Find the first page of the next chunk before deleting this chunk.
+ first_page = GetNextPage(FindLastPageInSameChunk(first_page));
+
+ // Free the current chunk.
+ DeleteChunk(chunk_id);
+ }
+
+ return page_to_return;
+}
+
+
+void MemoryAllocator::FreeAllPages(PagedSpace* space) {
+ for (int i = 0, length = chunks_.length(); i < length; i++) {
+ if (chunks_[i].owner() == space) {
+ DeleteChunk(i);
+ }
+ }
+}
+
+
+void MemoryAllocator::DeleteChunk(int chunk_id) {
+ ASSERT(IsValidChunk(chunk_id));
+
+ ChunkInfo& c = chunks_[chunk_id];
+
+ // We cannot free a chunk contained in the initial chunk because it was not
+ // allocated with AllocateRawMemory. Instead we uncommit the virtual
+ // memory.
+ if (InInitialChunk(c.address())) {
+ // TODO(1240712): VirtualMemory::Uncommit has a return value which
+ // is ignored here.
+ initial_chunk_->Uncommit(c.address(), c.size());
+ Counters* counters = isolate_->counters();
+ counters->memory_allocated()->Decrement(static_cast<int>(c.size()));
+ } else {
+ LOG(isolate_, DeleteEvent("PagedChunk", c.address()));
+ ObjectSpace space = static_cast<ObjectSpace>(1 << c.owner_identity());
+ size_t size = c.size();
+ FreeRawMemory(c.address(), size, c.executable());
+ PerformAllocationCallback(space, kAllocationActionFree, size);
+ }
+ c.init(NULL, 0, NULL);
+ Push(chunk_id);
+}
+
+
+Page* MemoryAllocator::FindFirstPageInSameChunk(Page* p) {
+ int chunk_id = GetChunkId(p);
+ ASSERT(IsValidChunk(chunk_id));
+
+ Address low = RoundUp(chunks_[chunk_id].address(), Page::kPageSize);
+ return Page::FromAddress(low);
+}
+
+
+Page* MemoryAllocator::FindLastPageInSameChunk(Page* p) {
+ int chunk_id = GetChunkId(p);
+ ASSERT(IsValidChunk(chunk_id));
+
+ Address chunk_start = chunks_[chunk_id].address();
+ size_t chunk_size = chunks_[chunk_id].size();
+
+ Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
+ ASSERT(chunk_start <= p->address() && p->address() < high);
+
+ return Page::FromAddress(high - Page::kPageSize);
+}
+
+
+#ifdef DEBUG
+void MemoryAllocator::ReportStatistics() {
+ float pct = static_cast<float>(capacity_ - size_) / capacity_;
+ PrintF(" capacity: %" V8_PTR_PREFIX "d"
+ ", used: %" V8_PTR_PREFIX "d"
+ ", available: %%%d\n\n",
+ capacity_, size_, static_cast<int>(pct*100));
+}
+#endif
+
+
+void MemoryAllocator::RelinkPageListInChunkOrder(PagedSpace* space,
+ Page** first_page,
+ Page** last_page,
+ Page** last_page_in_use) {
+ Page* first = NULL;
+ Page* last = NULL;
+
+ for (int i = 0, length = chunks_.length(); i < length; i++) {
+ ChunkInfo& chunk = chunks_[i];
+
+ if (chunk.owner() == space) {
+ if (first == NULL) {
+ Address low = RoundUp(chunk.address(), Page::kPageSize);
+ first = Page::FromAddress(low);
+ }
+ last = RelinkPagesInChunk(i,
+ chunk.address(),
+ chunk.size(),
+ last,
+ last_page_in_use);
+ }
+ }
+
+ if (first_page != NULL) {
+ *first_page = first;
+ }
+
+ if (last_page != NULL) {
+ *last_page = last;
+ }
+}
+
+
+Page* MemoryAllocator::RelinkPagesInChunk(int chunk_id,
+ Address chunk_start,
+ size_t chunk_size,
+ Page* prev,
+ Page** last_page_in_use) {
+ Address page_addr = RoundUp(chunk_start, Page::kPageSize);
+ int pages_in_chunk = PagesInChunk(chunk_start, chunk_size);
+
+ if (prev->is_valid()) {
+ SetNextPage(prev, Page::FromAddress(page_addr));
+ }
+
+ for (int i = 0; i < pages_in_chunk; i++) {
+ Page* p = Page::FromAddress(page_addr);
+ p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
+ page_addr += Page::kPageSize;
+
+ p->InvalidateWatermark(true);
+ if (p->WasInUseBeforeMC()) {
+ *last_page_in_use = p;
+ }
+ }
+
+ // Set the next page of the last page to 0.
+ Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
+ last_page->opaque_header = OffsetFrom(0) | chunk_id;
+
+ if (last_page->WasInUseBeforeMC()) {
+ *last_page_in_use = last_page;
+ }
+
+ return last_page;
+}
+
+
+// -----------------------------------------------------------------------------
+// PagedSpace implementation
+
+PagedSpace::PagedSpace(Heap* heap,
+ intptr_t max_capacity,
+ AllocationSpace id,
+ Executability executable)
+ : Space(heap, id, executable) {
+ max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
+ * Page::kObjectAreaSize;
+ accounting_stats_.Clear();
+
+ allocation_info_.top = NULL;
+ allocation_info_.limit = NULL;
+
+ mc_forwarding_info_.top = NULL;
+ mc_forwarding_info_.limit = NULL;
+}
+
+
+bool PagedSpace::Setup(Address start, size_t size) {
+ if (HasBeenSetup()) return false;
+
+ int num_pages = 0;
+ // Try to use the virtual memory range passed to us. If it is too small to
+ // contain at least one page, ignore it and allocate instead.
+ int pages_in_chunk = PagesInChunk(start, size);
+ if (pages_in_chunk > 0) {
+ first_page_ = Isolate::Current()->memory_allocator()->CommitPages(
+ RoundUp(start, Page::kPageSize),
+ Page::kPageSize * pages_in_chunk,
+ this, &num_pages);
+ } else {
+ int requested_pages =
+ Min(MemoryAllocator::kPagesPerChunk,
+ static_cast<int>(max_capacity_ / Page::kObjectAreaSize));
+ first_page_ =
+ Isolate::Current()->memory_allocator()->AllocatePages(
+ requested_pages, &num_pages, this);
+ if (!first_page_->is_valid()) return false;
+ }
+
+ // We are sure that the first page is valid and that we have at least one
+ // page.
+ ASSERT(first_page_->is_valid());
+ ASSERT(num_pages > 0);
+ accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize);
+ ASSERT(Capacity() <= max_capacity_);
+
+ // Sequentially clear region marks in the newly allocated
+ // pages and cache the current last page in the space.
+ for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
+ p->SetRegionMarks(Page::kAllRegionsCleanMarks);
+ last_page_ = p;
+ }
+
+ // Use first_page_ for allocation.
+ SetAllocationInfo(&allocation_info_, first_page_);
+
+ page_list_is_chunk_ordered_ = true;
+
+ return true;
+}
+
+
+bool PagedSpace::HasBeenSetup() {
+ return (Capacity() > 0);
+}
+
+
+void PagedSpace::TearDown() {
+ Isolate::Current()->memory_allocator()->FreeAllPages(this);
+ first_page_ = NULL;
+ accounting_stats_.Clear();
+}
+
+
+#ifdef ENABLE_HEAP_PROTECTION
+
+void PagedSpace::Protect() {
+ Page* page = first_page_;
+ while (page->is_valid()) {
+ Isolate::Current()->memory_allocator()->ProtectChunkFromPage(page);
+ page = Isolate::Current()->memory_allocator()->
+ FindLastPageInSameChunk(page)->next_page();
+ }
+}
+
+
+void PagedSpace::Unprotect() {
+ Page* page = first_page_;
+ while (page->is_valid()) {
+ Isolate::Current()->memory_allocator()->UnprotectChunkFromPage(page);
+ page = Isolate::Current()->memory_allocator()->
+ FindLastPageInSameChunk(page)->next_page();
+ }
+}
+
+#endif
+
+
+void PagedSpace::MarkAllPagesClean() {
+ PageIterator it(this, PageIterator::ALL_PAGES);
+ while (it.has_next()) {
+ it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks);
+ }
+}
+
+
+MaybeObject* PagedSpace::FindObject(Address addr) {
+ // Note: this function can only be called before or after mark-compact GC
+ // because it accesses map pointers.
+ ASSERT(!heap()->mark_compact_collector()->in_use());
+
+ if (!Contains(addr)) return Failure::Exception();
+
+ Page* p = Page::FromAddress(addr);
+ ASSERT(IsUsed(p));
+ Address cur = p->ObjectAreaStart();
+ Address end = p->AllocationTop();
+ while (cur < end) {
+ HeapObject* obj = HeapObject::FromAddress(cur);
+ Address next = cur + obj->Size();
+ if ((cur <= addr) && (addr < next)) return obj;
+ cur = next;
+ }
+
+ UNREACHABLE();
+ return Failure::Exception();
+}
+
+
+bool PagedSpace::IsUsed(Page* page) {
+ PageIterator it(this, PageIterator::PAGES_IN_USE);
+ while (it.has_next()) {
+ if (page == it.next()) return true;
+ }
+ return false;
+}
+
+
+void PagedSpace::SetAllocationInfo(AllocationInfo* alloc_info, Page* p) {
+ alloc_info->top = p->ObjectAreaStart();
+ alloc_info->limit = p->ObjectAreaEnd();
+ ASSERT(alloc_info->VerifyPagedAllocation());
+}
+
+
+void PagedSpace::MCResetRelocationInfo() {
+ // Set page indexes.
+ int i = 0;
+ PageIterator it(this, PageIterator::ALL_PAGES);
+ while (it.has_next()) {
+ Page* p = it.next();
+ p->mc_page_index = i++;
+ }
+
+ // Set mc_forwarding_info_ to the first page in the space.
+ SetAllocationInfo(&mc_forwarding_info_, first_page_);
+ // All the bytes in the space are 'available'. We will rediscover
+ // allocated and wasted bytes during GC.
+ accounting_stats_.Reset();
+}
+
+
+int PagedSpace::MCSpaceOffsetForAddress(Address addr) {
+#ifdef DEBUG
+ // The Contains function considers the address at the beginning of a
+ // page in the page, MCSpaceOffsetForAddress considers it is in the
+ // previous page.
