summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/spaces-inl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/spaces-inl.h')
-rw-r--r--src/3rdparty/v8/src/spaces-inl.h529
1 files changed, 529 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/spaces-inl.h b/src/3rdparty/v8/src/spaces-inl.h
new file mode 100644
index 0000000..070f970
--- /dev/null
+++ b/src/3rdparty/v8/src/spaces-inl.h
@@ -0,0 +1,529 @@
+// Copyright 2006-2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef V8_SPACES_INL_H_
+#define V8_SPACES_INL_H_
+
+#include "isolate.h"
+#include "spaces.h"
+#include "v8memory.h"
+
+namespace v8 {
+namespace internal {
+
+
+// -----------------------------------------------------------------------------
+// PageIterator
+
+bool PageIterator::has_next() {
+ return prev_page_ != stop_page_;
+}
+
+
+Page* PageIterator::next() {
+ ASSERT(has_next());
+ prev_page_ = (prev_page_ == NULL)
+ ? space_->first_page_
+ : prev_page_->next_page();
+ return prev_page_;
+}
+
+
+// -----------------------------------------------------------------------------
+// Page
+
+Page* Page::next_page() {
+ return heap_->isolate()->memory_allocator()->GetNextPage(this);
+}
+
+
+Address Page::AllocationTop() {
+ PagedSpace* owner = heap_->isolate()->memory_allocator()->PageOwner(this);
+ return owner->PageAllocationTop(this);
+}
+
+
+Address Page::AllocationWatermark() {
+ PagedSpace* owner = heap_->isolate()->memory_allocator()->PageOwner(this);
+ if (this == owner->AllocationTopPage()) {
+ return owner->top();
+ }
+ return address() + AllocationWatermarkOffset();
+}
+
+
+uint32_t Page::AllocationWatermarkOffset() {
+ return static_cast<uint32_t>((flags_ & kAllocationWatermarkOffsetMask) >>
+ kAllocationWatermarkOffsetShift);
+}
+
+
+void Page::SetAllocationWatermark(Address allocation_watermark) {
+ if ((heap_->gc_state() == Heap::SCAVENGE) && IsWatermarkValid()) {
+ // When iterating intergenerational references during scavenge
+ // we might decide to promote an encountered young object.
+ // We will allocate a space for such an object and put it
+ // into the promotion queue to process it later.
+ // If space for object was allocated somewhere beyond allocation
+ // watermark this might cause garbage pointers to appear under allocation
+ // watermark. To avoid visiting them during dirty regions iteration
+ // which might be still in progress we store a valid allocation watermark
+ // value and mark this page as having an invalid watermark.
+ SetCachedAllocationWatermark(AllocationWatermark());
+ InvalidateWatermark(true);
+ }
+
+ flags_ = (flags_ & kFlagsMask) |
+ Offset(allocation_watermark) << kAllocationWatermarkOffsetShift;
+ ASSERT(AllocationWatermarkOffset()
+ == static_cast<uint32_t>(Offset(allocation_watermark)));
+}
+
+
+void Page::SetCachedAllocationWatermark(Address allocation_watermark) {
+ mc_first_forwarded = allocation_watermark;
+}
+
+
+Address Page::CachedAllocationWatermark() {
+ return mc_first_forwarded;
+}
+
+
+uint32_t Page::GetRegionMarks() {
+ return dirty_regions_;
+}
+
+
+void Page::SetRegionMarks(uint32_t marks) {
+ dirty_regions_ = marks;
+}
+
+
+int Page::GetRegionNumberForAddress(Address addr) {
+ // Each page is divided into 256 byte regions. Each region has a corresponding
+ // dirty mark bit in the page header. Region can contain intergenerational
+ // references iff its dirty mark is set.
+ // A normal 8K page contains exactly 32 regions so all region marks fit
+ // into 32-bit integer field. To calculate a region number we just divide
+ // offset inside page by region size.
+ // A large page can contain more then 32 regions. But we want to avoid
+ // additional write barrier code for distinguishing between large and normal
+ // pages so we just ignore the fact that addr points into a large page and
+ // calculate region number as if addr pointed into a normal 8K page. This way
+ // we get a region number modulo 32 so for large pages several regions might
+ // be mapped to a single dirty mark.
+ ASSERT_PAGE_ALIGNED(this->address());
+ STATIC_ASSERT((kPageAlignmentMask >> kRegionSizeLog2) < kBitsPerInt);
+
+ // We are using masking with kPageAlignmentMask instead of Page::Offset()
+ // to get an offset to the beginning of 8K page containing addr not to the
+ // beginning of actual page which can be bigger then 8K.
