summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/serialize.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/serialize.cc')
-rw-r--r--src/3rdparty/v8/src/serialize.cc1574
1 files changed, 1574 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/serialize.cc b/src/3rdparty/v8/src/serialize.cc
new file mode 100644
index 0000000..12e9613
--- /dev/null
+++ b/src/3rdparty/v8/src/serialize.cc
@@ -0,0 +1,1574 @@
+// Copyright 2006-2008 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#include "accessors.h"
+#include "api.h"
+#include "execution.h"
+#include "global-handles.h"
+#include "ic-inl.h"
+#include "natives.h"
+#include "platform.h"
+#include "runtime.h"
+#include "serialize.h"
+#include "stub-cache.h"
+#include "v8threads.h"
+#include "bootstrapper.h"
+
+namespace v8 {
+namespace internal {
+
+
+// -----------------------------------------------------------------------------
+// Coding of external references.
+
+// The encoding of an external reference. The type is in the high word.
+// The id is in the low word.
+static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
+ return static_cast<uint32_t>(type) << 16 | id;
+}
+
+
+static int* GetInternalPointer(StatsCounter* counter) {
+ // All counters refer to dummy_counter, if deserializing happens without
+ // setting up counters.
+ static int dummy_counter = 0;
+ return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
+}
+
+
+// ExternalReferenceTable is a helper class that defines the relationship
+// between external references and their encodings. It is used to build
+// hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder.
+class ExternalReferenceTable {
+ public:
+ static ExternalReferenceTable* instance(Isolate* isolate) {
+ ExternalReferenceTable* external_reference_table =
+ isolate->external_reference_table();
+ if (external_reference_table == NULL) {
+ external_reference_table = new ExternalReferenceTable(isolate);
+ isolate->set_external_reference_table(external_reference_table);
+ }
+ return external_reference_table;
+ }
+
+ int size() const { return refs_.length(); }
+
+ Address address(int i) { return refs_[i].address; }
+
+ uint32_t code(int i) { return refs_[i].code; }
+
+ const char* name(int i) { return refs_[i].name; }
+
+ int max_id(int code) { return max_id_[code]; }
+
+ private:
+ explicit ExternalReferenceTable(Isolate* isolate) : refs_(64) {
+ PopulateTable(isolate);
+ }
+ ~ExternalReferenceTable() { }
+
+ struct ExternalReferenceEntry {
+ Address address;
+ uint32_t code;
+ const char* name;
+ };
+
+ void PopulateTable(Isolate* isolate);
+
+ // For a few types of references, we can get their address from their id.
+ void AddFromId(TypeCode type,
+ uint16_t id,
+ const char* name,
+ Isolate* isolate);
+
+ // For other types of references, the caller will figure out the address.
+ void Add(Address address, TypeCode type, uint16_t id, const char* name);
+
+ List<ExternalReferenceEntry> refs_;
+ int max_id_[kTypeCodeCount];
+};
+
+
+void ExternalReferenceTable::AddFromId(TypeCode type,
+ uint16_t id,
+ const char* name,
+ Isolate* isolate) {
+ Address address;
+ switch (type) {
+ case C_BUILTIN: {
+ ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate);
+ address = ref.address();
+ break;
+ }
+ case BUILTIN: {
+ ExternalReference ref(static_cast<Builtins::Name>(id), isolate);
+ address = ref.address();
+ break;
+ }
+ case RUNTIME_FUNCTION: {
+ ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate);
+ address = ref.address();
+ break;
+ }
+ case IC_UTILITY: {
+ ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)),
+ isolate);
+ address = ref.address();
+ break;
+ }
+ default:
+ UNREACHABLE();
+ return;
+ }
+ Add(address, type, id, name);
+}
+
+
+void ExternalReferenceTable::Add(Address address,
+ TypeCode type,
+ uint16_t id,
+ const char* name) {
+ ASSERT_NE(NULL, address);
+ ExternalReferenceEntry entry;
+ entry.address = address;
+ entry.code = EncodeExternal(type, id);
+ entry.name = name;
+ ASSERT_NE(0, entry.code);
+ refs_.Add(entry);
+ if (id > max_id_[type]) max_id_[type] = id;
+}
+
+
+void ExternalReferenceTable::PopulateTable(Isolate* isolate) {
+ for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
+ max_id_[type_code] = 0;
+ }
+
+ // The following populates all of the different type of external references
+ // into the ExternalReferenceTable.
+ //
+ // NOTE: This function was originally 100k of code. It has since been
+ // rewritten to be mostly table driven, as the callback macro style tends to
+ // very easily cause code bloat. Please be careful in the future when adding
+ // new references.
+
+ struct RefTableEntry {
+ TypeCode type;
+ uint16_t id;
+ const char* name;
+ };
+
+ static const RefTableEntry ref_table[] = {
+ // Builtins
+#define DEF_ENTRY_C(name, ignored) \
+ { C_BUILTIN, \
+ Builtins::c_##name, \
+ "Builtins::" #name },
+
+ BUILTIN_LIST_C(DEF_ENTRY_C)
+#undef DEF_ENTRY_C
+
+#define DEF_ENTRY_C(name, ignored) \
+ { BUILTIN, \
+ Builtins::k##name, \
+ "Builtins::" #name },
+#define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored)
+
+ BUILTIN_LIST_C(DEF_ENTRY_C)
+ BUILTIN_LIST_A(DEF_ENTRY_A)
+ BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
+#undef DEF_ENTRY_C
+#undef DEF_ENTRY_A
+
+ // Runtime functions
+#define RUNTIME_ENTRY(name, nargs, ressize) \
+ { RUNTIME_FUNCTION, \
+ Runtime::k##name, \
+ "Runtime::" #name },
+
+ RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
+#undef RUNTIME_ENTRY
+
+ // IC utilities
+#define IC_ENTRY(name) \
+ { IC_UTILITY, \
+ IC::k##name, \
+ "IC::" #name },
+
+ IC_UTIL_LIST(IC_ENTRY)
+#undef IC_ENTRY
+ }; // end of ref_table[].
+
+ for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) {
+ AddFromId(ref_table[i].type,
+ ref_table[i].id,
+ ref_table[i].name,
+ isolate);
+ }
+
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ // Debug addresses
+ Add(Debug_Address(Debug::k_after_break_target_address).address(isolate),
+ DEBUG_ADDRESS,
+ Debug::k_after_break_target_address << kDebugIdShift,
+ "Debug::after_break_target_address()");
+ Add(Debug_Address(Debug::k_debug_break_slot_address).address(isolate),
+ DEBUG_ADDRESS,
+ Debug::k_debug_break_slot_address << kDebugIdShift,
+ "Debug::debug_break_slot_address()");
+ Add(Debug_Address(Debug::k_debug_break_return_address).address(isolate),
+ DEBUG_ADDRESS,
+ Debug::k_debug_break_return_address << kDebugIdShift,
+ "Debug::debug_break_return_address()");
+ Add(Debug_Address(Debug::k_restarter_frame_function_pointer).address(isolate),
+ DEBUG_ADDRESS,
+ Debug::k_restarter_frame_function_pointer << kDebugIdShift,
+ "Debug::restarter_frame_function_pointer_address()");
+#endif
+
+ // Stat counters
+ struct StatsRefTableEntry {
+ StatsCounter* (Counters::*counter)();
+ uint16_t id;
+ const char* name;
+ };
+
+ const StatsRefTableEntry stats_ref_table[] = {
+#define COUNTER_ENTRY(name, caption) \
+ { &Counters::name, \
+ Counters::k_##name, \
+ "Counters::" #name },
+
+ STATS_COUNTER_LIST_1(COUNTER_ENTRY)
+ STATS_COUNTER_LIST_2(COUNTER_ENTRY)
+#undef COUNTER_ENTRY
+ }; // end of stats_ref_table[].
