summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/runtime.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/runtime.cc')
-rw-r--r--src/3rdparty/v8/src/runtime.cc11949
1 files changed, 11949 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/runtime.cc b/src/3rdparty/v8/src/runtime.cc
new file mode 100644
index 0000000..ff9f914
--- /dev/null
+++ b/src/3rdparty/v8/src/runtime.cc
@@ -0,0 +1,11949 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <stdlib.h>
+
+#include "v8.h"
+
+#include "accessors.h"
+#include "api.h"
+#include "arguments.h"
+#include "codegen.h"
+#include "compilation-cache.h"
+#include "compiler.h"
+#include "cpu.h"
+#include "dateparser-inl.h"
+#include "debug.h"
+#include "deoptimizer.h"
+#include "execution.h"
+#include "global-handles.h"
+#include "jsregexp.h"
+#include "liveedit.h"
+#include "liveobjectlist-inl.h"
+#include "parser.h"
+#include "platform.h"
+#include "runtime.h"
+#include "runtime-profiler.h"
+#include "scopeinfo.h"
+#include "smart-pointer.h"
+#include "stub-cache.h"
+#include "v8threads.h"
+#include "string-search.h"
+
+namespace v8 {
+namespace internal {
+
+
+#define RUNTIME_ASSERT(value) \
+ if (!(value)) return isolate->ThrowIllegalOperation();
+
+// Cast the given object to a value of the specified type and store
+// it in a variable with the given name. If the object is not of the
+// expected type call IllegalOperation and return.
+#define CONVERT_CHECKED(Type, name, obj) \
+ RUNTIME_ASSERT(obj->Is##Type()); \
+ Type* name = Type::cast(obj);
+
+#define CONVERT_ARG_CHECKED(Type, name, index) \
+ RUNTIME_ASSERT(args[index]->Is##Type()); \
+ Handle<Type> name = args.at<Type>(index);
+
+// Cast the given object to a boolean and store it in a variable with
+// the given name. If the object is not a boolean call IllegalOperation
+// and return.
+#define CONVERT_BOOLEAN_CHECKED(name, obj) \
+ RUNTIME_ASSERT(obj->IsBoolean()); \
+ bool name = (obj)->IsTrue();
+
+// Cast the given object to a Smi and store its value in an int variable
+// with the given name. If the object is not a Smi call IllegalOperation
+// and return.
+#define CONVERT_SMI_CHECKED(name, obj) \
+ RUNTIME_ASSERT(obj->IsSmi()); \
+ int name = Smi::cast(obj)->value();
+
+// Cast the given object to a double and store it in a variable with
+// the given name. If the object is not a number (as opposed to
+// the number not-a-number) call IllegalOperation and return.
+#define CONVERT_DOUBLE_CHECKED(name, obj) \
+ RUNTIME_ASSERT(obj->IsNumber()); \
+ double name = (obj)->Number();
+
+// Call the specified converter on the object *comand store the result in
+// a variable of the specified type with the given name. If the
+// object is not a Number call IllegalOperation and return.
+#define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \
+ RUNTIME_ASSERT(obj->IsNumber()); \
+ type name = NumberTo##Type(obj);
+
+
+MUST_USE_RESULT static MaybeObject* DeepCopyBoilerplate(Isolate* isolate,
+ JSObject* boilerplate) {
+ StackLimitCheck check(isolate);
+ if (check.HasOverflowed()) return isolate->StackOverflow();
+
+ Heap* heap = isolate->heap();
+ Object* result;
+ { MaybeObject* maybe_result = heap->CopyJSObject(boilerplate);
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+ JSObject* copy = JSObject::cast(result);
+
+ // Deep copy local properties.
+ if (copy->HasFastProperties()) {
+ FixedArray* properties = copy->properties();
+ for (int i = 0; i < properties->length(); i++) {
+ Object* value = properties->get(i);
+ if (value->IsJSObject()) {
+ JSObject* js_object = JSObject::cast(value);
+ { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, js_object);
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+ properties->set(i, result);
+ }
+ }
+ int nof = copy->map()->inobject_properties();
+ for (int i = 0; i < nof; i++) {
+ Object* value = copy->InObjectPropertyAt(i);
+ if (value->IsJSObject()) {
+ JSObject* js_object = JSObject::cast(value);
+ { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, js_object);
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+ copy->InObjectPropertyAtPut(i, result);
+ }
+ }
+ } else {
+ { MaybeObject* maybe_result =
+ heap->AllocateFixedArray(copy->NumberOfLocalProperties(NONE));
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+ FixedArray* names = FixedArray::cast(result);
+ copy->GetLocalPropertyNames(names, 0);
+ for (int i = 0; i < names->length(); i++) {
+ ASSERT(names->get(i)->IsString());
+ String* key_string = String::cast(names->get(i));
+ PropertyAttributes attributes =
+ copy->GetLocalPropertyAttribute(key_string);
+ // Only deep copy fields from the object literal expression.
+ // In particular, don't try to copy the length attribute of
+ // an array.
+ if (attributes != NONE) continue;
+ Object* value =
+ copy->GetProperty(key_string, &attributes)->ToObjectUnchecked();
+ if (value->IsJSObject()) {
+ JSObject* js_object = JSObject::cast(value);
+ { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate, js_object);
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+ { MaybeObject* maybe_result =
+ // Creating object copy for literals. No strict mode needed.
+ copy->SetProperty(key_string, result, NONE, kNonStrictMode);
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+ }
+ }
+ }
+
+ // Deep copy local elements.
+ // Pixel elements cannot be created using an object literal.
+ ASSERT(!copy->HasExternalArrayElements());
+ switch (copy->GetElementsKind()) {
+ case JSObject::FAST_ELEMENTS: {
+ FixedArray* elements = FixedArray::cast(copy->elements());
+ if (elements->map() == heap->fixed_cow_array_map()) {
+ isolate->counters()->cow_arrays_created_runtime()->Increment();
+#ifdef DEBUG
+ for (int i = 0; i < elements->length(); i++) {
+ ASSERT(!elements->get(i)->IsJSObject());
+ }
+#endif
+ } else {
+ for (int i = 0; i < elements->length(); i++) {
+ Object* value = elements->get(i);
+ if (value->IsJSObject()) {
+ JSObject* js_object = JSObject::cast(value);
+ { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate,
+ js_object);
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+ elements->set(i, result);
+ }
+ }
+ }
+ break;
+ }
+ case JSObject::DICTIONARY_ELEMENTS: {
+ NumberDictionary* element_dictionary = copy->element_dictionary();
+ int capacity = element_dictionary->Capacity();
+ for (int i = 0; i < capacity; i++) {
+ Object* k = element_dictionary->KeyAt(i);
+ if (element_dictionary->IsKey(k)) {
+ Object* value = element_dictionary->ValueAt(i);
+ if (value->IsJSObject()) {
+ JSObject* js_object = JSObject::cast(value);
+ { MaybeObject* maybe_result = DeepCopyBoilerplate(isolate,
+ js_object);
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+ element_dictionary->ValueAtPut(i, result);
+ }
+ }
+ }
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ return copy;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CloneLiteralBoilerplate) {
+ CONVERT_CHECKED(JSObject, boilerplate, args[0]);
+ return DeepCopyBoilerplate(isolate, boilerplate);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CloneShallowLiteralBoilerplate) {
+ CONVERT_CHECKED(JSObject, boilerplate, args[0]);
+ return isolate->heap()->CopyJSObject(boilerplate);
+}
+
+
+static Handle<Map> ComputeObjectLiteralMap(
+ Handle<Context> context,
+ Handle<FixedArray> constant_properties,
+ bool* is_result_from_cache) {
+ Isolate* isolate = context->GetIsolate();
+ int properties_length = constant_properties->length();
+ int number_of_properties = properties_length / 2;
+ if (FLAG_canonicalize_object_literal_maps) {
+ // Check that there are only symbols and array indices among keys.
+ int number_of_symbol_keys = 0;
+ for (int p = 0; p != properties_length; p += 2) {
+ Object* key = constant_properties->get(p);
+ uint32_t element_index = 0;
+ if (key->IsSymbol()) {
+ number_of_symbol_keys++;
+ } else if (key->ToArrayIndex(&element_index)) {
+ // An index key does not require space in the property backing store.
+ number_of_properties--;
+ } else {
+ // Bail out as a non-symbol non-index key makes caching impossible.
+ // ASSERT to make sure that the if condition after the loop is false.
+ ASSERT(number_of_symbol_keys != number_of_properties);
+ break;
+ }
+ }
+ // If we only have symbols and array indices among keys then we can
+ // use the map cache in the global context.
+ const int kMaxKeys = 10;
+ if ((number_of_symbol_keys == number_of_properties) &&
+ (number_of_symbol_keys < kMaxKeys)) {
+ // Create the fixed array with the key.
+ Handle<FixedArray> keys =
+ isolate->factory()->NewFixedArray(number_of_symbol_keys);
+ if (number_of_symbol_keys > 0) {
+ int index = 0;
+ for (int p = 0; p < properties_length; p += 2) {
+ Object* key = constant_properties->get(p);
+ if (key->IsSymbol()) {
+ keys->set(index++, key);
+ }
+ }
+ ASSERT(index == number_of_symbol_keys);
+ }
+ *is_result_from_cache = true;
+ return isolate->factory()->ObjectLiteralMapFromCache(context, keys);
+ }
+ }
+ *is_result_from_cache = false;
+ return isolate->factory()->CopyMap(
+ Handle<Map>(context->object_function()->initial_map()),
+ number_of_properties);
+}
+
+
+static Handle<Object> CreateLiteralBoilerplate(
+ Isolate* isolate,
+ Handle<FixedArray> literals,
+ Handle<FixedArray> constant_properties);
+
+
+static Handle<Object> CreateObjectLiteralBoilerplate(
+ Isolate* isolate,
+ Handle<FixedArray> literals,
+ Handle<FixedArray> constant_properties,
+ bool should_have_fast_elements,
+ bool has_function_literal) {
+ // Get the global context from the literals array. This is the
+ // context in which the function was created and we use the object
+ // function from this context to create the object literal. We do
+ // not use the object function from the current global context
+ // because this might be the object function from another context
+ // which we should not have access to.
+ Handle<Context> context =
+ Handle<Context>(JSFunction::GlobalContextFromLiterals(*literals));
+
+ // In case we have function literals, we want the object to be in
+ // slow properties mode for now. We don't go in the map cache because
+ // maps with constant functions can't be shared if the functions are
+ // not the same (which is the common case).
+ bool is_result_from_cache = false;
+ Handle<Map> map = has_function_literal
+ ? Handle<Map>(context->object_function()->initial_map())
+ : ComputeObjectLiteralMap(context,
+ constant_properties,
+ &is_result_from_cache);
+
+ Handle<JSObject> boilerplate = isolate->factory()->NewJSObjectFromMap(map);
+
+ // Normalize the elements of the boilerplate to save space if needed.
+ if (!should_have_fast_elements) NormalizeElements(boilerplate);
+
+ // Add the constant properties to the boilerplate.
+ int length = constant_properties->length();
+ bool should_transform =
+ !is_result_from_cache && boilerplate->HasFastProperties();
+ if (should_transform || has_function_literal) {
+ // Normalize the properties of object to avoid n^2 behavior
+ // when extending the object multiple properties. Indicate the number of
+ // properties to be added.
+ NormalizeProperties(boilerplate, KEEP_INOBJECT_PROPERTIES, length / 2);
+ }
+
+ for (int index = 0; index < length; index +=2) {
+ Handle<Object> key(constant_properties->get(index+0), isolate);
+ Handle<Object> value(constant_properties->get(index+1), isolate);
+ if (value->IsFixedArray()) {
+ // The value contains the constant_properties of a
+ // simple object or array literal.
+ Handle<FixedArray> array = Handle<FixedArray>::cast(value);
+ value = CreateLiteralBoilerplate(isolate, literals, array);
+ if (value.is_null()) return value;
+ }
+ Handle<Object> result;
+ uint32_t element_index = 0;
+ if (key->IsSymbol()) {
+ if (Handle<String>::cast(key)->AsArrayIndex(&element_index)) {
+ // Array index as string (uint32).
+ result = SetOwnElement(boilerplate,
+ element_index,
+ value,
+ kNonStrictMode);
+ } else {
+ Handle<String> name(String::cast(*key));
+ ASSERT(!name->AsArrayIndex(&element_index));
+ result = SetLocalPropertyIgnoreAttributes(boilerplate, name,
+ value, NONE);
+ }
+ } else if (key->ToArrayIndex(&element_index)) {
+ // Array index (uint32).
+ result = SetOwnElement(boilerplate,
+ element_index,
+ value,
+ kNonStrictMode);
+ } else {
+ // Non-uint32 number.
+ ASSERT(key->IsNumber());
+ double num = key->Number();
+ char arr[100];
+ Vector<char> buffer(arr, ARRAY_SIZE(arr));
+ const char* str = DoubleToCString(num, buffer);
+ Handle<String> name =
+ isolate->factory()->NewStringFromAscii(CStrVector(str));
+ result = SetLocalPropertyIgnoreAttributes(boilerplate, name,
+ value, NONE);
+ }
+ // If setting the property on the boilerplate throws an
+ // exception, the exception is converted to an empty handle in
+ // the handle based operations. In that case, we need to
+ // convert back to an exception.
+ if (result.is_null()) return result;
+ }
+
+ // Transform to fast properties if necessary. For object literals with
+ // containing function literals we defer this operation until after all
+ // computed properties have been assigned so that we can generate
+ // constant function properties.
+ if (should_transform && !has_function_literal) {
+ TransformToFastProperties(boilerplate,
+ boilerplate->map()->unused_property_fields());
+ }
+
+ return boilerplate;
+}
+
+
+static Handle<Object> CreateArrayLiteralBoilerplate(
+ Isolate* isolate,
+ Handle<FixedArray> literals,
+ Handle<FixedArray> elements) {
+ // Create the JSArray.
+ Handle<JSFunction> constructor(
+ JSFunction::GlobalContextFromLiterals(*literals)->array_function());
+ Handle<Object> object = isolate->factory()->NewJSObject(constructor);
+
+ const bool is_cow =
+ (elements->map() == isolate->heap()->fixed_cow_array_map());
+ Handle<FixedArray> copied_elements =
+ is_cow ? elements : isolate->factory()->CopyFixedArray(elements);
+
+ Handle<FixedArray> content = Handle<FixedArray>::cast(copied_elements);
+ if (is_cow) {
+#ifdef DEBUG
+ // Copy-on-write arrays must be shallow (and simple).
+ for (int i = 0; i < content->length(); i++) {
+ ASSERT(!content->get(i)->IsFixedArray());
+ }
+#endif
+ } else {
+ for (int i = 0; i < content->length(); i++) {
+ if (content->get(i)->IsFixedArray()) {
+ // The value contains the constant_properties of a
+ // simple object or array literal.
+ Handle<FixedArray> fa(FixedArray::cast(content->get(i)));
+ Handle<Object> result =
+ CreateLiteralBoilerplate(isolate, literals, fa);
+ if (result.is_null()) return result;
+ content->set(i, *result);
+ }
+ }
+ }
+
+ // Set the elements.
+ Handle<JSArray>::cast(object)->SetContent(*content);
+ return object;
+}
+
+
+static Handle<Object> CreateLiteralBoilerplate(
+ Isolate* isolate,
+ Handle<FixedArray> literals,
+ Handle<FixedArray> array) {
+ Handle<FixedArray> elements = CompileTimeValue::GetElements(array);
+ const bool kHasNoFunctionLiteral = false;
+ switch (CompileTimeValue::GetType(array)) {
+ case CompileTimeValue::OBJECT_LITERAL_FAST_ELEMENTS:
+ return CreateObjectLiteralBoilerplate(isolate,
+ literals,
+ elements,
+ true,
+ kHasNoFunctionLiteral);
+ case CompileTimeValue::OBJECT_LITERAL_SLOW_ELEMENTS:
+ return CreateObjectLiteralBoilerplate(isolate,
+ literals,
+ elements,
+ false,
+ kHasNoFunctionLiteral);
+ case CompileTimeValue::ARRAY_LITERAL:
+ return CreateArrayLiteralBoilerplate(isolate, literals, elements);
+ default:
+ UNREACHABLE();
+ return Handle<Object>::null();
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateArrayLiteralBoilerplate) {
+ // Takes a FixedArray of elements containing the literal elements of
+ // the array literal and produces JSArray with those elements.
+ // Additionally takes the literals array of the surrounding function
+ // which contains the context from which to get the Array function
+ // to use for creating the array literal.
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 3);
+ CONVERT_ARG_CHECKED(FixedArray, literals, 0);
+ CONVERT_SMI_CHECKED(literals_index, args[1]);
+ CONVERT_ARG_CHECKED(FixedArray, elements, 2);
+
+ Handle<Object> object =
+ CreateArrayLiteralBoilerplate(isolate, literals, elements);
+ if (object.is_null()) return Failure::Exception();
+
+ // Update the functions literal and return the boilerplate.
+ literals->set(literals_index, *object);
+ return *object;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateObjectLiteral) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 4);
+ CONVERT_ARG_CHECKED(FixedArray, literals, 0);
+ CONVERT_SMI_CHECKED(literals_index, args[1]);
+ CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2);
+ CONVERT_SMI_CHECKED(flags, args[3]);
+ bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0;
+ bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0;
+
+ // Check if boilerplate exists. If not, create it first.
+ Handle<Object> boilerplate(literals->get(literals_index), isolate);
+ if (*boilerplate == isolate->heap()->undefined_value()) {
+ boilerplate = CreateObjectLiteralBoilerplate(isolate,
+ literals,
+ constant_properties,
+ should_have_fast_elements,
+ has_function_literal);
+ if (boilerplate.is_null()) return Failure::Exception();
+ // Update the functions literal and return the boilerplate.
+ literals->set(literals_index, *boilerplate);
+ }
+ return DeepCopyBoilerplate(isolate, JSObject::cast(*boilerplate));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateObjectLiteralShallow) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 4);
+ CONVERT_ARG_CHECKED(FixedArray, literals, 0);
+ CONVERT_SMI_CHECKED(literals_index, args[1]);
+ CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2);
+ CONVERT_SMI_CHECKED(flags, args[3]);
+ bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0;
+ bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0;
+
+ // Check if boilerplate exists. If not, create it first.
+ Handle<Object> boilerplate(literals->get(literals_index), isolate);
+ if (*boilerplate == isolate->heap()->undefined_value()) {
+ boilerplate = CreateObjectLiteralBoilerplate(isolate,
+ literals,
+ constant_properties,
+ should_have_fast_elements,
+ has_function_literal);
+ if (boilerplate.is_null()) return Failure::Exception();
+ // Update the functions literal and return the boilerplate.
+ literals->set(literals_index, *boilerplate);
+ }
+ return isolate->heap()->CopyJSObject(JSObject::cast(*boilerplate));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateArrayLiteral) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 3);
+ CONVERT_ARG_CHECKED(FixedArray, literals, 0);
+ CONVERT_SMI_CHECKED(literals_index, args[1]);
+ CONVERT_ARG_CHECKED(FixedArray, elements, 2);
+
+ // Check if boilerplate exists. If not, create it first.
+ Handle<Object> boilerplate(literals->get(literals_index), isolate);
+ if (*boilerplate == isolate->heap()->undefined_value()) {
+ boilerplate = CreateArrayLiteralBoilerplate(isolate, literals, elements);
+ if (boilerplate.is_null()) return Failure::Exception();
+ // Update the functions literal and return the boilerplate.
+ literals->set(literals_index, *boilerplate);
+ }
+ return DeepCopyBoilerplate(isolate, JSObject::cast(*boilerplate));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateArrayLiteralShallow) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 3);
+ CONVERT_ARG_CHECKED(FixedArray, literals, 0);
+ CONVERT_SMI_CHECKED(literals_index, args[1]);
+ CONVERT_ARG_CHECKED(FixedArray, elements, 2);
+
+ // Check if boilerplate exists. If not, create it first.
+ Handle<Object> boilerplate(literals->get(literals_index), isolate);
+ if (*boilerplate == isolate->heap()->undefined_value()) {
+ boilerplate = CreateArrayLiteralBoilerplate(isolate, literals, elements);
+ if (boilerplate.is_null()) return Failure::Exception();
+ // Update the functions literal and return the boilerplate.
+ literals->set(literals_index, *boilerplate);
+ }
+ if (JSObject::cast(*boilerplate)->elements()->map() ==
+ isolate->heap()->fixed_cow_array_map()) {
+ isolate->counters()->cow_arrays_created_runtime()->Increment();
+ }
+ return isolate->heap()->CopyJSObject(JSObject::cast(*boilerplate));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateCatchExtensionObject) {
+ ASSERT(args.length() == 2);
+ CONVERT_CHECKED(String, key, args[0]);
+ Object* value = args[1];
+ // Create a catch context extension object.
+ JSFunction* constructor =
+ isolate->context()->global_context()->
+ context_extension_function();
+ Object* object;
+ { MaybeObject* maybe_object = isolate->heap()->AllocateJSObject(constructor);
+ if (!maybe_object->ToObject(&object)) return maybe_object;
+ }
+ // Assign the exception value to the catch variable and make sure
+ // that the catch variable is DontDelete.
+ { MaybeObject* maybe_value =
+ // Passing non-strict per ECMA-262 5th Ed. 12.14. Catch, bullet #4.
+ JSObject::cast(object)->SetProperty(
+ key, value, DONT_DELETE, kNonStrictMode);
+ if (!maybe_value->ToObject(&value)) return maybe_value;
+ }
+ return object;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ClassOf) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ Object* obj = args[0];
+ if (!obj->IsJSObject()) return isolate->heap()->null_value();
+ return JSObject::cast(obj)->class_name();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_IsInPrototypeChain) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+ // See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8).
+ Object* O = args[0];
+ Object* V = args[1];
+ while (true) {
+ Object* prototype = V->GetPrototype();
+ if (prototype->IsNull()) return isolate->heap()->false_value();
+ if (O == prototype) return isolate->heap()->true_value();
+ V = prototype;
+ }
+}
+
+
+// Inserts an object as the hidden prototype of another object.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SetHiddenPrototype) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+ CONVERT_CHECKED(JSObject, jsobject, args[0]);
+ CONVERT_CHECKED(JSObject, proto, args[1]);
+
+ // Sanity checks. The old prototype (that we are replacing) could
+ // theoretically be null, but if it is not null then check that we
+ // didn't already install a hidden prototype here.
+ RUNTIME_ASSERT(!jsobject->GetPrototype()->IsHeapObject() ||
+ !HeapObject::cast(jsobject->GetPrototype())->map()->is_hidden_prototype());
+ RUNTIME_ASSERT(!proto->map()->is_hidden_prototype());
+
+ // Allocate up front before we start altering state in case we get a GC.
+ Object* map_or_failure;
+ { MaybeObject* maybe_map_or_failure = proto->map()->CopyDropTransitions();
+ if (!maybe_map_or_failure->ToObject(&map_or_failure)) {
+ return maybe_map_or_failure;
+ }
+ }
+ Map* new_proto_map = Map::cast(map_or_failure);
+
+ { MaybeObject* maybe_map_or_failure = jsobject->map()->CopyDropTransitions();
+ if (!maybe_map_or_failure->ToObject(&map_or_failure)) {
+ return maybe_map_or_failure;
+ }
+ }
+ Map* new_map = Map::cast(map_or_failure);
+
+ // Set proto's prototype to be the old prototype of the object.
+ new_proto_map->set_prototype(jsobject->GetPrototype());
+ proto->set_map(new_proto_map);
+ new_proto_map->set_is_hidden_prototype();
+
+ // Set the object's prototype to proto.
+ new_map->set_prototype(proto);
+ jsobject->set_map(new_map);
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_IsConstructCall) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 0);
+ JavaScriptFrameIterator it(isolate);
+ return isolate->heap()->ToBoolean(it.frame()->IsConstructor());
+}
+
+
+// Recursively traverses hidden prototypes if property is not found
+static void GetOwnPropertyImplementation(JSObject* obj,
+ String* name,
+ LookupResult* result) {
+ obj->LocalLookupRealNamedProperty(name, result);
+
+ if (!result->IsProperty()) {
+ Object* proto = obj->GetPrototype();
+ if (proto->IsJSObject() &&
+ JSObject::cast(proto)->map()->is_hidden_prototype())
+ GetOwnPropertyImplementation(JSObject::cast(proto),
+ name, result);
+ }
+}
+
+
+static bool CheckAccessException(LookupResult* result,
+ v8::AccessType access_type) {
+ if (result->type() == CALLBACKS) {
+ Object* callback = result->GetCallbackObject();
+ if (callback->IsAccessorInfo()) {
+ AccessorInfo* info = AccessorInfo::cast(callback);
+ bool can_access =
+ (access_type == v8::ACCESS_HAS &&
+ (info->all_can_read() || info->all_can_write())) ||
+ (access_type == v8::ACCESS_GET && info->all_can_read()) ||
+ (access_type == v8::ACCESS_SET && info->all_can_write());
+ return can_access;
+ }
+ }
+
+ return false;
+}
+
+
+static bool CheckAccess(JSObject* obj,
+ String* name,
+ LookupResult* result,
+ v8::AccessType access_type) {
+ ASSERT(result->IsProperty());
+
+ JSObject* holder = result->holder();
+ JSObject* current = obj;
+ Isolate* isolate = obj->GetIsolate();
+ while (true) {
+ if (current->IsAccessCheckNeeded() &&
+ !isolate->MayNamedAccess(current, name, access_type)) {
+ // Access check callback denied the access, but some properties
+ // can have a special permissions which override callbacks descision
+ // (currently see v8::AccessControl).
+ break;
+ }
+
+ if (current == holder) {
+ return true;
+ }
+
+ current = JSObject::cast(current->GetPrototype());
+ }
+
+ // API callbacks can have per callback access exceptions.
+ switch (result->type()) {
+ case CALLBACKS: {
+ if (CheckAccessException(result, access_type)) {
+ return true;
+ }
+ break;
+ }
+ case INTERCEPTOR: {
+ // If the object has an interceptor, try real named properties.
+ // Overwrite the result to fetch the correct property later.
+ holder->LookupRealNamedProperty(name, result);
+ if (result->IsProperty()) {
+ if (CheckAccessException(result, access_type)) {
+ return true;
+ }
+ }
+ break;
+ }
+ default:
+ break;
+ }
+
+ isolate->ReportFailedAccessCheck(current, access_type);
+ return false;
+}
+
+
+// TODO(1095): we should traverse hidden prototype hierachy as well.
+static bool CheckElementAccess(JSObject* obj,
+ uint32_t index,
+ v8::AccessType access_type) {
+ if (obj->IsAccessCheckNeeded() &&
+ !obj->GetIsolate()->MayIndexedAccess(obj, index, access_type)) {
+ return false;
+ }
+
+ return true;
+}
+
+
+// Enumerator used as indices into the array returned from GetOwnProperty
+enum PropertyDescriptorIndices {
+ IS_ACCESSOR_INDEX,
+ VALUE_INDEX,
+ GETTER_INDEX,
+ SETTER_INDEX,
+ WRITABLE_INDEX,
+ ENUMERABLE_INDEX,
+ CONFIGURABLE_INDEX,
+ DESCRIPTOR_SIZE
+};
+
+// Returns an array with the property description:
+// if args[1] is not a property on args[0]
+// returns undefined
+// if args[1] is a data property on args[0]
+// [false, value, Writeable, Enumerable, Configurable]
+// if args[1] is an accessor on args[0]
+// [true, GetFunction, SetFunction, Enumerable, Configurable]
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetOwnProperty) {
+ ASSERT(args.length() == 2);
+ Heap* heap = isolate->heap();
+ HandleScope scope(isolate);
+ Handle<FixedArray> elms = isolate->factory()->NewFixedArray(DESCRIPTOR_SIZE);
+ Handle<JSArray> desc = isolate->factory()->NewJSArrayWithElements(elms);
+ LookupResult result;
+ CONVERT_ARG_CHECKED(JSObject, obj, 0);
+ CONVERT_ARG_CHECKED(String, name, 1);
+
+ // This could be an element.
+ uint32_t index;
+ if (name->AsArrayIndex(&index)) {
+ switch (obj->HasLocalElement(index)) {
+ case JSObject::UNDEFINED_ELEMENT:
+ return heap->undefined_value();
+
+ case JSObject::STRING_CHARACTER_ELEMENT: {
+ // Special handling of string objects according to ECMAScript 5
+ // 15.5.5.2. Note that this might be a string object with elements
+ // other than the actual string value. This is covered by the
+ // subsequent cases.