+ intptr_t offset_inside_normal_page = OffsetFrom(addr) & kPageAlignmentMask;
+ return static_cast<int>(offset_inside_normal_page >> kRegionSizeLog2);
+}
+
+
+uint32_t Page::GetRegionMaskForAddress(Address addr) {
+ return 1 << GetRegionNumberForAddress(addr);
+}
+
+
+uint32_t Page::GetRegionMaskForSpan(Address start, int length_in_bytes) {
+ uint32_t result = 0;
+ if (length_in_bytes >= kPageSize) {
+ result = kAllRegionsDirtyMarks;
+ } else if (length_in_bytes > 0) {
+ int start_region = GetRegionNumberForAddress(start);
+ int end_region =
+ GetRegionNumberForAddress(start + length_in_bytes - kPointerSize);
+ uint32_t start_mask = (~0) << start_region;
+ uint32_t end_mask = ~((~1) << end_region);
+ result = start_mask & end_mask;
+ // if end_region < start_region, the mask is ored.
+ if (result == 0) result = start_mask | end_mask;
+ }
+#ifdef DEBUG
+ if (FLAG_enable_slow_asserts) {
+ uint32_t expected = 0;
+ for (Address a = start; a < start + length_in_bytes; a += kPointerSize) {
+ expected |= GetRegionMaskForAddress(a);
+ }
+ ASSERT(expected == result);
+ }
+#endif
+ return result;
+}
+
+
+void Page::MarkRegionDirty(Address address) {
+ SetRegionMarks(GetRegionMarks() | GetRegionMaskForAddress(address));
+}
+
+
+bool Page::IsRegionDirty(Address address) {
+ return GetRegionMarks() & GetRegionMaskForAddress(address);
+}
+
+
+void Page::ClearRegionMarks(Address start, Address end, bool reaches_limit) {
+ int rstart = GetRegionNumberForAddress(start);
+ int rend = GetRegionNumberForAddress(end);
+
+ if (reaches_limit) {
+ end += 1;
+ }
+
+ if ((rend - rstart) == 0) {
+ return;
+ }
+
+ uint32_t bitmask = 0;
+
+ if ((OffsetFrom(start) & kRegionAlignmentMask) == 0
+ || (start == ObjectAreaStart())) {
+ // First region is fully covered
+ bitmask = 1 << rstart;
+ }
+
+ while (++rstart < rend) {
+ bitmask |= 1 << rstart;
+ }
+
+ if (bitmask) {
+ SetRegionMarks(GetRegionMarks() & ~bitmask);
+ }
+}
+
+
+void Page::FlipMeaningOfInvalidatedWatermarkFlag(Heap* heap) {
+ heap->page_watermark_invalidated_mark_ ^= 1 << WATERMARK_INVALIDATED;
+}
+
+
+bool Page::IsWatermarkValid() {
+ return (flags_ & (1 << WATERMARK_INVALIDATED)) !=
+ heap_->page_watermark_invalidated_mark_;
+}
+
+
+void Page::InvalidateWatermark(bool value) {
+ if (value) {
+ flags_ = (flags_ & ~(1 << WATERMARK_INVALIDATED)) |
+ heap_->page_watermark_invalidated_mark_;
+ } else {
+ flags_ =
+ (flags_ & ~(1 << WATERMARK_INVALIDATED)) |
+ (heap_->page_watermark_invalidated_mark_ ^
+ (1 << WATERMARK_INVALIDATED));
+ }
+
+ ASSERT(IsWatermarkValid() == !value);
+}
+
+
+bool Page::GetPageFlag(PageFlag flag) {
+ return (flags_ & static_cast<intptr_t>(1 << flag)) != 0;
+}
+
+
+void Page::SetPageFlag(PageFlag flag, bool value) {
+ if (value) {
+ flags_ |= static_cast<intptr_t>(1 << flag);
+ } else {
+ flags_ &= ~static_cast<intptr_t>(1 << flag);
+ }
+}
+
+
+void Page::ClearPageFlags() {
+ flags_ = 0;
+}
+
+
+void Page::ClearGCFields() {
+ InvalidateWatermark(true);
+ SetAllocationWatermark(ObjectAreaStart());
+ if (heap_->gc_state() == Heap::SCAVENGE) {
+ SetCachedAllocationWatermark(ObjectAreaStart());
+ }
+ SetRegionMarks(kAllRegionsCleanMarks);
+}
+
+
+bool Page::WasInUseBeforeMC() {
+ return GetPageFlag(WAS_IN_USE_BEFORE_MC);
+}
+
+
+void Page::SetWasInUseBeforeMC(bool was_in_use) {
+ SetPageFlag(WAS_IN_USE_BEFORE_MC, was_in_use);
+}
+
+
+bool Page::IsLargeObjectPage() {
+ return !GetPageFlag(IS_NORMAL_PAGE);
+}
+
+
+void Page::SetIsLargeObjectPage(bool is_large_object_page) {