+ if (Page::IsAlignedToPageSize(addr)) {
+ ASSERT(Contains(addr - kPointerSize));
+ } else {
+ ASSERT(Contains(addr));
+ }
+#endif
+
+ // If addr is at the end of a page, it belongs to previous page
+ Page* p = Page::IsAlignedToPageSize(addr)
+ ? Page::FromAllocationTop(addr)
+ : Page::FromAddress(addr);
+ int index = p->mc_page_index;
+ return (index * Page::kPageSize) + p->Offset(addr);
+}
+
+
+// Slow case for reallocating and promoting objects during a compacting
+// collection. This function is not space-specific.
+HeapObject* PagedSpace::SlowMCAllocateRaw(int size_in_bytes) {
+ Page* current_page = TopPageOf(mc_forwarding_info_);
+ if (!current_page->next_page()->is_valid()) {
+ if (!Expand(current_page)) {
+ return NULL;
+ }
+ }
+
+ // There are surely more pages in the space now.
+ ASSERT(current_page->next_page()->is_valid());
+ // We do not add the top of page block for current page to the space's
+ // free list---the block may contain live objects so we cannot write
+ // bookkeeping information to it. Instead, we will recover top of page
+ // blocks when we move objects to their new locations.
+ //
+ // We do however write the allocation pointer to the page. The encoding
+ // of forwarding addresses is as an offset in terms of live bytes, so we
+ // need quick access to the allocation top of each page to decode
+ // forwarding addresses.
+ current_page->SetAllocationWatermark(mc_forwarding_info_.top);
+ current_page->next_page()->InvalidateWatermark(true);
+ SetAllocationInfo(&mc_forwarding_info_, current_page->next_page());
+ return AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
+}
+
+
+bool PagedSpace::Expand(Page* last_page) {
+ ASSERT(max_capacity_ % Page::kObjectAreaSize == 0);
+ ASSERT(Capacity() % Page::kObjectAreaSize == 0);
+
+ if (Capacity() == max_capacity_) return false;
+
+ ASSERT(Capacity() < max_capacity_);
+ // Last page must be valid and its next page is invalid.
+ ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid());
+
+ int available_pages =
+ static_cast<int>((max_capacity_ - Capacity()) / Page::kObjectAreaSize);
+ // We don't want to have to handle small chunks near the end so if there are
+ // not kPagesPerChunk pages available without exceeding the max capacity then
+ // act as if memory has run out.
+ if (available_pages < MemoryAllocator::kPagesPerChunk) return false;
+
+ int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk);
+ Page* p = heap()->isolate()->memory_allocator()->AllocatePages(
+ desired_pages, &desired_pages, this);
+ if (!p->is_valid()) return false;
+
+ accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize);
+ ASSERT(Capacity() <= max_capacity_);
+
+ heap()->isolate()->memory_allocator()->SetNextPage(last_page, p);
+
+ // Sequentially clear region marks of new pages and and cache the
+ // new last page in the space.
+ while (p->is_valid()) {
+ p->SetRegionMarks(Page::kAllRegionsCleanMarks);
+ last_page_ = p;
+ p = p->next_page();
+ }
+
+ return true;
+}
+
+
+#ifdef DEBUG
+int PagedSpace::CountTotalPages() {
+ int count = 0;
+ for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
+ count++;
+ }
+ return count;
+}
+#endif
+
+
+void PagedSpace::Shrink() {
+ if (!page_list_is_chunk_ordered_) {
+ // We can't shrink space if pages is not chunk-ordered
+ // (see comment for class MemoryAllocator for definition).
+ return;
+ }
+
+ // Release half of free pages.
+ Page* top_page = AllocationTopPage();
+ ASSERT(top_page->is_valid());
+
+ // Count the number of pages we would like to free.
+ int pages_to_free = 0;
+ for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
+ pages_to_free++;
+ }
+
+ // Free pages after top_page.
+ Page* p = heap()->isolate()->memory_allocator()->
+ FreePages(top_page->next_page());
+ heap()->isolate()->memory_allocator()->SetNextPage(top_page, p);
+
+ // Find out how many pages we failed to free and update last_page_.
+ // Please note pages can only be freed in whole chunks.
+ last_page_ = top_page;
+ for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
+ pages_to_free--;
+ last_page_ = p;
+ }
+
+ accounting_stats_.ShrinkSpace(pages_to_free * Page::kObjectAreaSize);
+ ASSERT(Capacity() == CountTotalPages() * Page::kObjectAreaSize);
+}
+
+
+bool PagedSpace::EnsureCapacity(int capacity) {
+ if (Capacity() >= capacity) return true;
+
+ // Start from the allocation top and loop to the last page in the space.
+ Page* last_page = AllocationTopPage();
+ Page* next_page = last_page->next_page();
+ while (next_page->is_valid()) {
+ last_page = heap()->isolate()->memory_allocator()->
+ FindLastPageInSameChunk(next_page);
+ next_page = last_page->next_page();
+ }
+
+ // Expand the space until it has the required capacity or expansion fails.
+ do {
+ if (!Expand(last_page)) return false;
+ ASSERT(last_page->next_page()->is_valid());
+ last_page =
+ heap()->isolate()->memory_allocator()->FindLastPageInSameChunk(
+ last_page->next_page());
+ } while (Capacity() < capacity);
+
+ return true;
+}
+
+
+#ifdef DEBUG
+void PagedSpace::Print() { }
+#endif
+
+
+#ifdef DEBUG
+// We do not assume that the PageIterator works, because it depends on the
+// invariants we are checking during verification.
+void PagedSpace::Verify(ObjectVisitor* visitor) {
+ // The allocation pointer should be valid, and it should be in a page in the
+ // space.
+ ASSERT(allocation_info_.VerifyPagedAllocation());
+ Page* top_page = Page::FromAllocationTop(allocation_info_.top);
+ ASSERT(heap()->isolate()->memory_allocator()->IsPageInSpace(top_page, this));
+
+ // Loop over all the pages.
+ bool above_allocation_top = false;
+ Page* current_page = first_page_;
+ while (current_page->is_valid()) {
+ if (above_allocation_top) {
+ // We don't care what's above the allocation top.
+ } else {
+ Address top = current_page->AllocationTop();
+ if (current_page == top_page) {
+ ASSERT(top == allocation_info_.top);
+ // The next page will be above the allocation top.
+ above_allocation_top = true;
+ }
+
+ // It should be packed with objects from the bottom to the top.
+ Address current = current_page->ObjectAreaStart();
+ while (current < top) {
+ HeapObject* object = HeapObject::FromAddress(current);
+
+ // The first word should be a map, and we expect all map pointers to
+ // be in map space.
+ Map* map = object->map();
+ ASSERT(map->IsMap());
+ ASSERT(heap()->map_space()->Contains(map));
+
+ // Perform space-specific object verification.
+ VerifyObject(object);
+
+ // The object itself should look OK.
+ object->Verify();
+
+ // All the interior pointers should be contained in the heap and
+ // have page regions covering intergenerational references should be
+ // marked dirty.
+ int size = object->Size();
+ object->IterateBody(map->instance_type(), size, visitor);
+
+ current += size;
+ }
+
+ // The allocation pointer should not be in the middle of an object.
+ ASSERT(current == top);
+ }
+
+ current_page = current_page->next_page();
+ }
+}
+#endif
+
+
+// -----------------------------------------------------------------------------
+// NewSpace implementation
+
+
+bool NewSpace::Setup(Address start, int size) {
+ // Setup new space based on the preallocated memory block defined by
+ // start and size. The provided space is divided into two semi-spaces.
+ // To support fast containment testing in the new space, the size of
+ // this chunk must be a power of two and it must be aligned to its size.
+ int initial_semispace_capacity = heap()->InitialSemiSpaceSize();
+ int maximum_semispace_capacity = heap()->MaxSemiSpaceSize();
+
+ ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);
+ ASSERT(IsPowerOf2(maximum_semispace_capacity));
+
+ // Allocate and setup the histogram arrays if necessary.
+#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
+ allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
+ promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
+
+#define SET_NAME(name) allocated_histogram_[name].set_name(#name); \
+ promoted_histogram_[name].set_name(#name);
+ INSTANCE_TYPE_LIST(SET_NAME)
+#undef SET_NAME
+#endif
+
+ ASSERT(size == 2 * heap()->ReservedSemiSpaceSize());
+ ASSERT(IsAddressAligned(start, size, 0));
+
+ if (!to_space_.Setup(start,
+ initial_semispace_capacity,
+ maximum_semispace_capacity)) {
+ return false;
+ }
+ if (!from_space_.Setup(start + maximum_semispace_capacity,
+ initial_semispace_capacity,
+ maximum_semispace_capacity)) {
+ return false;
+ }
+
+ start_ = start;
+ address_mask_ = ~(size - 1);
+ object_mask_ = address_mask_ | kHeapObjectTagMask;
+ object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
+
+ allocation_info_.top = to_space_.low();
+ allocation_info_.limit = to_space_.high();
+ mc_forwarding_info_.top = NULL;
+ mc_forwarding_info_.limit = NULL;
+
+ ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
+ return true;
+}
+
+
+void NewSpace::TearDown() {
+#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
+ if (allocated_histogram_) {
+ DeleteArray(allocated_histogram_);
+ allocated_histogram_ = NULL;
+ }
+ if (promoted_histogram_) {
+ DeleteArray(promoted_histogram_);
+ promoted_histogram_ = NULL;
+ }
+#endif
+
+ start_ = NULL;
+ allocation_info_.top = NULL;
+ allocation_info_.limit = NULL;
+ mc_forwarding_info_.top = NULL;
+ mc_forwarding_info_.limit = NULL;
+
+ to_space_.TearDown();
+ from_space_.TearDown();
+}
+
+
+#ifdef ENABLE_HEAP_PROTECTION
+
+void NewSpace::Protect() {
+ heap()->isolate()->memory_allocator()->Protect(ToSpaceLow(), Capacity());
+ heap()->isolate()->memory_allocator()->Protect(FromSpaceLow(), Capacity());
+}
+
+
+void NewSpace::Unprotect() {
+ heap()->isolate()->memory_allocator()->Unprotect(ToSpaceLow(), Capacity(),
+ to_space_.executable());
+ heap()->isolate()->memory_allocator()->Unprotect(FromSpaceLow(), Capacity(),
+ from_space_.executable());
+}
+
+#endif
+
+
+void NewSpace::Flip() {
+ SemiSpace tmp = from_space_;
+ from_space_ = to_space_;
+ to_space_ = tmp;
+}
+
+
+void NewSpace::Grow() {
+ ASSERT(Capacity() < MaximumCapacity());
+ if (to_space_.Grow()) {
+ // Only grow from space if we managed to grow to space.
+ if (!from_space_.Grow()) {
+ // If we managed to grow to space but couldn't grow from space,
+ // attempt to shrink to space.
+ if (!to_space_.ShrinkTo(from_space_.Capacity())) {
+ // We are in an inconsistent state because we could not
+ // commit/uncommit memory from new space.