+
+ Counters* counters = isolate->counters();
+ for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) {
+ Add(reinterpret_cast<Address>(GetInternalPointer(
+ (counters->*(stats_ref_table[i].counter))())),
+ STATS_COUNTER,
+ stats_ref_table[i].id,
+ stats_ref_table[i].name);
+ }
+
+ // Top addresses
+
+ const char* AddressNames[] = {
+#define C(name) "Isolate::" #name,
+ ISOLATE_ADDRESS_LIST(C)
+ ISOLATE_ADDRESS_LIST_PROF(C)
+ NULL
+#undef C
+ };
+
+ for (uint16_t i = 0; i < Isolate::k_isolate_address_count; ++i) {
+ Add(isolate->get_address_from_id((Isolate::AddressId)i),
+ TOP_ADDRESS, i, AddressNames[i]);
+ }
+
+ // Accessors
+#define ACCESSOR_DESCRIPTOR_DECLARATION(name) \
+ Add((Address)&Accessors::name, \
+ ACCESSOR, \
+ Accessors::k##name, \
+ "Accessors::" #name);
+
+ ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION)
+#undef ACCESSOR_DESCRIPTOR_DECLARATION
+
+ StubCache* stub_cache = isolate->stub_cache();
+
+ // Stub cache tables
+ Add(stub_cache->key_reference(StubCache::kPrimary).address(),
+ STUB_CACHE_TABLE,
+ 1,
+ "StubCache::primary_->key");
+ Add(stub_cache->value_reference(StubCache::kPrimary).address(),
+ STUB_CACHE_TABLE,
+ 2,
+ "StubCache::primary_->value");
+ Add(stub_cache->key_reference(StubCache::kSecondary).address(),
+ STUB_CACHE_TABLE,
+ 3,
+ "StubCache::secondary_->key");
+ Add(stub_cache->value_reference(StubCache::kSecondary).address(),
+ STUB_CACHE_TABLE,
+ 4,
+ "StubCache::secondary_->value");
+
+ // Runtime entries
+ Add(ExternalReference::perform_gc_function(isolate).address(),
+ RUNTIME_ENTRY,
+ 1,
+ "Runtime::PerformGC");
+ Add(ExternalReference::fill_heap_number_with_random_function(
+ isolate).address(),
+ RUNTIME_ENTRY,
+ 2,
+ "V8::FillHeapNumberWithRandom");
+ Add(ExternalReference::random_uint32_function(isolate).address(),
+ RUNTIME_ENTRY,
+ 3,
+ "V8::Random");
+ Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
+ RUNTIME_ENTRY,
+ 4,
+ "HandleScope::DeleteExtensions");
+
+ // Miscellaneous
+ Add(ExternalReference::the_hole_value_location(isolate).address(),
+ UNCLASSIFIED,
+ 2,
+ "Factory::the_hole_value().location()");
+ Add(ExternalReference::roots_address(isolate).address(),
+ UNCLASSIFIED,
+ 3,
+ "Heap::roots_address()");
+ Add(ExternalReference::address_of_stack_limit(isolate).address(),
+ UNCLASSIFIED,
+ 4,
+ "StackGuard::address_of_jslimit()");
+ Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
+ UNCLASSIFIED,
+ 5,
+ "StackGuard::address_of_real_jslimit()");
+#ifndef V8_INTERPRETED_REGEXP
+ Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
+ UNCLASSIFIED,
+ 6,
+ "RegExpStack::limit_address()");
+ Add(ExternalReference::address_of_regexp_stack_memory_address(
+ isolate).address(),
+ UNCLASSIFIED,
+ 7,
+ "RegExpStack::memory_address()");
+ Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
+ UNCLASSIFIED,
+ 8,
+ "RegExpStack::memory_size()");
+ Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
+ UNCLASSIFIED,
+ 9,
+ "OffsetsVector::static_offsets_vector");
+#endif // V8_INTERPRETED_REGEXP
+ Add(ExternalReference::new_space_start(isolate).address(),
+ UNCLASSIFIED,
+ 10,
+ "Heap::NewSpaceStart()");
+ Add(ExternalReference::new_space_mask(isolate).address(),
+ UNCLASSIFIED,
+ 11,
+ "Heap::NewSpaceMask()");
+ Add(ExternalReference::heap_always_allocate_scope_depth(isolate).address(),
+ UNCLASSIFIED,
+ 12,
+ "Heap::always_allocate_scope_depth()");
+ Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
+ UNCLASSIFIED,
+ 13,
+ "Heap::NewSpaceAllocationLimitAddress()");
+ Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
+ UNCLASSIFIED,
+ 14,
+ "Heap::NewSpaceAllocationTopAddress()");
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ Add(ExternalReference::debug_break(isolate).address(),
+ UNCLASSIFIED,
+ 15,
+ "Debug::Break()");
+ Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
+ UNCLASSIFIED,
+ 16,
+ "Debug::step_in_fp_addr()");
+#endif
+ Add(ExternalReference::double_fp_operation(Token::ADD, isolate).address(),
+ UNCLASSIFIED,
+ 17,
+ "add_two_doubles");
+ Add(ExternalReference::double_fp_operation(Token::SUB, isolate).address(),
+ UNCLASSIFIED,
+ 18,
+ "sub_two_doubles");
+ Add(ExternalReference::double_fp_operation(Token::MUL, isolate).address(),
+ UNCLASSIFIED,
+ 19,
+ "mul_two_doubles");
+ Add(ExternalReference::double_fp_operation(Token::DIV, isolate).address(),
+ UNCLASSIFIED,
+ 20,
+ "div_two_doubles");
+ Add(ExternalReference::double_fp_operation(Token::MOD, isolate).address(),
+ UNCLASSIFIED,
+ 21,
+ "mod_two_doubles");
+ Add(ExternalReference::compare_doubles(isolate).address(),
+ UNCLASSIFIED,
+ 22,
+ "compare_doubles");
+#ifndef V8_INTERPRETED_REGEXP
+ Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
+ UNCLASSIFIED,
+ 23,
+ "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
+ Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
+ UNCLASSIFIED,
+ 24,
+ "RegExpMacroAssembler*::CheckStackGuardState()");
+ Add(ExternalReference::re_grow_stack(isolate).address(),
+ UNCLASSIFIED,
+ 25,
+ "NativeRegExpMacroAssembler::GrowStack()");
+ Add(ExternalReference::re_word_character_map().address(),
+ UNCLASSIFIED,
+ 26,
+ "NativeRegExpMacroAssembler::word_character_map");
+#endif // V8_INTERPRETED_REGEXP
+ // Keyed lookup cache.
+ Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
+ UNCLASSIFIED,
+ 27,
+ "KeyedLookupCache::keys()");
+ Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
+ UNCLASSIFIED,
+ 28,
+ "KeyedLookupCache::field_offsets()");
+ Add(ExternalReference::transcendental_cache_array_address(isolate).address(),
+ UNCLASSIFIED,
+ 29,
+ "TranscendentalCache::caches()");
+ Add(ExternalReference::handle_scope_next_address().address(),
+ UNCLASSIFIED,
+ 30,
+ "HandleScope::next");
+ Add(ExternalReference::handle_scope_limit_address().address(),
+ UNCLASSIFIED,
+ 31,
+ "HandleScope::limit");
+ Add(ExternalReference::handle_scope_level_address().address(),
+ UNCLASSIFIED,
+ 32,
+ "HandleScope::level");
+ Add(ExternalReference::new_deoptimizer_function(isolate).address(),
+ UNCLASSIFIED,
+ 33,
+ "Deoptimizer::New()");
+ Add(ExternalReference::compute_output_frames_function(isolate).address(),
+ UNCLASSIFIED,
+ 34,
+ "Deoptimizer::ComputeOutputFrames()");
+ Add(ExternalReference::address_of_min_int().address(),
+ UNCLASSIFIED,
+ 35,
+ "LDoubleConstant::min_int");
+ Add(ExternalReference::address_of_one_half().address(),
+ UNCLASSIFIED,
+ 36,
+ "LDoubleConstant::one_half");
+ Add(ExternalReference::isolate_address().address(),
+ UNCLASSIFIED,
+ 37,
+ "isolate");
+ Add(ExternalReference::address_of_minus_zero().address(),
+ UNCLASSIFIED,
+ 38,
+ "LDoubleConstant::minus_zero");
+ Add(ExternalReference::address_of_negative_infinity().address(),
+ UNCLASSIFIED,
+ 39,
+ "LDoubleConstant::negative_infinity");
+ Add(ExternalReference::power_double_double_function(isolate).address(),
+ UNCLASSIFIED,
+ 40,
+ "power_double_double_function");
+ Add(ExternalReference::power_double_int_function(isolate).address(),
+ UNCLASSIFIED,
+ 41,
+ "power_double_int_function");
+ Add(ExternalReference::arguments_marker_location(isolate).address(),
+ UNCLASSIFIED,
+ 42,
+ "Factory::arguments_marker().location()");
+}
+
+
+ExternalReferenceEncoder::ExternalReferenceEncoder()
+ : encodings_(Match),
+ isolate_(Isolate::Current()) {
+ ExternalReferenceTable* external_references =
+ ExternalReferenceTable::instance(isolate_);
+ for (int i = 0; i < external_references->size(); ++i) {
+ Put(external_references->address(i), i);
+ }
+}
+
+
+uint32_t ExternalReferenceEncoder::Encode(Address key) const {
+ int index = IndexOf(key);
+ ASSERT(key == NULL || index >= 0);
+ return index >=0 ?
+ ExternalReferenceTable::instance(isolate_)->code(index) : 0;
+}
+
+
+const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
+ int index = IndexOf(key);
+ return index >= 0 ?
+ ExternalReferenceTable::instance(isolate_)->name(index) : NULL;
+}
+
+
+int ExternalReferenceEncoder::IndexOf(Address key) const {
+ if (key == NULL) return -1;
+ HashMap::Entry* entry =
+ const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false);
+ return entry == NULL
+ ? -1
+ : static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
+}
+
+
+void ExternalReferenceEncoder::Put(Address key, int index) {
+ HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
+ entry->value = reinterpret_cast<void*>(index);
+}
+
+
+ExternalReferenceDecoder::ExternalReferenceDecoder()
+ : encodings_(NewArray<Address*>(kTypeCodeCount)),
+ isolate_(Isolate::Current()) {
+ ExternalReferenceTable* external_references =
+ ExternalReferenceTable::instance(isolate_);
+ for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
+ int max = external_references->max_id(type) + 1;
+ encodings_[type] = NewArray<Address>(max + 1);
+ }
+ for (int i = 0; i < external_references->size(); ++i) {
+ Put(external_references->code(i), external_references->address(i));
+ }
+}
+
+
+ExternalReferenceDecoder::~ExternalReferenceDecoder() {
+ for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
+ DeleteArray(encodings_[type]);
+ }
+ DeleteArray(encodings_);
+}
+
+
+bool Serializer::serialization_enabled_ = false;
+bool Serializer::too_late_to_enable_now_ = false;
+
+
+Deserializer::Deserializer(SnapshotByteSource* source)
+ : isolate_(NULL),
+ source_(source),
+ external_reference_decoder_(NULL) {
+}
+
+
+// This routine both allocates a new object, and also keeps
+// track of where objects have been allocated so that we can
+// fix back references when deserializing.
+Address Deserializer::Allocate(int space_index, Space* space, int size) {
+ Address address;
+ if (!SpaceIsLarge(space_index)) {
+ ASSERT(!SpaceIsPaged(space_index) ||
+ size <= Page::kPageSize - Page::kObjectStartOffset);
+ MaybeObject* maybe_new_allocation;
+ if (space_index == NEW_SPACE) {
+ maybe_new_allocation =
+ reinterpret_cast<NewSpace*>(space)->AllocateRaw(size);
+ } else {
+ maybe_new_allocation =
+ reinterpret_cast<PagedSpace*>(space)->AllocateRaw(size);
+ }
+ Object* new_allocation = maybe_new_allocation->ToObjectUnchecked();
+ HeapObject* new_object = HeapObject::cast(new_allocation);
+ address = new_object->address();
+ high_water_[space_index] = address + size;
+ } else {
+ ASSERT(SpaceIsLarge(space_index));
+ LargeObjectSpace* lo_space = reinterpret_cast<LargeObjectSpace*>(space);
+ Object* new_allocation;
+ if (space_index == kLargeData) {
+ new_allocation = lo_space->AllocateRaw(size)->ToObjectUnchecked();
+ } else if (space_index == kLargeFixedArray) {
+ new_allocation =
+ lo_space->AllocateRawFixedArray(size)->ToObjectUnchecked();
+ } else {
+ ASSERT_EQ(kLargeCode, space_index);
+ new_allocation = lo_space->AllocateRawCode(size)->ToObjectUnchecked();
+ }
+ HeapObject* new_object = HeapObject::cast(new_allocation);
+ // Record all large objects in the same space.
+ address = new_object->address();
+ pages_[LO_SPACE].Add(address);
+ }
+ last_object_address_ = address;
+ return address;
+}
+
+
+// This returns the address of an object that has been described in the
+// snapshot as being offset bytes back in a particular space.
+HeapObject* Deserializer::GetAddressFromEnd(int space) {
+ int offset = source_->GetInt();
+ ASSERT(!SpaceIsLarge(space));
+ offset <<= kObjectAlignmentBits;
+ return HeapObject::FromAddress(high_water_[space] - offset);
+}
+
+
+// This returns the address of an object that has been described in the
+// snapshot as being offset bytes into a particular space.
+HeapObject* Deserializer::GetAddressFromStart(int space) {
+ int offset = source_->GetInt();
+ if (SpaceIsLarge(space)) {
+ // Large spaces have one object per 'page'.