+ Handle<JSValue> js_value = Handle<JSValue>::cast(obj);
+ Handle<String> str(String::cast(js_value->value()));
+ Handle<String> substr = SubString(str, index, index + 1, NOT_TENURED);
+
+ elms->set(IS_ACCESSOR_INDEX, heap->false_value());
+ elms->set(VALUE_INDEX, *substr);
+ elms->set(WRITABLE_INDEX, heap->false_value());
+ elms->set(ENUMERABLE_INDEX, heap->false_value());
+ elms->set(CONFIGURABLE_INDEX, heap->false_value());
+ return *desc;
+ }
+
+ case JSObject::INTERCEPTED_ELEMENT:
+ case JSObject::FAST_ELEMENT: {
+ elms->set(IS_ACCESSOR_INDEX, heap->false_value());
+ Handle<Object> value = GetElement(obj, index);
+ RETURN_IF_EMPTY_HANDLE(isolate, value);
+ elms->set(VALUE_INDEX, *value);
+ elms->set(WRITABLE_INDEX, heap->true_value());
+ elms->set(ENUMERABLE_INDEX, heap->true_value());
+ elms->set(CONFIGURABLE_INDEX, heap->true_value());
+ return *desc;
+ }
+
+ case JSObject::DICTIONARY_ELEMENT: {
+ Handle<JSObject> holder = obj;
+ if (obj->IsJSGlobalProxy()) {
+ Object* proto = obj->GetPrototype();
+ if (proto->IsNull()) return heap->undefined_value();
+ ASSERT(proto->IsJSGlobalObject());
+ holder = Handle<JSObject>(JSObject::cast(proto));
+ }
+ NumberDictionary* dictionary = holder->element_dictionary();
+ int entry = dictionary->FindEntry(index);
+ ASSERT(entry != NumberDictionary::kNotFound);
+ PropertyDetails details = dictionary->DetailsAt(entry);
+ switch (details.type()) {
+ case CALLBACKS: {
+ // This is an accessor property with getter and/or setter.
+ FixedArray* callbacks =
+ FixedArray::cast(dictionary->ValueAt(entry));
+ elms->set(IS_ACCESSOR_INDEX, heap->true_value());
+ if (CheckElementAccess(*obj, index, v8::ACCESS_GET)) {
+ elms->set(GETTER_INDEX, callbacks->get(0));
+ }
+ if (CheckElementAccess(*obj, index, v8::ACCESS_SET)) {
+ elms->set(SETTER_INDEX, callbacks->get(1));
+ }
+ break;
+ }
+ case NORMAL: {
+ // This is a data property.
+ elms->set(IS_ACCESSOR_INDEX, heap->false_value());
+ Handle<Object> value = GetElement(obj, index);
+ ASSERT(!value.is_null());
+ elms->set(VALUE_INDEX, *value);
+ elms->set(WRITABLE_INDEX, heap->ToBoolean(!details.IsReadOnly()));
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ elms->set(ENUMERABLE_INDEX, heap->ToBoolean(!details.IsDontEnum()));
+ elms->set(CONFIGURABLE_INDEX, heap->ToBoolean(!details.IsDontDelete()));
+ return *desc;
+ }
+ }
+ }
+
+ // Use recursive implementation to also traverse hidden prototypes
+ GetOwnPropertyImplementation(*obj, *name, &result);
+
+ if (!result.IsProperty()) {
+ return heap->undefined_value();
+ }
+
+ if (!CheckAccess(*obj, *name, &result, v8::ACCESS_HAS)) {
+ return heap->false_value();
+ }
+
+ elms->set(ENUMERABLE_INDEX, heap->ToBoolean(!result.IsDontEnum()));
+ elms->set(CONFIGURABLE_INDEX, heap->ToBoolean(!result.IsDontDelete()));
+
+ bool is_js_accessor = (result.type() == CALLBACKS) &&
+ (result.GetCallbackObject()->IsFixedArray());
+
+ if (is_js_accessor) {
+ // __defineGetter__/__defineSetter__ callback.
+ elms->set(IS_ACCESSOR_INDEX, heap->true_value());
+
+ FixedArray* structure = FixedArray::cast(result.GetCallbackObject());
+ if (CheckAccess(*obj, *name, &result, v8::ACCESS_GET)) {
+ elms->set(GETTER_INDEX, structure->get(0));
+ }
+ if (CheckAccess(*obj, *name, &result, v8::ACCESS_SET)) {
+ elms->set(SETTER_INDEX, structure->get(1));
+ }
+ } else {
+ elms->set(IS_ACCESSOR_INDEX, heap->false_value());
+ elms->set(WRITABLE_INDEX, heap->ToBoolean(!result.IsReadOnly()));
+
+ PropertyAttributes attrs;
+ Object* value;
+ // GetProperty will check access and report any violations.
+ { MaybeObject* maybe_value = obj->GetProperty(*obj, &result, *name, &attrs);
+ if (!maybe_value->ToObject(&value)) return maybe_value;
+ }
+ elms->set(VALUE_INDEX, value);
+ }
+
+ return *desc;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_PreventExtensions) {
+ ASSERT(args.length() == 1);
+ CONVERT_CHECKED(JSObject, obj, args[0]);
+ return obj->PreventExtensions();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_IsExtensible) {
+ ASSERT(args.length() == 1);
+ CONVERT_CHECKED(JSObject, obj, args[0]);
+ if (obj->IsJSGlobalProxy()) {
+ Object* proto = obj->GetPrototype();
+ if (proto->IsNull()) return isolate->heap()->false_value();
+ ASSERT(proto->IsJSGlobalObject());
+ obj = JSObject::cast(proto);
+ }
+ return obj->map()->is_extensible() ? isolate->heap()->true_value()
+ : isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpCompile) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 3);
+ CONVERT_ARG_CHECKED(JSRegExp, re, 0);
+ CONVERT_ARG_CHECKED(String, pattern, 1);
+ CONVERT_ARG_CHECKED(String, flags, 2);
+ Handle<Object> result = RegExpImpl::Compile(re, pattern, flags);
+ if (result.is_null()) return Failure::Exception();
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CreateApiFunction) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ CONVERT_ARG_CHECKED(FunctionTemplateInfo, data, 0);
+ return *isolate->factory()->CreateApiFunction(data);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_IsTemplate) {
+ ASSERT(args.length() == 1);
+ Object* arg = args[0];
+ bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo();
+ return isolate->heap()->ToBoolean(result);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetTemplateField) {
+ ASSERT(args.length() == 2);
+ CONVERT_CHECKED(HeapObject, templ, args[0]);
+ CONVERT_CHECKED(Smi, field, args[1]);
+ int index = field->value();
+ int offset = index * kPointerSize + HeapObject::kHeaderSize;
+ InstanceType type = templ->map()->instance_type();
+ RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE ||
+ type == OBJECT_TEMPLATE_INFO_TYPE);
+ RUNTIME_ASSERT(offset > 0);
+ if (type == FUNCTION_TEMPLATE_INFO_TYPE) {
+ RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize);
+ } else {
+ RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize);
+ }
+ return *HeapObject::RawField(templ, offset);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DisableAccessChecks) {
+ ASSERT(args.length() == 1);
+ CONVERT_CHECKED(HeapObject, object, args[0]);
+ Map* old_map = object->map();
+ bool needs_access_checks = old_map->is_access_check_needed();
+ if (needs_access_checks) {
+ // Copy map so it won't interfere constructor's initial map.
+ Object* new_map;
+ { MaybeObject* maybe_new_map = old_map->CopyDropTransitions();
+ if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map;
+ }
+
+ Map::cast(new_map)->set_is_access_check_needed(false);
+ object->set_map(Map::cast(new_map));
+ }
+ return needs_access_checks ? isolate->heap()->true_value()
+ : isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_EnableAccessChecks) {
+ ASSERT(args.length() == 1);
+ CONVERT_CHECKED(HeapObject, object, args[0]);
+ Map* old_map = object->map();
+ if (!old_map->is_access_check_needed()) {
+ // Copy map so it won't interfere constructor's initial map.
+ Object* new_map;
+ { MaybeObject* maybe_new_map = old_map->CopyDropTransitions();
+ if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map;
+ }
+
+ Map::cast(new_map)->set_is_access_check_needed(true);
+ object->set_map(Map::cast(new_map));
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+static Failure* ThrowRedeclarationError(Isolate* isolate,
+ const char* type,
+ Handle<String> name) {
+ HandleScope scope(isolate);
+ Handle<Object> type_handle =
+ isolate->factory()->NewStringFromAscii(CStrVector(type));
+ Handle<Object> args[2] = { type_handle, name };
+ Handle<Object> error =
+ isolate->factory()->NewTypeError("redeclaration", HandleVector(args, 2));
+ return isolate->Throw(*error);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareGlobals) {
+ ASSERT(args.length() == 4);
+ HandleScope scope(isolate);
+ Handle<GlobalObject> global = Handle<GlobalObject>(
+ isolate->context()->global());
+
+ Handle<Context> context = args.at<Context>(0);
+ CONVERT_ARG_CHECKED(FixedArray, pairs, 1);
+ bool is_eval = Smi::cast(args[2])->value() == 1;
+ StrictModeFlag strict_mode =
+ static_cast<StrictModeFlag>(Smi::cast(args[3])->value());
+ ASSERT(strict_mode == kStrictMode || strict_mode == kNonStrictMode);
+
+ // Compute the property attributes. According to ECMA-262, section
+ // 13, page 71, the property must be read-only and
+ // non-deletable. However, neither SpiderMonkey nor KJS creates the
+ // property as read-only, so we don't either.
+ PropertyAttributes base = is_eval ? NONE : DONT_DELETE;
+
+ // Traverse the name/value pairs and set the properties.
+ int length = pairs->length();
+ for (int i = 0; i < length; i += 2) {
+ HandleScope scope(isolate);
+ Handle<String> name(String::cast(pairs->get(i)));
+ Handle<Object> value(pairs->get(i + 1), isolate);
+
+ // We have to declare a global const property. To capture we only
+ // assign to it when evaluating the assignment for "const x =
+ // <expr>" the initial value is the hole.
+ bool is_const_property = value->IsTheHole();
+
+ if (value->IsUndefined() || is_const_property) {
+ // Lookup the property in the global object, and don't set the
+ // value of the variable if the property is already there.
+ LookupResult lookup;
+ global->Lookup(*name, &lookup);
+ if (lookup.IsProperty()) {
+ // Determine if the property is local by comparing the holder
+ // against the global object. The information will be used to
+ // avoid throwing re-declaration errors when declaring
+ // variables or constants that exist in the prototype chain.
+ bool is_local = (*global == lookup.holder());
+ // Get the property attributes and determine if the property is
+ // read-only.
+ PropertyAttributes attributes = global->GetPropertyAttribute(*name);
+ bool is_read_only = (attributes & READ_ONLY) != 0;
+ if (lookup.type() == INTERCEPTOR) {
+ // If the interceptor says the property is there, we
+ // just return undefined without overwriting the property.
+ // Otherwise, we continue to setting the property.
+ if (attributes != ABSENT) {
+ // Check if the existing property conflicts with regards to const.
+ if (is_local && (is_read_only || is_const_property)) {
+ const char* type = (is_read_only) ? "const" : "var";
+ return ThrowRedeclarationError(isolate, type, name);
+ };
+ // The property already exists without conflicting: Go to
+ // the next declaration.
+ continue;
+ }
+ // Fall-through and introduce the absent property by using
+ // SetProperty.
+ } else {
+ // For const properties, we treat a callback with this name
+ // even in the prototype as a conflicting declaration.
+ if (is_const_property && (lookup.type() == CALLBACKS)) {
+ return ThrowRedeclarationError(isolate, "const", name);
+ }
+ // Otherwise, we check for locally conflicting declarations.
+ if (is_local && (is_read_only || is_const_property)) {
+ const char* type = (is_read_only) ? "const" : "var";
+ return ThrowRedeclarationError(isolate, type, name);
+ }
+ // The property already exists without conflicting: Go to
+ // the next declaration.
+ continue;
+ }
+ }
+ } else {
+ // Copy the function and update its context. Use it as value.
+ Handle<SharedFunctionInfo> shared =
+ Handle<SharedFunctionInfo>::cast(value);
+ Handle<JSFunction> function =
+ isolate->factory()->NewFunctionFromSharedFunctionInfo(shared,
+ context,
+ TENURED);
+ value = function;
+ }
+
+ LookupResult lookup;
+ global->LocalLookup(*name, &lookup);
+
+ PropertyAttributes attributes = is_const_property
+ ? static_cast<PropertyAttributes>(base | READ_ONLY)
+ : base;
+
+ // There's a local property that we need to overwrite because
+ // we're either declaring a function or there's an interceptor
+ // that claims the property is absent.
+ //
+ // Check for conflicting re-declarations. We cannot have
+ // conflicting types in case of intercepted properties because
+ // they are absent.
+ if (lookup.IsProperty() &&
+ (lookup.type() != INTERCEPTOR) &&
+ (lookup.IsReadOnly() || is_const_property)) {
+ const char* type = (lookup.IsReadOnly()) ? "const" : "var";
+ return ThrowRedeclarationError(isolate, type, name);
+ }
+
+ // Safari does not allow the invocation of callback setters for
+ // function declarations. To mimic this behavior, we do not allow
+ // the invocation of setters for function values. This makes a
+ // difference for global functions with the same names as event
+ // handlers such as "function onload() {}". Firefox does call the
+ // onload setter in those case and Safari does not. We follow
+ // Safari for compatibility.
+ if (value->IsJSFunction()) {
+ // Do not change DONT_DELETE to false from true.
+ if (lookup.IsProperty() && (lookup.type() != INTERCEPTOR)) {
+ attributes = static_cast<PropertyAttributes>(
+ attributes | (lookup.GetAttributes() & DONT_DELETE));
+ }
+ RETURN_IF_EMPTY_HANDLE(isolate,
+ SetLocalPropertyIgnoreAttributes(global,
+ name,
+ value,
+ attributes));
+ } else {
+ RETURN_IF_EMPTY_HANDLE(isolate,
+ SetProperty(global,
+ name,
+ value,
+ attributes,
+ strict_mode));
+ }
+ }
+
+ ASSERT(!isolate->has_pending_exception());
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DeclareContextSlot) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 4);
+
+ CONVERT_ARG_CHECKED(Context, context, 0);
+ Handle<String> name(String::cast(args[1]));
+ PropertyAttributes mode =
+ static_cast<PropertyAttributes>(Smi::cast(args[2])->value());
+ RUNTIME_ASSERT(mode == READ_ONLY || mode == NONE);
+ Handle<Object> initial_value(args[3], isolate);
+
+ // Declarations are always done in the function context.
+ context = Handle<Context>(context->fcontext());
+
+ int index;
+ PropertyAttributes attributes;
+ ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
+ Handle<Object> holder =
+ context->Lookup(name, flags, &index, &attributes);
+
+ if (attributes != ABSENT) {
+ // The name was declared before; check for conflicting
+ // re-declarations: This is similar to the code in parser.cc in
+ // the AstBuildingParser::Declare function.
+ if (((attributes & READ_ONLY) != 0) || (mode == READ_ONLY)) {
+ // Functions are not read-only.
+ ASSERT(mode != READ_ONLY || initial_value->IsTheHole());
+ const char* type = ((attributes & READ_ONLY) != 0) ? "const" : "var";
+ return ThrowRedeclarationError(isolate, type, name);
+ }
+
+ // Initialize it if necessary.
+ if (*initial_value != NULL) {
+ if (index >= 0) {
+ // The variable or constant context slot should always be in
+ // the function context or the arguments object.
+ if (holder->IsContext()) {
+ ASSERT(holder.is_identical_to(context));
+ if (((attributes & READ_ONLY) == 0) ||
+ context->get(index)->IsTheHole()) {
+ context->set(index, *initial_value);
+ }
+ } else {
+ // The holder is an arguments object.
+ Handle<JSObject> arguments(Handle<JSObject>::cast(holder));
+ Handle<Object> result = SetElement(arguments, index, initial_value,
+ kNonStrictMode);
+ if (result.is_null()) return Failure::Exception();
+ }
+ } else {
+ // Slow case: The property is not in the FixedArray part of the context.
+ Handle<JSObject> context_ext = Handle<JSObject>::cast(holder);
+ RETURN_IF_EMPTY_HANDLE(
+ isolate,
+ SetProperty(context_ext, name, initial_value,
+ mode, kNonStrictMode));
+ }
+ }
+
+ } else {
+ // The property is not in the function context. It needs to be
+ // "declared" in the function context's extension context, or in the
+ // global context.
+ Handle<JSObject> context_ext;
+ if (context->has_extension()) {
+ // The function context's extension context exists - use it.
+ context_ext = Handle<JSObject>(context->extension());
+ } else {
+ // The function context's extension context does not exists - allocate
+ // it.
+ context_ext = isolate->factory()->NewJSObject(
+ isolate->context_extension_function());
+ // And store it in the extension slot.
+ context->set_extension(*context_ext);
+ }
+ ASSERT(*context_ext != NULL);
+
+ // Declare the property by setting it to the initial value if provided,
+ // or undefined, and use the correct mode (e.g. READ_ONLY attribute for
+ // constant declarations).
+ ASSERT(!context_ext->HasLocalProperty(*name));
+ Handle<Object> value(isolate->heap()->undefined_value(), isolate);
+ if (*initial_value != NULL) value = initial_value;
+ // Declaring a const context slot is a conflicting declaration if
+ // there is a callback with that name in a prototype. It is
+ // allowed to introduce const variables in
+ // JSContextExtensionObjects. They are treated specially in
+ // SetProperty and no setters are invoked for those since they are
+ // not real JSObjects.
+ if (initial_value->IsTheHole() &&
+ !context_ext->IsJSContextExtensionObject()) {
+ LookupResult lookup;
+ context_ext->Lookup(*name, &lookup);
+ if (lookup.IsProperty() && (lookup.type() == CALLBACKS)) {
+ return ThrowRedeclarationError(isolate, "const", name);
+ }
+ }
+ RETURN_IF_EMPTY_HANDLE(isolate,
+ SetProperty(context_ext, name, value, mode,
+ kNonStrictMode));
+ }
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeVarGlobal) {
+ NoHandleAllocation nha;
+ // args[0] == name
+ // args[1] == strict_mode
+ // args[2] == value (optional)
+
+ // Determine if we need to assign to the variable if it already
+ // exists (based on the number of arguments).
+ RUNTIME_ASSERT(args.length() == 2 || args.length() == 3);
+ bool assign = args.length() == 3;
+
+ CONVERT_ARG_CHECKED(String, name, 0);
+ GlobalObject* global = isolate->context()->global();
+ RUNTIME_ASSERT(args[1]->IsSmi());
+ StrictModeFlag strict_mode =
+ static_cast<StrictModeFlag>(Smi::cast(args[1])->value());
+ ASSERT(strict_mode == kStrictMode || strict_mode == kNonStrictMode);
+
+ // According to ECMA-262, section 12.2, page 62, the property must
+ // not be deletable.
+ PropertyAttributes attributes = DONT_DELETE;
+
+ // Lookup the property locally in the global object. If it isn't
+ // there, there is a property with this name in the prototype chain.
+ // We follow Safari and Firefox behavior and only set the property
+ // locally if there is an explicit initialization value that we have
+ // to assign to the property.
+ // Note that objects can have hidden prototypes, so we need to traverse
+ // the whole chain of hidden prototypes to do a 'local' lookup.
+ JSObject* real_holder = global;
+ LookupResult lookup;
+ while (true) {
+ real_holder->LocalLookup(*name, &lookup);
+ if (lookup.IsProperty()) {
+ // Determine if this is a redeclaration of something read-only.
+ if (lookup.IsReadOnly()) {
+ // If we found readonly property on one of hidden prototypes,
+ // just shadow it.
+ if (real_holder != isolate->context()->global()) break;
+ return ThrowRedeclarationError(isolate, "const", name);
+ }
+
+ // Determine if this is a redeclaration of an intercepted read-only
+ // property and figure out if the property exists at all.
+ bool found = true;
+ PropertyType type = lookup.type();
+ if (type == INTERCEPTOR) {
+ HandleScope handle_scope(isolate);
+ Handle<JSObject> holder(real_holder);
+ PropertyAttributes intercepted = holder->GetPropertyAttribute(*name);
+ real_holder = *holder;
+ if (intercepted == ABSENT) {
+ // The interceptor claims the property isn't there. We need to
+ // make sure to introduce it.
+ found = false;
+ } else if ((intercepted & READ_ONLY) != 0) {
+ // The property is present, but read-only. Since we're trying to
+ // overwrite it with a variable declaration we must throw a
+ // re-declaration error. However if we found readonly property
+ // on one of hidden prototypes, just shadow it.
+ if (real_holder != isolate->context()->global()) break;
+ return ThrowRedeclarationError(isolate, "const", name);
+ }
+ }
+
+ if (found && !assign) {
+ // The global property is there and we're not assigning any value
+ // to it. Just return.
+ return isolate->heap()->undefined_value();
+ }
+
+ // Assign the value (or undefined) to the property.
+ Object* value = (assign) ? args[2] : isolate->heap()->undefined_value();
+ return real_holder->SetProperty(
+ &lookup, *name, value, attributes, strict_mode);
+ }
+
+ Object* proto = real_holder->GetPrototype();
+ if (!proto->IsJSObject())
+ break;
+
+ if (!JSObject::cast(proto)->map()->is_hidden_prototype())
+ break;
+
+ real_holder = JSObject::cast(proto);
+ }
+
+ global = isolate->context()->global();
+ if (assign) {
+ return global->SetProperty(*name, args[2], attributes, strict_mode);
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstGlobal) {
+ // All constants are declared with an initial value. The name
+ // of the constant is the first argument and the initial value
+ // is the second.
+ RUNTIME_ASSERT(args.length() == 2);
+ CONVERT_ARG_CHECKED(String, name, 0);
+ Handle<Object> value = args.at<Object>(1);
+
+ // Get the current global object from top.
+ GlobalObject* global = isolate->context()->global();
+
+ // According to ECMA-262, section 12.2, page 62, the property must
+ // not be deletable. Since it's a const, it must be READ_ONLY too.
+ PropertyAttributes attributes =
+ static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
+
+ // Lookup the property locally in the global object. If it isn't
+ // there, we add the property and take special precautions to always
+ // add it as a local property even in case of callbacks in the
+ // prototype chain (this rules out using SetProperty).
+ // We use SetLocalPropertyIgnoreAttributes instead
+ LookupResult lookup;
+ global->LocalLookup(*name, &lookup);
+ if (!lookup.IsProperty()) {
+ return global->SetLocalPropertyIgnoreAttributes(*name,
+ *value,
+ attributes);
+ }
+
+ // Determine if this is a redeclaration of something not
+ // read-only. In case the result is hidden behind an interceptor we
+ // need to ask it for the property attributes.
+ if (!lookup.IsReadOnly()) {
+ if (lookup.type() != INTERCEPTOR) {
+ return ThrowRedeclarationError(isolate, "var", name);
+ }
+
+ PropertyAttributes intercepted = global->GetPropertyAttribute(*name);
+
+ // Throw re-declaration error if the intercepted property is present
+ // but not read-only.
+ if (intercepted != ABSENT && (intercepted & READ_ONLY) == 0) {
+ return ThrowRedeclarationError(isolate, "var", name);
+ }
+
+ // Restore global object from context (in case of GC) and continue
+ // with setting the value because the property is either absent or
+ // read-only. We also have to do redo the lookup.
+ HandleScope handle_scope(isolate);
+ Handle<GlobalObject> global(isolate->context()->global());
+
+ // BUG 1213575: Handle the case where we have to set a read-only
+ // property through an interceptor and only do it if it's
+ // uninitialized, e.g. the hole. Nirk...
+ // Passing non-strict mode because the property is writable.
+ RETURN_IF_EMPTY_HANDLE(isolate,
+ SetProperty(global,
+ name,
+ value,
+ attributes,
+ kNonStrictMode));
+ return *value;
+ }
+
+ // Set the value, but only we're assigning the initial value to a
+ // constant. For now, we determine this by checking if the
+ // current value is the hole.
+ // Strict mode handling not needed (const disallowed in strict mode).
+ PropertyType type = lookup.type();
+ if (type == FIELD) {
+ FixedArray* properties = global->properties();
+ int index = lookup.GetFieldIndex();
+ if (properties->get(index)->IsTheHole()) {
+ properties->set(index, *value);
+ }
+ } else if (type == NORMAL) {
+ if (global->GetNormalizedProperty(&lookup)->IsTheHole()) {
+ global->SetNormalizedProperty(&lookup, *value);
+ }
+ } else {
+ // Ignore re-initialization of constants that have already been
+ // assigned a function value.
+ ASSERT(lookup.IsReadOnly() && type == CONSTANT_FUNCTION);
+ }
+
+ // Use the set value as the result of the operation.
+ return *value;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_InitializeConstContextSlot) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 3);
+
+ Handle<Object> value(args[0], isolate);
+ ASSERT(!value->IsTheHole());
+ CONVERT_ARG_CHECKED(Context, context, 1);
+ Handle<String> name(String::cast(args[2]));
+
+ // Initializations are always done in the function context.
+ context = Handle<Context>(context->fcontext());
+
+ int index;
+ PropertyAttributes attributes;
+ ContextLookupFlags flags = FOLLOW_CHAINS;
+ Handle<Object> holder =
+ context->Lookup(name, flags, &index, &attributes);
+
+ // In most situations, the property introduced by the const
+ // declaration should be present in the context extension object.
+ // However, because declaration and initialization are separate, the
+ // property might have been deleted (if it was introduced by eval)
+ // before we reach the initialization point.
+ //
+ // Example:
+ //
+ // function f() { eval("delete x; const x;"); }
+ //
+ // In that case, the initialization behaves like a normal assignment
+ // to property 'x'.
+ if (index >= 0) {
+ // Property was found in a context.
+ if (holder->IsContext()) {
+ // The holder cannot be the function context. If it is, there
+ // should have been a const redeclaration error when declaring
+ // the const property.
+ ASSERT(!holder.is_identical_to(context));
+ if ((attributes & READ_ONLY) == 0) {
+ Handle<Context>::cast(holder)->set(index, *value);
+ }
+ } else {
+ // The holder is an arguments object.
+ ASSERT((attributes & READ_ONLY) == 0);
+ Handle<JSObject> arguments(Handle<JSObject>::cast(holder));
+ RETURN_IF_EMPTY_HANDLE(
+ isolate,
+ SetElement(arguments, index, value, kNonStrictMode));
+ }
+ return *value;
+ }
+
+ // The property could not be found, we introduce it in the global
+ // context.
+ if (attributes == ABSENT) {
+ Handle<JSObject> global = Handle<JSObject>(
+ isolate->context()->global());
+ // Strict mode not needed (const disallowed in strict mode).
+ RETURN_IF_EMPTY_HANDLE(
+ isolate,
+ SetProperty(global, name, value, NONE, kNonStrictMode));
+ return *value;
+ }
+
+ // The property was present in a context extension object.
+ Handle<JSObject> context_ext = Handle<JSObject>::cast(holder);
+
+ if (*context_ext == context->extension()) {
+ // This is the property that was introduced by the const
+ // declaration. Set it if it hasn't been set before. NOTE: We
+ // cannot use GetProperty() to get the current value as it
+ // 'unholes' the value.
+ LookupResult lookup;
+ context_ext->LocalLookupRealNamedProperty(*name, &lookup);
+ ASSERT(lookup.IsProperty()); // the property was declared
+ ASSERT(lookup.IsReadOnly()); // and it was declared as read-only
+
+ PropertyType type = lookup.type();
+ if (type == FIELD) {
+ FixedArray* properties = context_ext->properties();
+ int index = lookup.GetFieldIndex();
+ if (properties->get(index)->IsTheHole()) {
+ properties->set(index, *value);
+ }
+ } else if (type == NORMAL) {
+ if (context_ext->GetNormalizedProperty(&lookup)->IsTheHole()) {
+ context_ext->SetNormalizedProperty(&lookup, *value);
+ }
+ } else {
+ // We should not reach here. Any real, named property should be
+ // either a field or a dictionary slot.
+ UNREACHABLE();
+ }
+ } else {
+ // The property was found in a different context extension object.
+ // Set it if it is not a read-only property.