+ V8::FatalProcessOutOfMemory("Failed to grow new space.");
+ }
+ }
+ }
+ allocation_info_.limit = to_space_.high();
+ ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
+}
+
+
+void NewSpace::Shrink() {
+ int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt());
+ int rounded_new_capacity =
+ RoundUp(new_capacity, static_cast<int>(OS::AllocateAlignment()));
+ if (rounded_new_capacity < Capacity() &&
+ to_space_.ShrinkTo(rounded_new_capacity)) {
+ // Only shrink from space if we managed to shrink to space.
+ if (!from_space_.ShrinkTo(rounded_new_capacity)) {
+ // If we managed to shrink to space but couldn't shrink from
+ // space, attempt to grow to space again.
+ if (!to_space_.GrowTo(from_space_.Capacity())) {
+ // We are in an inconsistent state because we could not
+ // commit/uncommit memory from new space.
+ V8::FatalProcessOutOfMemory("Failed to shrink new space.");
+ }
+ }
+ }
+ allocation_info_.limit = to_space_.high();
+ ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
+}
+
+
+void NewSpace::ResetAllocationInfo() {
+ allocation_info_.top = to_space_.low();
+ allocation_info_.limit = to_space_.high();
+ ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
+}
+
+
+void NewSpace::MCResetRelocationInfo() {
+ mc_forwarding_info_.top = from_space_.low();
+ mc_forwarding_info_.limit = from_space_.high();
+ ASSERT_SEMISPACE_ALLOCATION_INFO(mc_forwarding_info_, from_space_);
+}
+
+
+void NewSpace::MCCommitRelocationInfo() {
+ // Assumes that the spaces have been flipped so that mc_forwarding_info_ is
+ // valid allocation info for the to space.
+ allocation_info_.top = mc_forwarding_info_.top;
+ allocation_info_.limit = to_space_.high();
+ ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
+}
+
+
+#ifdef DEBUG
+// We do not use the SemispaceIterator because verification doesn't assume
+// that it works (it depends on the invariants we are checking).
+void NewSpace::Verify() {
+ // The allocation pointer should be in the space or at the very end.
+ ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
+
+ // There should be objects packed in from the low address up to the
+ // allocation pointer.
+ Address current = to_space_.low();
+ while (current < top()) {
+ HeapObject* object = HeapObject::FromAddress(current);
+
+ // The first word should be a map, and we expect all map pointers to
+ // be in map space.
+ Map* map = object->map();
+ ASSERT(map->IsMap());
+ ASSERT(heap()->map_space()->Contains(map));
+
+ // The object should not be code or a map.
+ ASSERT(!object->IsMap());
+ ASSERT(!object->IsCode());
+
+ // The object itself should look OK.
+ object->Verify();
+
+ // All the interior pointers should be contained in the heap.
+ VerifyPointersVisitor visitor;
+ int size = object->Size();
+ object->IterateBody(map->instance_type(), size, &visitor);
+
+ current += size;
+ }
+
+ // The allocation pointer should not be in the middle of an object.
+ ASSERT(current == top());
+}
+#endif
+
+
+bool SemiSpace::Commit() {
+ ASSERT(!is_committed());
+ if (!heap()->isolate()->memory_allocator()->CommitBlock(
+ start_, capacity_, executable())) {
+ return false;
+ }
+ committed_ = true;
+ return true;
+}
+
+
+bool SemiSpace::Uncommit() {
+ ASSERT(is_committed());
+ if (!heap()->isolate()->memory_allocator()->UncommitBlock(
+ start_, capacity_)) {
+ return false;
+ }
+ committed_ = false;
+ return true;
+}
+
+
+// -----------------------------------------------------------------------------
+// SemiSpace implementation
+
+bool SemiSpace::Setup(Address start,
+ int initial_capacity,
+ int maximum_capacity) {
+ // Creates a space in the young generation. The constructor does not
+ // allocate memory from the OS. A SemiSpace is given a contiguous chunk of
+ // memory of size 'capacity' when set up, and does not grow or shrink
+ // otherwise. In the mark-compact collector, the memory region of the from
+ // space is used as the marking stack. It requires contiguous memory
+ // addresses.
+ initial_capacity_ = initial_capacity;
+ capacity_ = initial_capacity;
+ maximum_capacity_ = maximum_capacity;
+ committed_ = false;
+
+ start_ = start;
+ address_mask_ = ~(maximum_capacity - 1);
+ object_mask_ = address_mask_ | kHeapObjectTagMask;
+ object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
+ age_mark_ = start_;
+
+ return Commit();
+}
+
+
+void SemiSpace::TearDown() {
+ start_ = NULL;
+ capacity_ = 0;
+}
+
+
+bool SemiSpace::Grow() {
+ // Double the semispace size but only up to maximum capacity.
+ int maximum_extra = maximum_capacity_ - capacity_;
+ int extra = Min(RoundUp(capacity_, static_cast<int>(OS::AllocateAlignment())),
+ maximum_extra);
+ if (!heap()->isolate()->memory_allocator()->CommitBlock(
+ high(), extra, executable())) {
+ return false;
+ }
+ capacity_ += extra;
+ return true;
+}
+
+
+bool SemiSpace::GrowTo(int new_capacity) {
+ ASSERT(new_capacity <= maximum_capacity_);
+ ASSERT(new_capacity > capacity_);
+ size_t delta = new_capacity - capacity_;
+ ASSERT(IsAligned(delta, OS::AllocateAlignment()));
+ if (!heap()->isolate()->memory_allocator()->CommitBlock(
+ high(), delta, executable())) {
+ return false;
+ }
+ capacity_ = new_capacity;
+ return true;
+}
+
+
+bool SemiSpace::ShrinkTo(int new_capacity) {
+ ASSERT(new_capacity >= initial_capacity_);
+ ASSERT(new_capacity < capacity_);
+ size_t delta = capacity_ - new_capacity;
+ ASSERT(IsAligned(delta, OS::AllocateAlignment()));
+ if (!heap()->isolate()->memory_allocator()->UncommitBlock(
+ high() - delta, delta)) {
+ return false;
+ }
+ capacity_ = new_capacity;
+ return true;
+}
+
+
+#ifdef DEBUG
+void SemiSpace::Print() { }
+
+
+void SemiSpace::Verify() { }
+#endif
+
+
+// -----------------------------------------------------------------------------
+// SemiSpaceIterator implementation.
+SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
+ Initialize(space, space->bottom(), space->top(), NULL);
+}
+
+
+SemiSpaceIterator::SemiSpaceIterator(NewSpace* space,
+ HeapObjectCallback size_func) {
+ Initialize(space, space->bottom(), space->top(), size_func);
+}
+
+
+SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) {
+ Initialize(space, start, space->top(), NULL);
+}
+
+
+void SemiSpaceIterator::Initialize(NewSpace* space, Address start,
+ Address end,
+ HeapObjectCallback size_func) {
+ ASSERT(space->ToSpaceContains(start));
+ ASSERT(space->ToSpaceLow() <= end
+ && end <= space->ToSpaceHigh());
+ space_ = &space->to_space_;
+ current_ = start;
+ limit_ = end;
+ size_func_ = size_func;
+}
+
+
+#ifdef DEBUG
+// heap_histograms is shared, always clear it before using it.
+static void ClearHistograms() {
+ Isolate* isolate = Isolate::Current();
+ // We reset the name each time, though it hasn't changed.
+#define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name);
+ INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
+#undef DEF_TYPE_NAME
+
+#define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear();
+ INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
+#undef CLEAR_HISTOGRAM
+
+ isolate->js_spill_information()->Clear();
+}
+
+
+static void ClearCodeKindStatistics() {
+ Isolate* isolate = Isolate::Current();
+ for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
+ isolate->code_kind_statistics()[i] = 0;
+ }
+}
+
+
+static void ReportCodeKindStatistics() {
+ Isolate* isolate = Isolate::Current();
+ const char* table[Code::NUMBER_OF_KINDS] = { NULL };
+
+#define CASE(name) \
+ case Code::name: table[Code::name] = #name; \
+ break
+
+ for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
+ switch (static_cast<Code::Kind>(i)) {
+ CASE(FUNCTION);
+ CASE(OPTIMIZED_FUNCTION);
+ CASE(STUB);
+ CASE(BUILTIN);
+ CASE(LOAD_IC);
+ CASE(KEYED_LOAD_IC);
+ CASE(KEYED_EXTERNAL_ARRAY_LOAD_IC);
+ CASE(STORE_IC);
+ CASE(KEYED_STORE_IC);
+ CASE(KEYED_EXTERNAL_ARRAY_STORE_IC);
+ CASE(CALL_IC);
+ CASE(KEYED_CALL_IC);
+ CASE(BINARY_OP_IC);
+ CASE(TYPE_RECORDING_BINARY_OP_IC);
+ CASE(COMPARE_IC);
+ }
+ }
+
+#undef CASE
+
+ PrintF("\n Code kind histograms: \n");
+ for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
+ if (isolate->code_kind_statistics()[i] > 0) {
+ PrintF(" %-20s: %10d bytes\n", table[i],
+ isolate->code_kind_statistics()[i]);
+ }
+ }
+ PrintF("\n");
+}
+
+
+static int CollectHistogramInfo(HeapObject* obj) {
+ Isolate* isolate = Isolate::Current();
+ InstanceType type = obj->map()->instance_type();
+ ASSERT(0 <= type && type <= LAST_TYPE);
+ ASSERT(isolate->heap_histograms()[type].name() != NULL);
+ isolate->heap_histograms()[type].increment_number(1);
+ isolate->heap_histograms()[type].increment_bytes(obj->Size());
+
+ if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
+ JSObject::cast(obj)->IncrementSpillStatistics(
+ isolate->js_spill_information());
+ }
+
+ return obj->Size();
+}
+
+
+static void ReportHistogram(bool print_spill) {
+ Isolate* isolate = Isolate::Current();
+ PrintF("\n Object Histogram:\n");
+ for (int i = 0; i <= LAST_TYPE; i++) {
+ if (isolate->heap_histograms()[i].number() > 0) {
+ PrintF(" %-34s%10d (%10d bytes)\n",
+ isolate->heap_histograms()[i].name(),
+ isolate->heap_histograms()[i].number(),
+ isolate->heap_histograms()[i].bytes());
+ }
+ }
+ PrintF("\n");
+
+ // Summarize string types.
+ int string_number = 0;
+ int string_bytes = 0;
+#define INCREMENT(type, size, name, camel_name) \
+ string_number += isolate->heap_histograms()[type].number(); \
+ string_bytes += isolate->heap_histograms()[type].bytes();
+ STRING_TYPE_LIST(INCREMENT)
+#undef INCREMENT
+ if (string_number > 0) {
+ PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
+ string_bytes);
+ }
+
+ if (FLAG_collect_heap_spill_statistics && print_spill) {
+ isolate->js_spill_information()->Print();
+ }
+}
+#endif // DEBUG
+
+
+// Support for statistics gathering for --heap-stats and --log-gc.