+ SetPageFlag(IS_NORMAL_PAGE, !is_large_object_page);
+}
+
+bool Page::IsPageExecutable() {
+ return GetPageFlag(IS_EXECUTABLE);
+}
+
+
+void Page::SetIsPageExecutable(bool is_page_executable) {
+ SetPageFlag(IS_EXECUTABLE, is_page_executable);
+}
+
+
+// -----------------------------------------------------------------------------
+// MemoryAllocator
+
+void MemoryAllocator::ChunkInfo::init(Address a, size_t s, PagedSpace* o) {
+ address_ = a;
+ size_ = s;
+ owner_ = o;
+ executable_ = (o == NULL) ? NOT_EXECUTABLE : o->executable();
+ owner_identity_ = (o == NULL) ? FIRST_SPACE : o->identity();
+}
+
+
+bool MemoryAllocator::IsValidChunk(int chunk_id) {
+ if (!IsValidChunkId(chunk_id)) return false;
+
+ ChunkInfo& c = chunks_[chunk_id];
+ return (c.address() != NULL) && (c.size() != 0) && (c.owner() != NULL);
+}
+
+
+bool MemoryAllocator::IsValidChunkId(int chunk_id) {
+ return (0 <= chunk_id) && (chunk_id < max_nof_chunks_);
+}
+
+
+bool MemoryAllocator::IsPageInSpace(Page* p, PagedSpace* space) {
+ ASSERT(p->is_valid());
+
+ int chunk_id = GetChunkId(p);
+ if (!IsValidChunkId(chunk_id)) return false;
+
+ ChunkInfo& c = chunks_[chunk_id];
+ return (c.address() <= p->address()) &&
+ (p->address() < c.address() + c.size()) &&
+ (space == c.owner());
+}
+
+
+Page* MemoryAllocator::GetNextPage(Page* p) {
+ ASSERT(p->is_valid());
+ intptr_t raw_addr = p->opaque_header & ~Page::kPageAlignmentMask;
+ return Page::FromAddress(AddressFrom<Address>(raw_addr));
+}
+
+
+int MemoryAllocator::GetChunkId(Page* p) {
+ ASSERT(p->is_valid());
+ return static_cast<int>(p->opaque_header & Page::kPageAlignmentMask);
+}
+
+
+void MemoryAllocator::SetNextPage(Page* prev, Page* next) {
+ ASSERT(prev->is_valid());
+ int chunk_id = GetChunkId(prev);
+ ASSERT_PAGE_ALIGNED(next->address());
+ prev->opaque_header = OffsetFrom(next->address()) | chunk_id;
+}
+
+
+PagedSpace* MemoryAllocator::PageOwner(Page* page) {
+ int chunk_id = GetChunkId(page);
+ ASSERT(IsValidChunk(chunk_id));
+ return chunks_[chunk_id].owner();
+}
+
+
+bool MemoryAllocator::InInitialChunk(Address address) {
+ if (initial_chunk_ == NULL) return false;
+
+ Address start = static_cast<Address>(initial_chunk_->address());
+ return (start <= address) && (address < start + initial_chunk_->size());
+}
+
+
+#ifdef ENABLE_HEAP_PROTECTION
+
+void MemoryAllocator::Protect(Address start, size_t size) {
+ OS::Protect(start, size);
+}
+
+
+void MemoryAllocator::Unprotect(Address start,
+ size_t size,
+ Executability executable) {
+ OS::Unprotect(start, size, executable);
+}
+
+
+void MemoryAllocator::ProtectChunkFromPage(Page* page) {
+ int id = GetChunkId(page);
+ OS::Protect(chunks_[id].address(), chunks_[id].size());
+}
+
+
+void MemoryAllocator::UnprotectChunkFromPage(Page* page) {
+ int id = GetChunkId(page);
+ OS::Unprotect(chunks_[id].address(), chunks_[id].size(),
+ chunks_[id].owner()->executable() == EXECUTABLE);
+}
+
+#endif
+
+
+// --------------------------------------------------------------------------
+// PagedSpace
+
+bool PagedSpace::Contains(Address addr) {
+ Page* p = Page::FromAddress(addr);
+ if (!p->is_valid()) return false;
+ return heap()->isolate()->memory_allocator()->IsPageInSpace(p, this);
+}
+
+
+// Try linear allocation in the page of alloc_info's allocation top. Does
+// not contain slow case logic (eg, move to the next page or try free list
+// allocation) so it can be used by all the allocation functions and for all
+// the paged spaces.