+ if ((attributes & READ_ONLY) == 0) {
+ // Strict mode not needed (const disallowed in strict mode).
+ RETURN_IF_EMPTY_HANDLE(
+ isolate,
+ SetProperty(context_ext, name, value, attributes, kNonStrictMode));
+ }
+ }
+
+ return *value;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*,
+ Runtime_OptimizeObjectForAddingMultipleProperties) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+ CONVERT_ARG_CHECKED(JSObject, object, 0);
+ CONVERT_SMI_CHECKED(properties, args[1]);
+ if (object->HasFastProperties()) {
+ NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties);
+ }
+ return *object;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpExec) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 4);
+ CONVERT_ARG_CHECKED(JSRegExp, regexp, 0);
+ CONVERT_ARG_CHECKED(String, subject, 1);
+ // Due to the way the JS calls are constructed this must be less than the
+ // length of a string, i.e. it is always a Smi. We check anyway for security.
+ CONVERT_SMI_CHECKED(index, args[2]);
+ CONVERT_ARG_CHECKED(JSArray, last_match_info, 3);
+ RUNTIME_ASSERT(last_match_info->HasFastElements());
+ RUNTIME_ASSERT(index >= 0);
+ RUNTIME_ASSERT(index <= subject->length());
+ isolate->counters()->regexp_entry_runtime()->Increment();
+ Handle<Object> result = RegExpImpl::Exec(regexp,
+ subject,
+ index,
+ last_match_info);
+ if (result.is_null()) return Failure::Exception();
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpConstructResult) {
+ ASSERT(args.length() == 3);
+ CONVERT_SMI_CHECKED(elements_count, args[0]);
+ if (elements_count > JSArray::kMaxFastElementsLength) {
+ return isolate->ThrowIllegalOperation();
+ }
+ Object* new_object;
+ { MaybeObject* maybe_new_object =
+ isolate->heap()->AllocateFixedArrayWithHoles(elements_count);
+ if (!maybe_new_object->ToObject(&new_object)) return maybe_new_object;
+ }
+ FixedArray* elements = FixedArray::cast(new_object);
+ { MaybeObject* maybe_new_object = isolate->heap()->AllocateRaw(
+ JSRegExpResult::kSize, NEW_SPACE, OLD_POINTER_SPACE);
+ if (!maybe_new_object->ToObject(&new_object)) return maybe_new_object;
+ }
+ {
+ AssertNoAllocation no_gc;
+ HandleScope scope(isolate);
+ reinterpret_cast<HeapObject*>(new_object)->
+ set_map(isolate->global_context()->regexp_result_map());
+ }
+ JSArray* array = JSArray::cast(new_object);
+ array->set_properties(isolate->heap()->empty_fixed_array());
+ array->set_elements(elements);
+ array->set_length(Smi::FromInt(elements_count));
+ // Write in-object properties after the length of the array.
+ array->InObjectPropertyAtPut(JSRegExpResult::kIndexIndex, args[1]);
+ array->InObjectPropertyAtPut(JSRegExpResult::kInputIndex, args[2]);
+ return array;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpInitializeObject) {
+ AssertNoAllocation no_alloc;
+ ASSERT(args.length() == 5);
+ CONVERT_CHECKED(JSRegExp, regexp, args[0]);
+ CONVERT_CHECKED(String, source, args[1]);
+
+ Object* global = args[2];
+ if (!global->IsTrue()) global = isolate->heap()->false_value();
+
+ Object* ignoreCase = args[3];
+ if (!ignoreCase->IsTrue()) ignoreCase = isolate->heap()->false_value();
+
+ Object* multiline = args[4];
+ if (!multiline->IsTrue()) multiline = isolate->heap()->false_value();
+
+ Map* map = regexp->map();
+ Object* constructor = map->constructor();
+ if (constructor->IsJSFunction() &&
+ JSFunction::cast(constructor)->initial_map() == map) {
+ // If we still have the original map, set in-object properties directly.
+ regexp->InObjectPropertyAtPut(JSRegExp::kSourceFieldIndex, source);
+ // TODO(lrn): Consider skipping write barrier on booleans as well.
+ // Both true and false should be in oldspace at all times.
+ regexp->InObjectPropertyAtPut(JSRegExp::kGlobalFieldIndex, global);
+ regexp->InObjectPropertyAtPut(JSRegExp::kIgnoreCaseFieldIndex, ignoreCase);
+ regexp->InObjectPropertyAtPut(JSRegExp::kMultilineFieldIndex, multiline);
+ regexp->InObjectPropertyAtPut(JSRegExp::kLastIndexFieldIndex,
+ Smi::FromInt(0),
+ SKIP_WRITE_BARRIER);
+ return regexp;
+ }
+
+ // Map has changed, so use generic, but slower, method.
+ PropertyAttributes final =
+ static_cast<PropertyAttributes>(READ_ONLY | DONT_ENUM | DONT_DELETE);
+ PropertyAttributes writable =
+ static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
+ Heap* heap = isolate->heap();
+ MaybeObject* result;
+ result = regexp->SetLocalPropertyIgnoreAttributes(heap->source_symbol(),
+ source,
+ final);
+ ASSERT(!result->IsFailure());
+ result = regexp->SetLocalPropertyIgnoreAttributes(heap->global_symbol(),
+ global,
+ final);
+ ASSERT(!result->IsFailure());
+ result =
+ regexp->SetLocalPropertyIgnoreAttributes(heap->ignore_case_symbol(),
+ ignoreCase,
+ final);
+ ASSERT(!result->IsFailure());
+ result = regexp->SetLocalPropertyIgnoreAttributes(heap->multiline_symbol(),
+ multiline,
+ final);
+ ASSERT(!result->IsFailure());
+ result =
+ regexp->SetLocalPropertyIgnoreAttributes(heap->last_index_symbol(),
+ Smi::FromInt(0),
+ writable);
+ ASSERT(!result->IsFailure());
+ USE(result);
+ return regexp;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FinishArrayPrototypeSetup) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSArray, prototype, 0);
+ // This is necessary to enable fast checks for absence of elements
+ // on Array.prototype and below.
+ prototype->set_elements(isolate->heap()->empty_fixed_array());
+ return Smi::FromInt(0);
+}
+
+
+static Handle<JSFunction> InstallBuiltin(Isolate* isolate,
+ Handle<JSObject> holder,
+ const char* name,
+ Builtins::Name builtin_name) {
+ Handle<String> key = isolate->factory()->LookupAsciiSymbol(name);
+ Handle<Code> code(isolate->builtins()->builtin(builtin_name));
+ Handle<JSFunction> optimized =
+ isolate->factory()->NewFunction(key,
+ JS_OBJECT_TYPE,
+ JSObject::kHeaderSize,
+ code,
+ false);
+ optimized->shared()->DontAdaptArguments();
+ SetProperty(holder, key, optimized, NONE, kStrictMode);
+ return optimized;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SpecialArrayFunctions) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSObject, holder, 0);
+
+ InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop);
+ InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush);
+ InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift);
+ InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift);
+ InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice);
+ InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice);
+ InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat);
+
+ return *holder;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetGlobalReceiver) {
+ // Returns a real global receiver, not one of builtins object.
+ Context* global_context =
+ isolate->context()->global()->global_context();
+ return global_context->global()->global_receiver();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_MaterializeRegExpLiteral) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 4);
+ CONVERT_ARG_CHECKED(FixedArray, literals, 0);
+ int index = Smi::cast(args[1])->value();
+ Handle<String> pattern = args.at<String>(2);
+ Handle<String> flags = args.at<String>(3);
+
+ // Get the RegExp function from the context in the literals array.
+ // This is the RegExp function from the context in which the
+ // function was created. We do not use the RegExp function from the
+ // current global context because this might be the RegExp function
+ // from another context which we should not have access to.
+ Handle<JSFunction> constructor =
+ Handle<JSFunction>(
+ JSFunction::GlobalContextFromLiterals(*literals)->regexp_function());
+ // Compute the regular expression literal.
+ bool has_pending_exception;
+ Handle<Object> regexp =
+ RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags,
+ &has_pending_exception);
+ if (has_pending_exception) {
+ ASSERT(isolate->has_pending_exception());
+ return Failure::Exception();
+ }
+ literals->set(index, *regexp);
+ return *regexp;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetName) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(JSFunction, f, args[0]);
+ return f->shared()->name();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetName) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_CHECKED(JSFunction, f, args[0]);
+ CONVERT_CHECKED(String, name, args[1]);
+ f->shared()->set_name(name);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionRemovePrototype) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(JSFunction, f, args[0]);
+ Object* obj = f->RemovePrototype();
+ if (obj->IsFailure()) return obj;
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetScript) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(JSFunction, fun, args[0]);
+ Handle<Object> script = Handle<Object>(fun->shared()->script(), isolate);
+ if (!script->IsScript()) return isolate->heap()->undefined_value();
+
+ return *GetScriptWrapper(Handle<Script>::cast(script));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetSourceCode) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(JSFunction, f, args[0]);
+ return f->shared()->GetSourceCode();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetScriptSourcePosition) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(JSFunction, fun, args[0]);
+ int pos = fun->shared()->start_position();
+ return Smi::FromInt(pos);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetPositionForOffset) {
+ ASSERT(args.length() == 2);
+
+ CONVERT_CHECKED(Code, code, args[0]);
+ CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]);
+
+ RUNTIME_ASSERT(0 <= offset && offset < code->Size());
+
+ Address pc = code->address() + offset;
+ return Smi::FromInt(code->SourcePosition(pc));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetInstanceClassName) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_CHECKED(JSFunction, fun, args[0]);
+ CONVERT_CHECKED(String, name, args[1]);
+ fun->SetInstanceClassName(name);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetLength) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_CHECKED(JSFunction, fun, args[0]);
+ CONVERT_CHECKED(Smi, length, args[1]);
+ fun->shared()->set_length(length->value());
+ return length;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionSetPrototype) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_CHECKED(JSFunction, fun, args[0]);
+ ASSERT(fun->should_have_prototype());
+ Object* obj;
+ { MaybeObject* maybe_obj =
+ Accessors::FunctionSetPrototype(fun, args[1], NULL);
+ if (!maybe_obj->ToObject(&obj)) return maybe_obj;
+ }
+ return args[0]; // return TOS
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionIsAPIFunction) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(JSFunction, f, args[0]);
+ return f->shared()->IsApiFunction() ? isolate->heap()->true_value()
+ : isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionIsBuiltin) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(JSFunction, f, args[0]);
+ return f->IsBuiltin() ? isolate->heap()->true_value() :
+ isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SetCode) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+
+ CONVERT_ARG_CHECKED(JSFunction, target, 0);
+ Handle<Object> code = args.at<Object>(1);
+
+ Handle<Context> context(target->context());
+
+ if (!code->IsNull()) {
+ RUNTIME_ASSERT(code->IsJSFunction());
+ Handle<JSFunction> fun = Handle<JSFunction>::cast(code);
+ Handle<SharedFunctionInfo> shared(fun->shared());
+
+ if (!EnsureCompiled(shared, KEEP_EXCEPTION)) {
+ return Failure::Exception();
+ }
+ // Since we don't store the source for this we should never
+ // optimize this.
+ shared->code()->set_optimizable(false);
+
+ // Set the code, scope info, formal parameter count,
+ // and the length of the target function.
+ target->shared()->set_code(shared->code());
+ target->ReplaceCode(shared->code());
+ target->shared()->set_scope_info(shared->scope_info());
+ target->shared()->set_length(shared->length());
+ target->shared()->set_formal_parameter_count(
+ shared->formal_parameter_count());
+ // Set the source code of the target function to undefined.
+ // SetCode is only used for built-in constructors like String,
+ // Array, and Object, and some web code
+ // doesn't like seeing source code for constructors.
+ target->shared()->set_script(isolate->heap()->undefined_value());
+ target->shared()->code()->set_optimizable(false);
+ // Clear the optimization hints related to the compiled code as these are no
+ // longer valid when the code is overwritten.
+ target->shared()->ClearThisPropertyAssignmentsInfo();
+ context = Handle<Context>(fun->context());
+
+ // Make sure we get a fresh copy of the literal vector to avoid
+ // cross context contamination.
+ int number_of_literals = fun->NumberOfLiterals();
+ Handle<FixedArray> literals =
+ isolate->factory()->NewFixedArray(number_of_literals, TENURED);
+ if (number_of_literals > 0) {
+ // Insert the object, regexp and array functions in the literals
+ // array prefix. These are the functions that will be used when
+ // creating object, regexp and array literals.
+ literals->set(JSFunction::kLiteralGlobalContextIndex,
+ context->global_context());
+ }
+ // It's okay to skip the write barrier here because the literals
+ // are guaranteed to be in old space.
+ target->set_literals(*literals, SKIP_WRITE_BARRIER);
+ target->set_next_function_link(isolate->heap()->undefined_value());
+ }
+
+ target->set_context(*context);
+ return *target;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SetExpectedNumberOfProperties) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+ CONVERT_ARG_CHECKED(JSFunction, function, 0);
+ CONVERT_SMI_CHECKED(num, args[1]);
+ RUNTIME_ASSERT(num >= 0);
+ SetExpectedNofProperties(function, num);
+ return isolate->heap()->undefined_value();
+}
+
+
+MUST_USE_RESULT static MaybeObject* CharFromCode(Isolate* isolate,
+ Object* char_code) {
+ uint32_t code;
+ if (char_code->ToArrayIndex(&code)) {
+ if (code <= 0xffff) {
+ return isolate->heap()->LookupSingleCharacterStringFromCode(code);
+ }
+ }
+ return isolate->heap()->empty_string();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCharCodeAt) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_CHECKED(String, subject, args[0]);
+ Object* index = args[1];
+ RUNTIME_ASSERT(index->IsNumber());
+
+ uint32_t i = 0;
+ if (index->IsSmi()) {
+ int value = Smi::cast(index)->value();
+ if (value < 0) return isolate->heap()->nan_value();
+ i = value;
+ } else {
+ ASSERT(index->IsHeapNumber());
+ double value = HeapNumber::cast(index)->value();
+ i = static_cast<uint32_t>(DoubleToInteger(value));
+ }
+
+ // Flatten the string. If someone wants to get a char at an index
+ // in a cons string, it is likely that more indices will be
+ // accessed.
+ Object* flat;
+ { MaybeObject* maybe_flat = subject->TryFlatten();
+ if (!maybe_flat->ToObject(&flat)) return maybe_flat;
+ }
+ subject = String::cast(flat);
+
+ if (i >= static_cast<uint32_t>(subject->length())) {
+ return isolate->heap()->nan_value();
+ }
+
+ return Smi::FromInt(subject->Get(i));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CharFromCode) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ return CharFromCode(isolate, args[0]);
+}
+
+
+class FixedArrayBuilder {
+ public:
+ explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity)
+ : array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)),
+ length_(0) {
+ // Require a non-zero initial size. Ensures that doubling the size to
+ // extend the array will work.
+ ASSERT(initial_capacity > 0);
+ }
+
+ explicit FixedArrayBuilder(Handle<FixedArray> backing_store)
+ : array_(backing_store),
+ length_(0) {
+ // Require a non-zero initial size. Ensures that doubling the size to
+ // extend the array will work.
+ ASSERT(backing_store->length() > 0);
+ }
+
+ bool HasCapacity(int elements) {
+ int length = array_->length();
+ int required_length = length_ + elements;
+ return (length >= required_length);
+ }
+
+ void EnsureCapacity(int elements) {
+ int length = array_->length();
+ int required_length = length_ + elements;
+ if (length < required_length) {
+ int new_length = length;
+ do {
+ new_length *= 2;
+ } while (new_length < required_length);
+ Handle<FixedArray> extended_array =
+ array_->GetIsolate()->factory()->NewFixedArrayWithHoles(new_length);
+ array_->CopyTo(0, *extended_array, 0, length_);
+ array_ = extended_array;
+ }
+ }
+
+ void Add(Object* value) {
+ ASSERT(length_ < capacity());
+ array_->set(length_, value);
+ length_++;
+ }
+
+ void Add(Smi* value) {
+ ASSERT(length_ < capacity());
+ array_->set(length_, value);
+ length_++;
+ }
+
+ Handle<FixedArray> array() {
+ return array_;
+ }
+
+ int length() {
+ return length_;
+ }
+
+ int capacity() {
+ return array_->length();
+ }
+
+ Handle<JSArray> ToJSArray() {
+ Handle<JSArray> result_array = FACTORY->NewJSArrayWithElements(array_);
+ result_array->set_length(Smi::FromInt(length_));
+ return result_array;
+ }
+
+ Handle<JSArray> ToJSArray(Handle<JSArray> target_array) {
+ target_array->set_elements(*array_);
+ target_array->set_length(Smi::FromInt(length_));
+ return target_array;
+ }
+
+ private:
+ Handle<FixedArray> array_;
+ int length_;
+};
+
+
+// Forward declarations.
+const int kStringBuilderConcatHelperLengthBits = 11;
+const int kStringBuilderConcatHelperPositionBits = 19;
+
+template <typename schar>
+static inline void StringBuilderConcatHelper(String*,
+ schar*,
+ FixedArray*,
+ int);
+
+typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits>
+ StringBuilderSubstringLength;
+typedef BitField<int,
+ kStringBuilderConcatHelperLengthBits,
+ kStringBuilderConcatHelperPositionBits>
+ StringBuilderSubstringPosition;
+
+
+class ReplacementStringBuilder {
+ public:
+ ReplacementStringBuilder(Heap* heap,
+ Handle<String> subject,
+ int estimated_part_count)
+ : heap_(heap),
+ array_builder_(heap->isolate(), estimated_part_count),
+ subject_(subject),
+ character_count_(0),
+ is_ascii_(subject->IsAsciiRepresentation()) {
+ // Require a non-zero initial size. Ensures that doubling the size to
+ // extend the array will work.
+ ASSERT(estimated_part_count > 0);
+ }
+
+ static inline void AddSubjectSlice(FixedArrayBuilder* builder,
+ int from,
+ int to) {
+ ASSERT(from >= 0);
+ int length = to - from;
+ ASSERT(length > 0);
+ if (StringBuilderSubstringLength::is_valid(length) &&
+ StringBuilderSubstringPosition::is_valid(from)) {
+ int encoded_slice = StringBuilderSubstringLength::encode(length) |
+ StringBuilderSubstringPosition::encode(from);
+ builder->Add(Smi::FromInt(encoded_slice));
+ } else {
+ // Otherwise encode as two smis.
+ builder->Add(Smi::FromInt(-length));
+ builder->Add(Smi::FromInt(from));
+ }
+ }
+
+
+ void EnsureCapacity(int elements) {
+ array_builder_.EnsureCapacity(elements);
+ }
+
+
+ void AddSubjectSlice(int from, int to) {
+ AddSubjectSlice(&array_builder_, from, to);
+ IncrementCharacterCount(to - from);
+ }
+
+
+ void AddString(Handle<String> string) {
+ int length = string->length();
+ ASSERT(length > 0);
+ AddElement(*string);
+ if (!string->IsAsciiRepresentation()) {
+ is_ascii_ = false;
+ }
+ IncrementCharacterCount(length);
+ }
+
+
+ Handle<String> ToString() {
+ if (array_builder_.length() == 0) {
+ return heap_->isolate()->factory()->empty_string();
+ }
+
+ Handle<String> joined_string;
+ if (is_ascii_) {
+ joined_string = NewRawAsciiString(character_count_);
+ AssertNoAllocation no_alloc;
+ SeqAsciiString* seq = SeqAsciiString::cast(*joined_string);
+ char* char_buffer = seq->GetChars();
+ StringBuilderConcatHelper(*subject_,
+ char_buffer,
+ *array_builder_.array(),
+ array_builder_.length());
+ } else {
+ // Non-ASCII.
+ joined_string = NewRawTwoByteString(character_count_);
+ AssertNoAllocation no_alloc;
+ SeqTwoByteString* seq = SeqTwoByteString::cast(*joined_string);
+ uc16* char_buffer = seq->GetChars();
+ StringBuilderConcatHelper(*subject_,
+ char_buffer,
+ *array_builder_.array(),
+ array_builder_.length());
+ }
+ return joined_string;
+ }
+
+
+ void IncrementCharacterCount(int by) {
+ if (character_count_ > String::kMaxLength - by) {
+ V8::FatalProcessOutOfMemory("String.replace result too large.");
+ }
+ character_count_ += by;
+ }
+
+ Handle<JSArray> GetParts() {
+ return array_builder_.ToJSArray();
+ }
+
+ private:
+ Handle<String> NewRawAsciiString(int size) {
+ CALL_HEAP_FUNCTION(heap_->isolate(),
+ heap_->AllocateRawAsciiString(size), String);
+ }
+
+
+ Handle<String> NewRawTwoByteString(int size) {
+ CALL_HEAP_FUNCTION(heap_->isolate(),
+ heap_->AllocateRawTwoByteString(size), String);
+ }
+
+
+ void AddElement(Object* element) {
+ ASSERT(element->IsSmi() || element->IsString());
+ ASSERT(array_builder_.capacity() > array_builder_.length());
+ array_builder_.Add(element);
+ }
+
+ Heap* heap_;
+ FixedArrayBuilder array_builder_;
+ Handle<String> subject_;
+ int character_count_;
+ bool is_ascii_;
+};
+
+
+class CompiledReplacement {
+ public:
+ CompiledReplacement()
+ : parts_(1), replacement_substrings_(0) {}
+
+ void Compile(Handle<String> replacement,
+ int capture_count,
+ int subject_length);
+
+ void Apply(ReplacementStringBuilder* builder,
+ int match_from,
+ int match_to,
+ Handle<JSArray> last_match_info);
+
+ // Number of distinct parts of the replacement pattern.
+ int parts() {
+ return parts_.length();
+ }
+ private:
+ enum PartType {
+ SUBJECT_PREFIX = 1,
+ SUBJECT_SUFFIX,
+ SUBJECT_CAPTURE,
+ REPLACEMENT_SUBSTRING,
+ REPLACEMENT_STRING,
+
+ NUMBER_OF_PART_TYPES
+ };
+
+ struct ReplacementPart {
+ static inline ReplacementPart SubjectMatch() {
+ return ReplacementPart(SUBJECT_CAPTURE, 0);
+ }
+ static inline ReplacementPart SubjectCapture(int capture_index) {
+ return ReplacementPart(SUBJECT_CAPTURE, capture_index);
+ }
+ static inline ReplacementPart SubjectPrefix() {
+ return ReplacementPart(SUBJECT_PREFIX, 0);
+ }
+ static inline ReplacementPart SubjectSuffix(int subject_length) {
+ return ReplacementPart(SUBJECT_SUFFIX, subject_length);
+ }
+ static inline ReplacementPart ReplacementString() {
+ return ReplacementPart(REPLACEMENT_STRING, 0);
+ }
+ static inline ReplacementPart ReplacementSubString(int from, int to) {
+ ASSERT(from >= 0);
+ ASSERT(to > from);
+ return ReplacementPart(-from, to);
+ }
+
+ // If tag <= 0 then it is the negation of a start index of a substring of
+ // the replacement pattern, otherwise it's a value from PartType.
+ ReplacementPart(int tag, int data)
+ : tag(tag), data(data) {
+ // Must be non-positive or a PartType value.
+ ASSERT(tag < NUMBER_OF_PART_TYPES);
+ }
+ // Either a value of PartType or a non-positive number that is
+ // the negation of an index into the replacement string.
+ int tag;
+ // The data value's interpretation depends on the value of tag:
+ // tag == SUBJECT_PREFIX ||
+ // tag == SUBJECT_SUFFIX: data is unused.
+ // tag == SUBJECT_CAPTURE: data is the number of the capture.
+ // tag == REPLACEMENT_SUBSTRING ||
+ // tag == REPLACEMENT_STRING: data is index into array of substrings
+ // of the replacement string.
+ // tag <= 0: Temporary representation of the substring of the replacement
+ // string ranging over -tag .. data.
+ // Is replaced by REPLACEMENT_{SUB,}STRING when we create the
+ // substring objects.
+ int data;
+ };
+
+ template<typename Char>
+ static void ParseReplacementPattern(ZoneList<ReplacementPart>* parts,
+ Vector<Char> characters,
+ int capture_count,
+ int subject_length) {
+ int length = characters.length();
+ int last = 0;
+ for (int i = 0; i < length; i++) {
+ Char c = characters[i];
+ if (c == '$') {
+ int next_index = i + 1;
+ if (next_index == length) { // No next character!
+ break;
+ }
+ Char c2 = characters[next_index];
+ switch (c2) {
+ case '$':
+ if (i > last) {
+ // There is a substring before. Include the first "$".
+ parts->Add(ReplacementPart::ReplacementSubString(last, next_index));
+ last = next_index + 1; // Continue after the second "$".
+ } else {
+ // Let the next substring start with the second "$".
+ last = next_index;
+ }
+ i = next_index;
+ break;
+ case '`':
+ if (i > last) {
+ parts->Add(ReplacementPart::ReplacementSubString(last, i));
+ }
+ parts->Add(ReplacementPart::SubjectPrefix());
+ i = next_index;
+ last = i + 1;
+ break;
+ case '\'':
+ if (i > last) {
+ parts->Add(ReplacementPart::ReplacementSubString(last, i));
+ }
+ parts->Add(ReplacementPart::SubjectSuffix(subject_length));
+ i = next_index;
+ last = i + 1;
+ break;
+ case '&':
+ if (i > last) {
+ parts->Add(ReplacementPart::ReplacementSubString(last, i));
+ }
+ parts->Add(ReplacementPart::SubjectMatch());
+ i = next_index;
+ last = i + 1;
+ break;
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9': {
+ int capture_ref = c2 - '0';
+ if (capture_ref > capture_count) {
+ i = next_index;
+ continue;
+ }
+ int second_digit_index = next_index + 1;
+ if (second_digit_index < length) {
+ // Peek ahead to see if we have two digits.
+ Char c3 = characters[second_digit_index];
+ if ('0' <= c3 && c3 <= '9') { // Double digits.
+ int double_digit_ref = capture_ref * 10 + c3 - '0';
+ if (double_digit_ref <= capture_count) {
+ next_index = second_digit_index;
+ capture_ref = double_digit_ref;
+ }
+ }
+ }
+ if (capture_ref > 0) {
+ if (i > last) {
+ parts->Add(ReplacementPart::ReplacementSubString(last, i));
+ }
+ ASSERT(capture_ref <= capture_count);
+ parts->Add(ReplacementPart::SubjectCapture(capture_ref));
+ last = next_index + 1;
+ }
+ i = next_index;
+ break;
+ }
+ default:
+ i = next_index;
+ break;
+ }
+ }
+ }
+ if (length > last) {
+ if (last == 0) {
+ parts->Add(ReplacementPart::ReplacementString());
+ } else {
+ parts->Add(ReplacementPart::ReplacementSubString(last, length));
+ }
+ }
+ }
+
+ ZoneList<ReplacementPart> parts_;
+ ZoneList<Handle<String> > replacement_substrings_;
+};
+
+
+void CompiledReplacement::Compile(Handle<String> replacement,
+ int capture_count,
+ int subject_length) {
+ ASSERT(replacement->IsFlat());
+ if (replacement->IsAsciiRepresentation()) {
+ AssertNoAllocation no_alloc;
+ ParseReplacementPattern(&parts_,
+ replacement->ToAsciiVector(),
+ capture_count,
+ subject_length);
+ } else {
+ ASSERT(replacement->IsTwoByteRepresentation());
+ AssertNoAllocation no_alloc;
+
+ ParseReplacementPattern(&parts_,
+ replacement->ToUC16Vector(),
+ capture_count,
+ subject_length);
+ }
+ Isolate* isolate = replacement->GetIsolate();
+ // Find substrings of replacement string and create them as String objects.
+ int substring_index = 0;
+ for (int i = 0, n = parts_.length(); i < n; i++) {
+ int tag = parts_[i].tag;
+ if (tag <= 0) { // A replacement string slice.