+#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
+void NewSpace::ClearHistograms() {
+ for (int i = 0; i <= LAST_TYPE; i++) {
+ allocated_histogram_[i].clear();
+ promoted_histogram_[i].clear();
+ }
+}
+
+// Because the copying collector does not touch garbage objects, we iterate
+// the new space before a collection to get a histogram of allocated objects.
+// This only happens (1) when compiled with DEBUG and the --heap-stats flag is
+// set, or when compiled with ENABLE_LOGGING_AND_PROFILING and the --log-gc
+// flag is set.
+void NewSpace::CollectStatistics() {
+ ClearHistograms();
+ SemiSpaceIterator it(this);
+ for (HeapObject* obj = it.next(); obj != NULL; obj = it.next())
+ RecordAllocation(obj);
+}
+
+
+#ifdef ENABLE_LOGGING_AND_PROFILING
+static void DoReportStatistics(Isolate* isolate,
+ HistogramInfo* info, const char* description) {
+ LOG(isolate, HeapSampleBeginEvent("NewSpace", description));
+ // Lump all the string types together.
+ int string_number = 0;
+ int string_bytes = 0;
+#define INCREMENT(type, size, name, camel_name) \
+ string_number += info[type].number(); \
+ string_bytes += info[type].bytes();
+ STRING_TYPE_LIST(INCREMENT)
+#undef INCREMENT
+ if (string_number > 0) {
+ LOG(isolate,
+ HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
+ }
+
+ // Then do the other types.
+ for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
+ if (info[i].number() > 0) {
+ LOG(isolate,
+ HeapSampleItemEvent(info[i].name(), info[i].number(),
+ info[i].bytes()));
+ }
+ }
+ LOG(isolate, HeapSampleEndEvent("NewSpace", description));
+}
+#endif // ENABLE_LOGGING_AND_PROFILING
+
+
+void NewSpace::ReportStatistics() {
+#ifdef DEBUG
+ if (FLAG_heap_stats) {
+ float pct = static_cast<float>(Available()) / Capacity();
+ PrintF(" capacity: %" V8_PTR_PREFIX "d"
+ ", available: %" V8_PTR_PREFIX "d, %%%d\n",
+ Capacity(), Available(), static_cast<int>(pct*100));
+ PrintF("\n Object Histogram:\n");
+ for (int i = 0; i <= LAST_TYPE; i++) {
+ if (allocated_histogram_[i].number() > 0) {
+ PrintF(" %-34s%10d (%10d bytes)\n",
+ allocated_histogram_[i].name(),
+ allocated_histogram_[i].number(),
+ allocated_histogram_[i].bytes());
+ }
+ }
+ PrintF("\n");
+ }
+#endif // DEBUG
+
+#ifdef ENABLE_LOGGING_AND_PROFILING
+ if (FLAG_log_gc) {
+ Isolate* isolate = ISOLATE;
+ DoReportStatistics(isolate, allocated_histogram_, "allocated");
+ DoReportStatistics(isolate, promoted_histogram_, "promoted");
+ }
+#endif // ENABLE_LOGGING_AND_PROFILING
+}
+
+
+void NewSpace::RecordAllocation(HeapObject* obj) {
+ InstanceType type = obj->map()->instance_type();
+ ASSERT(0 <= type && type <= LAST_TYPE);
+ allocated_histogram_[type].increment_number(1);
+ allocated_histogram_[type].increment_bytes(obj->Size());
+}
+
+
+void NewSpace::RecordPromotion(HeapObject* obj) {
+ InstanceType type = obj->map()->instance_type();
+ ASSERT(0 <= type && type <= LAST_TYPE);
+ promoted_histogram_[type].increment_number(1);
+ promoted_histogram_[type].increment_bytes(obj->Size());
+}
+#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
+
+
+// -----------------------------------------------------------------------------
+// Free lists for old object spaces implementation
+
+void FreeListNode::set_size(Heap* heap, int size_in_bytes) {
+ ASSERT(size_in_bytes > 0);
+ ASSERT(IsAligned(size_in_bytes, kPointerSize));
+
+ // We write a map and possibly size information to the block. If the block
+ // is big enough to be a ByteArray with at least one extra word (the next
+ // pointer), we set its map to be the byte array map and its size to an
+ // appropriate array length for the desired size from HeapObject::Size().
+ // If the block is too small (eg, one or two words), to hold both a size
+ // field and a next pointer, we give it a filler map that gives it the
+ // correct size.
+ if (size_in_bytes > ByteArray::kHeaderSize) {
+ set_map(heap->raw_unchecked_byte_array_map());
+ // Can't use ByteArray::cast because it fails during deserialization.
+ ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this);
+ this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes));
+ } else if (size_in_bytes == kPointerSize) {
+ set_map(heap->raw_unchecked_one_pointer_filler_map());
+ } else if (size_in_bytes == 2 * kPointerSize) {
+ set_map(heap->raw_unchecked_two_pointer_filler_map());
+ } else {
+ UNREACHABLE();
+ }
+ // We would like to ASSERT(Size() == size_in_bytes) but this would fail during
+ // deserialization because the byte array map is not done yet.
+}
+
+
+Address FreeListNode::next(Heap* heap) {
+ ASSERT(IsFreeListNode(this));
+ if (map() == heap->raw_unchecked_byte_array_map()) {
+ ASSERT(Size() >= kNextOffset + kPointerSize);
+ return Memory::Address_at(address() + kNextOffset);
+ } else {
+ return Memory::Address_at(address() + kPointerSize);
+ }
+}
+
+
+void FreeListNode::set_next(Heap* heap, Address next) {
+ ASSERT(IsFreeListNode(this));
+ if (map() == heap->raw_unchecked_byte_array_map()) {
+ ASSERT(Size() >= kNextOffset + kPointerSize);
+ Memory::Address_at(address() + kNextOffset) = next;
+ } else {
+ Memory::Address_at(address() + kPointerSize) = next;
+ }
+}
+
+
+OldSpaceFreeList::OldSpaceFreeList(Heap* heap, AllocationSpace owner)
+ : heap_(heap),
+ owner_(owner) {
+ Reset();
+}
+
+
+void OldSpaceFreeList::Reset() {
+ available_ = 0;
+ for (int i = 0; i < kFreeListsLength; i++) {
+ free_[i].head_node_ = NULL;
+ }
+ needs_rebuild_ = false;
+ finger_ = kHead;
+ free_[kHead].next_size_ = kEnd;
+}
+
+
+void OldSpaceFreeList::RebuildSizeList() {
+ ASSERT(needs_rebuild_);
+ int cur = kHead;
+ for (int i = cur + 1; i < kFreeListsLength; i++) {
+ if (free_[i].head_node_ != NULL) {
+ free_[cur].next_size_ = i;
+ cur = i;
+ }
+ }
+ free_[cur].next_size_ = kEnd;
+ needs_rebuild_ = false;
+}
+
+
+int OldSpaceFreeList::Free(Address start, int size_in_bytes) {
+#ifdef DEBUG
+ Isolate::Current()->memory_allocator()->ZapBlock(start, size_in_bytes);
+#endif
+ FreeListNode* node = FreeListNode::FromAddress(start);
+ node->set_size(heap_, size_in_bytes);
+
+ // We don't use the freelists in compacting mode. This makes it more like a
+ // GC that only has mark-sweep-compact and doesn't have a mark-sweep
+ // collector.
+ if (FLAG_always_compact) {
+ return size_in_bytes;
+ }
+
+ // Early return to drop too-small blocks on the floor (one or two word
+ // blocks cannot hold a map pointer, a size field, and a pointer to the
+ // next block in the free list).
+ if (size_in_bytes < kMinBlockSize) {
+ return size_in_bytes;
+ }
+
+ // Insert other blocks at the head of an exact free list.
+ int index = size_in_bytes >> kPointerSizeLog2;
+ node->set_next(heap_, free_[index].head_node_);
+ free_[index].head_node_ = node->address();
+ available_ += size_in_bytes;
+ needs_rebuild_ = true;
+ return 0;
+}
+
+
+MaybeObject* OldSpaceFreeList::Allocate(int size_in_bytes, int* wasted_bytes) {
+ ASSERT(0 < size_in_bytes);
+ ASSERT(size_in_bytes <= kMaxBlockSize);
+ ASSERT(IsAligned(size_in_bytes, kPointerSize));
+
+ if (needs_rebuild_) RebuildSizeList();
+ int index = size_in_bytes >> kPointerSizeLog2;
+ // Check for a perfect fit.
+ if (free_[index].head_node_ != NULL) {
+ FreeListNode* node = FreeListNode::FromAddress(free_[index].head_node_);
+ // If this was the last block of its size, remove the size.
+ if ((free_[index].head_node_ = node->next(heap_)) == NULL)
+ RemoveSize(index);
+ available_ -= size_in_bytes;
+ *wasted_bytes = 0;
+ ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
+ return node;
+ }
+ // Search the size list for the best fit.
+ int prev = finger_ < index ? finger_ : kHead;
+ int cur = FindSize(index, &prev);
+ ASSERT(index < cur);
+ if (cur == kEnd) {
+ // No large enough size in list.
+ *wasted_bytes = 0;
+ return Failure::RetryAfterGC(owner_);
+ }
+ ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
+ int rem = cur - index;
+ int rem_bytes = rem << kPointerSizeLog2;
+ FreeListNode* cur_node = FreeListNode::FromAddress(free_[cur].head_node_);
+ ASSERT(cur_node->Size() == (cur << kPointerSizeLog2));
+ FreeListNode* rem_node = FreeListNode::FromAddress(free_[cur].head_node_ +
+ size_in_bytes);
+ // Distinguish the cases prev < rem < cur and rem <= prev < cur
+ // to avoid many redundant tests and calls to Insert/RemoveSize.
+ if (prev < rem) {
+ // Simple case: insert rem between prev and cur.
+ finger_ = prev;
+ free_[prev].next_size_ = rem;
+ // If this was the last block of size cur, remove the size.
+ if ((free_[cur].head_node_ = cur_node->next(heap_)) == NULL) {
+ free_[rem].next_size_ = free_[cur].next_size_;
+ } else {
+ free_[rem].next_size_ = cur;
+ }
+ // Add the remainder block.
+ rem_node->set_size(heap_, rem_bytes);
+ rem_node->set_next(heap_, free_[rem].head_node_);
+ free_[rem].head_node_ = rem_node->address();
+ } else {
+ // If this was the last block of size cur, remove the size.