+ return HeapObject::FromAddress(pages_[LO_SPACE][offset]);
+ }
+ offset <<= kObjectAlignmentBits;
+ if (space == NEW_SPACE) {
+ // New space has only one space - numbered 0.
+ return HeapObject::FromAddress(pages_[space][0] + offset);
+ }
+ ASSERT(SpaceIsPaged(space));
+ int page_of_pointee = offset >> kPageSizeBits;
+ Address object_address = pages_[space][page_of_pointee] +
+ (offset & Page::kPageAlignmentMask);
+ return HeapObject::FromAddress(object_address);
+}
+
+
+void Deserializer::Deserialize() {
+ isolate_ = Isolate::Current();
+ // Don't GC while deserializing - just expand the heap.
+ AlwaysAllocateScope always_allocate;
+ // Don't use the free lists while deserializing.
+ LinearAllocationScope allocate_linearly;
+ // No active threads.
+ ASSERT_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
+ // No active handles.
+ ASSERT(isolate_->handle_scope_implementer()->blocks()->is_empty());
+ // Make sure the entire partial snapshot cache is traversed, filling it with
+ // valid object pointers.
+ isolate_->set_serialize_partial_snapshot_cache_length(
+ Isolate::kPartialSnapshotCacheCapacity);
+ ASSERT_EQ(NULL, external_reference_decoder_);
+ external_reference_decoder_ = new ExternalReferenceDecoder();
+ isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
+ isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
+
+ isolate_->heap()->set_global_contexts_list(
+ isolate_->heap()->undefined_value());
+}
+
+
+void Deserializer::DeserializePartial(Object** root) {
+ isolate_ = Isolate::Current();
+ // Don't GC while deserializing - just expand the heap.
+ AlwaysAllocateScope always_allocate;
+ // Don't use the free lists while deserializing.
+ LinearAllocationScope allocate_linearly;
+ if (external_reference_decoder_ == NULL) {
+ external_reference_decoder_ = new ExternalReferenceDecoder();
+ }
+ VisitPointer(root);
+}
+
+
+Deserializer::~Deserializer() {
+ ASSERT(source_->AtEOF());
+ if (external_reference_decoder_) {
+ delete external_reference_decoder_;
+ external_reference_decoder_ = NULL;
+ }
+}
+
+
+// This is called on the roots. It is the driver of the deserialization
+// process. It is also called on the body of each function.
+void Deserializer::VisitPointers(Object** start, Object** end) {
+ // The space must be new space. Any other space would cause ReadChunk to try
+ // to update the remembered using NULL as the address.
+ ReadChunk(start, end, NEW_SPACE, NULL);
+}
+
+
+// This routine writes the new object into the pointer provided and then
+// returns true if the new object was in young space and false otherwise.
+// The reason for this strange interface is that otherwise the object is
+// written very late, which means the ByteArray map is not set up by the
+// time we need to use it to mark the space at the end of a page free (by
+// making it into a byte array).
+void Deserializer::ReadObject(int space_number,
+ Space* space,
+ Object** write_back) {
+ int size = source_->GetInt() << kObjectAlignmentBits;
+ Address address = Allocate(space_number, space, size);
+ *write_back = HeapObject::FromAddress(address);
+ Object** current = reinterpret_cast<Object**>(address);
+ Object** limit = current + (size >> kPointerSizeLog2);
+ if (FLAG_log_snapshot_positions) {
+ LOG(isolate_, SnapshotPositionEvent(address, source_->position()));
+ }
+ ReadChunk(current, limit, space_number, address);
+#ifdef DEBUG
+ bool is_codespace = (space == HEAP->code_space()) ||
+ ((space == HEAP->lo_space()) && (space_number == kLargeCode));
+ ASSERT(HeapObject::FromAddress(address)->IsCode() == is_codespace);
+#endif
+}
+
+
+// This macro is always used with a constant argument so it should all fold
+// away to almost nothing in the generated code. It might be nicer to do this
+// with the ternary operator but there are type issues with that.
+#define ASSIGN_DEST_SPACE(space_number) \
+ Space* dest_space; \
+ if (space_number == NEW_SPACE) { \
+ dest_space = isolate->heap()->new_space(); \
+ } else if (space_number == OLD_POINTER_SPACE) { \
+ dest_space = isolate->heap()->old_pointer_space(); \
+ } else if (space_number == OLD_DATA_SPACE) { \
+ dest_space = isolate->heap()->old_data_space(); \
+ } else if (space_number == CODE_SPACE) { \
+ dest_space = isolate->heap()->code_space(); \
+ } else if (space_number == MAP_SPACE) { \
+ dest_space = isolate->heap()->map_space(); \
+ } else if (space_number == CELL_SPACE) { \
+ dest_space = isolate->heap()->cell_space(); \
+ } else { \
+ ASSERT(space_number >= LO_SPACE); \
+ dest_space = isolate->heap()->lo_space(); \
+ }
+
+
+static const int kUnknownOffsetFromStart = -1;
+
+
+void Deserializer::ReadChunk(Object** current,
+ Object** limit,
+ int source_space,
+ Address address) {
+ Isolate* const isolate = isolate_;
+ while (current < limit) {
+ int data = source_->Get();
+ switch (data) {
+#define CASE_STATEMENT(where, how, within, space_number) \
+ case where + how + within + space_number: \
+ ASSERT((where & ~kPointedToMask) == 0); \
+ ASSERT((how & ~kHowToCodeMask) == 0); \
+ ASSERT((within & ~kWhereToPointMask) == 0); \
+ ASSERT((space_number & ~kSpaceMask) == 0);
+
+#define CASE_BODY(where, how, within, space_number_if_any, offset_from_start) \
+ { \
+ bool emit_write_barrier = false; \
+ bool current_was_incremented = false; \
+ int space_number = space_number_if_any == kAnyOldSpace ? \
+ (data & kSpaceMask) : space_number_if_any; \
+ if (where == kNewObject && how == kPlain && within == kStartOfObject) {\
+ ASSIGN_DEST_SPACE(space_number) \
+ ReadObject(space_number, dest_space, current); \
+ emit_write_barrier = \
+ (space_number == NEW_SPACE && source_space != NEW_SPACE); \
+ } else { \
+ Object* new_object = NULL; /* May not be a real Object pointer. */ \
+ if (where == kNewObject) { \
+ ASSIGN_DEST_SPACE(space_number) \
+ ReadObject(space_number, dest_space, &new_object); \
+ } else if (where == kRootArray) { \
+ int root_id = source_->GetInt(); \
+ new_object = isolate->heap()->roots_address()[root_id]; \
+ } else if (where == kPartialSnapshotCache) { \
+ int cache_index = source_->GetInt(); \
+ new_object = isolate->serialize_partial_snapshot_cache() \
+ [cache_index]; \
+ } else if (where == kExternalReference) { \
+ int reference_id = source_->GetInt(); \
+ Address address = external_reference_decoder_-> \
+ Decode(reference_id); \
+ new_object = reinterpret_cast<Object*>(address); \
+ } else if (where == kBackref) { \
+ emit_write_barrier = \
+ (space_number == NEW_SPACE && source_space != NEW_SPACE); \
+ new_object = GetAddressFromEnd(data & kSpaceMask); \
+ } else { \
+ ASSERT(where == kFromStart); \
+ if (offset_from_start == kUnknownOffsetFromStart) { \
+ emit_write_barrier = \
+ (space_number == NEW_SPACE && source_space != NEW_SPACE); \
+ new_object = GetAddressFromStart(data & kSpaceMask); \
+ } else { \
+ Address object_address = pages_[space_number][0] + \
+ (offset_from_start << kObjectAlignmentBits); \
+ new_object = HeapObject::FromAddress(object_address); \
+ } \
+ } \
+ if (within == kFirstInstruction) { \
+ Code* new_code_object = reinterpret_cast<Code*>(new_object); \
+ new_object = reinterpret_cast<Object*>( \
+ new_code_object->instruction_start()); \
+ } \
+ if (how == kFromCode) { \
+ Address location_of_branch_data = \
+ reinterpret_cast<Address>(current); \
+ Assembler::set_target_at(location_of_branch_data, \
+ reinterpret_cast<Address>(new_object)); \
+ if (within == kFirstInstruction) { \
+ location_of_branch_data += Assembler::kCallTargetSize; \
+ current = reinterpret_cast<Object**>(location_of_branch_data); \
+ current_was_incremented = true; \
+ } \
+ } else { \
+ *current = new_object; \
+ } \
+ } \
+ if (emit_write_barrier) { \
+ isolate->heap()->RecordWrite(address, static_cast<int>( \
+ reinterpret_cast<Address>(current) - address)); \
+ } \
+ if (!current_was_incremented) { \
+ current++; /* Increment current if it wasn't done above. */ \
+ } \
+ break; \
+ } \
+
+// This generates a case and a body for each space. The large object spaces are
+// very rare in snapshots so they are grouped in one body.