+ int from = -tag;
+ int to = parts_[i].data;
+ replacement_substrings_.Add(
+ isolate->factory()->NewSubString(replacement, from, to));
+ parts_[i].tag = REPLACEMENT_SUBSTRING;
+ parts_[i].data = substring_index;
+ substring_index++;
+ } else if (tag == REPLACEMENT_STRING) {
+ replacement_substrings_.Add(replacement);
+ parts_[i].data = substring_index;
+ substring_index++;
+ }
+ }
+}
+
+
+void CompiledReplacement::Apply(ReplacementStringBuilder* builder,
+ int match_from,
+ int match_to,
+ Handle<JSArray> last_match_info) {
+ for (int i = 0, n = parts_.length(); i < n; i++) {
+ ReplacementPart part = parts_[i];
+ switch (part.tag) {
+ case SUBJECT_PREFIX:
+ if (match_from > 0) builder->AddSubjectSlice(0, match_from);
+ break;
+ case SUBJECT_SUFFIX: {
+ int subject_length = part.data;
+ if (match_to < subject_length) {
+ builder->AddSubjectSlice(match_to, subject_length);
+ }
+ break;
+ }
+ case SUBJECT_CAPTURE: {
+ int capture = part.data;
+ FixedArray* match_info = FixedArray::cast(last_match_info->elements());
+ int from = RegExpImpl::GetCapture(match_info, capture * 2);
+ int to = RegExpImpl::GetCapture(match_info, capture * 2 + 1);
+ if (from >= 0 && to > from) {
+ builder->AddSubjectSlice(from, to);
+ }
+ break;
+ }
+ case REPLACEMENT_SUBSTRING:
+ case REPLACEMENT_STRING:
+ builder->AddString(replacement_substrings_[part.data]);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+}
+
+
+
+MUST_USE_RESULT static MaybeObject* StringReplaceRegExpWithString(
+ Isolate* isolate,
+ String* subject,
+ JSRegExp* regexp,
+ String* replacement,
+ JSArray* last_match_info) {
+ ASSERT(subject->IsFlat());
+ ASSERT(replacement->IsFlat());
+
+ HandleScope handles(isolate);
+
+ int length = subject->length();
+ Handle<String> subject_handle(subject);
+ Handle<JSRegExp> regexp_handle(regexp);
+ Handle<String> replacement_handle(replacement);
+ Handle<JSArray> last_match_info_handle(last_match_info);
+ Handle<Object> match = RegExpImpl::Exec(regexp_handle,
+ subject_handle,
+ 0,
+ last_match_info_handle);
+ if (match.is_null()) {
+ return Failure::Exception();
+ }
+ if (match->IsNull()) {
+ return *subject_handle;
+ }
+
+ int capture_count = regexp_handle->CaptureCount();
+
+ // CompiledReplacement uses zone allocation.
+ CompilationZoneScope zone(DELETE_ON_EXIT);
+ CompiledReplacement compiled_replacement;
+ compiled_replacement.Compile(replacement_handle,
+ capture_count,
+ length);
+
+ bool is_global = regexp_handle->GetFlags().is_global();
+
+ // Guessing the number of parts that the final result string is built
+ // from. Global regexps can match any number of times, so we guess
+ // conservatively.
+ int expected_parts =
+ (compiled_replacement.parts() + 1) * (is_global ? 4 : 1) + 1;
+ ReplacementStringBuilder builder(isolate->heap(),
+ subject_handle,
+ expected_parts);
+
+ // Index of end of last match.
+ int prev = 0;
+
+ // Number of parts added by compiled replacement plus preceeding
+ // string and possibly suffix after last match. It is possible for
+ // all components to use two elements when encoded as two smis.
+ const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2);
+ bool matched = true;
+ do {
+ ASSERT(last_match_info_handle->HasFastElements());
+ // Increase the capacity of the builder before entering local handle-scope,
+ // so its internal buffer can safely allocate a new handle if it grows.
+ builder.EnsureCapacity(parts_added_per_loop);
+
+ HandleScope loop_scope(isolate);
+ int start, end;
+ {
+ AssertNoAllocation match_info_array_is_not_in_a_handle;
+ FixedArray* match_info_array =
+ FixedArray::cast(last_match_info_handle->elements());
+
+ ASSERT_EQ(capture_count * 2 + 2,
+ RegExpImpl::GetLastCaptureCount(match_info_array));
+ start = RegExpImpl::GetCapture(match_info_array, 0);
+ end = RegExpImpl::GetCapture(match_info_array, 1);
+ }
+
+ if (prev < start) {
+ builder.AddSubjectSlice(prev, start);
+ }
+ compiled_replacement.Apply(&builder,
+ start,
+ end,
+ last_match_info_handle);
+ prev = end;
+
+ // Only continue checking for global regexps.
+ if (!is_global) break;
+
+ // Continue from where the match ended, unless it was an empty match.
+ int next = end;
+ if (start == end) {
+ next = end + 1;
+ if (next > length) break;
+ }
+
+ match = RegExpImpl::Exec(regexp_handle,
+ subject_handle,
+ next,
+ last_match_info_handle);
+ if (match.is_null()) {
+ return Failure::Exception();
+ }
+ matched = !match->IsNull();
+ } while (matched);
+
+ if (prev < length) {
+ builder.AddSubjectSlice(prev, length);
+ }
+
+ return *(builder.ToString());
+}
+
+
+template <typename ResultSeqString>
+MUST_USE_RESULT static MaybeObject* StringReplaceRegExpWithEmptyString(
+ Isolate* isolate,
+ String* subject,
+ JSRegExp* regexp,
+ JSArray* last_match_info) {
+ ASSERT(subject->IsFlat());
+
+ HandleScope handles(isolate);
+
+ Handle<String> subject_handle(subject);
+ Handle<JSRegExp> regexp_handle(regexp);
+ Handle<JSArray> last_match_info_handle(last_match_info);
+ Handle<Object> match = RegExpImpl::Exec(regexp_handle,
+ subject_handle,
+ 0,
+ last_match_info_handle);
+ if (match.is_null()) return Failure::Exception();
+ if (match->IsNull()) return *subject_handle;
+
+ ASSERT(last_match_info_handle->HasFastElements());
+
+ int start, end;
+ {
+ AssertNoAllocation match_info_array_is_not_in_a_handle;
+ FixedArray* match_info_array =
+ FixedArray::cast(last_match_info_handle->elements());
+
+ start = RegExpImpl::GetCapture(match_info_array, 0);
+ end = RegExpImpl::GetCapture(match_info_array, 1);
+ }
+
+ int length = subject->length();
+ int new_length = length - (end - start);
+ if (new_length == 0) {
+ return isolate->heap()->empty_string();
+ }
+ Handle<ResultSeqString> answer;
+ if (ResultSeqString::kHasAsciiEncoding) {
+ answer = Handle<ResultSeqString>::cast(
+ isolate->factory()->NewRawAsciiString(new_length));
+ } else {
+ answer = Handle<ResultSeqString>::cast(
+ isolate->factory()->NewRawTwoByteString(new_length));
+ }
+
+ // If the regexp isn't global, only match once.
+ if (!regexp_handle->GetFlags().is_global()) {
+ if (start > 0) {
+ String::WriteToFlat(*subject_handle,
+ answer->GetChars(),
+ 0,
+ start);
+ }
+ if (end < length) {
+ String::WriteToFlat(*subject_handle,
+ answer->GetChars() + start,
+ end,
+ length);
+ }
+ return *answer;
+ }
+
+ int prev = 0; // Index of end of last match.
+ int next = 0; // Start of next search (prev unless last match was empty).
+ int position = 0;
+
+ do {
+ if (prev < start) {
+ // Add substring subject[prev;start] to answer string.
+ String::WriteToFlat(*subject_handle,
+ answer->GetChars() + position,
+ prev,
+ start);
+ position += start - prev;
+ }
+ prev = end;
+ next = end;
+ // Continue from where the match ended, unless it was an empty match.
+ if (start == end) {
+ next++;
+ if (next > length) break;
+ }
+ match = RegExpImpl::Exec(regexp_handle,
+ subject_handle,
+ next,
+ last_match_info_handle);
+ if (match.is_null()) return Failure::Exception();
+ if (match->IsNull()) break;
+
+ ASSERT(last_match_info_handle->HasFastElements());
+ HandleScope loop_scope(isolate);
+ {
+ AssertNoAllocation match_info_array_is_not_in_a_handle;
+ FixedArray* match_info_array =
+ FixedArray::cast(last_match_info_handle->elements());
+ start = RegExpImpl::GetCapture(match_info_array, 0);
+ end = RegExpImpl::GetCapture(match_info_array, 1);
+ }
+ } while (true);
+
+ if (prev < length) {
+ // Add substring subject[prev;length] to answer string.
+ String::WriteToFlat(*subject_handle,
+ answer->GetChars() + position,
+ prev,
+ length);
+ position += length - prev;
+ }
+
+ if (position == 0) {
+ return isolate->heap()->empty_string();
+ }
+
+ // Shorten string and fill
+ int string_size = ResultSeqString::SizeFor(position);
+ int allocated_string_size = ResultSeqString::SizeFor(new_length);
+ int delta = allocated_string_size - string_size;
+
+ answer->set_length(position);
+ if (delta == 0) return *answer;
+
+ Address end_of_string = answer->address() + string_size;
+ isolate->heap()->CreateFillerObjectAt(end_of_string, delta);
+
+ return *answer;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringReplaceRegExpWithString) {
+ ASSERT(args.length() == 4);
+
+ CONVERT_CHECKED(String, subject, args[0]);
+ if (!subject->IsFlat()) {
+ Object* flat_subject;
+ { MaybeObject* maybe_flat_subject = subject->TryFlatten();
+ if (!maybe_flat_subject->ToObject(&flat_subject)) {
+ return maybe_flat_subject;
+ }
+ }
+ subject = String::cast(flat_subject);
+ }
+
+ CONVERT_CHECKED(String, replacement, args[2]);
+ if (!replacement->IsFlat()) {
+ Object* flat_replacement;
+ { MaybeObject* maybe_flat_replacement = replacement->TryFlatten();
+ if (!maybe_flat_replacement->ToObject(&flat_replacement)) {
+ return maybe_flat_replacement;
+ }
+ }
+ replacement = String::cast(flat_replacement);
+ }
+
+ CONVERT_CHECKED(JSRegExp, regexp, args[1]);
+ CONVERT_CHECKED(JSArray, last_match_info, args[3]);
+
+ ASSERT(last_match_info->HasFastElements());
+
+ if (replacement->length() == 0) {
+ if (subject->HasOnlyAsciiChars()) {
+ return StringReplaceRegExpWithEmptyString<SeqAsciiString>(
+ isolate, subject, regexp, last_match_info);
+ } else {
+ return StringReplaceRegExpWithEmptyString<SeqTwoByteString>(
+ isolate, subject, regexp, last_match_info);
+ }
+ }
+
+ return StringReplaceRegExpWithString(isolate,
+ subject,
+ regexp,
+ replacement,
+ last_match_info);
+}
+
+
+// Perform string match of pattern on subject, starting at start index.
+// Caller must ensure that 0 <= start_index <= sub->length(),
+// and should check that pat->length() + start_index <= sub->length().
+int Runtime::StringMatch(Isolate* isolate,
+ Handle<String> sub,
+ Handle<String> pat,
+ int start_index) {
+ ASSERT(0 <= start_index);
+ ASSERT(start_index <= sub->length());
+
+ int pattern_length = pat->length();
+ if (pattern_length == 0) return start_index;
+
+ int subject_length = sub->length();
+ if (start_index + pattern_length > subject_length) return -1;
+
+ if (!sub->IsFlat()) FlattenString(sub);
+ if (!pat->IsFlat()) FlattenString(pat);
+
+ AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
+ // Extract flattened substrings of cons strings before determining asciiness.
+ String* seq_sub = *sub;
+ if (seq_sub->IsConsString()) seq_sub = ConsString::cast(seq_sub)->first();
+ String* seq_pat = *pat;
+ if (seq_pat->IsConsString()) seq_pat = ConsString::cast(seq_pat)->first();
+
+ // dispatch on type of strings
+ if (seq_pat->IsAsciiRepresentation()) {
+ Vector<const char> pat_vector = seq_pat->ToAsciiVector();
+ if (seq_sub->IsAsciiRepresentation()) {
+ return SearchString(isolate,
+ seq_sub->ToAsciiVector(),
+ pat_vector,
+ start_index);
+ }
+ return SearchString(isolate,
+ seq_sub->ToUC16Vector(),
+ pat_vector,
+ start_index);
+ }
+ Vector<const uc16> pat_vector = seq_pat->ToUC16Vector();
+ if (seq_sub->IsAsciiRepresentation()) {
+ return SearchString(isolate,
+ seq_sub->ToAsciiVector(),
+ pat_vector,
+ start_index);
+ }
+ return SearchString(isolate,
+ seq_sub->ToUC16Vector(),
+ pat_vector,
+ start_index);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringIndexOf) {
+ HandleScope scope(isolate); // create a new handle scope
+ ASSERT(args.length() == 3);
+
+ CONVERT_ARG_CHECKED(String, sub, 0);
+ CONVERT_ARG_CHECKED(String, pat, 1);
+
+ Object* index = args[2];
+ uint32_t start_index;
+ if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
+
+ RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
+ int position =
+ Runtime::StringMatch(isolate, sub, pat, start_index);
+ return Smi::FromInt(position);
+}
+
+
+template <typename schar, typename pchar>
+static int StringMatchBackwards(Vector<const schar> subject,
+ Vector<const pchar> pattern,
+ int idx) {
+ int pattern_length = pattern.length();
+ ASSERT(pattern_length >= 1);
+ ASSERT(idx + pattern_length <= subject.length());
+
+ if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
+ for (int i = 0; i < pattern_length; i++) {
+ uc16 c = pattern[i];
+ if (c > String::kMaxAsciiCharCode) {
+ return -1;
+ }
+ }
+ }
+
+ pchar pattern_first_char = pattern[0];
+ for (int i = idx; i >= 0; i--) {
+ if (subject[i] != pattern_first_char) continue;
+ int j = 1;
+ while (j < pattern_length) {
+ if (pattern[j] != subject[i+j]) {
+ break;
+ }
+ j++;
+ }
+ if (j == pattern_length) {
+ return i;
+ }
+ }
+ return -1;
+}
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringLastIndexOf) {
+ HandleScope scope(isolate); // create a new handle scope
+ ASSERT(args.length() == 3);
+
+ CONVERT_ARG_CHECKED(String, sub, 0);
+ CONVERT_ARG_CHECKED(String, pat, 1);
+
+ Object* index = args[2];
+ uint32_t start_index;
+ if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
+
+ uint32_t pat_length = pat->length();
+ uint32_t sub_length = sub->length();
+
+ if (start_index + pat_length > sub_length) {
+ start_index = sub_length - pat_length;
+ }
+
+ if (pat_length == 0) {
+ return Smi::FromInt(start_index);
+ }
+
+ if (!sub->IsFlat()) FlattenString(sub);
+ if (!pat->IsFlat()) FlattenString(pat);
+
+ AssertNoAllocation no_heap_allocation; // ensure vectors stay valid
+
+ int position = -1;
+
+ if (pat->IsAsciiRepresentation()) {
+ Vector<const char> pat_vector = pat->ToAsciiVector();
+ if (sub->IsAsciiRepresentation()) {
+ position = StringMatchBackwards(sub->ToAsciiVector(),
+ pat_vector,
+ start_index);
+ } else {
+ position = StringMatchBackwards(sub->ToUC16Vector(),
+ pat_vector,
+ start_index);
+ }
+ } else {
+ Vector<const uc16> pat_vector = pat->ToUC16Vector();
+ if (sub->IsAsciiRepresentation()) {
+ position = StringMatchBackwards(sub->ToAsciiVector(),
+ pat_vector,
+ start_index);
+ } else {
+ position = StringMatchBackwards(sub->ToUC16Vector(),
+ pat_vector,
+ start_index);
+ }
+ }
+
+ return Smi::FromInt(position);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringLocaleCompare) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_CHECKED(String, str1, args[0]);
+ CONVERT_CHECKED(String, str2, args[1]);
+
+ if (str1 == str2) return Smi::FromInt(0); // Equal.
+ int str1_length = str1->length();
+ int str2_length = str2->length();
+
+ // Decide trivial cases without flattening.
+ if (str1_length == 0) {
+ if (str2_length == 0) return Smi::FromInt(0); // Equal.
+ return Smi::FromInt(-str2_length);
+ } else {
+ if (str2_length == 0) return Smi::FromInt(str1_length);
+ }
+
+ int end = str1_length < str2_length ? str1_length : str2_length;
+
+ // No need to flatten if we are going to find the answer on the first
+ // character. At this point we know there is at least one character
+ // in each string, due to the trivial case handling above.
+ int d = str1->Get(0) - str2->Get(0);
+ if (d != 0) return Smi::FromInt(d);
+
+ str1->TryFlatten();
+ str2->TryFlatten();
+
+ StringInputBuffer& buf1 =
+ *isolate->runtime_state()->string_locale_compare_buf1();
+ StringInputBuffer& buf2 =
+ *isolate->runtime_state()->string_locale_compare_buf2();
+
+ buf1.Reset(str1);
+ buf2.Reset(str2);
+
+ for (int i = 0; i < end; i++) {
+ uint16_t char1 = buf1.GetNext();
+ uint16_t char2 = buf2.GetNext();
+ if (char1 != char2) return Smi::FromInt(char1 - char2);
+ }
+
+ return Smi::FromInt(str1_length - str2_length);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SubString) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 3);
+
+ CONVERT_CHECKED(String, value, args[0]);
+ Object* from = args[1];
+ Object* to = args[2];
+ int start, end;
+ // We have a fast integer-only case here to avoid a conversion to double in
+ // the common case where from and to are Smis.
+ if (from->IsSmi() && to->IsSmi()) {
+ start = Smi::cast(from)->value();
+ end = Smi::cast(to)->value();
+ } else {
+ CONVERT_DOUBLE_CHECKED(from_number, from);
+ CONVERT_DOUBLE_CHECKED(to_number, to);
+ start = FastD2I(from_number);
+ end = FastD2I(to_number);
+ }
+ RUNTIME_ASSERT(end >= start);
+ RUNTIME_ASSERT(start >= 0);
+ RUNTIME_ASSERT(end <= value->length());
+ isolate->counters()->sub_string_runtime()->Increment();
+ return value->SubString(start, end);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringMatch) {
+ ASSERT_EQ(3, args.length());
+
+ CONVERT_ARG_CHECKED(String, subject, 0);
+ CONVERT_ARG_CHECKED(JSRegExp, regexp, 1);
+ CONVERT_ARG_CHECKED(JSArray, regexp_info, 2);
+ HandleScope handles;
+
+ Handle<Object> match = RegExpImpl::Exec(regexp, subject, 0, regexp_info);
+
+ if (match.is_null()) {
+ return Failure::Exception();
+ }
+ if (match->IsNull()) {
+ return isolate->heap()->null_value();
+ }
+ int length = subject->length();
+
+ CompilationZoneScope zone_space(DELETE_ON_EXIT);
+ ZoneList<int> offsets(8);
+ do {
+ int start;
+ int end;
+ {
+ AssertNoAllocation no_alloc;
+ FixedArray* elements = FixedArray::cast(regexp_info->elements());
+ start = Smi::cast(elements->get(RegExpImpl::kFirstCapture))->value();
+ end = Smi::cast(elements->get(RegExpImpl::kFirstCapture + 1))->value();
+ }
+ offsets.Add(start);
+ offsets.Add(end);
+ int index = start < end ? end : end + 1;
+ if (index > length) break;
+ match = RegExpImpl::Exec(regexp, subject, index, regexp_info);
+ if (match.is_null()) {
+ return Failure::Exception();
+ }
+ } while (!match->IsNull());
+ int matches = offsets.length() / 2;
+ Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches);
+ for (int i = 0; i < matches ; i++) {
+ int from = offsets.at(i * 2);
+ int to = offsets.at(i * 2 + 1);
+ Handle<String> match = isolate->factory()->NewSubString(subject, from, to);
+ elements->set(i, *match);
+ }
+ Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements);
+ result->set_length(Smi::FromInt(matches));
+ return *result;
+}
+
+
+// Two smis before and after the match, for very long strings.
+const int kMaxBuilderEntriesPerRegExpMatch = 5;
+
+
+static void SetLastMatchInfoNoCaptures(Handle<String> subject,
+ Handle<JSArray> last_match_info,
+ int match_start,
+ int match_end) {
+ // Fill last_match_info with a single capture.
+ last_match_info->EnsureSize(2 + RegExpImpl::kLastMatchOverhead);
+ AssertNoAllocation no_gc;
+ FixedArray* elements = FixedArray::cast(last_match_info->elements());
+ RegExpImpl::SetLastCaptureCount(elements, 2);
+ RegExpImpl::SetLastInput(elements, *subject);
+ RegExpImpl::SetLastSubject(elements, *subject);
+ RegExpImpl::SetCapture(elements, 0, match_start);
+ RegExpImpl::SetCapture(elements, 1, match_end);
+}
+
+
+template <typename SubjectChar, typename PatternChar>
+static bool SearchStringMultiple(Isolate* isolate,
+ Vector<const SubjectChar> subject,
+ Vector<const PatternChar> pattern,
+ String* pattern_string,
+ FixedArrayBuilder* builder,
+ int* match_pos) {
+ int pos = *match_pos;
+ int subject_length = subject.length();
+ int pattern_length = pattern.length();
+ int max_search_start = subject_length - pattern_length;
+ StringSearch<PatternChar, SubjectChar> search(isolate, pattern);
+ while (pos <= max_search_start) {
+ if (!builder->HasCapacity(kMaxBuilderEntriesPerRegExpMatch)) {
+ *match_pos = pos;
+ return false;
+ }
+ // Position of end of previous match.
+ int match_end = pos + pattern_length;
+ int new_pos = search.Search(subject, match_end);
+ if (new_pos >= 0) {
+ // A match.
+ if (new_pos > match_end) {
+ ReplacementStringBuilder::AddSubjectSlice(builder,
+ match_end,
+ new_pos);
+ }
+ pos = new_pos;
+ builder->Add(pattern_string);
+ } else {
+ break;
+ }
+ }
+
+ if (pos < max_search_start) {
+ ReplacementStringBuilder::AddSubjectSlice(builder,
+ pos + pattern_length,
+ subject_length);
+ }
+ *match_pos = pos;
+ return true;
+}
+
+
+static bool SearchStringMultiple(Isolate* isolate,
+ Handle<String> subject,
+ Handle<String> pattern,
+ Handle<JSArray> last_match_info,
+ FixedArrayBuilder* builder) {
+ ASSERT(subject->IsFlat());
+ ASSERT(pattern->IsFlat());
+
+ // Treating as if a previous match was before first character.
+ int match_pos = -pattern->length();
+
+ for (;;) { // Break when search complete.
+ builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch);
+ AssertNoAllocation no_gc;
+ if (subject->IsAsciiRepresentation()) {
+ Vector<const char> subject_vector = subject->ToAsciiVector();
+ if (pattern->IsAsciiRepresentation()) {
+ if (SearchStringMultiple(isolate,
+ subject_vector,
+ pattern->ToAsciiVector(),
+ *pattern,
+ builder,
+ &match_pos)) break;
+ } else {
+ if (SearchStringMultiple(isolate,
+ subject_vector,
+ pattern->ToUC16Vector(),
+ *pattern,
+ builder,
+ &match_pos)) break;
+ }
+ } else {
+ Vector<const uc16> subject_vector = subject->ToUC16Vector();
+ if (pattern->IsAsciiRepresentation()) {
+ if (SearchStringMultiple(isolate,
+ subject_vector,
+ pattern->ToAsciiVector(),
+ *pattern,
+ builder,
+ &match_pos)) break;
+ } else {
+ if (SearchStringMultiple(isolate,
+ subject_vector,
+ pattern->ToUC16Vector(),
+ *pattern,
+ builder,
+ &match_pos)) break;
+ }
+ }
+ }
+
+ if (match_pos >= 0) {
+ SetLastMatchInfoNoCaptures(subject,
+ last_match_info,
+ match_pos,
+ match_pos + pattern->length());
+ return true;
+ }
+ return false; // No matches at all.
+}
+
+
+static RegExpImpl::IrregexpResult SearchRegExpNoCaptureMultiple(
+ Isolate* isolate,
+ Handle<String> subject,
+ Handle<JSRegExp> regexp,
+ Handle<JSArray> last_match_array,
+ FixedArrayBuilder* builder) {
+ ASSERT(subject->IsFlat());
+ int match_start = -1;
+ int match_end = 0;
+ int pos = 0;
+ int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject);
+ if (required_registers < 0) return RegExpImpl::RE_EXCEPTION;
+
+ OffsetsVector registers(required_registers);
+ Vector<int32_t> register_vector(registers.vector(), registers.length());
+ int subject_length = subject->length();
+
+ for (;;) { // Break on failure, return on exception.
+ RegExpImpl::IrregexpResult result =
+ RegExpImpl::IrregexpExecOnce(regexp,
+ subject,
+ pos,
+ register_vector);
+ if (result == RegExpImpl::RE_SUCCESS) {
+ match_start = register_vector[0];
+ builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch);
+ if (match_end < match_start) {
+ ReplacementStringBuilder::AddSubjectSlice(builder,
+ match_end,
+ match_start);
+ }
+ match_end = register_vector[1];
+ HandleScope loop_scope(isolate);
+ builder->Add(*isolate->factory()->NewSubString(subject,
+ match_start,
+ match_end));
+ if (match_start != match_end) {
+ pos = match_end;
+ } else {
+ pos = match_end + 1;
+ if (pos > subject_length) break;
+ }
+ } else if (result == RegExpImpl::RE_FAILURE) {
+ break;
+ } else {
+ ASSERT_EQ(result, RegExpImpl::RE_EXCEPTION);
+ return result;
+ }
+ }
+
+ if (match_start >= 0) {
+ if (match_end < subject_length) {
+ ReplacementStringBuilder::AddSubjectSlice(builder,
+ match_end,
+ subject_length);
+ }
+ SetLastMatchInfoNoCaptures(subject,
+ last_match_array,
+ match_start,
+ match_end);
+ return RegExpImpl::RE_SUCCESS;
+ } else {
+ return RegExpImpl::RE_FAILURE; // No matches at all.
+ }
+}
+
+
+static RegExpImpl::IrregexpResult SearchRegExpMultiple(
+ Isolate* isolate,
+ Handle<String> subject,
+ Handle<JSRegExp> regexp,
+ Handle<JSArray> last_match_array,
+ FixedArrayBuilder* builder) {
+
+ ASSERT(subject->IsFlat());
+ int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject);
+ if (required_registers < 0) return RegExpImpl::RE_EXCEPTION;
+
+ OffsetsVector registers(required_registers);
+ Vector<int32_t> register_vector(registers.vector(), registers.length());
+
+ RegExpImpl::IrregexpResult result =
+ RegExpImpl::IrregexpExecOnce(regexp,
+ subject,
+ 0,
+ register_vector);
+
+ int capture_count = regexp->CaptureCount();
+ int subject_length = subject->length();
+
+ // Position to search from.
+ int pos = 0;
+ // End of previous match. Differs from pos if match was empty.
+ int match_end = 0;
+ if (result == RegExpImpl::RE_SUCCESS) {
+ // Need to keep a copy of the previous match for creating last_match_info
+ // at the end, so we have two vectors that we swap between.
+ OffsetsVector registers2(required_registers);
+ Vector<int> prev_register_vector(registers2.vector(), registers2.length());
+
+ do {
+ int match_start = register_vector[0];
+ builder->EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch);
+ if (match_end < match_start) {
+ ReplacementStringBuilder::AddSubjectSlice(builder,
+ match_end,
+ match_start);
+ }
+ match_end = register_vector[1];
+
+ {
+ // Avoid accumulating new handles inside loop.
+ HandleScope temp_scope(isolate);
+ // Arguments array to replace function is match, captures, index and
+ // subject, i.e., 3 + capture count in total.
+ Handle<FixedArray> elements =
+ isolate->factory()->NewFixedArray(3 + capture_count);
+ Handle<String> match = isolate->factory()->NewSubString(subject,
+ match_start,
+ match_end);
+ elements->set(0, *match);
+ for (int i = 1; i <= capture_count; i++) {
+ int start = register_vector[i * 2];
+ if (start >= 0) {
+ int end = register_vector[i * 2 + 1];
+ ASSERT(start <= end);
+ Handle<String> substring = isolate->factory()->NewSubString(subject,
+ start,
+ end);
+ elements->set(i, *substring);
+ } else {
+ ASSERT(register_vector[i * 2 + 1] < 0);
+ elements->set(i, isolate->heap()->undefined_value());
+ }
+ }
+ elements->set(capture_count + 1, Smi::FromInt(match_start));
+ elements->set(capture_count + 2, *subject);
+ builder->Add(*isolate->factory()->NewJSArrayWithElements(elements));
+ }
+ // Swap register vectors, so the last successful match is in
+ // prev_register_vector.