+ if ((free_[cur].head_node_ = cur_node->next(heap_)) == NULL) {
+ finger_ = prev;
+ free_[prev].next_size_ = free_[cur].next_size_;
+ }
+ if (rem_bytes < kMinBlockSize) {
+ // Too-small remainder is wasted.
+ rem_node->set_size(heap_, rem_bytes);
+ available_ -= size_in_bytes + rem_bytes;
+ *wasted_bytes = rem_bytes;
+ return cur_node;
+ }
+ // Add the remainder block and, if needed, insert its size.
+ rem_node->set_size(heap_, rem_bytes);
+ rem_node->set_next(heap_, free_[rem].head_node_);
+ free_[rem].head_node_ = rem_node->address();
+ if (rem_node->next(heap_) == NULL) InsertSize(rem);
+ }
+ available_ -= size_in_bytes;
+ *wasted_bytes = 0;
+ return cur_node;
+}
+
+
+void OldSpaceFreeList::MarkNodes() {
+ for (int i = 0; i < kFreeListsLength; i++) {
+ Address cur_addr = free_[i].head_node_;
+ while (cur_addr != NULL) {
+ FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
+ cur_addr = cur_node->next(heap_);
+ cur_node->SetMark();
+ }
+ }
+}
+
+
+#ifdef DEBUG
+bool OldSpaceFreeList::Contains(FreeListNode* node) {
+ for (int i = 0; i < kFreeListsLength; i++) {
+ Address cur_addr = free_[i].head_node_;
+ while (cur_addr != NULL) {
+ FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
+ if (cur_node == node) return true;
+ cur_addr = cur_node->next(heap_);
+ }
+ }
+ return false;
+}
+#endif
+
+
+FixedSizeFreeList::FixedSizeFreeList(Heap* heap,
+ AllocationSpace owner,
+ int object_size)
+ : heap_(heap), owner_(owner), object_size_(object_size) {
+ Reset();
+}
+
+
+void FixedSizeFreeList::Reset() {
+ available_ = 0;
+ head_ = tail_ = NULL;
+}
+
+
+void FixedSizeFreeList::Free(Address start) {
+#ifdef DEBUG
+ Isolate::Current()->memory_allocator()->ZapBlock(start, object_size_);
+#endif
+ // We only use the freelists with mark-sweep.
+ ASSERT(!HEAP->mark_compact_collector()->IsCompacting());
+ FreeListNode* node = FreeListNode::FromAddress(start);
+ node->set_size(heap_, object_size_);
+ node->set_next(heap_, NULL);
+ if (head_ == NULL) {
+ tail_ = head_ = node->address();
+ } else {
+ FreeListNode::FromAddress(tail_)->set_next(heap_, node->address());
+ tail_ = node->address();
+ }
+ available_ += object_size_;
+}
+
+
+MaybeObject* FixedSizeFreeList::Allocate() {
+ if (head_ == NULL) {
+ return Failure::RetryAfterGC(owner_);
+ }
+
+ ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
+ FreeListNode* node = FreeListNode::FromAddress(head_);
+ head_ = node->next(heap_);
+ available_ -= object_size_;
+ return node;
+}
+
+
+void FixedSizeFreeList::MarkNodes() {
+ Address cur_addr = head_;
+ while (cur_addr != NULL && cur_addr != tail_) {
+ FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
+ cur_addr = cur_node->next(heap_);
+ cur_node->SetMark();
+ }
+}
+
+
+// -----------------------------------------------------------------------------
+// OldSpace implementation
+
+void OldSpace::PrepareForMarkCompact(bool will_compact) {
+ // Call prepare of the super class.
+ PagedSpace::PrepareForMarkCompact(will_compact);
+
+ if (will_compact) {
+ // Reset relocation info. During a compacting collection, everything in
+ // the space is considered 'available' and we will rediscover live data
+ // and waste during the collection.
+ MCResetRelocationInfo();
+ ASSERT(Available() == Capacity());
+ } else {
+ // During a non-compacting collection, everything below the linear
+ // allocation pointer is considered allocated (everything above is
+ // available) and we will rediscover available and wasted bytes during
+ // the collection.
+ accounting_stats_.AllocateBytes(free_list_.available());
+ accounting_stats_.FillWastedBytes(Waste());
+ }
+
+ // Clear the free list before a full GC---it will be rebuilt afterward.
+ free_list_.Reset();
+}
+
+
+void OldSpace::MCCommitRelocationInfo() {
+ // Update fast allocation info.
+ allocation_info_.top = mc_forwarding_info_.top;
+ allocation_info_.limit = mc_forwarding_info_.limit;
+ ASSERT(allocation_info_.VerifyPagedAllocation());
+
+ // The space is compacted and we haven't yet built free lists or
+ // wasted any space.
+ ASSERT(Waste() == 0);
+ ASSERT(AvailableFree() == 0);
+
+ // Build the free list for the space.
+ int computed_size = 0;
+ PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
+ while (it.has_next()) {
+ Page* p = it.next();
+ // Space below the relocation pointer is allocated.
+ computed_size +=
+ static_cast<int>(p->AllocationWatermark() - p->ObjectAreaStart());
+ if (it.has_next()) {
+ // Free the space at the top of the page.
+ int extra_size =
+ static_cast<int>(p->ObjectAreaEnd() - p->AllocationWatermark());
+ if (extra_size > 0) {
+ int wasted_bytes = free_list_.Free(p->AllocationWatermark(),
+ extra_size);
+ // The bytes we have just "freed" to add to the free list were
+ // already accounted as available.
+ accounting_stats_.WasteBytes(wasted_bytes);
+ }
+ }
+ }
+
+ // Make sure the computed size - based on the used portion of the pages in
+ // use - matches the size obtained while computing forwarding addresses.
+ ASSERT(computed_size == Size());
+}
+
+
+bool NewSpace::ReserveSpace(int bytes) {
+ // We can't reliably unpack a partial snapshot that needs more new space
+ // space than the minimum NewSpace size.
+ ASSERT(bytes <= InitialCapacity());
+ Address limit = allocation_info_.limit;
+ Address top = allocation_info_.top;
+ return limit - top >= bytes;
+}
+
+
+void PagedSpace::FreePages(Page* prev, Page* last) {
+ if (last == AllocationTopPage()) {
+ // Pages are already at the end of used pages.
+ return;
+ }
+
+ Page* first = NULL;
+
+ // Remove pages from the list.
+ if (prev == NULL) {
+ first = first_page_;
+ first_page_ = last->next_page();
+ } else {
+ first = prev->next_page();
+ heap()->isolate()->memory_allocator()->SetNextPage(
+ prev, last->next_page());
+ }
+
+ // Attach it after the last page.
+ heap()->isolate()->memory_allocator()->SetNextPage(last_page_, first);
+ last_page_ = last;
+ heap()->isolate()->memory_allocator()->SetNextPage(last, NULL);
+
+ // Clean them up.
+ do {
+ first->InvalidateWatermark(true);
+ first->SetAllocationWatermark(first->ObjectAreaStart());
+ first->SetCachedAllocationWatermark(first->ObjectAreaStart());
+ first->SetRegionMarks(Page::kAllRegionsCleanMarks);
+ first = first->next_page();
+ } while (first != NULL);
+
+ // Order of pages in this space might no longer be consistent with
+ // order of pages in chunks.
+ page_list_is_chunk_ordered_ = false;
+}
+
+
+void PagedSpace::RelinkPageListInChunkOrder(bool deallocate_blocks) {
+ const bool add_to_freelist = true;
+
+ // Mark used and unused pages to properly fill unused pages
+ // after reordering.
+ PageIterator all_pages_iterator(this, PageIterator::ALL_PAGES);
+ Page* last_in_use = AllocationTopPage();
+ bool in_use = true;
+
+ while (all_pages_iterator.has_next()) {
+ Page* p = all_pages_iterator.next();
+ p->SetWasInUseBeforeMC(in_use);
+ if (p == last_in_use) {
+ // We passed a page containing allocation top. All consequent
+ // pages are not used.
+ in_use = false;
+ }
+ }
+
+ if (page_list_is_chunk_ordered_) return;
+
+ Page* new_last_in_use = Page::FromAddress(NULL);
+ heap()->isolate()->memory_allocator()->RelinkPageListInChunkOrder(
+ this, &first_page_, &last_page_, &new_last_in_use);
+ ASSERT(new_last_in_use->is_valid());
+
+ if (new_last_in_use != last_in_use) {
+ // Current allocation top points to a page which is now in the middle
+ // of page list. We should move allocation top forward to the new last
+ // used page so various object iterators will continue to work properly.
+ int size_in_bytes = static_cast<int>(PageAllocationLimit(last_in_use) -
+ last_in_use->AllocationTop());
+
+ last_in_use->SetAllocationWatermark(last_in_use->AllocationTop());
+ if (size_in_bytes > 0) {
+ Address start = last_in_use->AllocationTop();
+ if (deallocate_blocks) {
+ accounting_stats_.AllocateBytes(size_in_bytes);
+ DeallocateBlock(start, size_in_bytes, add_to_freelist);
+ } else {
+ heap()->CreateFillerObjectAt(start, size_in_bytes);
+ }
+ }
+
+ // New last in use page was in the middle of the list before
+ // sorting so it full.
+ SetTop(new_last_in_use->AllocationTop());
+
+ ASSERT(AllocationTopPage() == new_last_in_use);
+ ASSERT(AllocationTopPage()->WasInUseBeforeMC());
+ }
+
+ PageIterator pages_in_use_iterator(this, PageIterator::PAGES_IN_USE);
+ while (pages_in_use_iterator.has_next()) {
+ Page* p = pages_in_use_iterator.next();
+ if (!p->WasInUseBeforeMC()) {
+ // Empty page is in the middle of a sequence of used pages.
+ // Allocate it as a whole and deallocate immediately.
+ int size_in_bytes = static_cast<int>(PageAllocationLimit(p) -
+ p->ObjectAreaStart());
+
+ p->SetAllocationWatermark(p->ObjectAreaStart());
+ Address start = p->ObjectAreaStart();
+ if (deallocate_blocks) {
+ accounting_stats_.AllocateBytes(size_in_bytes);
+ DeallocateBlock(start, size_in_bytes, add_to_freelist);
+ } else {
+ heap()->CreateFillerObjectAt(start, size_in_bytes);
+ }
+ }
+ }
+
+ page_list_is_chunk_ordered_ = true;
+}
+
+
+void PagedSpace::PrepareForMarkCompact(bool will_compact) {
+ if (will_compact) {
+ RelinkPageListInChunkOrder(false);
+ }
+}
+
+
+bool PagedSpace::ReserveSpace(int bytes) {
+ Address limit = allocation_info_.limit;
+ Address top = allocation_info_.top;
+ if (limit - top >= bytes) return true;
+
+ // There wasn't enough space in the current page. Lets put the rest
+ // of the page on the free list and start a fresh page.