+HeapObject* PagedSpace::AllocateLinearly(AllocationInfo* alloc_info,
+ int size_in_bytes) {
+ Address current_top = alloc_info->top;
+ Address new_top = current_top + size_in_bytes;
+ if (new_top > alloc_info->limit) return NULL;
+
+ alloc_info->top = new_top;
+ ASSERT(alloc_info->VerifyPagedAllocation());
+ accounting_stats_.AllocateBytes(size_in_bytes);
+ return HeapObject::FromAddress(current_top);
+}
+
+
+// Raw allocation.
+MaybeObject* PagedSpace::AllocateRaw(int size_in_bytes) {
+ ASSERT(HasBeenSetup());
+ ASSERT_OBJECT_SIZE(size_in_bytes);
+ HeapObject* object = AllocateLinearly(&allocation_info_, size_in_bytes);
+ if (object != NULL) return object;
+
+ object = SlowAllocateRaw(size_in_bytes);
+ if (object != NULL) return object;
+
+ return Failure::RetryAfterGC(identity());
+}
+
+
+// Reallocating (and promoting) objects during a compacting collection.
+MaybeObject* PagedSpace::MCAllocateRaw(int size_in_bytes) {
+ ASSERT(HasBeenSetup());
+ ASSERT_OBJECT_SIZE(size_in_bytes);
+ HeapObject* object = AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
+ if (object != NULL) return object;
+
+ object = SlowMCAllocateRaw(size_in_bytes);
+ if (object != NULL) return object;
+
+ return Failure::RetryAfterGC(identity());
+}
+
+
+// -----------------------------------------------------------------------------
+// LargeObjectChunk
+
+Address LargeObjectChunk::GetStartAddress() {
+ // Round the chunk address up to the nearest page-aligned address
+ // and return the heap object in that page.
+ Page* page = Page::FromAddress(RoundUp(address(), Page::kPageSize));
+ return page->ObjectAreaStart();
+}
+
+
+void LargeObjectChunk::Free(Executability executable) {
+ Isolate* isolate =
+ Page::FromAddress(RoundUp(address(), Page::kPageSize))->heap_->isolate();
+ isolate->memory_allocator()->FreeRawMemory(address(), size(), executable);
+}
+
+// -----------------------------------------------------------------------------
+// NewSpace
+
+MaybeObject* NewSpace::AllocateRawInternal(int size_in_bytes,
+ AllocationInfo* alloc_info) {
+ Address new_top = alloc_info->top + size_in_bytes;
+ if (new_top > alloc_info->limit) return Failure::RetryAfterGC();
+
+ Object* obj = HeapObject::FromAddress(alloc_info->top);
+ alloc_info->top = new_top;
+#ifdef DEBUG
+ SemiSpace* space =
+ (alloc_info == &allocation_info_) ? &to_space_ : &from_space_;
+ ASSERT(space->low() <= alloc_info->top
+ && alloc_info->top <= space->high()
+ && alloc_info->limit == space->high());
+#endif
+ return obj;
+}
+
+
+intptr_t LargeObjectSpace::Available() {
+ return LargeObjectChunk::ObjectSizeFor(
+ heap()->isolate()->memory_allocator()->Available());
+}
+
+
+template <typename StringType>
+void NewSpace::ShrinkStringAtAllocationBoundary(String* string, int length) {
+ ASSERT(length <= string->length());
+ ASSERT(string->IsSeqString());
+ ASSERT(string->address() + StringType::SizeFor(string->length()) ==
+ allocation_info_.top);
+ allocation_info_.top =
+ string->address() + StringType::SizeFor(length);
+ string->set_length(length);
+}
+
+
+bool FreeListNode::IsFreeListNode(HeapObject* object) {
+ return object->map() == HEAP->raw_unchecked_byte_array_map()
+ || object->map() == HEAP->raw_unchecked_one_pointer_filler_map()
+ || object->map() == HEAP->raw_unchecked_two_pointer_filler_map();
+}
+
+} } // namespace v8::internal
+
+#endif // V8_SPACES_INL_H_