+ Vector<int32_t> tmp = prev_register_vector;
+ prev_register_vector = register_vector;
+ register_vector = tmp;
+
+ if (match_end > match_start) {
+ pos = match_end;
+ } else {
+ pos = match_end + 1;
+ if (pos > subject_length) {
+ break;
+ }
+ }
+
+ result = RegExpImpl::IrregexpExecOnce(regexp,
+ subject,
+ pos,
+ register_vector);
+ } while (result == RegExpImpl::RE_SUCCESS);
+
+ if (result != RegExpImpl::RE_EXCEPTION) {
+ // Finished matching, with at least one match.
+ if (match_end < subject_length) {
+ ReplacementStringBuilder::AddSubjectSlice(builder,
+ match_end,
+ subject_length);
+ }
+
+ int last_match_capture_count = (capture_count + 1) * 2;
+ int last_match_array_size =
+ last_match_capture_count + RegExpImpl::kLastMatchOverhead;
+ last_match_array->EnsureSize(last_match_array_size);
+ AssertNoAllocation no_gc;
+ FixedArray* elements = FixedArray::cast(last_match_array->elements());
+ RegExpImpl::SetLastCaptureCount(elements, last_match_capture_count);
+ RegExpImpl::SetLastSubject(elements, *subject);
+ RegExpImpl::SetLastInput(elements, *subject);
+ for (int i = 0; i < last_match_capture_count; i++) {
+ RegExpImpl::SetCapture(elements, i, prev_register_vector[i]);
+ }
+ return RegExpImpl::RE_SUCCESS;
+ }
+ }
+ // No matches at all, return failure or exception result directly.
+ return result;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_RegExpExecMultiple) {
+ ASSERT(args.length() == 4);
+ HandleScope handles(isolate);
+
+ CONVERT_ARG_CHECKED(String, subject, 1);
+ if (!subject->IsFlat()) { FlattenString(subject); }
+ CONVERT_ARG_CHECKED(JSRegExp, regexp, 0);
+ CONVERT_ARG_CHECKED(JSArray, last_match_info, 2);
+ CONVERT_ARG_CHECKED(JSArray, result_array, 3);
+
+ ASSERT(last_match_info->HasFastElements());
+ ASSERT(regexp->GetFlags().is_global());
+ Handle<FixedArray> result_elements;
+ if (result_array->HasFastElements()) {
+ result_elements =
+ Handle<FixedArray>(FixedArray::cast(result_array->elements()));
+ } else {
+ result_elements = isolate->factory()->NewFixedArrayWithHoles(16);
+ }
+ FixedArrayBuilder builder(result_elements);
+
+ if (regexp->TypeTag() == JSRegExp::ATOM) {
+ Handle<String> pattern(
+ String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex)));
+ ASSERT(pattern->IsFlat());
+ if (SearchStringMultiple(isolate, subject, pattern,
+ last_match_info, &builder)) {
+ return *builder.ToJSArray(result_array);
+ }
+ return isolate->heap()->null_value();
+ }
+
+ ASSERT_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP);
+
+ RegExpImpl::IrregexpResult result;
+ if (regexp->CaptureCount() == 0) {
+ result = SearchRegExpNoCaptureMultiple(isolate,
+ subject,
+ regexp,
+ last_match_info,
+ &builder);
+ } else {
+ result = SearchRegExpMultiple(isolate,
+ subject,
+ regexp,
+ last_match_info,
+ &builder);
+ }
+ if (result == RegExpImpl::RE_SUCCESS) return *builder.ToJSArray(result_array);
+ if (result == RegExpImpl::RE_FAILURE) return isolate->heap()->null_value();
+ ASSERT_EQ(result, RegExpImpl::RE_EXCEPTION);
+ return Failure::Exception();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToRadixString) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ // Fast case where the result is a one character string.
+ if (args[0]->IsSmi() && args[1]->IsSmi()) {
+ int value = Smi::cast(args[0])->value();
+ int radix = Smi::cast(args[1])->value();
+ if (value >= 0 && value < radix) {
+ RUNTIME_ASSERT(radix <= 36);
+ // Character array used for conversion.
+ static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
+ return isolate->heap()->
+ LookupSingleCharacterStringFromCode(kCharTable[value]);
+ }
+ }
+
+ // Slow case.
+ CONVERT_DOUBLE_CHECKED(value, args[0]);
+ if (isnan(value)) {
+ return isolate->heap()->AllocateStringFromAscii(CStrVector("NaN"));
+ }
+ if (isinf(value)) {
+ if (value < 0) {
+ return isolate->heap()->AllocateStringFromAscii(CStrVector("-Infinity"));
+ }
+ return isolate->heap()->AllocateStringFromAscii(CStrVector("Infinity"));
+ }
+ CONVERT_DOUBLE_CHECKED(radix_number, args[1]);
+ int radix = FastD2I(radix_number);
+ RUNTIME_ASSERT(2 <= radix && radix <= 36);
+ char* str = DoubleToRadixCString(value, radix);
+ MaybeObject* result =
+ isolate->heap()->AllocateStringFromAscii(CStrVector(str));
+ DeleteArray(str);
+ return result;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToFixed) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_DOUBLE_CHECKED(value, args[0]);
+ if (isnan(value)) {
+ return isolate->heap()->AllocateStringFromAscii(CStrVector("NaN"));
+ }
+ if (isinf(value)) {
+ if (value < 0) {
+ return isolate->heap()->AllocateStringFromAscii(CStrVector("-Infinity"));
+ }
+ return isolate->heap()->AllocateStringFromAscii(CStrVector("Infinity"));
+ }
+ CONVERT_DOUBLE_CHECKED(f_number, args[1]);
+ int f = FastD2I(f_number);
+ RUNTIME_ASSERT(f >= 0);
+ char* str = DoubleToFixedCString(value, f);
+ MaybeObject* res =
+ isolate->heap()->AllocateStringFromAscii(CStrVector(str));
+ DeleteArray(str);
+ return res;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToExponential) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_DOUBLE_CHECKED(value, args[0]);
+ if (isnan(value)) {
+ return isolate->heap()->AllocateStringFromAscii(CStrVector("NaN"));
+ }
+ if (isinf(value)) {
+ if (value < 0) {
+ return isolate->heap()->AllocateStringFromAscii(CStrVector("-Infinity"));
+ }
+ return isolate->heap()->AllocateStringFromAscii(CStrVector("Infinity"));
+ }
+ CONVERT_DOUBLE_CHECKED(f_number, args[1]);
+ int f = FastD2I(f_number);
+ RUNTIME_ASSERT(f >= -1 && f <= 20);
+ char* str = DoubleToExponentialCString(value, f);
+ MaybeObject* res =
+ isolate->heap()->AllocateStringFromAscii(CStrVector(str));
+ DeleteArray(str);
+ return res;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToPrecision) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_DOUBLE_CHECKED(value, args[0]);
+ if (isnan(value)) {
+ return isolate->heap()->AllocateStringFromAscii(CStrVector("NaN"));
+ }
+ if (isinf(value)) {
+ if (value < 0) {
+ return isolate->heap()->AllocateStringFromAscii(CStrVector("-Infinity"));
+ }
+ return isolate->heap()->AllocateStringFromAscii(CStrVector("Infinity"));
+ }
+ CONVERT_DOUBLE_CHECKED(f_number, args[1]);
+ int f = FastD2I(f_number);
+ RUNTIME_ASSERT(f >= 1 && f <= 21);
+ char* str = DoubleToPrecisionCString(value, f);
+ MaybeObject* res =
+ isolate->heap()->AllocateStringFromAscii(CStrVector(str));
+ DeleteArray(str);
+ return res;
+}
+
+
+// Returns a single character string where first character equals
+// string->Get(index).
+static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) {
+ if (index < static_cast<uint32_t>(string->length())) {
+ string->TryFlatten();
+ return LookupSingleCharacterStringFromCode(
+ string->Get(index));
+ }
+ return Execution::CharAt(string, index);
+}
+
+
+MaybeObject* Runtime::GetElementOrCharAt(Isolate* isolate,
+ Handle<Object> object,
+ uint32_t index) {
+ // Handle [] indexing on Strings
+ if (object->IsString()) {
+ Handle<Object> result = GetCharAt(Handle<String>::cast(object), index);
+ if (!result->IsUndefined()) return *result;
+ }
+
+ // Handle [] indexing on String objects
+ if (object->IsStringObjectWithCharacterAt(index)) {
+ Handle<JSValue> js_value = Handle<JSValue>::cast(object);
+ Handle<Object> result =
+ GetCharAt(Handle<String>(String::cast(js_value->value())), index);
+ if (!result->IsUndefined()) return *result;
+ }
+
+ if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
+ Handle<Object> prototype = GetPrototype(object);
+ return prototype->GetElement(index);
+ }
+
+ return GetElement(object, index);
+}
+
+
+MaybeObject* Runtime::GetElement(Handle<Object> object, uint32_t index) {
+ return object->GetElement(index);
+}
+
+
+MaybeObject* Runtime::GetObjectProperty(Isolate* isolate,
+ Handle<Object> object,
+ Handle<Object> key) {
+ HandleScope scope(isolate);
+
+ if (object->IsUndefined() || object->IsNull()) {
+ Handle<Object> args[2] = { key, object };
+ Handle<Object> error =
+ isolate->factory()->NewTypeError("non_object_property_load",
+ HandleVector(args, 2));
+ return isolate->Throw(*error);
+ }
+
+ // Check if the given key is an array index.
+ uint32_t index;
+ if (key->ToArrayIndex(&index)) {
+ return GetElementOrCharAt(isolate, object, index);
+ }
+
+ // Convert the key to a string - possibly by calling back into JavaScript.
+ Handle<String> name;
+ if (key->IsString()) {
+ name = Handle<String>::cast(key);
+ } else {
+ bool has_pending_exception = false;
+ Handle<Object> converted =
+ Execution::ToString(key, &has_pending_exception);
+ if (has_pending_exception) return Failure::Exception();
+ name = Handle<String>::cast(converted);
+ }
+
+ // Check if the name is trivially convertible to an index and get
+ // the element if so.
+ if (name->AsArrayIndex(&index)) {
+ return GetElementOrCharAt(isolate, object, index);
+ } else {
+ PropertyAttributes attr;
+ return object->GetProperty(*name, &attr);
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetProperty) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ Handle<Object> object = args.at<Object>(0);
+ Handle<Object> key = args.at<Object>(1);
+
+ return Runtime::GetObjectProperty(isolate, object, key);
+}
+
+
+// KeyedStringGetProperty is called from KeyedLoadIC::GenerateGeneric.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_KeyedGetProperty) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ // Fast cases for getting named properties of the receiver JSObject
+ // itself.
+ //
+ // The global proxy objects has to be excluded since LocalLookup on
+ // the global proxy object can return a valid result even though the
+ // global proxy object never has properties. This is the case
+ // because the global proxy object forwards everything to its hidden
+ // prototype including local lookups.
+ //
+ // Additionally, we need to make sure that we do not cache results
+ // for objects that require access checks.
+ if (args[0]->IsJSObject() &&
+ !args[0]->IsJSGlobalProxy() &&
+ !args[0]->IsAccessCheckNeeded() &&
+ args[1]->IsString()) {
+ JSObject* receiver = JSObject::cast(args[0]);
+ String* key = String::cast(args[1]);
+ if (receiver->HasFastProperties()) {
+ // Attempt to use lookup cache.
+ Map* receiver_map = receiver->map();
+ KeyedLookupCache* keyed_lookup_cache = isolate->keyed_lookup_cache();
+ int offset = keyed_lookup_cache->Lookup(receiver_map, key);
+ if (offset != -1) {
+ Object* value = receiver->FastPropertyAt(offset);
+ return value->IsTheHole() ? isolate->heap()->undefined_value() : value;
+ }
+ // Lookup cache miss. Perform lookup and update the cache if appropriate.
+ LookupResult result;
+ receiver->LocalLookup(key, &result);
+ if (result.IsProperty() && result.type() == FIELD) {
+ int offset = result.GetFieldIndex();
+ keyed_lookup_cache->Update(receiver_map, key, offset);
+ return receiver->FastPropertyAt(offset);
+ }
+ } else {
+ // Attempt dictionary lookup.
+ StringDictionary* dictionary = receiver->property_dictionary();
+ int entry = dictionary->FindEntry(key);
+ if ((entry != StringDictionary::kNotFound) &&
+ (dictionary->DetailsAt(entry).type() == NORMAL)) {
+ Object* value = dictionary->ValueAt(entry);
+ if (!receiver->IsGlobalObject()) return value;
+ value = JSGlobalPropertyCell::cast(value)->value();
+ if (!value->IsTheHole()) return value;
+ // If value is the hole do the general lookup.
+ }
+ }
+ } else if (args[0]->IsString() && args[1]->IsSmi()) {
+ // Fast case for string indexing using [] with a smi index.
+ HandleScope scope(isolate);
+ Handle<String> str = args.at<String>(0);
+ int index = Smi::cast(args[1])->value();
+ if (index >= 0 && index < str->length()) {
+ Handle<Object> result = GetCharAt(str, index);
+ return *result;
+ }
+ }
+
+ // Fall back to GetObjectProperty.
+ return Runtime::GetObjectProperty(isolate,
+ args.at<Object>(0),
+ args.at<Object>(1));
+}
+
+// Implements part of 8.12.9 DefineOwnProperty.
+// There are 3 cases that lead here:
+// Step 4b - define a new accessor property.
+// Steps 9c & 12 - replace an existing data property with an accessor property.
+// Step 12 - update an existing accessor property with an accessor or generic
+// descriptor.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DefineOrRedefineAccessorProperty) {
+ ASSERT(args.length() == 5);
+ HandleScope scope(isolate);
+ CONVERT_ARG_CHECKED(JSObject, obj, 0);
+ CONVERT_CHECKED(String, name, args[1]);
+ CONVERT_CHECKED(Smi, flag_setter, args[2]);
+ Object* fun = args[3];
+ RUNTIME_ASSERT(fun->IsJSFunction() || fun->IsUndefined());
+ CONVERT_CHECKED(Smi, flag_attr, args[4]);
+ int unchecked = flag_attr->value();
+ RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+ RUNTIME_ASSERT(!obj->IsNull());
+ LookupResult result;
+ obj->LocalLookupRealNamedProperty(name, &result);
+
+ PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
+ // If an existing property is either FIELD, NORMAL or CONSTANT_FUNCTION
+ // delete it to avoid running into trouble in DefineAccessor, which
+ // handles this incorrectly if the property is readonly (does nothing)
+ if (result.IsProperty() &&
+ (result.type() == FIELD || result.type() == NORMAL
+ || result.type() == CONSTANT_FUNCTION)) {
+ Object* ok;
+ { MaybeObject* maybe_ok =
+ obj->DeleteProperty(name, JSObject::NORMAL_DELETION);
+ if (!maybe_ok->ToObject(&ok)) return maybe_ok;
+ }
+ }
+ return obj->DefineAccessor(name, flag_setter->value() == 0, fun, attr);
+}
+
+// Implements part of 8.12.9 DefineOwnProperty.
+// There are 3 cases that lead here:
+// Step 4a - define a new data property.
+// Steps 9b & 12 - replace an existing accessor property with a data property.
+// Step 12 - update an existing data property with a data or generic
+// descriptor.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DefineOrRedefineDataProperty) {
+ ASSERT(args.length() == 4);
+ HandleScope scope(isolate);
+ CONVERT_ARG_CHECKED(JSObject, js_object, 0);
+ CONVERT_ARG_CHECKED(String, name, 1);
+ Handle<Object> obj_value = args.at<Object>(2);
+
+ CONVERT_CHECKED(Smi, flag, args[3]);
+ int unchecked = flag->value();
+ RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+
+ PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
+
+ // Check if this is an element.
+ uint32_t index;
+ bool is_element = name->AsArrayIndex(&index);
+
+ // Special case for elements if any of the flags are true.
+ // If elements are in fast case we always implicitly assume that:
+ // DONT_DELETE: false, DONT_ENUM: false, READ_ONLY: false.
+ if (((unchecked & (DONT_DELETE | DONT_ENUM | READ_ONLY)) != 0) &&
+ is_element) {
+ // Normalize the elements to enable attributes on the property.
+ if (js_object->IsJSGlobalProxy()) {
+ // We do not need to do access checks here since these has already
+ // been performed by the call to GetOwnProperty.
+ Handle<Object> proto(js_object->GetPrototype());
+ // If proxy is detached, ignore the assignment. Alternatively,
+ // we could throw an exception.
+ if (proto->IsNull()) return *obj_value;
+ js_object = Handle<JSObject>::cast(proto);
+ }
+ NormalizeElements(js_object);
+ Handle<NumberDictionary> dictionary(js_object->element_dictionary());
+ // Make sure that we never go back to fast case.
+ dictionary->set_requires_slow_elements();
+ PropertyDetails details = PropertyDetails(attr, NORMAL);
+ NumberDictionarySet(dictionary, index, obj_value, details);
+ return *obj_value;
+ }
+
+ LookupResult result;
+ js_object->LookupRealNamedProperty(*name, &result);
+
+ // To be compatible with safari we do not change the value on API objects
+ // in defineProperty. Firefox disagrees here, and actually changes the value.
+ if (result.IsProperty() &&
+ (result.type() == CALLBACKS) &&
+ result.GetCallbackObject()->IsAccessorInfo()) {
+ return isolate->heap()->undefined_value();
+ }
+
+ // Take special care when attributes are different and there is already
+ // a property. For simplicity we normalize the property which enables us
+ // to not worry about changing the instance_descriptor and creating a new
+ // map. The current version of SetObjectProperty does not handle attributes
+ // correctly in the case where a property is a field and is reset with
+ // new attributes.
+ if (result.IsProperty() &&
+ (attr != result.GetAttributes() || result.type() == CALLBACKS)) {
+ // New attributes - normalize to avoid writing to instance descriptor
+ if (js_object->IsJSGlobalProxy()) {
+ // Since the result is a property, the prototype will exist so
+ // we don't have to check for null.
+ js_object = Handle<JSObject>(JSObject::cast(js_object->GetPrototype()));
+ }
+ NormalizeProperties(js_object, CLEAR_INOBJECT_PROPERTIES, 0);
+ // Use IgnoreAttributes version since a readonly property may be
+ // overridden and SetProperty does not allow this.
+ return js_object->SetLocalPropertyIgnoreAttributes(*name,
+ *obj_value,
+ attr);
+ }
+
+ return Runtime::ForceSetObjectProperty(isolate,
+ js_object,
+ name,
+ obj_value,
+ attr);
+}
+
+
+MaybeObject* Runtime::SetObjectProperty(Isolate* isolate,
+ Handle<Object> object,
+ Handle<Object> key,
+ Handle<Object> value,
+ PropertyAttributes attr,
+ StrictModeFlag strict_mode) {
+ HandleScope scope(isolate);
+
+ if (object->IsUndefined() || object->IsNull()) {
+ Handle<Object> args[2] = { key, object };
+ Handle<Object> error =
+ isolate->factory()->NewTypeError("non_object_property_store",
+ HandleVector(args, 2));
+ return isolate->Throw(*error);
+ }
+
+ // If the object isn't a JavaScript object, we ignore the store.
+ if (!object->IsJSObject()) return *value;
+
+ Handle<JSObject> js_object = Handle<JSObject>::cast(object);
+
+ // Check if the given key is an array index.
+ uint32_t index;
+ if (key->ToArrayIndex(&index)) {
+ // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
+ // of a string using [] notation. We need to support this too in
+ // JavaScript.
+ // In the case of a String object we just need to redirect the assignment to
+ // the underlying string if the index is in range. Since the underlying
+ // string does nothing with the assignment then we can ignore such
+ // assignments.
+ if (js_object->IsStringObjectWithCharacterAt(index)) {
+ return *value;
+ }
+
+ Handle<Object> result = SetElement(js_object, index, value, strict_mode);
+ if (result.is_null()) return Failure::Exception();
+ return *value;
+ }
+
+ if (key->IsString()) {
+ Handle<Object> result;
+ if (Handle<String>::cast(key)->AsArrayIndex(&index)) {
+ result = SetElement(js_object, index, value, strict_mode);
+ } else {
+ Handle<String> key_string = Handle<String>::cast(key);
+ key_string->TryFlatten();
+ result = SetProperty(js_object, key_string, value, attr, strict_mode);
+ }
+ if (result.is_null()) return Failure::Exception();
+ return *value;
+ }
+
+ // Call-back into JavaScript to convert the key to a string.
+ bool has_pending_exception = false;
+ Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
+ if (has_pending_exception) return Failure::Exception();
+ Handle<String> name = Handle<String>::cast(converted);
+
+ if (name->AsArrayIndex(&index)) {
+ return js_object->SetElement(index, *value, strict_mode);
+ } else {
+ return js_object->SetProperty(*name, *value, attr, strict_mode);
+ }
+}
+
+
+MaybeObject* Runtime::ForceSetObjectProperty(Isolate* isolate,
+ Handle<JSObject> js_object,
+ Handle<Object> key,
+ Handle<Object> value,
+ PropertyAttributes attr) {
+ HandleScope scope(isolate);
+
+ // Check if the given key is an array index.
+ uint32_t index;
+ if (key->ToArrayIndex(&index)) {
+ // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
+ // of a string using [] notation. We need to support this too in
+ // JavaScript.
+ // In the case of a String object we just need to redirect the assignment to
+ // the underlying string if the index is in range. Since the underlying
+ // string does nothing with the assignment then we can ignore such
+ // assignments.
+ if (js_object->IsStringObjectWithCharacterAt(index)) {
+ return *value;
+ }
+
+ return js_object->SetElement(index, *value, kNonStrictMode);
+ }
+
+ if (key->IsString()) {
+ if (Handle<String>::cast(key)->AsArrayIndex(&index)) {
+ return js_object->SetElement(index, *value, kNonStrictMode);
+ } else {
+ Handle<String> key_string = Handle<String>::cast(key);
+ key_string->TryFlatten();
+ return js_object->SetLocalPropertyIgnoreAttributes(*key_string,
+ *value,
+ attr);
+ }
+ }
+
+ // Call-back into JavaScript to convert the key to a string.
+ bool has_pending_exception = false;
+ Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
+ if (has_pending_exception) return Failure::Exception();
+ Handle<String> name = Handle<String>::cast(converted);
+
+ if (name->AsArrayIndex(&index)) {
+ return js_object->SetElement(index, *value, kNonStrictMode);
+ } else {
+ return js_object->SetLocalPropertyIgnoreAttributes(*name, *value, attr);
+ }
+}
+
+
+MaybeObject* Runtime::ForceDeleteObjectProperty(Isolate* isolate,
+ Handle<JSObject> js_object,
+ Handle<Object> key) {
+ HandleScope scope(isolate);
+
+ // Check if the given key is an array index.
+ uint32_t index;
+ if (key->ToArrayIndex(&index)) {
+ // In Firefox/SpiderMonkey, Safari and Opera you can access the
+ // characters of a string using [] notation. In the case of a
+ // String object we just need to redirect the deletion to the
+ // underlying string if the index is in range. Since the
+ // underlying string does nothing with the deletion, we can ignore
+ // such deletions.
+ if (js_object->IsStringObjectWithCharacterAt(index)) {
+ return isolate->heap()->true_value();
+ }
+
+ return js_object->DeleteElement(index, JSObject::FORCE_DELETION);
+ }
+
+ Handle<String> key_string;
+ if (key->IsString()) {
+ key_string = Handle<String>::cast(key);
+ } else {
+ // Call-back into JavaScript to convert the key to a string.
+ bool has_pending_exception = false;
+ Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
+ if (has_pending_exception) return Failure::Exception();
+ key_string = Handle<String>::cast(converted);
+ }
+
+ key_string->TryFlatten();
+ return js_object->DeleteProperty(*key_string, JSObject::FORCE_DELETION);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SetProperty) {
+ NoHandleAllocation ha;
+ RUNTIME_ASSERT(args.length() == 4 || args.length() == 5);
+
+ Handle<Object> object = args.at<Object>(0);
+ Handle<Object> key = args.at<Object>(1);
+ Handle<Object> value = args.at<Object>(2);
+ CONVERT_SMI_CHECKED(unchecked_attributes, args[3]);
+ RUNTIME_ASSERT(
+ (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+ // Compute attributes.
+ PropertyAttributes attributes =
+ static_cast<PropertyAttributes>(unchecked_attributes);
+
+ StrictModeFlag strict_mode = kNonStrictMode;
+ if (args.length() == 5) {
+ CONVERT_SMI_CHECKED(strict_unchecked, args[4]);
+ RUNTIME_ASSERT(strict_unchecked == kStrictMode ||
+ strict_unchecked == kNonStrictMode);
+ strict_mode = static_cast<StrictModeFlag>(strict_unchecked);
+ }
+
+ return Runtime::SetObjectProperty(isolate,
+ object,
+ key,
+ value,
+ attributes,
+ strict_mode);
+}
+
+
+// Set a local property, even if it is READ_ONLY. If the property does not
+// exist, it will be added with attributes NONE.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_IgnoreAttributesAndSetProperty) {
+ NoHandleAllocation ha;
+ RUNTIME_ASSERT(args.length() == 3 || args.length() == 4);
+ CONVERT_CHECKED(JSObject, object, args[0]);
+ CONVERT_CHECKED(String, name, args[1]);
+ // Compute attributes.
+ PropertyAttributes attributes = NONE;
+ if (args.length() == 4) {
+ CONVERT_CHECKED(Smi, value_obj, args[3]);
+ int unchecked_value = value_obj->value();
+ // Only attribute bits should be set.
+ RUNTIME_ASSERT(
+ (unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+ attributes = static_cast<PropertyAttributes>(unchecked_value);
+ }
+
+ return object->
+ SetLocalPropertyIgnoreAttributes(name, args[2], attributes);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteProperty) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 3);
+
+ CONVERT_CHECKED(JSObject, object, args[0]);
+ CONVERT_CHECKED(String, key, args[1]);
+ CONVERT_SMI_CHECKED(strict, args[2]);
+ return object->DeleteProperty(key, (strict == kStrictMode)
+ ? JSObject::STRICT_DELETION
+ : JSObject::NORMAL_DELETION);
+}
+
+
+static Object* HasLocalPropertyImplementation(Isolate* isolate,
+ Handle<JSObject> object,
+ Handle<String> key) {
+ if (object->HasLocalProperty(*key)) return isolate->heap()->true_value();
+ // Handle hidden prototypes. If there's a hidden prototype above this thing
+ // then we have to check it for properties, because they are supposed to
+ // look like they are on this object.
+ Handle<Object> proto(object->GetPrototype());
+ if (proto->IsJSObject() &&
+ Handle<JSObject>::cast(proto)->map()->is_hidden_prototype()) {
+ return HasLocalPropertyImplementation(isolate,
+ Handle<JSObject>::cast(proto),
+ key);
+ }
+ return isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_HasLocalProperty) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+ CONVERT_CHECKED(String, key, args[1]);
+
+ Object* obj = args[0];
+ // Only JS objects can have properties.
+ if (obj->IsJSObject()) {
+ JSObject* object = JSObject::cast(obj);
+ // Fast case - no interceptors.
+ if (object->HasRealNamedProperty(key)) return isolate->heap()->true_value();
+ // Slow case. Either it's not there or we have an interceptor. We should
+ // have handles for this kind of deal.
+ HandleScope scope(isolate);
+ return HasLocalPropertyImplementation(isolate,
+ Handle<JSObject>(object),
+ Handle<String>(key));
+ } else if (obj->IsString()) {
+ // Well, there is one exception: Handle [] on strings.
+ uint32_t index;
+ if (key->AsArrayIndex(&index)) {
+ String* string = String::cast(obj);
+ if (index < static_cast<uint32_t>(string->length()))
+ return isolate->heap()->true_value();
+ }
+ }
+ return isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_HasProperty) {
+ NoHandleAllocation na;
+ ASSERT(args.length() == 2);
+
+ // Only JS objects can have properties.
+ if (args[0]->IsJSObject()) {
+ JSObject* object = JSObject::cast(args[0]);
+ CONVERT_CHECKED(String, key, args[1]);
+ if (object->HasProperty(key)) return isolate->heap()->true_value();
+ }
+ return isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_HasElement) {
+ NoHandleAllocation na;
+ ASSERT(args.length() == 2);
+
+ // Only JS objects can have elements.