+ PutRestOfCurrentPageOnFreeList(TopPageOf(allocation_info_));
+
+ Page* reserved_page = TopPageOf(allocation_info_);
+ int bytes_left_to_reserve = bytes;
+ while (bytes_left_to_reserve > 0) {
+ if (!reserved_page->next_page()->is_valid()) {
+ if (heap()->OldGenerationAllocationLimitReached()) return false;
+ Expand(reserved_page);
+ }
+ bytes_left_to_reserve -= Page::kPageSize;
+ reserved_page = reserved_page->next_page();
+ if (!reserved_page->is_valid()) return false;
+ }
+ ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid());
+ TopPageOf(allocation_info_)->next_page()->InvalidateWatermark(true);
+ SetAllocationInfo(&allocation_info_,
+ TopPageOf(allocation_info_)->next_page());
+ return true;
+}
+
+
+// You have to call this last, since the implementation from PagedSpace
+// doesn't know that memory was 'promised' to large object space.
+bool LargeObjectSpace::ReserveSpace(int bytes) {
+ return heap()->OldGenerationSpaceAvailable() >= bytes;
+}
+
+
+// Slow case for normal allocation. Try in order: (1) allocate in the next
+// page in the space, (2) allocate off the space's free list, (3) expand the
+// space, (4) fail.
+HeapObject* OldSpace::SlowAllocateRaw(int size_in_bytes) {
+ // Linear allocation in this space has failed. If there is another page
+ // in the space, move to that page and allocate there. This allocation
+ // should succeed (size_in_bytes should not be greater than a page's
+ // object area size).
+ Page* current_page = TopPageOf(allocation_info_);
+ if (current_page->next_page()->is_valid()) {
+ return AllocateInNextPage(current_page, size_in_bytes);
+ }
+
+ // There is no next page in this space. Try free list allocation unless that
+ // is currently forbidden.
+ if (!heap()->linear_allocation()) {
+ int wasted_bytes;
+ Object* result;
+ MaybeObject* maybe = free_list_.Allocate(size_in_bytes, &wasted_bytes);
+ accounting_stats_.WasteBytes(wasted_bytes);
+ if (maybe->ToObject(&result)) {
+ accounting_stats_.AllocateBytes(size_in_bytes);
+
+ HeapObject* obj = HeapObject::cast(result);
+ Page* p = Page::FromAddress(obj->address());
+
+ if (obj->address() >= p->AllocationWatermark()) {
+ // There should be no hole between the allocation watermark
+ // and allocated object address.
+ // Memory above the allocation watermark was not swept and
+ // might contain garbage pointers to new space.
+ ASSERT(obj->address() == p->AllocationWatermark());
+ p->SetAllocationWatermark(obj->address() + size_in_bytes);
+ }
+
+ return obj;
+ }
+ }
+
+ // Free list allocation failed and there is no next page. Fail if we have
+ // hit the old generation size limit that should cause a garbage
+ // collection.
+ if (!heap()->always_allocate() &&
+ heap()->OldGenerationAllocationLimitReached()) {
+ return NULL;
+ }
+
+ // Try to expand the space and allocate in the new next page.
+ ASSERT(!current_page->next_page()->is_valid());
+ if (Expand(current_page)) {
+ return AllocateInNextPage(current_page, size_in_bytes);
+ }
+
+ // Finally, fail.
+ return NULL;
+}
+
+
+void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
+ current_page->SetAllocationWatermark(allocation_info_.top);
+ int free_size =
+ static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
+ if (free_size > 0) {
+ int wasted_bytes = free_list_.Free(allocation_info_.top, free_size);
+ accounting_stats_.WasteBytes(wasted_bytes);
+ }
+}
+
+
+void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
+ current_page->SetAllocationWatermark(allocation_info_.top);
+ int free_size =
+ static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
+ // In the fixed space free list all the free list items have the right size.
+ // We use up the rest of the page while preserving this invariant.
+ while (free_size >= object_size_in_bytes_) {
+ free_list_.Free(allocation_info_.top);
+ allocation_info_.top += object_size_in_bytes_;
+ free_size -= object_size_in_bytes_;
+ accounting_stats_.WasteBytes(object_size_in_bytes_);
+ }
+}
+
+
+// Add the block at the top of the page to the space's free list, set the
+// allocation info to the next page (assumed to be one), and allocate
+// linearly there.
+HeapObject* OldSpace::AllocateInNextPage(Page* current_page,
+ int size_in_bytes) {
+ ASSERT(current_page->next_page()->is_valid());
+ Page* next_page = current_page->next_page();
+ next_page->ClearGCFields();
+ PutRestOfCurrentPageOnFreeList(current_page);
+ SetAllocationInfo(&allocation_info_, next_page);
+ return AllocateLinearly(&allocation_info_, size_in_bytes);
+}
+
+
+void OldSpace::DeallocateBlock(Address start,
+ int size_in_bytes,
+ bool add_to_freelist) {
+ Free(start, size_in_bytes, add_to_freelist);
+}
+
+
+#ifdef DEBUG
+void PagedSpace::ReportCodeStatistics() {
+ Isolate* isolate = Isolate::Current();
+ CommentStatistic* comments_statistics =
+ isolate->paged_space_comments_statistics();
+ ReportCodeKindStatistics();
+ PrintF("Code comment statistics (\" [ comment-txt : size/ "
+ "count (average)\"):\n");
+ for (int i = 0; i <= CommentStatistic::kMaxComments; i++) {
+ const CommentStatistic& cs = comments_statistics[i];
+ if (cs.size > 0) {
+ PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count,
+ cs.size/cs.count);
+ }
+ }
+ PrintF("\n");
+}
+
+
+void PagedSpace::ResetCodeStatistics() {
+ Isolate* isolate = Isolate::Current();
+ CommentStatistic* comments_statistics =
+ isolate->paged_space_comments_statistics();
+ ClearCodeKindStatistics();
+ for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
+ comments_statistics[i].Clear();
+ }
+ comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown";
+ comments_statistics[CommentStatistic::kMaxComments].size = 0;
+ comments_statistics[CommentStatistic::kMaxComments].count = 0;
+}
+
+
+// Adds comment to 'comment_statistics' table. Performance OK as long as
+// 'kMaxComments' is small
+static void EnterComment(Isolate* isolate, const char* comment, int delta) {
+ CommentStatistic* comments_statistics =
+ isolate->paged_space_comments_statistics();
+ // Do not count empty comments
+ if (delta <= 0) return;
+ CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments];
+ // Search for a free or matching entry in 'comments_statistics': 'cs'
+ // points to result.
+ for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
+ if (comments_statistics[i].comment == NULL) {
+ cs = &comments_statistics[i];
+ cs->comment = comment;
+ break;
+ } else if (strcmp(comments_statistics[i].comment, comment) == 0) {
+ cs = &comments_statistics[i];
+ break;
+ }
+ }
+ // Update entry for 'comment'
+ cs->size += delta;
+ cs->count += 1;
+}
+
+
+// Call for each nested comment start (start marked with '[ xxx', end marked
+// with ']'. RelocIterator 'it' must point to a comment reloc info.
+static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) {
+ ASSERT(!it->done());
+ ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT);
+ const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
+ if (tmp[0] != '[') {
+ // Not a nested comment; skip
+ return;
+ }
+
+ // Search for end of nested comment or a new nested comment
+ const char* const comment_txt =
+ reinterpret_cast<const char*>(it->rinfo()->data());
+ const byte* prev_pc = it->rinfo()->pc();
+ int flat_delta = 0;
+ it->next();
+ while (true) {
+ // All nested comments must be terminated properly, and therefore exit
+ // from loop.
+ ASSERT(!it->done());
+ if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
+ const char* const txt =
+ reinterpret_cast<const char*>(it->rinfo()->data());
+ flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc);
+ if (txt[0] == ']') break; // End of nested comment
+ // A new comment
+ CollectCommentStatistics(isolate, it);
+ // Skip code that was covered with previous comment
+ prev_pc = it->rinfo()->pc();
+ }
+ it->next();
+ }
+ EnterComment(isolate, comment_txt, flat_delta);
+}
+
+
+// Collects code size statistics:
+// - by code kind
+// - by code comment
+void PagedSpace::CollectCodeStatistics() {
+ Isolate* isolate = heap()->isolate();
+ HeapObjectIterator obj_it(this);
+ for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
+ if (obj->IsCode()) {
+ Code* code = Code::cast(obj);
+ isolate->code_kind_statistics()[code->kind()] += code->Size();
+ RelocIterator it(code);
+ int delta = 0;
+ const byte* prev_pc = code->instruction_start();
+ while (!it.done()) {
+ if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
+ delta += static_cast<int>(it.rinfo()->pc() - prev_pc);
+ CollectCommentStatistics(isolate, &it);
+ prev_pc = it.rinfo()->pc();
+ }
+ it.next();
+ }
+
+ ASSERT(code->instruction_start() <= prev_pc &&
+ prev_pc <= code->instruction_end());
+ delta += static_cast<int>(code->instruction_end() - prev_pc);
+ EnterComment(isolate, "NoComment", delta);
+ }
+ }
+}
+
+
+void OldSpace::ReportStatistics() {
+ int pct = static_cast<int>(Available() * 100 / Capacity());
+ PrintF(" capacity: %" V8_PTR_PREFIX "d"
+ ", waste: %" V8_PTR_PREFIX "d"
+ ", available: %" V8_PTR_PREFIX "d, %%%d\n",
+ Capacity(), Waste(), Available(), pct);
+
+ ClearHistograms();
+ HeapObjectIterator obj_it(this);
+ for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
+ CollectHistogramInfo(obj);
+ ReportHistogram(true);
+}
+#endif
+
+// -----------------------------------------------------------------------------
+// FixedSpace implementation
+
+void FixedSpace::PrepareForMarkCompact(bool will_compact) {
+ // Call prepare of the super class.
+ PagedSpace::PrepareForMarkCompact(will_compact);
+
+ if (will_compact) {
+ // Reset relocation info.
+ MCResetRelocationInfo();
+
+ // During a compacting collection, everything in the space is considered
+ // 'available' (set by the call to MCResetRelocationInfo) and we will
+ // rediscover live and wasted bytes during the collection.
+ ASSERT(Available() == Capacity());
+ } else {
+ // During a non-compacting collection, everything below the linear
+ // allocation pointer except wasted top-of-page blocks is considered
+ // allocated and we will rediscover available bytes during the
+ // collection.