+#define ONE_PER_SPACE(where, how, within) \
+ CASE_STATEMENT(where, how, within, NEW_SPACE) \
+ CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart) \
+ CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \
+ CASE_BODY(where, how, within, OLD_DATA_SPACE, kUnknownOffsetFromStart) \
+ CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \
+ CASE_BODY(where, how, within, OLD_POINTER_SPACE, kUnknownOffsetFromStart) \
+ CASE_STATEMENT(where, how, within, CODE_SPACE) \
+ CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart) \
+ CASE_STATEMENT(where, how, within, CELL_SPACE) \
+ CASE_BODY(where, how, within, CELL_SPACE, kUnknownOffsetFromStart) \
+ CASE_STATEMENT(where, how, within, MAP_SPACE) \
+ CASE_BODY(where, how, within, MAP_SPACE, kUnknownOffsetFromStart) \
+ CASE_STATEMENT(where, how, within, kLargeData) \
+ CASE_STATEMENT(where, how, within, kLargeCode) \
+ CASE_STATEMENT(where, how, within, kLargeFixedArray) \
+ CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)
+
+// This generates a case and a body for the new space (which has to do extra
+// write barrier handling) and handles the other spaces with 8 fall-through
+// cases and one body.
+#define ALL_SPACES(where, how, within) \
+ CASE_STATEMENT(where, how, within, NEW_SPACE) \
+ CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart) \
+ CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \
+ CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \
+ CASE_STATEMENT(where, how, within, CODE_SPACE) \
+ CASE_STATEMENT(where, how, within, CELL_SPACE) \
+ CASE_STATEMENT(where, how, within, MAP_SPACE) \
+ CASE_STATEMENT(where, how, within, kLargeData) \
+ CASE_STATEMENT(where, how, within, kLargeCode) \
+ CASE_STATEMENT(where, how, within, kLargeFixedArray) \
+ CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)
+
+#define ONE_PER_CODE_SPACE(where, how, within) \
+ CASE_STATEMENT(where, how, within, CODE_SPACE) \
+ CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart) \
+ CASE_STATEMENT(where, how, within, kLargeCode) \
+ CASE_BODY(where, how, within, kLargeCode, kUnknownOffsetFromStart)
+
+#define EMIT_COMMON_REFERENCE_PATTERNS(pseudo_space_number, \
+ space_number, \
+ offset_from_start) \
+ CASE_STATEMENT(kFromStart, kPlain, kStartOfObject, pseudo_space_number) \
+ CASE_BODY(kFromStart, kPlain, kStartOfObject, space_number, offset_from_start)
+
+ // We generate 15 cases and bodies that process special tags that combine
+ // the raw data tag and the length into one byte.
+#define RAW_CASE(index, size) \
+ case kRawData + index: { \
+ byte* raw_data_out = reinterpret_cast<byte*>(current); \
+ source_->CopyRaw(raw_data_out, size); \
+ current = reinterpret_cast<Object**>(raw_data_out + size); \
+ break; \
+ }
+ COMMON_RAW_LENGTHS(RAW_CASE)
+#undef RAW_CASE
+
+ // Deserialize a chunk of raw data that doesn't have one of the popular
+ // lengths.
+ case kRawData: {
+ int size = source_->GetInt();
+ byte* raw_data_out = reinterpret_cast<byte*>(current);
+ source_->CopyRaw(raw_data_out, size);
+ current = reinterpret_cast<Object**>(raw_data_out + size);
+ break;
+ }
+
+ // Deserialize a new object and write a pointer to it to the current
+ // object.
+ ONE_PER_SPACE(kNewObject, kPlain, kStartOfObject)
+ // Support for direct instruction pointers in functions
+ ONE_PER_CODE_SPACE(kNewObject, kPlain, kFirstInstruction)
+ // Deserialize a new code object and write a pointer to its first
+ // instruction to the current code object.
+ ONE_PER_SPACE(kNewObject, kFromCode, kFirstInstruction)
+ // Find a recently deserialized object using its offset from the current
+ // allocation point and write a pointer to it to the current object.
+ ALL_SPACES(kBackref, kPlain, kStartOfObject)
+ // Find a recently deserialized code object using its offset from the
+ // current allocation point and write a pointer to its first instruction
+ // to the current code object or the instruction pointer in a function
+ // object.
+ ALL_SPACES(kBackref, kFromCode, kFirstInstruction)
+ ALL_SPACES(kBackref, kPlain, kFirstInstruction)
+ // Find an already deserialized object using its offset from the start
+ // and write a pointer to it to the current object.
+ ALL_SPACES(kFromStart, kPlain, kStartOfObject)
+ ALL_SPACES(kFromStart, kPlain, kFirstInstruction)
+ // Find an already deserialized code object using its offset from the
+ // start and write a pointer to its first instruction to the current code
+ // object.
+ ALL_SPACES(kFromStart, kFromCode, kFirstInstruction)
+ // Find an already deserialized object at one of the predetermined popular
+ // offsets from the start and write a pointer to it in the current object.
+ COMMON_REFERENCE_PATTERNS(EMIT_COMMON_REFERENCE_PATTERNS)
+ // Find an object in the roots array and write a pointer to it to the
+ // current object.
+ CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
+ CASE_BODY(kRootArray, kPlain, kStartOfObject, 0, kUnknownOffsetFromStart)
+ // Find an object in the partial snapshots cache and write a pointer to it
+ // to the current object.
+ CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
+ CASE_BODY(kPartialSnapshotCache,
+ kPlain,
+ kStartOfObject,
+ 0,
+ kUnknownOffsetFromStart)
+ // Find an code entry in the partial snapshots cache and
+ // write a pointer to it to the current object.
+ CASE_STATEMENT(kPartialSnapshotCache, kPlain, kFirstInstruction, 0)
+ CASE_BODY(kPartialSnapshotCache,
+ kPlain,
+ kFirstInstruction,
+ 0,
+ kUnknownOffsetFromStart)
+ // Find an external reference and write a pointer to it to the current
+ // object.
+ CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
+ CASE_BODY(kExternalReference,
+ kPlain,
+ kStartOfObject,
+ 0,
+ kUnknownOffsetFromStart)
+ // Find an external reference and write a pointer to it in the current
+ // code object.
+ CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
+ CASE_BODY(kExternalReference,
+ kFromCode,
+ kStartOfObject,
+ 0,
+ kUnknownOffsetFromStart)
+
+#undef CASE_STATEMENT
+#undef CASE_BODY
+#undef ONE_PER_SPACE
+#undef ALL_SPACES
+#undef EMIT_COMMON_REFERENCE_PATTERNS
+#undef ASSIGN_DEST_SPACE
+
+ case kNewPage: {
+ int space = source_->Get();
+ pages_[space].Add(last_object_address_);
+ if (space == CODE_SPACE) {
+ CPU::FlushICache(last_object_address_, Page::kPageSize);
+ }
+ break;
+ }
+
+ case kNativesStringResource: {
+ int index = source_->Get();
+ Vector<const char> source_vector = Natives::GetScriptSource(index);
+ NativesExternalStringResource* resource =
+ new NativesExternalStringResource(
+ isolate->bootstrapper(), source_vector.start());
+ *current++ = reinterpret_cast<Object*>(resource);
+ break;
+ }
+
+ case kSynchronize: {
+ // If we get here then that indicates that you have a mismatch between
+ // the number of GC roots when serializing and deserializing.
+ UNREACHABLE();
+ }
+
+ default:
+ UNREACHABLE();
+ }
+ }
+ ASSERT_EQ(current, limit);
+}
+
+
+void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) {
+ const int max_shift = ((kPointerSize * kBitsPerByte) / 7) * 7;
+ for (int shift = max_shift; shift > 0; shift -= 7) {
+ if (integer >= static_cast<uintptr_t>(1u) << shift) {
+ Put((static_cast<int>((integer >> shift)) & 0x7f) | 0x80, "IntPart");
+ }
+ }
+ PutSection(static_cast<int>(integer & 0x7f), "IntLastPart");
+}
+
+#ifdef DEBUG
+
+void Deserializer::Synchronize(const char* tag) {
+ int data = source_->Get();
+ // If this assert fails then that indicates that you have a mismatch between
+ // the number of GC roots when serializing and deserializing.
+ ASSERT_EQ(kSynchronize, data);
+ do {
+ int character = source_->Get();
+ if (character == 0) break;
+ if (FLAG_debug_serialization) {
+ PrintF("%c", character);
+ }
+ } while (true);
+ if (FLAG_debug_serialization) {
+ PrintF("\n");
+ }
+}
+
+
+void Serializer::Synchronize(const char* tag) {
+ sink_->Put(kSynchronize, tag);
+ int character;
+ do {
+ character = *tag++;
+ sink_->PutSection(character, "TagCharacter");
+ } while (character != 0);
+}
+
+#endif
+
+Serializer::Serializer(SnapshotByteSink* sink)
+ : sink_(sink),
+ current_root_index_(0),
+ external_reference_encoder_(new ExternalReferenceEncoder),
+ large_object_total_(0) {
+ // The serializer is meant to be used only to generate initial heap images
+ // from a context in which there is only one isolate.
+ ASSERT(Isolate::Current()->IsDefaultIsolate());
+ for (int i = 0; i <= LAST_SPACE; i++) {
+ fullness_[i] = 0;
+ }
+}
+
+
+Serializer::~Serializer() {
+ delete external_reference_encoder_;
+}
+
+
+void StartupSerializer::SerializeStrongReferences() {
+ Isolate* isolate = Isolate::Current();
+ // No active threads.
+ CHECK_EQ(NULL, Isolate::Current()->thread_manager()->FirstThreadStateInUse());
+ // No active or weak handles.
+ CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
+ CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
+ // We don't support serializing installed extensions.
+ for (RegisteredExtension* ext = v8::RegisteredExtension::first_extension();
+ ext != NULL;
+ ext = ext->next()) {
+ CHECK_NE(v8::INSTALLED, ext->state());
+ }
+ HEAP->IterateStrongRoots(this, VISIT_ONLY_STRONG);
+}
+
+
+void PartialSerializer::Serialize(Object** object) {
+ this->VisitPointer(object);
+ Isolate* isolate = Isolate::Current();
+
+ // After we have done the partial serialization the partial snapshot cache
+ // will contain some references needed to decode the partial snapshot. We
+ // fill it up with undefineds so it has a predictable length so the
+ // deserialization code doesn't need to know the length.
+ for (int index = isolate->serialize_partial_snapshot_cache_length();
+ index < Isolate::kPartialSnapshotCacheCapacity;
+ index++) {
+ isolate->serialize_partial_snapshot_cache()[index] =
+ isolate->heap()->undefined_value();
+ startup_serializer_->VisitPointer(
+ &isolate->serialize_partial_snapshot_cache()[index]);
+ }
+ isolate->set_serialize_partial_snapshot_cache_length(
+ Isolate::kPartialSnapshotCacheCapacity);
+}
+
+
+void Serializer::VisitPointers(Object** start, Object** end) {
+ for (Object** current = start; current < end; current++) {
+ if ((*current)->IsSmi()) {
+ sink_->Put(kRawData, "RawData");
+ sink_->PutInt(kPointerSize, "length");
+ for (int i = 0; i < kPointerSize; i++) {
+ sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
+ }
+ } else {
+ SerializeObject(*current, kPlain, kStartOfObject);
+ }
+ }
+}
+
+
+// This ensures that the partial snapshot cache keeps things alive during GC and
+// tracks their movement. When it is called during serialization of the startup
+// snapshot the partial snapshot is empty, so nothing happens. When the partial
+// (context) snapshot is created, this array is populated with the pointers that
+// the partial snapshot will need. As that happens we emit serialized objects to
+// the startup snapshot that correspond to the elements of this cache array. On
+// deserialization we therefore need to visit the cache array. This fills it up
+// with pointers to deserialized objects.
+void SerializerDeserializer::Iterate(ObjectVisitor* visitor) {
+ Isolate* isolate = Isolate::Current();
+ visitor->VisitPointers(
+ isolate->serialize_partial_snapshot_cache(),
+ &isolate->serialize_partial_snapshot_cache()[
+ isolate->serialize_partial_snapshot_cache_length()]);
+}
+
+
+// When deserializing we need to set the size of the snapshot cache. This means
+// the root iteration code (above) will iterate over array elements, writing the
+// references to deserialized objects in them.