+ if (args[0]->IsJSObject()) {
+ JSObject* object = JSObject::cast(args[0]);
+ CONVERT_CHECKED(Smi, index_obj, args[1]);
+ uint32_t index = index_obj->value();
+ if (object->HasElement(index)) return isolate->heap()->true_value();
+ }
+ return isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_IsPropertyEnumerable) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_CHECKED(JSObject, object, args[0]);
+ CONVERT_CHECKED(String, key, args[1]);
+
+ uint32_t index;
+ if (key->AsArrayIndex(&index)) {
+ return isolate->heap()->ToBoolean(object->HasElement(index));
+ }
+
+ PropertyAttributes att = object->GetLocalPropertyAttribute(key);
+ return isolate->heap()->ToBoolean(att != ABSENT && (att & DONT_ENUM) == 0);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPropertyNames) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSObject, object, 0);
+ return *GetKeysFor(object);
+}
+
+
+// Returns either a FixedArray as Runtime_GetPropertyNames,
+// or, if the given object has an enum cache that contains
+// all enumerable properties of the object and its prototypes
+// have none, the map of the object. This is used to speed up
+// the check for deletions during a for-in.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetPropertyNamesFast) {
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(JSObject, raw_object, args[0]);
+
+ if (raw_object->IsSimpleEnum()) return raw_object->map();
+
+ HandleScope scope(isolate);
+ Handle<JSObject> object(raw_object);
+ Handle<FixedArray> content = GetKeysInFixedArrayFor(object,
+ INCLUDE_PROTOS);
+
+ // Test again, since cache may have been built by preceding call.
+ if (object->IsSimpleEnum()) return object->map();
+
+ return *content;
+}
+
+
+// Find the length of the prototype chain that is to to handled as one. If a
+// prototype object is hidden it is to be viewed as part of the the object it
+// is prototype for.
+static int LocalPrototypeChainLength(JSObject* obj) {
+ int count = 1;
+ Object* proto = obj->GetPrototype();
+ while (proto->IsJSObject() &&
+ JSObject::cast(proto)->map()->is_hidden_prototype()) {
+ count++;
+ proto = JSObject::cast(proto)->GetPrototype();
+ }
+ return count;
+}
+
+
+// Return the names of the local named properties.
+// args[0]: object
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLocalPropertyNames) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ if (!args[0]->IsJSObject()) {
+ return isolate->heap()->undefined_value();
+ }
+ CONVERT_ARG_CHECKED(JSObject, obj, 0);
+
+ // Skip the global proxy as it has no properties and always delegates to the
+ // real global object.
+ if (obj->IsJSGlobalProxy()) {
+ // Only collect names if access is permitted.
+ if (obj->IsAccessCheckNeeded() &&
+ !isolate->MayNamedAccess(*obj,
+ isolate->heap()->undefined_value(),
+ v8::ACCESS_KEYS)) {
+ isolate->ReportFailedAccessCheck(*obj, v8::ACCESS_KEYS);
+ return *isolate->factory()->NewJSArray(0);
+ }
+ obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype()));
+ }
+
+ // Find the number of objects making up this.
+ int length = LocalPrototypeChainLength(*obj);
+
+ // Find the number of local properties for each of the objects.
+ ScopedVector<int> local_property_count(length);
+ int total_property_count = 0;
+ Handle<JSObject> jsproto = obj;
+ for (int i = 0; i < length; i++) {
+ // Only collect names if access is permitted.
+ if (jsproto->IsAccessCheckNeeded() &&
+ !isolate->MayNamedAccess(*jsproto,
+ isolate->heap()->undefined_value(),
+ v8::ACCESS_KEYS)) {
+ isolate->ReportFailedAccessCheck(*jsproto, v8::ACCESS_KEYS);
+ return *isolate->factory()->NewJSArray(0);
+ }
+ int n;
+ n = jsproto->NumberOfLocalProperties(static_cast<PropertyAttributes>(NONE));
+ local_property_count[i] = n;
+ total_property_count += n;
+ if (i < length - 1) {
+ jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
+ }
+ }
+
+ // Allocate an array with storage for all the property names.
+ Handle<FixedArray> names =
+ isolate->factory()->NewFixedArray(total_property_count);
+
+ // Get the property names.
+ jsproto = obj;
+ int proto_with_hidden_properties = 0;
+ for (int i = 0; i < length; i++) {
+ jsproto->GetLocalPropertyNames(*names,
+ i == 0 ? 0 : local_property_count[i - 1]);
+ if (!GetHiddenProperties(jsproto, false)->IsUndefined()) {
+ proto_with_hidden_properties++;
+ }
+ if (i < length - 1) {
+ jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
+ }
+ }
+
+ // Filter out name of hidden propeties object.
+ if (proto_with_hidden_properties > 0) {
+ Handle<FixedArray> old_names = names;
+ names = isolate->factory()->NewFixedArray(
+ names->length() - proto_with_hidden_properties);
+ int dest_pos = 0;
+ for (int i = 0; i < total_property_count; i++) {
+ Object* name = old_names->get(i);
+ if (name == isolate->heap()->hidden_symbol()) {
+ continue;
+ }
+ names->set(dest_pos++, name);
+ }
+ }
+
+ return *isolate->factory()->NewJSArrayWithElements(names);
+}
+
+
+// Return the names of the local indexed properties.
+// args[0]: object
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLocalElementNames) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ if (!args[0]->IsJSObject()) {
+ return isolate->heap()->undefined_value();
+ }
+ CONVERT_ARG_CHECKED(JSObject, obj, 0);
+
+ int n = obj->NumberOfLocalElements(static_cast<PropertyAttributes>(NONE));
+ Handle<FixedArray> names = isolate->factory()->NewFixedArray(n);
+ obj->GetLocalElementKeys(*names, static_cast<PropertyAttributes>(NONE));
+ return *isolate->factory()->NewJSArrayWithElements(names);
+}
+
+
+// Return information on whether an object has a named or indexed interceptor.
+// args[0]: object
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetInterceptorInfo) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ if (!args[0]->IsJSObject()) {
+ return Smi::FromInt(0);
+ }
+ CONVERT_ARG_CHECKED(JSObject, obj, 0);
+
+ int result = 0;
+ if (obj->HasNamedInterceptor()) result |= 2;
+ if (obj->HasIndexedInterceptor()) result |= 1;
+
+ return Smi::FromInt(result);
+}
+
+
+// Return property names from named interceptor.
+// args[0]: object
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetNamedInterceptorPropertyNames) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSObject, obj, 0);
+
+ if (obj->HasNamedInterceptor()) {
+ v8::Handle<v8::Array> result = GetKeysForNamedInterceptor(obj, obj);
+ if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+// Return element names from indexed interceptor.
+// args[0]: object
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetIndexedInterceptorElementNames) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSObject, obj, 0);
+
+ if (obj->HasIndexedInterceptor()) {
+ v8::Handle<v8::Array> result = GetKeysForIndexedInterceptor(obj, obj);
+ if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LocalKeys) {
+ ASSERT_EQ(args.length(), 1);
+ CONVERT_CHECKED(JSObject, raw_object, args[0]);
+ HandleScope scope(isolate);
+ Handle<JSObject> object(raw_object);
+
+ if (object->IsJSGlobalProxy()) {
+ // Do access checks before going to the global object.
+ if (object->IsAccessCheckNeeded() &&
+ !isolate->MayNamedAccess(*object, isolate->heap()->undefined_value(),
+ v8::ACCESS_KEYS)) {
+ isolate->ReportFailedAccessCheck(*object, v8::ACCESS_KEYS);
+ return *isolate->factory()->NewJSArray(0);
+ }
+
+ Handle<Object> proto(object->GetPrototype());
+ // If proxy is detached we simply return an empty array.
+ if (proto->IsNull()) return *isolate->factory()->NewJSArray(0);
+ object = Handle<JSObject>::cast(proto);
+ }
+
+ Handle<FixedArray> contents = GetKeysInFixedArrayFor(object,
+ LOCAL_ONLY);
+ // Some fast paths through GetKeysInFixedArrayFor reuse a cached
+ // property array and since the result is mutable we have to create
+ // a fresh clone on each invocation.
+ int length = contents->length();
+ Handle<FixedArray> copy = isolate->factory()->NewFixedArray(length);
+ for (int i = 0; i < length; i++) {
+ Object* entry = contents->get(i);
+ if (entry->IsString()) {
+ copy->set(i, entry);
+ } else {
+ ASSERT(entry->IsNumber());
+ HandleScope scope(isolate);
+ Handle<Object> entry_handle(entry, isolate);
+ Handle<Object> entry_str =
+ isolate->factory()->NumberToString(entry_handle);
+ copy->set(i, *entry_str);
+ }
+ }
+ return *isolate->factory()->NewJSArrayWithElements(copy);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetArgumentsProperty) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ // Compute the frame holding the arguments.
+ JavaScriptFrameIterator it(isolate);
+ it.AdvanceToArgumentsFrame();
+ JavaScriptFrame* frame = it.frame();
+
+ // Get the actual number of provided arguments.
+ const uint32_t n = frame->ComputeParametersCount();
+
+ // Try to convert the key to an index. If successful and within
+ // index return the the argument from the frame.
+ uint32_t index;
+ if (args[0]->ToArrayIndex(&index) && index < n) {
+ return frame->GetParameter(index);
+ }
+
+ // Convert the key to a string.
+ HandleScope scope(isolate);
+ bool exception = false;
+ Handle<Object> converted =
+ Execution::ToString(args.at<Object>(0), &exception);
+ if (exception) return Failure::Exception();
+ Handle<String> key = Handle<String>::cast(converted);
+
+ // Try to convert the string key into an array index.
+ if (key->AsArrayIndex(&index)) {
+ if (index < n) {
+ return frame->GetParameter(index);
+ } else {
+ return isolate->initial_object_prototype()->GetElement(index);
+ }
+ }
+
+ // Handle special arguments properties.
+ if (key->Equals(isolate->heap()->length_symbol())) return Smi::FromInt(n);
+ if (key->Equals(isolate->heap()->callee_symbol())) {
+ Object* function = frame->function();
+ if (function->IsJSFunction() &&
+ JSFunction::cast(function)->shared()->strict_mode()) {
+ return isolate->Throw(*isolate->factory()->NewTypeError(
+ "strict_arguments_callee", HandleVector<Object>(NULL, 0)));
+ }
+ return function;
+ }
+
+ // Lookup in the initial Object.prototype object.
+ return isolate->initial_object_prototype()->GetProperty(*key);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ToFastProperties) {
+ HandleScope scope(isolate);
+
+ ASSERT(args.length() == 1);
+ Handle<Object> object = args.at<Object>(0);
+ if (object->IsJSObject()) {
+ Handle<JSObject> js_object = Handle<JSObject>::cast(object);
+ if (!js_object->HasFastProperties() && !js_object->IsGlobalObject()) {
+ MaybeObject* ok = js_object->TransformToFastProperties(0);
+ if (ok->IsRetryAfterGC()) return ok;
+ }
+ }
+ return *object;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ToSlowProperties) {
+ HandleScope scope(isolate);
+
+ ASSERT(args.length() == 1);
+ Handle<Object> object = args.at<Object>(0);
+ if (object->IsJSObject() && !object->IsJSGlobalProxy()) {
+ Handle<JSObject> js_object = Handle<JSObject>::cast(object);
+ NormalizeProperties(js_object, CLEAR_INOBJECT_PROPERTIES, 0);
+ }
+ return *object;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ToBool) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ return args[0]->ToBoolean();
+}
+
+
+// Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
+// Possible optimizations: put the type string into the oddballs.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Typeof) {
+ NoHandleAllocation ha;
+
+ Object* obj = args[0];
+ if (obj->IsNumber()) return isolate->heap()->number_symbol();
+ HeapObject* heap_obj = HeapObject::cast(obj);
+
+ // typeof an undetectable object is 'undefined'
+ if (heap_obj->map()->is_undetectable()) {
+ return isolate->heap()->undefined_symbol();
+ }
+
+ InstanceType instance_type = heap_obj->map()->instance_type();
+ if (instance_type < FIRST_NONSTRING_TYPE) {
+ return isolate->heap()->string_symbol();
+ }
+
+ switch (instance_type) {
+ case ODDBALL_TYPE:
+ if (heap_obj->IsTrue() || heap_obj->IsFalse()) {
+ return isolate->heap()->boolean_symbol();
+ }
+ if (heap_obj->IsNull()) {
+ return isolate->heap()->object_symbol();
+ }
+ ASSERT(heap_obj->IsUndefined());
+ return isolate->heap()->undefined_symbol();
+ case JS_FUNCTION_TYPE: case JS_REGEXP_TYPE:
+ return isolate->heap()->function_symbol();
+ default:
+ // For any kind of object not handled above, the spec rule for
+ // host objects gives that it is okay to return "object"
+ return isolate->heap()->object_symbol();
+ }
+}
+
+
+static bool AreDigits(const char*s, int from, int to) {
+ for (int i = from; i < to; i++) {
+ if (s[i] < '0' || s[i] > '9') return false;
+ }
+
+ return true;
+}
+
+
+static int ParseDecimalInteger(const char*s, int from, int to) {
+ ASSERT(to - from < 10); // Overflow is not possible.
+ ASSERT(from < to);
+ int d = s[from] - '0';
+
+ for (int i = from + 1; i < to; i++) {
+ d = 10 * d + (s[i] - '0');
+ }
+
+ return d;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToNumber) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ CONVERT_CHECKED(String, subject, args[0]);
+ subject->TryFlatten();
+
+ // Fast case: short integer or some sorts of junk values.
+ int len = subject->length();
+ if (subject->IsSeqAsciiString()) {
+ if (len == 0) return Smi::FromInt(0);
+
+ char const* data = SeqAsciiString::cast(subject)->GetChars();
+ bool minus = (data[0] == '-');
+ int start_pos = (minus ? 1 : 0);
+
+ if (start_pos == len) {
+ return isolate->heap()->nan_value();
+ } else if (data[start_pos] > '9') {
+ // Fast check for a junk value. A valid string may start from a
+ // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit or
+ // the 'I' character ('Infinity'). All of that have codes not greater than
+ // '9' except 'I'.
+ if (data[start_pos] != 'I') {
+ return isolate->heap()->nan_value();
+ }
+ } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
+ // The maximal/minimal smi has 10 digits. If the string has less digits we
+ // know it will fit into the smi-data type.
+ int d = ParseDecimalInteger(data, start_pos, len);
+ if (minus) {
+ if (d == 0) return isolate->heap()->minus_zero_value();
+ d = -d;
+ } else if (!subject->HasHashCode() &&
+ len <= String::kMaxArrayIndexSize &&
+ (len == 1 || data[0] != '0')) {
+ // String hash is not calculated yet but all the data are present.
+ // Update the hash field to speed up sequential convertions.
+ uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
+#ifdef DEBUG
+ subject->Hash(); // Force hash calculation.
+ ASSERT_EQ(static_cast<int>(subject->hash_field()),
+ static_cast<int>(hash));
+#endif
+ subject->set_hash_field(hash);
+ }
+ return Smi::FromInt(d);
+ }
+ }
+
+ // Slower case.
+ return isolate->heap()->NumberFromDouble(StringToDouble(subject, ALLOW_HEX));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringFromCharCodeArray) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(JSArray, codes, args[0]);
+ int length = Smi::cast(codes->length())->value();
+
+ // Check if the string can be ASCII.
+ int i;
+ for (i = 0; i < length; i++) {
+ Object* element;
+ { MaybeObject* maybe_element = codes->GetElement(i);
+ // We probably can't get an exception here, but just in order to enforce
+ // the checking of inputs in the runtime calls we check here.
+ if (!maybe_element->ToObject(&element)) return maybe_element;
+ }
+ CONVERT_NUMBER_CHECKED(int, chr, Int32, element);
+ if ((chr & 0xffff) > String::kMaxAsciiCharCode)
+ break;
+ }
+
+ MaybeObject* maybe_object = NULL;
+ if (i == length) { // The string is ASCII.
+ maybe_object = isolate->heap()->AllocateRawAsciiString(length);
+ } else { // The string is not ASCII.
+ maybe_object = isolate->heap()->AllocateRawTwoByteString(length);
+ }
+
+ Object* object = NULL;
+ if (!maybe_object->ToObject(&object)) return maybe_object;
+ String* result = String::cast(object);
+ for (int i = 0; i < length; i++) {
+ Object* element;
+ { MaybeObject* maybe_element = codes->GetElement(i);
+ if (!maybe_element->ToObject(&element)) return maybe_element;
+ }
+ CONVERT_NUMBER_CHECKED(int, chr, Int32, element);
+ result->Set(i, chr & 0xffff);
+ }
+ return result;
+}
+
+
+// kNotEscaped is generated by the following:
+//
+// #!/bin/perl
+// for (my $i = 0; $i < 256; $i++) {
+// print "\n" if $i % 16 == 0;
+// my $c = chr($i);
+// my $escaped = 1;
+// $escaped = 0 if $c =~ m#[A-Za-z0-9@*_+./-]#;
+// print $escaped ? "0, " : "1, ";
+// }
+
+
+static bool IsNotEscaped(uint16_t character) {
+ // Only for 8 bit characters, the rest are always escaped (in a different way)
+ ASSERT(character < 256);
+ static const char kNotEscaped[256] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ };
+ return kNotEscaped[character] != 0;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_URIEscape) {
+ const char hex_chars[] = "0123456789ABCDEF";
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ CONVERT_CHECKED(String, source, args[0]);
+
+ source->TryFlatten();
+
+ int escaped_length = 0;
+ int length = source->length();
+ {
+ Access<StringInputBuffer> buffer(
+ isolate->runtime_state()->string_input_buffer());
+ buffer->Reset(source);
+ while (buffer->has_more()) {
+ uint16_t character = buffer->GetNext();
+ if (character >= 256) {
+ escaped_length += 6;
+ } else if (IsNotEscaped(character)) {
+ escaped_length++;
+ } else {
+ escaped_length += 3;
+ }
+ // We don't allow strings that are longer than a maximal length.
+ ASSERT(String::kMaxLength < 0x7fffffff - 6); // Cannot overflow.
+ if (escaped_length > String::kMaxLength) {
+ isolate->context()->mark_out_of_memory();
+ return Failure::OutOfMemoryException();
+ }
+ }
+ }
+ // No length change implies no change. Return original string if no change.
+ if (escaped_length == length) {
+ return source;
+ }
+ Object* o;
+ { MaybeObject* maybe_o =
+ isolate->heap()->AllocateRawAsciiString(escaped_length);
+ if (!maybe_o->ToObject(&o)) return maybe_o;
+ }
+ String* destination = String::cast(o);
+ int dest_position = 0;
+
+ Access<StringInputBuffer> buffer(
+ isolate->runtime_state()->string_input_buffer());
+ buffer->Rewind();
+ while (buffer->has_more()) {
+ uint16_t chr = buffer->GetNext();
+ if (chr >= 256) {
+ destination->Set(dest_position, '%');
+ destination->Set(dest_position+1, 'u');
+ destination->Set(dest_position+2, hex_chars[chr >> 12]);
+ destination->Set(dest_position+3, hex_chars[(chr >> 8) & 0xf]);
+ destination->Set(dest_position+4, hex_chars[(chr >> 4) & 0xf]);
+ destination->Set(dest_position+5, hex_chars[chr & 0xf]);
+ dest_position += 6;
+ } else if (IsNotEscaped(chr)) {
+ destination->Set(dest_position, chr);
+ dest_position++;
+ } else {
+ destination->Set(dest_position, '%');
+ destination->Set(dest_position+1, hex_chars[chr >> 4]);
+ destination->Set(dest_position+2, hex_chars[chr & 0xf]);
+ dest_position += 3;
+ }
+ }
+ return destination;
+}
+
+
+static inline int TwoDigitHex(uint16_t character1, uint16_t character2) {
+ static const signed char kHexValue['g'] = {
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
+ -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, 10, 11, 12, 13, 14, 15 };
+
+ if (character1 > 'f') return -1;
+ int hi = kHexValue[character1];
+ if (hi == -1) return -1;
+ if (character2 > 'f') return -1;
+ int lo = kHexValue[character2];
+ if (lo == -1) return -1;
+ return (hi << 4) + lo;
+}
+
+
+static inline int Unescape(String* source,
+ int i,
+ int length,
+ int* step) {
+ uint16_t character = source->Get(i);
+ int32_t hi = 0;
+ int32_t lo = 0;
+ if (character == '%' &&
+ i <= length - 6 &&
+ source->Get(i + 1) == 'u' &&
+ (hi = TwoDigitHex(source->Get(i + 2),
+ source->Get(i + 3))) != -1 &&
+ (lo = TwoDigitHex(source->Get(i + 4),
+ source->Get(i + 5))) != -1) {
+ *step = 6;
+ return (hi << 8) + lo;
+ } else if (character == '%' &&
+ i <= length - 3 &&
+ (lo = TwoDigitHex(source->Get(i + 1),
+ source->Get(i + 2))) != -1) {
+ *step = 3;
+ return lo;
+ } else {
+ *step = 1;
+ return character;
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_URIUnescape) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ CONVERT_CHECKED(String, source, args[0]);
+
+ source->TryFlatten();
+
+ bool ascii = true;
+ int length = source->length();
+
+ int unescaped_length = 0;
+ for (int i = 0; i < length; unescaped_length++) {
+ int step;
+ if (Unescape(source, i, length, &step) > String::kMaxAsciiCharCode) {
+ ascii = false;
+ }
+ i += step;
+ }
+
+ // No length change implies no change. Return original string if no change.
+ if (unescaped_length == length)
+ return source;
+
+ Object* o;
+ { MaybeObject* maybe_o =
+ ascii ?
+ isolate->heap()->AllocateRawAsciiString(unescaped_length) :
+ isolate->heap()->AllocateRawTwoByteString(unescaped_length);
+ if (!maybe_o->ToObject(&o)) return maybe_o;
+ }
+ String* destination = String::cast(o);
+
+ int dest_position = 0;
+ for (int i = 0; i < length; dest_position++) {
+ int step;
+ destination->Set(dest_position, Unescape(source, i, length, &step));
+ i += step;
+ }
+ return destination;
+}
+
+
+static const unsigned int kQuoteTableLength = 128u;
+
+static const int kJsonQuotesCharactersPerEntry = 8;
+static const char* const JsonQuotes =
+ "\\u0000 \\u0001 \\u0002 \\u0003 "
+ "\\u0004 \\u0005 \\u0006 \\u0007 "
+ "\\b \\t \\n \\u000b "
+ "\\f \\r \\u000e \\u000f "
+ "\\u0010 \\u0011 \\u0012 \\u0013 "
+ "\\u0014 \\u0015 \\u0016 \\u0017 "
+ "\\u0018 \\u0019 \\u001a \\u001b "
+ "\\u001c \\u001d \\u001e \\u001f "
+ " ! \\\" # "
+ "$ % & ' "
+ "( ) * + "
+ ", - . / "
+ "0 1 2 3 "
+ "4 5 6 7 "
+ "8 9 : ; "
+ "< = > ? "
+ "@ A B C "
+ "D E F G "
+ "H I J K "
+ "L M N O "
+ "P Q R S "
+ "T U V W "
+ "X Y Z [ "
+ "\\\\ ] ^ _ "
+ "` a b c "
+ "d e f g "
+ "h i j k "
+ "l m n o "
+ "p q r s "
+ "t u v w "
+ "x y z { "
+ "| } ~ \177 ";
+
+
+// For a string that is less than 32k characters it should always be
+// possible to allocate it in new space.
+static const int kMaxGuaranteedNewSpaceString = 32 * 1024;
+
+
+// Doing JSON quoting cannot make the string more than this many times larger.
+static const int kJsonQuoteWorstCaseBlowup = 6;
+
+
+// Covers the entire ASCII range (all other characters are unchanged by JSON
+// quoting).
+static const byte JsonQuoteLengths[kQuoteTableLength] = {
+ 6, 6, 6, 6, 6, 6, 6, 6,
+ 2, 2, 2, 6, 2, 2, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6, 6, 6,
+ 1, 1, 2, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 2, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+};
+
+
+template <typename StringType>
+MaybeObject* AllocateRawString(Isolate* isolate, int length);
+
+
+template <>
+MaybeObject* AllocateRawString<SeqTwoByteString>(Isolate* isolate, int length) {
+ return isolate->heap()->AllocateRawTwoByteString(length);
+}
+
+
+template <>
+MaybeObject* AllocateRawString<SeqAsciiString>(Isolate* isolate, int length) {
+ return isolate->heap()->AllocateRawAsciiString(length);
+}
+
+
+template <typename Char, typename StringType, bool comma>
+static MaybeObject* SlowQuoteJsonString(Isolate* isolate,
+ Vector<const Char> characters) {
+ int length = characters.length();
+ const Char* read_cursor = characters.start();
+ const Char* end = read_cursor + length;
+ const int kSpaceForQuotes = 2 + (comma ? 1 :0);
+ int quoted_length = kSpaceForQuotes;
+ while (read_cursor < end) {
+ Char c = *(read_cursor++);
+ if (sizeof(Char) > 1u && static_cast<unsigned>(c) >= kQuoteTableLength) {
+ quoted_length++;
+ } else {
+ quoted_length += JsonQuoteLengths[static_cast<unsigned>(c)];
+ }
+ }
+ MaybeObject* new_alloc = AllocateRawString<StringType>(isolate,
+ quoted_length);
+ Object* new_object;
+ if (!new_alloc->ToObject(&new_object)) {
+ return new_alloc;
+ }
+ StringType* new_string = StringType::cast(new_object);
+
+ Char* write_cursor = reinterpret_cast<Char*>(
+ new_string->address() + SeqAsciiString::kHeaderSize);
+ if (comma) *(write_cursor++) = ',';
+ *(write_cursor++) = '"';
+
+ read_cursor = characters.start();
+ while (read_cursor < end) {
+ Char c = *(read_cursor++);
+ if (sizeof(Char) > 1u && static_cast<unsigned>(c) >= kQuoteTableLength) {
+ *(write_cursor++) = c;
+ } else {
+ int len = JsonQuoteLengths[static_cast<unsigned>(c)];
+ const char* replacement = JsonQuotes +
+ static_cast<unsigned>(c) * kJsonQuotesCharactersPerEntry;
+ for (int i = 0; i < len; i++) {
+ *write_cursor++ = *replacement++;
+ }
+ }
+ }
+ *(write_cursor++) = '"';
+ return new_string;
+}
+
+
+template <typename Char, typename StringType, bool comma>
+static MaybeObject* QuoteJsonString(Isolate* isolate,
+ Vector<const Char> characters) {
+ int length = characters.length();
+ isolate->counters()->quote_json_char_count()->Increment(length);
+ const int kSpaceForQuotes = 2 + (comma ? 1 :0);
+ int worst_case_length = length * kJsonQuoteWorstCaseBlowup + kSpaceForQuotes;
+ if (worst_case_length > kMaxGuaranteedNewSpaceString) {
+ return SlowQuoteJsonString<Char, StringType, comma>(isolate, characters);
+ }
+
+ MaybeObject* new_alloc = AllocateRawString<StringType>(isolate,
+ worst_case_length);
+ Object* new_object;
+ if (!new_alloc->ToObject(&new_object)) {
+ return new_alloc;
+ }
+ if (!isolate->heap()->new_space()->Contains(new_object)) {
+ // Even if our string is small enough to fit in new space we still have to
+ // handle it being allocated in old space as may happen in the third
+ // attempt. See CALL_AND_RETRY in heap-inl.h and similar code in
+ // CEntryStub::GenerateCore.