+ accounting_stats_.AllocateBytes(free_list_.available());
+ }
+
+ // Clear the free list before a full GC---it will be rebuilt afterward.
+ free_list_.Reset();
+}
+
+
+void FixedSpace::MCCommitRelocationInfo() {
+ // Update fast allocation info.
+ allocation_info_.top = mc_forwarding_info_.top;
+ allocation_info_.limit = mc_forwarding_info_.limit;
+ ASSERT(allocation_info_.VerifyPagedAllocation());
+
+ // The space is compacted and we haven't yet wasted any space.
+ ASSERT(Waste() == 0);
+
+ // Update allocation_top of each page in use and compute waste.
+ int computed_size = 0;
+ PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
+ while (it.has_next()) {
+ Page* page = it.next();
+ Address page_top = page->AllocationTop();
+ computed_size += static_cast<int>(page_top - page->ObjectAreaStart());
+ if (it.has_next()) {
+ accounting_stats_.WasteBytes(
+ static_cast<int>(page->ObjectAreaEnd() - page_top));
+ page->SetAllocationWatermark(page_top);
+ }
+ }
+
+ // Make sure the computed size - based on the used portion of the
+ // pages in use - matches the size we adjust during allocation.
+ ASSERT(computed_size == Size());
+}
+
+
+// Slow case for normal allocation. Try in order: (1) allocate in the next
+// page in the space, (2) allocate off the space's free list, (3) expand the
+// space, (4) fail.
+HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) {
+ ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
+ // Linear allocation in this space has failed. If there is another page
+ // in the space, move to that page and allocate there. This allocation
+ // should succeed.
+ Page* current_page = TopPageOf(allocation_info_);
+ if (current_page->next_page()->is_valid()) {
+ return AllocateInNextPage(current_page, size_in_bytes);
+ }
+
+ // There is no next page in this space. Try free list allocation unless
+ // that is currently forbidden. The fixed space free list implicitly assumes
+ // that all free blocks are of the fixed size.
+ if (!heap()->linear_allocation()) {
+ Object* result;
+ MaybeObject* maybe = free_list_.Allocate();
+ if (maybe->ToObject(&result)) {
+ accounting_stats_.AllocateBytes(size_in_bytes);
+ HeapObject* obj = HeapObject::cast(result);
+ Page* p = Page::FromAddress(obj->address());
+
+ if (obj->address() >= p->AllocationWatermark()) {
+ // There should be no hole between the allocation watermark
+ // and allocated object address.
+ // Memory above the allocation watermark was not swept and
+ // might contain garbage pointers to new space.
+ ASSERT(obj->address() == p->AllocationWatermark());
+ p->SetAllocationWatermark(obj->address() + size_in_bytes);
+ }
+
+ return obj;
+ }
+ }
+
+ // Free list allocation failed and there is no next page. Fail if we have
+ // hit the old generation size limit that should cause a garbage
+ // collection.
+ if (!heap()->always_allocate() &&
+ heap()->OldGenerationAllocationLimitReached()) {
+ return NULL;
+ }
+
+ // Try to expand the space and allocate in the new next page.
+ ASSERT(!current_page->next_page()->is_valid());
+ if (Expand(current_page)) {
+ return AllocateInNextPage(current_page, size_in_bytes);
+ }
+
+ // Finally, fail.
+ return NULL;
+}
+
+
+// Move to the next page (there is assumed to be one) and allocate there.
+// The top of page block is always wasted, because it is too small to hold a
+// map.
+HeapObject* FixedSpace::AllocateInNextPage(Page* current_page,
+ int size_in_bytes) {
+ ASSERT(current_page->next_page()->is_valid());
+ ASSERT(allocation_info_.top == PageAllocationLimit(current_page));
+ ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
+ Page* next_page = current_page->next_page();
+ next_page->ClearGCFields();
+ current_page->SetAllocationWatermark(allocation_info_.top);
+ accounting_stats_.WasteBytes(page_extra_);
+ SetAllocationInfo(&allocation_info_, next_page);
+ return AllocateLinearly(&allocation_info_, size_in_bytes);
+}
+
+
+void FixedSpace::DeallocateBlock(Address start,
+ int size_in_bytes,
+ bool add_to_freelist) {
+ // Free-list elements in fixed space are assumed to have a fixed size.
+ // We break the free block into chunks and add them to the free list
+ // individually.
+ int size = object_size_in_bytes();
+ ASSERT(size_in_bytes % size == 0);
+ Address end = start + size_in_bytes;
+ for (Address a = start; a < end; a += size) {
+ Free(a, add_to_freelist);
+ }
+}
+
+
+#ifdef DEBUG
+void FixedSpace::ReportStatistics() {
+ int pct = static_cast<int>(Available() * 100 / Capacity());
+ PrintF(" capacity: %" V8_PTR_PREFIX "d"
+ ", waste: %" V8_PTR_PREFIX "d"
+ ", available: %" V8_PTR_PREFIX "d, %%%d\n",
+ Capacity(), Waste(), Available(), pct);
+
+ ClearHistograms();
+ HeapObjectIterator obj_it(this);
+ for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
+ CollectHistogramInfo(obj);
+ ReportHistogram(false);
+}
+#endif
+
+
+// -----------------------------------------------------------------------------
+// MapSpace implementation
+
+void MapSpace::PrepareForMarkCompact(bool will_compact) {
+ // Call prepare of the super class.
+ FixedSpace::PrepareForMarkCompact(will_compact);
+
+ if (will_compact) {
+ // Initialize map index entry.
+ int page_count = 0;
+ PageIterator it(this, PageIterator::ALL_PAGES);
+ while (it.has_next()) {
+ ASSERT_MAP_PAGE_INDEX(page_count);
+
+ Page* p = it.next();
+ ASSERT(p->mc_page_index == page_count);
+
+ page_addresses_[page_count++] = p->address();
+ }
+ }
+}
+
+
+#ifdef DEBUG
+void MapSpace::VerifyObject(HeapObject* object) {
+ // The object should be a map or a free-list node.
+ ASSERT(object->IsMap() || object->IsByteArray());
+}
+#endif
+
+
+// -----------------------------------------------------------------------------
+// GlobalPropertyCellSpace implementation
+
+#ifdef DEBUG
+void CellSpace::VerifyObject(HeapObject* object) {
+ // The object should be a global object property cell or a free-list node.
+ ASSERT(object->IsJSGlobalPropertyCell() ||
+ object->map() == heap()->two_pointer_filler_map());
+}
+#endif
+
+
+// -----------------------------------------------------------------------------
+// LargeObjectIterator
+
+LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
+ current_ = space->first_chunk_;
+ size_func_ = NULL;
+}
+
+
+LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space,
+ HeapObjectCallback size_func) {
+ current_ = space->first_chunk_;
+ size_func_ = size_func;
+}
+
+
+HeapObject* LargeObjectIterator::next() {
+ if (current_ == NULL) return NULL;
+
+ HeapObject* object = current_->GetObject();
+ current_ = current_->next();
+ return object;
+}
+
+
+// -----------------------------------------------------------------------------
+// LargeObjectChunk
+
+LargeObjectChunk* LargeObjectChunk::New(int size_in_bytes,
+ Executability executable) {
+ size_t requested = ChunkSizeFor(size_in_bytes);
+ size_t size;
+ Isolate* isolate = Isolate::Current();
+ void* mem = isolate->memory_allocator()->AllocateRawMemory(
+ requested, &size, executable);
+ if (mem == NULL) return NULL;
+
+ // The start of the chunk may be overlayed with a page so we have to
+ // make sure that the page flags fit in the size field.
+ ASSERT((size & Page::kPageFlagMask) == 0);
+
+ LOG(isolate, NewEvent("LargeObjectChunk", mem, size));
+ if (size < requested) {
+ isolate->memory_allocator()->FreeRawMemory(
+ mem, size, executable);
+ LOG(isolate, DeleteEvent("LargeObjectChunk", mem));
+ return NULL;
+ }
+
+ ObjectSpace space = (executable == EXECUTABLE)
+ ? kObjectSpaceCodeSpace
+ : kObjectSpaceLoSpace;
+ isolate->memory_allocator()->PerformAllocationCallback(
+ space, kAllocationActionAllocate, size);
+
+ LargeObjectChunk* chunk = reinterpret_cast<LargeObjectChunk*>(mem);
+ chunk->size_ = size;
+ Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
+ page->heap_ = isolate->heap();
+ return chunk;
+}
+
+
+int LargeObjectChunk::ChunkSizeFor(int size_in_bytes) {
+ int os_alignment = static_cast<int>(OS::AllocateAlignment());
+ if (os_alignment < Page::kPageSize) {
+ size_in_bytes += (Page::kPageSize - os_alignment);
+ }
+ return size_in_bytes + Page::kObjectStartOffset;
+}
+
+// -----------------------------------------------------------------------------
+// LargeObjectSpace
+
+LargeObjectSpace::LargeObjectSpace(Heap* heap, AllocationSpace id)
+ : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis
+ first_chunk_(NULL),
+ size_(0),
+ page_count_(0),
+ objects_size_(0) {}
+
+
+bool LargeObjectSpace::Setup() {
+ first_chunk_ = NULL;
+ size_ = 0;
+ page_count_ = 0;
+ objects_size_ = 0;
+ return true;
+}
+
+
+void LargeObjectSpace::TearDown() {
+ while (first_chunk_ != NULL) {
+ LargeObjectChunk* chunk = first_chunk_;
+ first_chunk_ = first_chunk_->next();
+ LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", chunk->address()));
+ Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
+ Executability executable =
+ page->IsPageExecutable() ? EXECUTABLE : NOT_EXECUTABLE;
+ ObjectSpace space = kObjectSpaceLoSpace;
+ if (executable == EXECUTABLE) space = kObjectSpaceCodeSpace;
+ size_t size = chunk->size();
+ heap()->isolate()->memory_allocator()->FreeRawMemory(chunk->address(),
+ size,
+ executable);
+ heap()->isolate()->memory_allocator()->PerformAllocationCallback(
+ space, kAllocationActionFree, size);
+ }
+
+ size_ = 0;
+ page_count_ = 0;
+ objects_size_ = 0;
+}
+
+
+#ifdef ENABLE_HEAP_PROTECTION
+
+void LargeObjectSpace::Protect() {
+ LargeObjectChunk* chunk = first_chunk_;
+ while (chunk != NULL) {
+ heap()->isolate()->memory_allocator()->Protect(chunk->address(),
+ chunk->size());
+ chunk = chunk->next();
+ }
+}
+
+
+void LargeObjectSpace::Unprotect() {
+ LargeObjectChunk* chunk = first_chunk_;
+ while (chunk != NULL) {
+ bool is_code = chunk->GetObject()->IsCode();
+ heap()->isolate()->memory_allocator()->Unprotect(chunk->address(),
+ chunk->size(), is_code ? EXECUTABLE : NOT_EXECUTABLE);
+ chunk = chunk->next();
+ }
+}
+
+#endif
+
+
+MaybeObject* LargeObjectSpace::AllocateRawInternal(int requested_size,
+ int object_size,
+ Executability executable) {
+ ASSERT(0 < object_size && object_size <= requested_size);
+
+ // Check if we want to force a GC before growing the old space further.