+void SerializerDeserializer::SetSnapshotCacheSize(int size) {
+ Isolate::Current()->set_serialize_partial_snapshot_cache_length(size);
+}
+
+
+int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
+ Isolate* isolate = Isolate::Current();
+
+ for (int i = 0;
+ i < isolate->serialize_partial_snapshot_cache_length();
+ i++) {
+ Object* entry = isolate->serialize_partial_snapshot_cache()[i];
+ if (entry == heap_object) return i;
+ }
+
+ // We didn't find the object in the cache. So we add it to the cache and
+ // then visit the pointer so that it becomes part of the startup snapshot
+ // and we can refer to it from the partial snapshot.
+ int length = isolate->serialize_partial_snapshot_cache_length();
+ CHECK(length < Isolate::kPartialSnapshotCacheCapacity);
+ isolate->serialize_partial_snapshot_cache()[length] = heap_object;
+ startup_serializer_->VisitPointer(
+ &isolate->serialize_partial_snapshot_cache()[length]);
+ // We don't recurse from the startup snapshot generator into the partial
+ // snapshot generator.
+ ASSERT(length == isolate->serialize_partial_snapshot_cache_length());
+ isolate->set_serialize_partial_snapshot_cache_length(length + 1);
+ return length;
+}
+
+
+int PartialSerializer::RootIndex(HeapObject* heap_object) {
+ for (int i = 0; i < Heap::kRootListLength; i++) {
+ Object* root = HEAP->roots_address()[i];
+ if (root == heap_object) return i;
+ }
+ return kInvalidRootIndex;
+}
+
+
+// Encode the location of an already deserialized object in order to write its
+// location into a later object. We can encode the location as an offset from
+// the start of the deserialized objects or as an offset backwards from the
+// current allocation pointer.
+void Serializer::SerializeReferenceToPreviousObject(
+ int space,
+ int address,
+ HowToCode how_to_code,
+ WhereToPoint where_to_point) {
+ int offset = CurrentAllocationAddress(space) - address;
+ bool from_start = true;
+ if (SpaceIsPaged(space)) {
+ // For paged space it is simple to encode back from current allocation if
+ // the object is on the same page as the current allocation pointer.
+ if ((CurrentAllocationAddress(space) >> kPageSizeBits) ==
+ (address >> kPageSizeBits)) {
+ from_start = false;
+ address = offset;
+ }
+ } else if (space == NEW_SPACE) {
+ // For new space it is always simple to encode back from current allocation.
+ if (offset < address) {
+ from_start = false;
+ address = offset;
+ }
+ }
+ // If we are actually dealing with real offsets (and not a numbering of
+ // all objects) then we should shift out the bits that are always 0.
+ if (!SpaceIsLarge(space)) address >>= kObjectAlignmentBits;
+ if (from_start) {
+#define COMMON_REFS_CASE(pseudo_space, actual_space, offset) \
+ if (space == actual_space && address == offset && \
+ how_to_code == kPlain && where_to_point == kStartOfObject) { \
+ sink_->Put(kFromStart + how_to_code + where_to_point + \
+ pseudo_space, "RefSer"); \
+ } else /* NOLINT */
+ COMMON_REFERENCE_PATTERNS(COMMON_REFS_CASE)
+#undef COMMON_REFS_CASE
+ { /* NOLINT */
+ sink_->Put(kFromStart + how_to_code + where_to_point + space, "RefSer");
+ sink_->PutInt(address, "address");
+ }
+ } else {
+ sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer");
+ sink_->PutInt(address, "address");
+ }
+}
+
+
+void StartupSerializer::SerializeObject(
+ Object* o,
+ HowToCode how_to_code,
+ WhereToPoint where_to_point) {
+ CHECK(o->IsHeapObject());
+ HeapObject* heap_object = HeapObject::cast(o);
+
+ if (address_mapper_.IsMapped(heap_object)) {
+ int space = SpaceOfAlreadySerializedObject(heap_object);
+ int address = address_mapper_.MappedTo(heap_object);
+ SerializeReferenceToPreviousObject(space,
+ address,
+ how_to_code,
+ where_to_point);
+ } else {
+ // Object has not yet been serialized. Serialize it here.
+ ObjectSerializer object_serializer(this,
+ heap_object,
+ sink_,
+ how_to_code,
+ where_to_point);
+ object_serializer.Serialize();
+ }
+}
+
+
+void StartupSerializer::SerializeWeakReferences() {
+ for (int i = Isolate::Current()->serialize_partial_snapshot_cache_length();
+ i < Isolate::kPartialSnapshotCacheCapacity;
+ i++) {
+ sink_->Put(kRootArray + kPlain + kStartOfObject, "RootSerialization");
+ sink_->PutInt(Heap::kUndefinedValueRootIndex, "root_index");
+ }
+ HEAP->IterateWeakRoots(this, VISIT_ALL);
+}
+
+
+void PartialSerializer::SerializeObject(
+ Object* o,
+ HowToCode how_to_code,
+ WhereToPoint where_to_point) {
+ CHECK(o->IsHeapObject());
+ HeapObject* heap_object = HeapObject::cast(o);
+
+ int root_index;
+ if ((root_index = RootIndex(heap_object)) != kInvalidRootIndex) {
+ sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
+ sink_->PutInt(root_index, "root_index");
+ return;
+ }
+
+ if (ShouldBeInThePartialSnapshotCache(heap_object)) {
+ int cache_index = PartialSnapshotCacheIndex(heap_object);
+ sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
+ "PartialSnapshotCache");
+ sink_->PutInt(cache_index, "partial_snapshot_cache_index");
+ return;
+ }
+
+ // Pointers from the partial snapshot to the objects in the startup snapshot
+ // should go through the root array or through the partial snapshot cache.
+ // If this is not the case you may have to add something to the root array.
+ ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object));
+ // All the symbols that the partial snapshot needs should be either in the
+ // root table or in the partial snapshot cache.
+ ASSERT(!heap_object->IsSymbol());
+
+ if (address_mapper_.IsMapped(heap_object)) {
+ int space = SpaceOfAlreadySerializedObject(heap_object);
+ int address = address_mapper_.MappedTo(heap_object);
+ SerializeReferenceToPreviousObject(space,
+ address,
+ how_to_code,
+ where_to_point);
+ } else {
+ // Object has not yet been serialized. Serialize it here.
+ ObjectSerializer serializer(this,
+ heap_object,
+ sink_,
+ how_to_code,
+ where_to_point);
+ serializer.Serialize();
+ }
+}
+
+
+void Serializer::ObjectSerializer::Serialize() {
+ int space = Serializer::SpaceOfObject(object_);
+ int size = object_->Size();
+
+ sink_->Put(kNewObject + reference_representation_ + space,
+ "ObjectSerialization");
+ sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
+
+ LOG(i::Isolate::Current(),
+ SnapshotPositionEvent(object_->address(), sink_->Position()));
+
+ // Mark this object as already serialized.
+ bool start_new_page;
+ int offset = serializer_->Allocate(space, size, &start_new_page);
+ serializer_->address_mapper()->AddMapping(object_, offset);
+ if (start_new_page) {
+ sink_->Put(kNewPage, "NewPage");
+ sink_->PutSection(space, "NewPageSpace");
+ }
+
+ // Serialize the map (first word of the object).
+ serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject);
+
+ // Serialize the rest of the object.