+ return SlowQuoteJsonString<Char, StringType, comma>(isolate, characters);
+ }
+ StringType* new_string = StringType::cast(new_object);
+ ASSERT(isolate->heap()->new_space()->Contains(new_string));
+
+ STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
+ Char* write_cursor = reinterpret_cast<Char*>(
+ new_string->address() + SeqAsciiString::kHeaderSize);
+ if (comma) *(write_cursor++) = ',';
+ *(write_cursor++) = '"';
+
+ const Char* read_cursor = characters.start();
+ const Char* end = read_cursor + length;
+ while (read_cursor < end) {
+ Char c = *(read_cursor++);
+ if (sizeof(Char) > 1u && static_cast<unsigned>(c) >= kQuoteTableLength) {
+ *(write_cursor++) = c;
+ } else {
+ int len = JsonQuoteLengths[static_cast<unsigned>(c)];
+ const char* replacement = JsonQuotes +
+ static_cast<unsigned>(c) * kJsonQuotesCharactersPerEntry;
+ write_cursor[0] = replacement[0];
+ if (len > 1) {
+ write_cursor[1] = replacement[1];
+ if (len > 2) {
+ ASSERT(len == 6);
+ write_cursor[2] = replacement[2];
+ write_cursor[3] = replacement[3];
+ write_cursor[4] = replacement[4];
+ write_cursor[5] = replacement[5];
+ }
+ }
+ write_cursor += len;
+ }
+ }
+ *(write_cursor++) = '"';
+
+ int final_length = static_cast<int>(
+ write_cursor - reinterpret_cast<Char*>(
+ new_string->address() + SeqAsciiString::kHeaderSize));
+ isolate->heap()->new_space()->
+ template ShrinkStringAtAllocationBoundary<StringType>(
+ new_string, final_length);
+ return new_string;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_QuoteJSONString) {
+ NoHandleAllocation ha;
+ CONVERT_CHECKED(String, str, args[0]);
+ if (!str->IsFlat()) {
+ MaybeObject* try_flatten = str->TryFlatten();
+ Object* flat;
+ if (!try_flatten->ToObject(&flat)) {
+ return try_flatten;
+ }
+ str = String::cast(flat);
+ ASSERT(str->IsFlat());
+ }
+ if (str->IsTwoByteRepresentation()) {
+ return QuoteJsonString<uc16, SeqTwoByteString, false>(isolate,
+ str->ToUC16Vector());
+ } else {
+ return QuoteJsonString<char, SeqAsciiString, false>(isolate,
+ str->ToAsciiVector());
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_QuoteJSONStringComma) {
+ NoHandleAllocation ha;
+ CONVERT_CHECKED(String, str, args[0]);
+ if (!str->IsFlat()) {
+ MaybeObject* try_flatten = str->TryFlatten();
+ Object* flat;
+ if (!try_flatten->ToObject(&flat)) {
+ return try_flatten;
+ }
+ str = String::cast(flat);
+ ASSERT(str->IsFlat());
+ }
+ if (str->IsTwoByteRepresentation()) {
+ return QuoteJsonString<uc16, SeqTwoByteString, true>(isolate,
+ str->ToUC16Vector());
+ } else {
+ return QuoteJsonString<char, SeqAsciiString, true>(isolate,
+ str->ToAsciiVector());
+ }
+}
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringParseInt) {
+ NoHandleAllocation ha;
+
+ CONVERT_CHECKED(String, s, args[0]);
+ CONVERT_SMI_CHECKED(radix, args[1]);
+
+ s->TryFlatten();
+
+ RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36));
+ double value = StringToInt(s, radix);
+ return isolate->heap()->NumberFromDouble(value);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringParseFloat) {
+ NoHandleAllocation ha;
+ CONVERT_CHECKED(String, str, args[0]);
+
+ // ECMA-262 section 15.1.2.3, empty string is NaN
+ double value = StringToDouble(str, ALLOW_TRAILING_JUNK, OS::nan_value());
+
+ // Create a number object from the value.
+ return isolate->heap()->NumberFromDouble(value);
+}
+
+
+template <class Converter>
+MUST_USE_RESULT static MaybeObject* ConvertCaseHelper(
+ Isolate* isolate,
+ String* s,
+ int length,
+ int input_string_length,
+ unibrow::Mapping<Converter, 128>* mapping) {
+ // We try this twice, once with the assumption that the result is no longer
+ // than the input and, if that assumption breaks, again with the exact
+ // length. This may not be pretty, but it is nicer than what was here before
+ // and I hereby claim my vaffel-is.
+ //
+ // Allocate the resulting string.
+ //
+ // NOTE: This assumes that the upper/lower case of an ascii
+ // character is also ascii. This is currently the case, but it
+ // might break in the future if we implement more context and locale
+ // dependent upper/lower conversions.
+ Object* o;
+ { MaybeObject* maybe_o = s->IsAsciiRepresentation()
+ ? isolate->heap()->AllocateRawAsciiString(length)
+ : isolate->heap()->AllocateRawTwoByteString(length);
+ if (!maybe_o->ToObject(&o)) return maybe_o;
+ }
+ String* result = String::cast(o);
+ bool has_changed_character = false;
+
+ // Convert all characters to upper case, assuming that they will fit
+ // in the buffer
+ Access<StringInputBuffer> buffer(
+ isolate->runtime_state()->string_input_buffer());
+ buffer->Reset(s);
+ unibrow::uchar chars[Converter::kMaxWidth];
+ // We can assume that the string is not empty
+ uc32 current = buffer->GetNext();
+ for (int i = 0; i < length;) {
+ bool has_next = buffer->has_more();
+ uc32 next = has_next ? buffer->GetNext() : 0;
+ int char_length = mapping->get(current, next, chars);
+ if (char_length == 0) {
+ // The case conversion of this character is the character itself.
+ result->Set(i, current);
+ i++;
+ } else if (char_length == 1) {
+ // Common case: converting the letter resulted in one character.
+ ASSERT(static_cast<uc32>(chars[0]) != current);
+ result->Set(i, chars[0]);
+ has_changed_character = true;
+ i++;
+ } else if (length == input_string_length) {
+ // We've assumed that the result would be as long as the
+ // input but here is a character that converts to several
+ // characters. No matter, we calculate the exact length
+ // of the result and try the whole thing again.
+ //
+ // Note that this leaves room for optimization. We could just
+ // memcpy what we already have to the result string. Also,
+ // the result string is the last object allocated we could
+ // "realloc" it and probably, in the vast majority of cases,
+ // extend the existing string to be able to hold the full
+ // result.
+ int next_length = 0;
+ if (has_next) {
+ next_length = mapping->get(next, 0, chars);
+ if (next_length == 0) next_length = 1;
+ }
+ int current_length = i + char_length + next_length;
+ while (buffer->has_more()) {
+ current = buffer->GetNext();
+ // NOTE: we use 0 as the next character here because, while
+ // the next character may affect what a character converts to,
+ // it does not in any case affect the length of what it convert
+ // to.
+ int char_length = mapping->get(current, 0, chars);
+ if (char_length == 0) char_length = 1;
+ current_length += char_length;
+ if (current_length > Smi::kMaxValue) {
+ isolate->context()->mark_out_of_memory();
+ return Failure::OutOfMemoryException();
+ }
+ }
+ // Try again with the real length.
+ return Smi::FromInt(current_length);
+ } else {
+ for (int j = 0; j < char_length; j++) {
+ result->Set(i, chars[j]);
+ i++;
+ }
+ has_changed_character = true;
+ }
+ current = next;
+ }
+ if (has_changed_character) {
+ return result;
+ } else {
+ // If we didn't actually change anything in doing the conversion
+ // we simple return the result and let the converted string
+ // become garbage; there is no reason to keep two identical strings
+ // alive.
+ return s;
+ }
+}
+
+
+namespace {
+
+static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
+
+
+// Given a word and two range boundaries returns a word with high bit
+// set in every byte iff the corresponding input byte was strictly in
+// the range (m, n). All the other bits in the result are cleared.
+// This function is only useful when it can be inlined and the
+// boundaries are statically known.
+// Requires: all bytes in the input word and the boundaries must be
+// ascii (less than 0x7F).
+static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
+ // Every byte in an ascii string is less than or equal to 0x7F.
+ ASSERT((w & (kOneInEveryByte * 0x7F)) == w);
+ // Use strict inequalities since in edge cases the function could be
+ // further simplified.
+ ASSERT(0 < m && m < n && n < 0x7F);
+ // Has high bit set in every w byte less than n.
+ uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
+ // Has high bit set in every w byte greater than m.
+ uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
+ return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
+}
+
+
+enum AsciiCaseConversion {
+ ASCII_TO_LOWER,
+ ASCII_TO_UPPER
+};
+
+
+template <AsciiCaseConversion dir>
+struct FastAsciiConverter {
+ static bool Convert(char* dst, char* src, int length) {
+#ifdef DEBUG
+ char* saved_dst = dst;
+ char* saved_src = src;
+#endif
+ // We rely on the distance between upper and lower case letters
+ // being a known power of 2.
+ ASSERT('a' - 'A' == (1 << 5));
+ // Boundaries for the range of input characters than require conversion.
+ const char lo = (dir == ASCII_TO_LOWER) ? 'A' - 1 : 'a' - 1;
+ const char hi = (dir == ASCII_TO_LOWER) ? 'Z' + 1 : 'z' + 1;
+ bool changed = false;
+ char* const limit = src + length;
+#ifdef V8_HOST_CAN_READ_UNALIGNED
+ // Process the prefix of the input that requires no conversion one
+ // (machine) word at a time.
+ while (src <= limit - sizeof(uintptr_t)) {
+ uintptr_t w = *reinterpret_cast<uintptr_t*>(src);
+ if (AsciiRangeMask(w, lo, hi) != 0) {
+ changed = true;
+ break;
+ }
+ *reinterpret_cast<uintptr_t*>(dst) = w;
+ src += sizeof(uintptr_t);
+ dst += sizeof(uintptr_t);
+ }
+ // Process the remainder of the input performing conversion when
+ // required one word at a time.
+ while (src <= limit - sizeof(uintptr_t)) {
+ uintptr_t w = *reinterpret_cast<uintptr_t*>(src);
+ uintptr_t m = AsciiRangeMask(w, lo, hi);
+ // The mask has high (7th) bit set in every byte that needs
+ // conversion and we know that the distance between cases is
+ // 1 << 5.
+ *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
+ src += sizeof(uintptr_t);
+ dst += sizeof(uintptr_t);
+ }
+#endif
+ // Process the last few bytes of the input (or the whole input if
+ // unaligned access is not supported).
+ while (src < limit) {
+ char c = *src;
+ if (lo < c && c < hi) {
+ c ^= (1 << 5);
+ changed = true;
+ }
+ *dst = c;
+ ++src;
+ ++dst;
+ }
+#ifdef DEBUG
+ CheckConvert(saved_dst, saved_src, length, changed);
+#endif
+ return changed;
+ }
+
+#ifdef DEBUG
+ static void CheckConvert(char* dst, char* src, int length, bool changed) {
+ bool expected_changed = false;
+ for (int i = 0; i < length; i++) {
+ if (dst[i] == src[i]) continue;
+ expected_changed = true;
+ if (dir == ASCII_TO_LOWER) {
+ ASSERT('A' <= src[i] && src[i] <= 'Z');
+ ASSERT(dst[i] == src[i] + ('a' - 'A'));
+ } else {
+ ASSERT(dir == ASCII_TO_UPPER);
+ ASSERT('a' <= src[i] && src[i] <= 'z');
+ ASSERT(dst[i] == src[i] - ('a' - 'A'));
+ }
+ }
+ ASSERT(expected_changed == changed);
+ }
+#endif
+};
+
+
+struct ToLowerTraits {
+ typedef unibrow::ToLowercase UnibrowConverter;
+
+ typedef FastAsciiConverter<ASCII_TO_LOWER> AsciiConverter;
+};
+
+
+struct ToUpperTraits {
+ typedef unibrow::ToUppercase UnibrowConverter;
+
+ typedef FastAsciiConverter<ASCII_TO_UPPER> AsciiConverter;
+};
+
+} // namespace
+
+
+template <typename ConvertTraits>
+MUST_USE_RESULT static MaybeObject* ConvertCase(
+ Arguments args,
+ Isolate* isolate,
+ unibrow::Mapping<typename ConvertTraits::UnibrowConverter, 128>* mapping) {
+ NoHandleAllocation ha;
+ CONVERT_CHECKED(String, s, args[0]);
+ s = s->TryFlattenGetString();
+
+ const int length = s->length();
+ // Assume that the string is not empty; we need this assumption later
+ if (length == 0) return s;
+
+ // Simpler handling of ascii strings.
+ //
+ // NOTE: This assumes that the upper/lower case of an ascii
+ // character is also ascii. This is currently the case, but it
+ // might break in the future if we implement more context and locale
+ // dependent upper/lower conversions.
+ if (s->IsSeqAsciiString()) {
+ Object* o;
+ { MaybeObject* maybe_o = isolate->heap()->AllocateRawAsciiString(length);
+ if (!maybe_o->ToObject(&o)) return maybe_o;
+ }
+ SeqAsciiString* result = SeqAsciiString::cast(o);
+ bool has_changed_character = ConvertTraits::AsciiConverter::Convert(
+ result->GetChars(), SeqAsciiString::cast(s)->GetChars(), length);
+ return has_changed_character ? result : s;
+ }
+
+ Object* answer;
+ { MaybeObject* maybe_answer =
+ ConvertCaseHelper(isolate, s, length, length, mapping);
+ if (!maybe_answer->ToObject(&answer)) return maybe_answer;
+ }
+ if (answer->IsSmi()) {
+ // Retry with correct length.
+ { MaybeObject* maybe_answer =
+ ConvertCaseHelper(isolate,
+ s, Smi::cast(answer)->value(), length, mapping);
+ if (!maybe_answer->ToObject(&answer)) return maybe_answer;
+ }
+ }
+ return answer;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToLowerCase) {
+ return ConvertCase<ToLowerTraits>(
+ args, isolate, isolate->runtime_state()->to_lower_mapping());
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToUpperCase) {
+ return ConvertCase<ToUpperTraits>(
+ args, isolate, isolate->runtime_state()->to_upper_mapping());
+}
+
+
+static inline bool IsTrimWhiteSpace(unibrow::uchar c) {
+ return unibrow::WhiteSpace::Is(c) || c == 0x200b;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringTrim) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 3);
+
+ CONVERT_CHECKED(String, s, args[0]);
+ CONVERT_BOOLEAN_CHECKED(trimLeft, args[1]);
+ CONVERT_BOOLEAN_CHECKED(trimRight, args[2]);
+
+ s->TryFlatten();
+ int length = s->length();
+
+ int left = 0;
+ if (trimLeft) {
+ while (left < length && IsTrimWhiteSpace(s->Get(left))) {
+ left++;
+ }
+ }
+
+ int right = length;
+ if (trimRight) {
+ while (right > left && IsTrimWhiteSpace(s->Get(right - 1))) {
+ right--;
+ }
+ }
+ return s->SubString(left, right);
+}
+
+
+template <typename SubjectChar, typename PatternChar>
+void FindStringIndices(Isolate* isolate,
+ Vector<const SubjectChar> subject,
+ Vector<const PatternChar> pattern,
+ ZoneList<int>* indices,
+ unsigned int limit) {
+ ASSERT(limit > 0);
+ // Collect indices of pattern in subject, and the end-of-string index.
+ // Stop after finding at most limit values.
+ StringSearch<PatternChar, SubjectChar> search(isolate, pattern);
+ int pattern_length = pattern.length();
+ int index = 0;
+ while (limit > 0) {
+ index = search.Search(subject, index);
+ if (index < 0) return;
+ indices->Add(index);
+ index += pattern_length;
+ limit--;
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringSplit) {
+ ASSERT(args.length() == 3);
+ HandleScope handle_scope(isolate);
+ CONVERT_ARG_CHECKED(String, subject, 0);
+ CONVERT_ARG_CHECKED(String, pattern, 1);
+ CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[2]);
+
+ int subject_length = subject->length();
+ int pattern_length = pattern->length();
+ RUNTIME_ASSERT(pattern_length > 0);
+
+ // The limit can be very large (0xffffffffu), but since the pattern
+ // isn't empty, we can never create more parts than ~half the length
+ // of the subject.
+
+ if (!subject->IsFlat()) FlattenString(subject);
+
+ static const int kMaxInitialListCapacity = 16;
+
+ ZoneScope scope(DELETE_ON_EXIT);
+
+ // Find (up to limit) indices of separator and end-of-string in subject
+ int initial_capacity = Min<uint32_t>(kMaxInitialListCapacity, limit);
+ ZoneList<int> indices(initial_capacity);
+ if (!pattern->IsFlat()) FlattenString(pattern);
+
+ // No allocation block.
+ {
+ AssertNoAllocation nogc;
+ if (subject->IsAsciiRepresentation()) {
+ Vector<const char> subject_vector = subject->ToAsciiVector();
+ if (pattern->IsAsciiRepresentation()) {
+ FindStringIndices(isolate,
+ subject_vector,
+ pattern->ToAsciiVector(),
+ &indices,
+ limit);
+ } else {
+ FindStringIndices(isolate,
+ subject_vector,
+ pattern->ToUC16Vector(),
+ &indices,
+ limit);
+ }
+ } else {
+ Vector<const uc16> subject_vector = subject->ToUC16Vector();
+ if (pattern->IsAsciiRepresentation()) {
+ FindStringIndices(isolate,
+ subject_vector,
+ pattern->ToAsciiVector(),
+ &indices,
+ limit);
+ } else {
+ FindStringIndices(isolate,
+ subject_vector,
+ pattern->ToUC16Vector(),
+ &indices,
+ limit);
+ }
+ }
+ }
+
+ if (static_cast<uint32_t>(indices.length()) < limit) {
+ indices.Add(subject_length);
+ }
+
+ // The list indices now contains the end of each part to create.
+
+ // Create JSArray of substrings separated by separator.
+ int part_count = indices.length();
+
+ Handle<JSArray> result = isolate->factory()->NewJSArray(part_count);
+ result->set_length(Smi::FromInt(part_count));
+
+ ASSERT(result->HasFastElements());
+
+ if (part_count == 1 && indices.at(0) == subject_length) {
+ FixedArray::cast(result->elements())->set(0, *subject);
+ return *result;
+ }
+
+ Handle<FixedArray> elements(FixedArray::cast(result->elements()));
+ int part_start = 0;
+ for (int i = 0; i < part_count; i++) {
+ HandleScope local_loop_handle;
+ int part_end = indices.at(i);
+ Handle<String> substring =
+ isolate->factory()->NewSubString(subject, part_start, part_end);
+ elements->set(i, *substring);
+ part_start = part_end + pattern_length;
+ }
+
+ return *result;
+}
+
+
+// Copies ascii characters to the given fixed array looking up
+// one-char strings in the cache. Gives up on the first char that is
+// not in the cache and fills the remainder with smi zeros. Returns
+// the length of the successfully copied prefix.
+static int CopyCachedAsciiCharsToArray(Heap* heap,
+ const char* chars,
+ FixedArray* elements,
+ int length) {
+ AssertNoAllocation nogc;
+ FixedArray* ascii_cache = heap->single_character_string_cache();
+ Object* undefined = heap->undefined_value();
+ int i;
+ for (i = 0; i < length; ++i) {
+ Object* value = ascii_cache->get(chars[i]);
+ if (value == undefined) break;
+ ASSERT(!heap->InNewSpace(value));
+ elements->set(i, value, SKIP_WRITE_BARRIER);
+ }
+ if (i < length) {
+ ASSERT(Smi::FromInt(0) == 0);
+ memset(elements->data_start() + i, 0, kPointerSize * (length - i));
+ }
+#ifdef DEBUG
+ for (int j = 0; j < length; ++j) {
+ Object* element = elements->get(j);
+ ASSERT(element == Smi::FromInt(0) ||
+ (element->IsString() && String::cast(element)->LooksValid()));
+ }
+#endif
+ return i;
+}
+
+
+// Converts a String to JSArray.
+// For example, "foo" => ["f", "o", "o"].
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringToArray) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+ CONVERT_ARG_CHECKED(String, s, 0);
+ CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
+
+ s->TryFlatten();
+ const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));
+
+ Handle<FixedArray> elements;
+ if (s->IsFlat() && s->IsAsciiRepresentation()) {
+ Object* obj;
+ { MaybeObject* maybe_obj =
+ isolate->heap()->AllocateUninitializedFixedArray(length);
+ if (!maybe_obj->ToObject(&obj)) return maybe_obj;
+ }
+ elements = Handle<FixedArray>(FixedArray::cast(obj), isolate);
+
+ Vector<const char> chars = s->ToAsciiVector();
+ // Note, this will initialize all elements (not only the prefix)
+ // to prevent GC from seeing partially initialized array.
+ int num_copied_from_cache = CopyCachedAsciiCharsToArray(isolate->heap(),
+ chars.start(),
+ *elements,
+ length);
+
+ for (int i = num_copied_from_cache; i < length; ++i) {
+ Handle<Object> str = LookupSingleCharacterStringFromCode(chars[i]);
+ elements->set(i, *str);
+ }
+ } else {
+ elements = isolate->factory()->NewFixedArray(length);
+ for (int i = 0; i < length; ++i) {
+ Handle<Object> str = LookupSingleCharacterStringFromCode(s->Get(i));
+ elements->set(i, *str);
+ }
+ }
+
+#ifdef DEBUG
+ for (int i = 0; i < length; ++i) {
+ ASSERT(String::cast(elements->get(i))->length() == 1);
+ }
+#endif
+
+ return *isolate->factory()->NewJSArrayWithElements(elements);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NewStringWrapper) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ CONVERT_CHECKED(String, value, args[0]);
+ return value->ToObject();
+}
+
+
+bool Runtime::IsUpperCaseChar(RuntimeState* runtime_state, uint16_t ch) {
+ unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth];
+ int char_length = runtime_state->to_upper_mapping()->get(ch, 0, chars);
+ return char_length == 0;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToString) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ Object* number = args[0];
+ RUNTIME_ASSERT(number->IsNumber());
+
+ return isolate->heap()->NumberToString(number);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToStringSkipCache) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ Object* number = args[0];
+ RUNTIME_ASSERT(number->IsNumber());
+
+ return isolate->heap()->NumberToString(number, false);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToInteger) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_DOUBLE_CHECKED(number, args[0]);
+
+ // We do not include 0 so that we don't have to treat +0 / -0 cases.
+ if (number > 0 && number <= Smi::kMaxValue) {
+ return Smi::FromInt(static_cast<int>(number));
+ }
+ return isolate->heap()->NumberFromDouble(DoubleToInteger(number));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToIntegerMapMinusZero) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_DOUBLE_CHECKED(number, args[0]);
+
+ // We do not include 0 so that we don't have to treat +0 / -0 cases.
+ if (number > 0 && number <= Smi::kMaxValue) {
+ return Smi::FromInt(static_cast<int>(number));
+ }
+
+ double double_value = DoubleToInteger(number);
+ // Map both -0 and +0 to +0.
+ if (double_value == 0) double_value = 0;
+
+ return isolate->heap()->NumberFromDouble(double_value);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToJSUint32) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]);
+ return isolate->heap()->NumberFromUint32(number);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToJSInt32) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_DOUBLE_CHECKED(number, args[0]);
+
+ // We do not include 0 so that we don't have to treat +0 / -0 cases.
+ if (number > 0 && number <= Smi::kMaxValue) {
+ return Smi::FromInt(static_cast<int>(number));
+ }
+ return isolate->heap()->NumberFromInt32(DoubleToInt32(number));
+}
+
+
+// Converts a Number to a Smi, if possible. Returns NaN if the number is not
+// a small integer.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberToSmi) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ Object* obj = args[0];
+ if (obj->IsSmi()) {
+ return obj;
+ }
+ if (obj->IsHeapNumber()) {
+ double value = HeapNumber::cast(obj)->value();
+ int int_value = FastD2I(value);
+ if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
+ return Smi::FromInt(int_value);
+ }
+ }
+ return isolate->heap()->nan_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateHeapNumber) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 0);
+ return isolate->heap()->AllocateHeapNumber(0);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAdd) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ CONVERT_DOUBLE_CHECKED(y, args[1]);
+ return isolate->heap()->NumberFromDouble(x + y);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberSub) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ CONVERT_DOUBLE_CHECKED(y, args[1]);
+ return isolate->heap()->NumberFromDouble(x - y);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberMul) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ CONVERT_DOUBLE_CHECKED(y, args[1]);
+ return isolate->heap()->NumberFromDouble(x * y);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberUnaryMinus) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->heap()->NumberFromDouble(-x);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAlloc) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 0);
+
+ return isolate->heap()->NumberFromDouble(9876543210.0);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberDiv) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ CONVERT_DOUBLE_CHECKED(y, args[1]);
+ return isolate->heap()->NumberFromDouble(x / y);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberMod) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ CONVERT_DOUBLE_CHECKED(y, args[1]);
+
+ x = modulo(x, y);
+ // NumberFromDouble may return a Smi instead of a Number object
+ return isolate->heap()->NumberFromDouble(x);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringAdd) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+ CONVERT_CHECKED(String, str1, args[0]);
+ CONVERT_CHECKED(String, str2, args[1]);
+ isolate->counters()->string_add_runtime()->Increment();
+ return isolate->heap()->AllocateConsString(str1, str2);
+}
+
+
+template <typename sinkchar>
+static inline void StringBuilderConcatHelper(String* special,
+ sinkchar* sink,
+ FixedArray* fixed_array,
+ int array_length) {
+ int position = 0;
+ for (int i = 0; i < array_length; i++) {
+ Object* element = fixed_array->get(i);
+ if (element->IsSmi()) {
+ // Smi encoding of position and length.
+ int encoded_slice = Smi::cast(element)->value();
+ int pos;
+ int len;
+ if (encoded_slice > 0) {
+ // Position and length encoded in one smi.
+ pos = StringBuilderSubstringPosition::decode(encoded_slice);
+ len = StringBuilderSubstringLength::decode(encoded_slice);
+ } else {
+ // Position and length encoded in two smis.
+ Object* obj = fixed_array->get(++i);
+ ASSERT(obj->IsSmi());
+ pos = Smi::cast(obj)->value();
+ len = -encoded_slice;
+ }
+ String::WriteToFlat(special,
+ sink + position,
+ pos,
+ pos + len);
+ position += len;
+ } else {
+ String* string = String::cast(element);
+ int element_length = string->length();
+ String::WriteToFlat(string, sink + position, 0, element_length);
+ position += element_length;
+ }
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringBuilderConcat) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 3);
+ CONVERT_CHECKED(JSArray, array, args[0]);
+ if (!args[1]->IsSmi()) {
+ isolate->context()->mark_out_of_memory();
+ return Failure::OutOfMemoryException();
+ }
+ int array_length = Smi::cast(args[1])->value();
+ CONVERT_CHECKED(String, special, args[2]);
+
+ // This assumption is used by the slice encoding in one or two smis.
+ ASSERT(Smi::kMaxValue >= String::kMaxLength);
+
+ int special_length = special->length();
+ if (!array->HasFastElements()) {
+ return isolate->Throw(isolate->heap()->illegal_argument_symbol());
+ }
+ FixedArray* fixed_array = FixedArray::cast(array->elements());
+ if (fixed_array->length() < array_length) {
+ array_length = fixed_array->length();
+ }
+
+ if (array_length == 0) {
+ return isolate->heap()->empty_string();
+ } else if (array_length == 1) {
+ Object* first = fixed_array->get(0);
+ if (first->IsString()) return first;
+ }
+
+ bool ascii = special->HasOnlyAsciiChars();
+ int position = 0;
+ for (int i = 0; i < array_length; i++) {
+ int increment = 0;
+ Object* elt = fixed_array->get(i);
+ if (elt->IsSmi()) {
+ // Smi encoding of position and length.
+ int smi_value = Smi::cast(elt)->value();
+ int pos;
+ int len;
+ if (smi_value > 0) {
+ // Position and length encoded in one smi.
+ pos = StringBuilderSubstringPosition::decode(smi_value);
+ len = StringBuilderSubstringLength::decode(smi_value);
+ } else {
+ // Position and length encoded in two smis.
+ len = -smi_value;
+ // Get the position and check that it is a positive smi.