+ // If so, fail the allocation.
+ if (!heap()->always_allocate() &&
+ heap()->OldGenerationAllocationLimitReached()) {
+ return Failure::RetryAfterGC(identity());
+ }
+
+ LargeObjectChunk* chunk = LargeObjectChunk::New(requested_size, executable);
+ if (chunk == NULL) {
+ return Failure::RetryAfterGC(identity());
+ }
+
+ size_ += static_cast<int>(chunk->size());
+ objects_size_ += requested_size;
+ page_count_++;
+ chunk->set_next(first_chunk_);
+ first_chunk_ = chunk;
+
+ // Initialize page header.
+ Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
+ Address object_address = page->ObjectAreaStart();
+
+ // Clear the low order bit of the second word in the page to flag it as a
+ // large object page. If the chunk_size happened to be written there, its
+ // low order bit should already be clear.
+ page->SetIsLargeObjectPage(true);
+ page->SetIsPageExecutable(executable);
+ page->SetRegionMarks(Page::kAllRegionsCleanMarks);
+ return HeapObject::FromAddress(object_address);
+}
+
+
+MaybeObject* LargeObjectSpace::AllocateRawCode(int size_in_bytes) {
+ ASSERT(0 < size_in_bytes);
+ return AllocateRawInternal(size_in_bytes,
+ size_in_bytes,
+ EXECUTABLE);
+}
+
+
+MaybeObject* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) {
+ ASSERT(0 < size_in_bytes);
+ return AllocateRawInternal(size_in_bytes,
+ size_in_bytes,
+ NOT_EXECUTABLE);
+}
+
+
+MaybeObject* LargeObjectSpace::AllocateRaw(int size_in_bytes) {
+ ASSERT(0 < size_in_bytes);
+ return AllocateRawInternal(size_in_bytes,
+ size_in_bytes,
+ NOT_EXECUTABLE);
+}
+
+
+// GC support
+MaybeObject* LargeObjectSpace::FindObject(Address a) {
+ for (LargeObjectChunk* chunk = first_chunk_;
+ chunk != NULL;
+ chunk = chunk->next()) {
+ Address chunk_address = chunk->address();
+ if (chunk_address <= a && a < chunk_address + chunk->size()) {
+ return chunk->GetObject();
+ }
+ }
+ return Failure::Exception();
+}
+
+
+LargeObjectChunk* LargeObjectSpace::FindChunkContainingPc(Address pc) {
+ // TODO(853): Change this implementation to only find executable
+ // chunks and use some kind of hash-based approach to speed it up.
+ for (LargeObjectChunk* chunk = first_chunk_;
+ chunk != NULL;
+ chunk = chunk->next()) {
+ Address chunk_address = chunk->address();
+ if (chunk_address <= pc && pc < chunk_address + chunk->size()) {
+ return chunk;
+ }
+ }
+ return NULL;
+}
+
+
+void LargeObjectSpace::IterateDirtyRegions(ObjectSlotCallback copy_object) {
+ LargeObjectIterator it(this);
+ for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
+ // We only have code, sequential strings, or fixed arrays in large
+ // object space, and only fixed arrays can possibly contain pointers to
+ // the young generation.
+ if (object->IsFixedArray()) {
+ Page* page = Page::FromAddress(object->address());
+ uint32_t marks = page->GetRegionMarks();
+ uint32_t newmarks = Page::kAllRegionsCleanMarks;
+
+ if (marks != Page::kAllRegionsCleanMarks) {
+ // For a large page a single dirty mark corresponds to several
+ // regions (modulo 32). So we treat a large page as a sequence of
+ // normal pages of size Page::kPageSize having same dirty marks
+ // and subsequently iterate dirty regions on each of these pages.
+ Address start = object->address();
+ Address end = page->ObjectAreaEnd();
+ Address object_end = start + object->Size();
+
+ // Iterate regions of the first normal page covering object.
+ uint32_t first_region_number = page->GetRegionNumberForAddress(start);
+ newmarks |=
+ heap()->IterateDirtyRegions(marks >> first_region_number,
+ start,
+ end,
+ &Heap::IteratePointersInDirtyRegion,
+ copy_object) << first_region_number;
+
+ start = end;
+ end = start + Page::kPageSize;
+ while (end <= object_end) {
+ // Iterate next 32 regions.
+ newmarks |=
+ heap()->IterateDirtyRegions(marks,
+ start,
+ end,
+ &Heap::IteratePointersInDirtyRegion,
+ copy_object);
+ start = end;
+ end = start + Page::kPageSize;
+ }
+
+ if (start != object_end) {
+ // Iterate the last piece of an object which is less than
+ // Page::kPageSize.
+ newmarks |=
+ heap()->IterateDirtyRegions(marks,
+ start,
+ object_end,
+ &Heap::IteratePointersInDirtyRegion,
+ copy_object);
+ }
+
+ page->SetRegionMarks(newmarks);
+ }
+ }
+ }
+}
+
+
+void LargeObjectSpace::FreeUnmarkedObjects() {
+ LargeObjectChunk* previous = NULL;
+ LargeObjectChunk* current = first_chunk_;
+ while (current != NULL) {
+ HeapObject* object = current->GetObject();
+ if (object->IsMarked()) {
+ object->ClearMark();
+ heap()->mark_compact_collector()->tracer()->decrement_marked_count();
+ previous = current;
+ current = current->next();
+ } else {
+ Page* page = Page::FromAddress(RoundUp(current->address(),
+ Page::kPageSize));
+ Executability executable =
+ page->IsPageExecutable() ? EXECUTABLE : NOT_EXECUTABLE;
+ Address chunk_address = current->address();
+ size_t chunk_size = current->size();
+
+ // Cut the chunk out from the chunk list.
+ current = current->next();
+ if (previous == NULL) {
+ first_chunk_ = current;
+ } else {
+ previous->set_next(current);
+ }
+
+ // Free the chunk.
+ heap()->mark_compact_collector()->ReportDeleteIfNeeded(
+ object, heap()->isolate());
+ LiveObjectList::ProcessNonLive(object);
+
+ size_ -= static_cast<int>(chunk_size);
+ objects_size_ -= object->Size();
+ page_count_--;
+ ObjectSpace space = kObjectSpaceLoSpace;
+ if (executable == EXECUTABLE) space = kObjectSpaceCodeSpace;
+ heap()->isolate()->memory_allocator()->FreeRawMemory(chunk_address,
+ chunk_size,
+ executable);
+ heap()->isolate()->memory_allocator()->PerformAllocationCallback(
+ space, kAllocationActionFree, size_);
+ LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", chunk_address));
+ }
+ }
+}
+
+
+bool LargeObjectSpace::Contains(HeapObject* object) {
+ Address address = object->address();
+ if (heap()->new_space()->Contains(address)) {
+ return false;
+ }
+ Page* page = Page::FromAddress(address);
+
+ SLOW_ASSERT(!page->IsLargeObjectPage()
+ || !FindObject(address)->IsFailure());
+
+ return page->IsLargeObjectPage();
+}
+
+
+#ifdef DEBUG
+// We do not assume that the large object iterator works, because it depends
+// on the invariants we are checking during verification.
+void LargeObjectSpace::Verify() {
+ for (LargeObjectChunk* chunk = first_chunk_;
+ chunk != NULL;
+ chunk = chunk->next()) {
+ // Each chunk contains an object that starts at the large object page's
+ // object area start.
+ HeapObject* object = chunk->GetObject();
+ Page* page = Page::FromAddress(object->address());
+ ASSERT(object->address() == page->ObjectAreaStart());
+
+ // The first word should be a map, and we expect all map pointers to be
+ // in map space.
+ Map* map = object->map();
+ ASSERT(map->IsMap());
+ ASSERT(heap()->map_space()->Contains(map));
+
+ // We have only code, sequential strings, external strings
+ // (sequential strings that have been morphed into external
+ // strings), fixed arrays, and byte arrays in large object space.
+ ASSERT(object->IsCode() || object->IsSeqString() ||
+ object->IsExternalString() || object->IsFixedArray() ||
+ object->IsByteArray());
+
+ // The object itself should look OK.
+ object->Verify();
+
+ // Byte arrays and strings don't have interior pointers.
+ if (object->IsCode()) {
+ VerifyPointersVisitor code_visitor;
+ object->IterateBody(map->instance_type(),
+ object->Size(),
+ &code_visitor);
+ } else if (object->IsFixedArray()) {
+ // We loop over fixed arrays ourselves, rather then using the visitor,
+ // because the visitor doesn't support the start/offset iteration
+ // needed for IsRegionDirty.
+ FixedArray* array = FixedArray::cast(object);
+ for (int j = 0; j < array->length(); j++) {
+ Object* element = array->get(j);
+ if (element->IsHeapObject()) {
+ HeapObject* element_object = HeapObject::cast(element);
+ ASSERT(heap()->Contains(element_object));
+ ASSERT(element_object->map()->IsMap());
+ if (heap()->InNewSpace(element_object)) {
+ Address array_addr = object->address();
+ Address element_addr = array_addr + FixedArray::kHeaderSize +
+ j * kPointerSize;
+
+ ASSERT(Page::FromAddress(array_addr)->IsRegionDirty(element_addr));
+ }
+ }
+ }
+ }
+ }
+}
+
+
+void LargeObjectSpace::Print() {
+ LargeObjectIterator it(this);
+ for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
+ obj->Print();
+ }
+}
+
+
+void LargeObjectSpace::ReportStatistics() {
+ PrintF(" size: %" V8_PTR_PREFIX "d\n", size_);
+ int num_objects = 0;
+ ClearHistograms();
+ LargeObjectIterator it(this);
+ for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
+ num_objects++;
+ CollectHistogramInfo(obj);
+ }
+
+ PrintF(" number of objects %d, "
+ "size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_);
+ if (num_objects > 0) ReportHistogram(false);
+}
+
+
+void LargeObjectSpace::CollectCodeStatistics() {
+ Isolate* isolate = heap()->isolate();
+ LargeObjectIterator obj_it(this);
+ for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
+ if (obj->IsCode()) {
+ Code* code = Code::cast(obj);
+ isolate->code_kind_statistics()[code->kind()] += code->Size();
+ }
+ }
+}
+#endif // DEBUG
+
+} } // namespace v8::internal