+ CHECK_EQ(0, bytes_processed_so_far_);
+ bytes_processed_so_far_ = kPointerSize;
+ object_->IterateBody(object_->map()->instance_type(), size, this);
+ OutputRawData(object_->address() + size);
+}
+
+
+void Serializer::ObjectSerializer::VisitPointers(Object** start,
+ Object** end) {
+ Object** current = start;
+ while (current < end) {
+ while (current < end && (*current)->IsSmi()) current++;
+ if (current < end) OutputRawData(reinterpret_cast<Address>(current));
+
+ while (current < end && !(*current)->IsSmi()) {
+ serializer_->SerializeObject(*current, kPlain, kStartOfObject);
+ bytes_processed_so_far_ += kPointerSize;
+ current++;
+ }
+ }
+}
+
+
+void Serializer::ObjectSerializer::VisitExternalReferences(Address* start,
+ Address* end) {
+ Address references_start = reinterpret_cast<Address>(start);
+ OutputRawData(references_start);
+
+ for (Address* current = start; current < end; current++) {
+ sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
+ int reference_id = serializer_->EncodeExternalReference(*current);
+ sink_->PutInt(reference_id, "reference id");
+ }
+ bytes_processed_so_far_ += static_cast<int>((end - start) * kPointerSize);
+}
+
+
+void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
+ Address target_start = rinfo->target_address_address();
+ OutputRawData(target_start);
+ Address target = rinfo->target_address();
+ uint32_t encoding = serializer_->EncodeExternalReference(target);
+ CHECK(target == NULL ? encoding == 0 : encoding != 0);
+ int representation;
+ // Can't use a ternary operator because of gcc.
+ if (rinfo->IsCodedSpecially()) {
+ representation = kStartOfObject + kFromCode;
+ } else {
+ representation = kStartOfObject + kPlain;
+ }
+ sink_->Put(kExternalReference + representation, "ExternalReference");
+ sink_->PutInt(encoding, "reference id");
+ bytes_processed_so_far_ += rinfo->target_address_size();
+}
+
+
+void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
+ CHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
+ Address target_start = rinfo->target_address_address();
+ OutputRawData(target_start);
+ Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
+ serializer_->SerializeObject(target, kFromCode, kFirstInstruction);
+ bytes_processed_so_far_ += rinfo->target_address_size();
+}
+
+
+void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
+ Code* target = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
+ OutputRawData(entry_address);
+ serializer_->SerializeObject(target, kPlain, kFirstInstruction);
+ bytes_processed_so_far_ += kPointerSize;
+}
+
+
+void Serializer::ObjectSerializer::VisitGlobalPropertyCell(RelocInfo* rinfo) {
+ // We shouldn't have any global property cell references in code
+ // objects in the snapshot.
+ UNREACHABLE();
+}
+
+
+void Serializer::ObjectSerializer::VisitExternalAsciiString(
+ v8::String::ExternalAsciiStringResource** resource_pointer) {
+ Address references_start = reinterpret_cast<Address>(resource_pointer);
+ OutputRawData(references_start);
+ for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
+ Object* source = HEAP->natives_source_cache()->get(i);
+ if (!source->IsUndefined()) {
+ ExternalAsciiString* string = ExternalAsciiString::cast(source);
+ typedef v8::String::ExternalAsciiStringResource Resource;
+ Resource* resource = string->resource();
+ if (resource == *resource_pointer) {
+ sink_->Put(kNativesStringResource, "NativesStringResource");
+ sink_->PutSection(i, "NativesStringResourceEnd");
+ bytes_processed_so_far_ += sizeof(resource);
+ return;
+ }
+ }
+ }
+ // One of the strings in the natives cache should match the resource. We
+ // can't serialize any other kinds of external strings.
+ UNREACHABLE();
+}
+
+
+void Serializer::ObjectSerializer::OutputRawData(Address up_to) {
+ Address object_start = object_->address();
+ int up_to_offset = static_cast<int>(up_to - object_start);
+ int skipped = up_to_offset - bytes_processed_so_far_;
+ // This assert will fail if the reloc info gives us the target_address_address
+ // locations in a non-ascending order. Luckily that doesn't happen.
+ ASSERT(skipped >= 0);
+ if (skipped != 0) {
+ Address base = object_start + bytes_processed_so_far_;
+#define RAW_CASE(index, length) \
+ if (skipped == length) { \
+ sink_->PutSection(kRawData + index, "RawDataFixed"); \
+ } else /* NOLINT */
+ COMMON_RAW_LENGTHS(RAW_CASE)
+#undef RAW_CASE
+ { /* NOLINT */
+ sink_->Put(kRawData, "RawData");
+ sink_->PutInt(skipped, "length");
+ }
+ for (int i = 0; i < skipped; i++) {
+ unsigned int data = base[i];
+ sink_->PutSection(data, "Byte");
+ }
+ bytes_processed_so_far_ += skipped;
+ }
+}
+
+
+int Serializer::SpaceOfObject(HeapObject* object) {
+ for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
+ AllocationSpace s = static_cast<AllocationSpace>(i);
+ if (HEAP->InSpace(object, s)) {
+ if (i == LO_SPACE) {
+ if (object->IsCode()) {
+ return kLargeCode;
+ } else if (object->IsFixedArray()) {
+ return kLargeFixedArray;
+ } else {
+ return kLargeData;
+ }
+ }
+ return i;
+ }
+ }
+ UNREACHABLE();
+ return 0;
+}
+
+
+int Serializer::SpaceOfAlreadySerializedObject(HeapObject* object) {
+ for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
+ AllocationSpace s = static_cast<AllocationSpace>(i);
+ if (HEAP->InSpace(object, s)) {
+ return i;
+ }
+ }
+ UNREACHABLE();
+ return 0;
+}
+
+
+int Serializer::Allocate(int space, int size, bool* new_page) {
+ CHECK(space >= 0 && space < kNumberOfSpaces);
+ if (SpaceIsLarge(space)) {
+ // In large object space we merely number the objects instead of trying to
+ // determine some sort of address.
+ *new_page = true;
+ large_object_total_ += size;
+ return fullness_[LO_SPACE]++;
+ }
+ *new_page = false;
+ if (fullness_[space] == 0) {
+ *new_page = true;
+ }
+ if (SpaceIsPaged(space)) {
+ // Paged spaces are a little special. We encode their addresses as if the
+ // pages were all contiguous and each page were filled up in the range
+ // 0 - Page::kObjectAreaSize. In practice the pages may not be contiguous
+ // and allocation does not start at offset 0 in the page, but this scheme
+ // means the deserializer can get the page number quickly by shifting the
+ // serialized address.
+ CHECK(IsPowerOf2(Page::kPageSize));
+ int used_in_this_page = (fullness_[space] & (Page::kPageSize - 1));
+ CHECK(size <= Page::kObjectAreaSize);
+ if (used_in_this_page + size > Page::kObjectAreaSize) {
+ *new_page = true;
+ fullness_[space] = RoundUp(fullness_[space], Page::kPageSize);
+ }
+ }
+ int allocation_address = fullness_[space];
+ fullness_[space] = allocation_address + size;
+ return allocation_address;
+}
+
+
+} } // namespace v8::internal