+ i++;
+ if (i >= array_length) {
+ return isolate->Throw(isolate->heap()->illegal_argument_symbol());
+ }
+ Object* next_smi = fixed_array->get(i);
+ if (!next_smi->IsSmi()) {
+ return isolate->Throw(isolate->heap()->illegal_argument_symbol());
+ }
+ pos = Smi::cast(next_smi)->value();
+ if (pos < 0) {
+ return isolate->Throw(isolate->heap()->illegal_argument_symbol());
+ }
+ }
+ ASSERT(pos >= 0);
+ ASSERT(len >= 0);
+ if (pos > special_length || len > special_length - pos) {
+ return isolate->Throw(isolate->heap()->illegal_argument_symbol());
+ }
+ increment = len;
+ } else if (elt->IsString()) {
+ String* element = String::cast(elt);
+ int element_length = element->length();
+ increment = element_length;
+ if (ascii && !element->HasOnlyAsciiChars()) {
+ ascii = false;
+ }
+ } else {
+ return isolate->Throw(isolate->heap()->illegal_argument_symbol());
+ }
+ if (increment > String::kMaxLength - position) {
+ isolate->context()->mark_out_of_memory();
+ return Failure::OutOfMemoryException();
+ }
+ position += increment;
+ }
+
+ int length = position;
+ Object* object;
+
+ if (ascii) {
+ { MaybeObject* maybe_object =
+ isolate->heap()->AllocateRawAsciiString(length);
+ if (!maybe_object->ToObject(&object)) return maybe_object;
+ }
+ SeqAsciiString* answer = SeqAsciiString::cast(object);
+ StringBuilderConcatHelper(special,
+ answer->GetChars(),
+ fixed_array,
+ array_length);
+ return answer;
+ } else {
+ { MaybeObject* maybe_object =
+ isolate->heap()->AllocateRawTwoByteString(length);
+ if (!maybe_object->ToObject(&object)) return maybe_object;
+ }
+ SeqTwoByteString* answer = SeqTwoByteString::cast(object);
+ StringBuilderConcatHelper(special,
+ answer->GetChars(),
+ fixed_array,
+ array_length);
+ return answer;
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringBuilderJoin) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 3);
+ CONVERT_CHECKED(JSArray, array, args[0]);
+ if (!args[1]->IsSmi()) {
+ isolate->context()->mark_out_of_memory();
+ return Failure::OutOfMemoryException();
+ }
+ int array_length = Smi::cast(args[1])->value();
+ CONVERT_CHECKED(String, separator, args[2]);
+
+ if (!array->HasFastElements()) {
+ return isolate->Throw(isolate->heap()->illegal_argument_symbol());
+ }
+ FixedArray* fixed_array = FixedArray::cast(array->elements());
+ if (fixed_array->length() < array_length) {
+ array_length = fixed_array->length();
+ }
+
+ if (array_length == 0) {
+ return isolate->heap()->empty_string();
+ } else if (array_length == 1) {
+ Object* first = fixed_array->get(0);
+ if (first->IsString()) return first;
+ }
+
+ int separator_length = separator->length();
+ int max_nof_separators =
+ (String::kMaxLength + separator_length - 1) / separator_length;
+ if (max_nof_separators < (array_length - 1)) {
+ isolate->context()->mark_out_of_memory();
+ return Failure::OutOfMemoryException();
+ }
+ int length = (array_length - 1) * separator_length;
+ for (int i = 0; i < array_length; i++) {
+ Object* element_obj = fixed_array->get(i);
+ if (!element_obj->IsString()) {
+ // TODO(1161): handle this case.
+ return isolate->Throw(isolate->heap()->illegal_argument_symbol());
+ }
+ String* element = String::cast(element_obj);
+ int increment = element->length();
+ if (increment > String::kMaxLength - length) {
+ isolate->context()->mark_out_of_memory();
+ return Failure::OutOfMemoryException();
+ }
+ length += increment;
+ }
+
+ Object* object;
+ { MaybeObject* maybe_object =
+ isolate->heap()->AllocateRawTwoByteString(length);
+ if (!maybe_object->ToObject(&object)) return maybe_object;
+ }
+ SeqTwoByteString* answer = SeqTwoByteString::cast(object);
+
+ uc16* sink = answer->GetChars();
+#ifdef DEBUG
+ uc16* end = sink + length;
+#endif
+
+ String* first = String::cast(fixed_array->get(0));
+ int first_length = first->length();
+ String::WriteToFlat(first, sink, 0, first_length);
+ sink += first_length;
+
+ for (int i = 1; i < array_length; i++) {
+ ASSERT(sink + separator_length <= end);
+ String::WriteToFlat(separator, sink, 0, separator_length);
+ sink += separator_length;
+
+ String* element = String::cast(fixed_array->get(i));
+ int element_length = element->length();
+ ASSERT(sink + element_length <= end);
+ String::WriteToFlat(element, sink, 0, element_length);
+ sink += element_length;
+ }
+ ASSERT(sink == end);
+
+ ASSERT(!answer->HasOnlyAsciiChars()); // Use %_FastAsciiArrayJoin instead.
+ return answer;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberOr) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+ return isolate->heap()->NumberFromInt32(x | y);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberAnd) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+ return isolate->heap()->NumberFromInt32(x & y);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberXor) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+ return isolate->heap()->NumberFromInt32(x ^ y);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberNot) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+ return isolate->heap()->NumberFromInt32(~x);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberShl) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+ return isolate->heap()->NumberFromInt32(x << (y & 0x1f));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberShr) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+ return isolate->heap()->NumberFromUint32(x >> (y & 0x1f));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberSar) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+ return isolate->heap()->NumberFromInt32(ArithmeticShiftRight(x, y & 0x1f));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberEquals) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ CONVERT_DOUBLE_CHECKED(y, args[1]);
+ if (isnan(x)) return Smi::FromInt(NOT_EQUAL);
+ if (isnan(y)) return Smi::FromInt(NOT_EQUAL);
+ if (x == y) return Smi::FromInt(EQUAL);
+ Object* result;
+ if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
+ result = Smi::FromInt(EQUAL);
+ } else {
+ result = Smi::FromInt(NOT_EQUAL);
+ }
+ return result;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringEquals) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_CHECKED(String, x, args[0]);
+ CONVERT_CHECKED(String, y, args[1]);
+
+ bool not_equal = !x->Equals(y);
+ // This is slightly convoluted because the value that signifies
+ // equality is 0 and inequality is 1 so we have to negate the result
+ // from String::Equals.
+ ASSERT(not_equal == 0 || not_equal == 1);
+ STATIC_CHECK(EQUAL == 0);
+ STATIC_CHECK(NOT_EQUAL == 1);
+ return Smi::FromInt(not_equal);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NumberCompare) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 3);
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ CONVERT_DOUBLE_CHECKED(y, args[1]);
+ if (isnan(x) || isnan(y)) return args[2];
+ if (x == y) return Smi::FromInt(EQUAL);
+ if (isless(x, y)) return Smi::FromInt(LESS);
+ return Smi::FromInt(GREATER);
+}
+
+
+// Compare two Smis as if they were converted to strings and then
+// compared lexicographically.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SmiLexicographicCompare) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ // Extract the integer values from the Smis.
+ CONVERT_CHECKED(Smi, x, args[0]);
+ CONVERT_CHECKED(Smi, y, args[1]);
+ int x_value = x->value();
+ int y_value = y->value();
+
+ // If the integers are equal so are the string representations.
+ if (x_value == y_value) return Smi::FromInt(EQUAL);
+
+ // If one of the integers are zero the normal integer order is the
+ // same as the lexicographic order of the string representations.
+ if (x_value == 0 || y_value == 0) return Smi::FromInt(x_value - y_value);
+
+ // If only one of the integers is negative the negative number is
+ // smallest because the char code of '-' is less than the char code
+ // of any digit. Otherwise, we make both values positive.
+ if (x_value < 0 || y_value < 0) {
+ if (y_value >= 0) return Smi::FromInt(LESS);
+ if (x_value >= 0) return Smi::FromInt(GREATER);
+ x_value = -x_value;
+ y_value = -y_value;
+ }
+
+ // Arrays for the individual characters of the two Smis. Smis are
+ // 31 bit integers and 10 decimal digits are therefore enough.
+ // TODO(isolates): maybe we should simply allocate 20 bytes on the stack.
+ int* x_elms = isolate->runtime_state()->smi_lexicographic_compare_x_elms();
+ int* y_elms = isolate->runtime_state()->smi_lexicographic_compare_y_elms();
+
+
+ // Convert the integers to arrays of their decimal digits.
+ int x_index = 0;
+ int y_index = 0;
+ while (x_value > 0) {
+ x_elms[x_index++] = x_value % 10;
+ x_value /= 10;
+ }
+ while (y_value > 0) {
+ y_elms[y_index++] = y_value % 10;
+ y_value /= 10;
+ }
+
+ // Loop through the arrays of decimal digits finding the first place
+ // where they differ.
+ while (--x_index >= 0 && --y_index >= 0) {
+ int diff = x_elms[x_index] - y_elms[y_index];
+ if (diff != 0) return Smi::FromInt(diff);
+ }
+
+ // If one array is a suffix of the other array, the longest array is
+ // the representation of the largest of the Smis in the
+ // lexicographic ordering.
+ return Smi::FromInt(x_index - y_index);
+}
+
+
+static Object* StringInputBufferCompare(RuntimeState* state,
+ String* x,
+ String* y) {
+ StringInputBuffer& bufx = *state->string_input_buffer_compare_bufx();
+ StringInputBuffer& bufy = *state->string_input_buffer_compare_bufy();
+ bufx.Reset(x);
+ bufy.Reset(y);
+ while (bufx.has_more() && bufy.has_more()) {
+ int d = bufx.GetNext() - bufy.GetNext();
+ if (d < 0) return Smi::FromInt(LESS);
+ else if (d > 0) return Smi::FromInt(GREATER);
+ }
+
+ // x is (non-trivial) prefix of y:
+ if (bufy.has_more()) return Smi::FromInt(LESS);
+ // y is prefix of x:
+ return Smi::FromInt(bufx.has_more() ? GREATER : EQUAL);
+}
+
+
+static Object* FlatStringCompare(String* x, String* y) {
+ ASSERT(x->IsFlat());
+ ASSERT(y->IsFlat());
+ Object* equal_prefix_result = Smi::FromInt(EQUAL);
+ int prefix_length = x->length();
+ if (y->length() < prefix_length) {
+ prefix_length = y->length();
+ equal_prefix_result = Smi::FromInt(GREATER);
+ } else if (y->length() > prefix_length) {
+ equal_prefix_result = Smi::FromInt(LESS);
+ }
+ int r;
+ if (x->IsAsciiRepresentation()) {
+ Vector<const char> x_chars = x->ToAsciiVector();
+ if (y->IsAsciiRepresentation()) {
+ Vector<const char> y_chars = y->ToAsciiVector();
+ r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
+ } else {
+ Vector<const uc16> y_chars = y->ToUC16Vector();
+ r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
+ }
+ } else {
+ Vector<const uc16> x_chars = x->ToUC16Vector();
+ if (y->IsAsciiRepresentation()) {
+ Vector<const char> y_chars = y->ToAsciiVector();
+ r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
+ } else {
+ Vector<const uc16> y_chars = y->ToUC16Vector();
+ r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
+ }
+ }
+ Object* result;
+ if (r == 0) {
+ result = equal_prefix_result;
+ } else {
+ result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER);
+ }
+ ASSERT(result ==
+ StringInputBufferCompare(Isolate::Current()->runtime_state(), x, y));
+ return result;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StringCompare) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_CHECKED(String, x, args[0]);
+ CONVERT_CHECKED(String, y, args[1]);
+
+ isolate->counters()->string_compare_runtime()->Increment();
+
+ // A few fast case tests before we flatten.
+ if (x == y) return Smi::FromInt(EQUAL);
+ if (y->length() == 0) {
+ if (x->length() == 0) return Smi::FromInt(EQUAL);
+ return Smi::FromInt(GREATER);
+ } else if (x->length() == 0) {
+ return Smi::FromInt(LESS);
+ }
+
+ int d = x->Get(0) - y->Get(0);
+ if (d < 0) return Smi::FromInt(LESS);
+ else if (d > 0) return Smi::FromInt(GREATER);
+
+ Object* obj;
+ { MaybeObject* maybe_obj = isolate->heap()->PrepareForCompare(x);
+ if (!maybe_obj->ToObject(&obj)) return maybe_obj;
+ }
+ { MaybeObject* maybe_obj = isolate->heap()->PrepareForCompare(y);
+ if (!maybe_obj->ToObject(&obj)) return maybe_obj;
+ }
+
+ return (x->IsFlat() && y->IsFlat()) ? FlatStringCompare(x, y)
+ : StringInputBufferCompare(isolate->runtime_state(), x, y);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_acos) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ isolate->counters()->math_acos()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->transcendental_cache()->Get(TranscendentalCache::ACOS, x);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_asin) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ isolate->counters()->math_asin()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->transcendental_cache()->Get(TranscendentalCache::ASIN, x);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ isolate->counters()->math_atan()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->transcendental_cache()->Get(TranscendentalCache::ATAN, x);
+}
+
+
+static const double kPiDividedBy4 = 0.78539816339744830962;
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_atan2) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+ isolate->counters()->math_atan2()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ CONVERT_DOUBLE_CHECKED(y, args[1]);
+ double result;
+ if (isinf(x) && isinf(y)) {
+ // Make sure that the result in case of two infinite arguments
+ // is a multiple of Pi / 4. The sign of the result is determined
+ // by the first argument (x) and the sign of the second argument
+ // determines the multiplier: one or three.
+ int multiplier = (x < 0) ? -1 : 1;
+ if (y < 0) multiplier *= 3;
+ result = multiplier * kPiDividedBy4;
+ } else {
+ result = atan2(x, y);
+ }
+ return isolate->heap()->AllocateHeapNumber(result);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_ceil) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ isolate->counters()->math_ceil()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->heap()->NumberFromDouble(ceiling(x));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_cos) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ isolate->counters()->math_cos()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->transcendental_cache()->Get(TranscendentalCache::COS, x);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_exp) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ isolate->counters()->math_exp()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->transcendental_cache()->Get(TranscendentalCache::EXP, x);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_floor) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ isolate->counters()->math_floor()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->heap()->NumberFromDouble(floor(x));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_log) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ isolate->counters()->math_log()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->transcendental_cache()->Get(TranscendentalCache::LOG, x);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+ isolate->counters()->math_pow()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+
+ // If the second argument is a smi, it is much faster to call the
+ // custom powi() function than the generic pow().
+ if (args[1]->IsSmi()) {
+ int y = Smi::cast(args[1])->value();
+ return isolate->heap()->NumberFromDouble(power_double_int(x, y));
+ }
+
+ CONVERT_DOUBLE_CHECKED(y, args[1]);
+ return isolate->heap()->AllocateHeapNumber(power_double_double(x, y));
+}
+
+// Fast version of Math.pow if we know that y is not an integer and
+// y is not -0.5 or 0.5. Used as slowcase from codegen.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_pow_cfunction) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ CONVERT_DOUBLE_CHECKED(y, args[1]);
+ if (y == 0) {
+ return Smi::FromInt(1);
+ } else if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) {
+ return isolate->heap()->nan_value();
+ } else {
+ return isolate->heap()->AllocateHeapNumber(pow(x, y));
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_RoundNumber) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ isolate->counters()->math_round()->Increment();
+
+ if (!args[0]->IsHeapNumber()) {
+ // Must be smi. Return the argument unchanged for all the other types
+ // to make fuzz-natives test happy.
+ return args[0];
+ }
+
+ HeapNumber* number = reinterpret_cast<HeapNumber*>(args[0]);
+
+ double value = number->value();
+ int exponent = number->get_exponent();
+ int sign = number->get_sign();
+
+ // We compare with kSmiValueSize - 3 because (2^30 - 0.1) has exponent 29 and
+ // should be rounded to 2^30, which is not smi.
+ if (!sign && exponent <= kSmiValueSize - 3) {
+ return Smi::FromInt(static_cast<int>(value + 0.5));
+ }
+
+ // If the magnitude is big enough, there's no place for fraction part. If we
+ // try to add 0.5 to this number, 1.0 will be added instead.
+ if (exponent >= 52) {
+ return number;
+ }
+
+ if (sign && value >= -0.5) return isolate->heap()->minus_zero_value();
+
+ // Do not call NumberFromDouble() to avoid extra checks.
+ return isolate->heap()->AllocateHeapNumber(floor(value + 0.5));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_sin) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ isolate->counters()->math_sin()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->transcendental_cache()->Get(TranscendentalCache::SIN, x);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_sqrt) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ isolate->counters()->math_sqrt()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->heap()->AllocateHeapNumber(sqrt(x));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_tan) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ isolate->counters()->math_tan()->Increment();
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->transcendental_cache()->Get(TranscendentalCache::TAN, x);
+}
+
+
+static int MakeDay(int year, int month, int day) {
+ static const int day_from_month[] = {0, 31, 59, 90, 120, 151,
+ 181, 212, 243, 273, 304, 334};
+ static const int day_from_month_leap[] = {0, 31, 60, 91, 121, 152,
+ 182, 213, 244, 274, 305, 335};
+
+ year += month / 12;
+ month %= 12;
+ if (month < 0) {
+ year--;
+ month += 12;
+ }
+
+ ASSERT(month >= 0);
+ ASSERT(month < 12);
+
+ // year_delta is an arbitrary number such that:
+ // a) year_delta = -1 (mod 400)
+ // b) year + year_delta > 0 for years in the range defined by
+ // ECMA 262 - 15.9.1.1, i.e. upto 100,000,000 days on either side of
+ // Jan 1 1970. This is required so that we don't run into integer
+ // division of negative numbers.
+ // c) there shouldn't be an overflow for 32-bit integers in the following
+ // operations.
+ static const int year_delta = 399999;
+ static const int base_day = 365 * (1970 + year_delta) +
+ (1970 + year_delta) / 4 -
+ (1970 + year_delta) / 100 +
+ (1970 + year_delta) / 400;
+
+ int year1 = year + year_delta;
+ int day_from_year = 365 * year1 +
+ year1 / 4 -
+ year1 / 100 +
+ year1 / 400 -
+ base_day;
+
+ if (year % 4 || (year % 100 == 0 && year % 400 != 0)) {
+ return day_from_year + day_from_month[month] + day - 1;
+ }
+
+ return day_from_year + day_from_month_leap[month] + day - 1;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DateMakeDay) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 3);
+
+ CONVERT_SMI_CHECKED(year, args[0]);
+ CONVERT_SMI_CHECKED(month, args[1]);
+ CONVERT_SMI_CHECKED(date, args[2]);
+
+ return Smi::FromInt(MakeDay(year, month, date));
+}
+
+
+static const int kDays4Years[] = {0, 365, 2 * 365, 3 * 365 + 1};
+static const int kDaysIn4Years = 4 * 365 + 1;
+static const int kDaysIn100Years = 25 * kDaysIn4Years - 1;
+static const int kDaysIn400Years = 4 * kDaysIn100Years + 1;
+static const int kDays1970to2000 = 30 * 365 + 7;
+static const int kDaysOffset = 1000 * kDaysIn400Years + 5 * kDaysIn400Years -
+ kDays1970to2000;
+static const int kYearsOffset = 400000;
+
+static const char kDayInYear[] = {
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
+
+static const char kMonthInYear[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 3, 3, 3, 3, 3,
+ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 5, 5, 5, 5,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 3, 3, 3, 3, 3,
+ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 5, 5, 5, 5,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 3, 3, 3, 3, 3,
+ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 5, 5, 5, 5,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 3, 3, 3, 3, 3,
+ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+ 4, 4, 4, 4, 4, 4,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 5, 5, 5, 5,
+ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
+ 6, 6, 6, 6, 6, 6,
+ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 7,
+ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
+ 8, 8, 8, 8, 8,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11};
+
+
+// This function works for dates from 1970 to 2099.
+static inline void DateYMDFromTimeAfter1970(int date,
+ int& year, int& month, int& day) {
+#ifdef DEBUG
+ int save_date = date; // Need this for ASSERT in the end.
+#endif
+
+ year = 1970 + (4 * date + 2) / kDaysIn4Years;
+ date %= kDaysIn4Years;
+
+ month = kMonthInYear[date];
+ day = kDayInYear[date];
+
+ ASSERT(MakeDay(year, month, day) == save_date);
+}
+
+
+static inline void DateYMDFromTimeSlow(int date,
+ int& year, int& month, int& day) {
+#ifdef DEBUG
+ int save_date = date; // Need this for ASSERT in the end.
+#endif
+
+ date += kDaysOffset;
+ year = 400 * (date / kDaysIn400Years) - kYearsOffset;
+ date %= kDaysIn400Years;
+
+ ASSERT(MakeDay(year, 0, 1) + date == save_date);
+
+ date--;
+ int yd1 = date / kDaysIn100Years;
+ date %= kDaysIn100Years;
+ year += 100 * yd1;
+
+ date++;
+ int yd2 = date / kDaysIn4Years;
+ date %= kDaysIn4Years;
+ year += 4 * yd2;
+
+ date--;
+ int yd3 = date / 365;
+ date %= 365;
+ year += yd3;
+
+ bool is_leap = (!yd1 || yd2) && !yd3;
+
+ ASSERT(date >= -1);
+ ASSERT(is_leap || (date >= 0));
+ ASSERT((date < 365) || (is_leap && (date < 366)));
+ ASSERT(is_leap == ((year % 4 == 0) && (year % 100 || (year % 400 == 0))));
+ ASSERT(is_leap || ((MakeDay(year, 0, 1) + date) == save_date));
+ ASSERT(!is_leap || ((MakeDay(year, 0, 1) + date + 1) == save_date));
+
+ if (is_leap) {
+ day = kDayInYear[2*365 + 1 + date];
+ month = kMonthInYear[2*365 + 1 + date];
+ } else {
+ day = kDayInYear[date];
+ month = kMonthInYear[date];
+ }
+
+ ASSERT(MakeDay(year, month, day) == save_date);
+}
+
+
+static inline void DateYMDFromTime(int date,
+ int& year, int& month, int& day) {
+ if (date >= 0 && date < 32 * kDaysIn4Years) {
+ DateYMDFromTimeAfter1970(date, year, month, day);
+ } else {
+ DateYMDFromTimeSlow(date, year, month, day);
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DateYMDFromTime) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_DOUBLE_CHECKED(t, args[0]);
+ CONVERT_CHECKED(JSArray, res_array, args[1]);
+
+ int year, month, day;
+ DateYMDFromTime(static_cast<int>(floor(t / 86400000)), year, month, day);
+
+ RUNTIME_ASSERT(res_array->elements()->map() ==
+ isolate->heap()->fixed_array_map());
+ FixedArray* elms = FixedArray::cast(res_array->elements());
+ RUNTIME_ASSERT(elms->length() == 3);
+
+ elms->set(0, Smi::FromInt(year));
+ elms->set(1, Smi::FromInt(month));
+ elms->set(2, Smi::FromInt(day));
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NewArgumentsFast) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 3);
+
+ JSFunction* callee = JSFunction::cast(args[0]);
+ Object** parameters = reinterpret_cast<Object**>(args[1]);
+ const int length = Smi::cast(args[2])->value();
+
+ Object* result;
+ { MaybeObject* maybe_result =
+ isolate->heap()->AllocateArgumentsObject(callee, length);
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+ // Allocate the elements if needed.
+ if (length > 0) {
+ // Allocate the fixed array.
+ Object* obj;
+ { MaybeObject* maybe_obj = isolate->heap()->AllocateRawFixedArray(length);
+ if (!maybe_obj->ToObject(&obj)) return maybe_obj;
+ }
+
+ AssertNoAllocation no_gc;
+ FixedArray* array = reinterpret_cast<FixedArray*>(obj);
+ array->set_map(isolate->heap()->fixed_array_map());
+ array->set_length(length);
+
+ WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
+ for (int i = 0; i < length; i++) {
+ array->set(i, *--parameters, mode);
+ }
+ JSObject::cast(result)->set_elements(FixedArray::cast(obj));
+ }
+ return result;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NewClosure) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 3);
+ CONVERT_ARG_CHECKED(Context, context, 0);
+ CONVERT_ARG_CHECKED(SharedFunctionInfo, shared, 1);
+ CONVERT_BOOLEAN_CHECKED(pretenure, args[2]);
+
+ // Allocate global closures in old space and allocate local closures
+ // in new space. Additionally pretenure closures that are assigned
+ // directly to properties.
+ pretenure = pretenure || (context->global_context() == *context);
+ PretenureFlag pretenure_flag = pretenure ? TENURED : NOT_TENURED;
+ Handle<JSFunction> result =
+ isolate->factory()->NewFunctionFromSharedFunctionInfo(shared,
+ context,
+ pretenure_flag);
+ return *result;
+}
+
+
+static SmartPointer<Object**> GetNonBoundArguments(int bound_argc,
+ int* total_argc) {
+ // Find frame containing arguments passed to the caller.
+ JavaScriptFrameIterator it;
+ JavaScriptFrame* frame = it.frame();
+ List<JSFunction*> functions(2);
+ frame->GetFunctions(&functions);
+ if (functions.length() > 1) {
+ int inlined_frame_index = functions.length() - 1;
+ JSFunction* inlined_function = functions[inlined_frame_index];
+ int args_count = inlined_function->shared()->formal_parameter_count();
+ ScopedVector<SlotRef> args_slots(args_count);
+ SlotRef::ComputeSlotMappingForArguments(frame,
+ inlined_frame_index,
+ &args_slots);
+
+ *total_argc = bound_argc + args_count;
+ SmartPointer<Object**> param_data(NewArray<Object**>(*total_argc));
+ for (int i = 0; i < args_count; i++) {
+ Handle<Object> val = args_slots[i].GetValue();
+ param_data[bound_argc + i] = val.location();
+ }
+ return param_data;
+ } else {
+ it.AdvanceToArgumentsFrame();
+ frame = it.frame();
+ int args_count = frame->ComputeParametersCount();
+
+ *total_argc = bound_argc + args_count;
+ SmartPointer<Object**> param_data(NewArray<Object**>(*total_argc));
+ for (int i = 0; i < args_count; i++) {
+ Handle<Object> val = Handle<Object>(frame->GetParameter(i));
+ param_data[bound_argc + i] = val.location();
+ }
+ return param_data;
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NewObjectFromBound) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+ // First argument is a function to use as a constructor.
+ CONVERT_ARG_CHECKED(JSFunction, function, 0);
+
+ // Second argument is either null or an array of bound arguments.
+ Handle<FixedArray> bound_args;
+ int bound_argc = 0;
+ if (!args[1]->IsNull()) {
+ CONVERT_ARG_CHECKED(JSArray, params, 1);
+ RUNTIME_ASSERT(params->HasFastElements());
+ bound_args = Handle<FixedArray>(FixedArray::cast(params->elements()));
+ bound_argc = Smi::cast(params->length())->value();
+ }
+
+ int total_argc = 0;
+ SmartPointer<Object**> param_data =
+ GetNonBoundArguments(bound_argc, &total_argc);
+ for (int i = 0; i < bound_argc; i++) {
+ Handle<Object> val = Handle<Object>(bound_args->get(i));
+ param_data[i] = val.location();
+ }
+
+ bool exception = false;
+ Handle<Object> result =
+ Execution::New(function, total_argc, *param_data, &exception);
+ if (exception) {
+ return Failure::Exception();
+ }
+
+ ASSERT(!result.is_null());
+ return *result;
+}
+
+
+static void TrySettingInlineConstructStub(Isolate* isolate,
+ Handle<JSFunction> function) {
+ Handle<Object> prototype = isolate->factory()->null_value();
+ if (function->has_instance_prototype()) {
+ prototype = Handle<Object>(function->instance_prototype(), isolate);
+ }
+ if (function->shared()->CanGenerateInlineConstructor(*prototype)) {
+ ConstructStubCompiler compiler;
+ MaybeObject* code = compiler.CompileConstructStub(*function);
+ if (!code->IsFailure()) {
+ function->shared()->set_construct_stub(
+ Code::cast(code->ToObjectUnchecked()));
+ }
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NewObject) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+
+ Handle<Object> constructor = args.at<Object>(0);
+
+ // If the constructor isn't a proper function we throw a type error.
+ if (!constructor->IsJSFunction()) {
+ Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
+ Handle<Object> type_error =
+ isolate->factory()->NewTypeError("not_constructor", arguments);
+ return isolate->Throw(*type_error);
+ }
+
+ Handle<JSFunction> function = Handle<JSFunction>::cast(constructor);
+
+ // If function should not have prototype, construction is not allowed. In this
+ // case generated code bailouts here, since function has no initial_map.
+ if (!function->should_have_prototype()) {
+ Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
+ Handle<Object> type_error =
+ isolate->factory()->NewTypeError("not_constructor", arguments);
+ return isolate->Throw(*type_error);
+ }
+
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ Debug* debug = isolate->debug();
+ // Handle stepping into constructors if step into is active.
+ if (debug->StepInActive()) {
+ debug->HandleStepIn(function, Handle<Object>::null(), 0, true);
+ }
+#endif
+
+ if (function->has_initial_map()) {
+ if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) {
+ // The 'Function' function ignores the receiver object when
+ // called using 'new' and creates a new JSFunction object that
+ // is returned. The receiver object is only used for error
+ // reporting if an error occurs when constructing the new
+ // JSFunction. FACTORY->NewJSObject() should not be used to
+ // allocate JSFunctions since it does not properly initialize
+ // the shared part of the function. Since the receiver is
+ // ignored anyway, we use the global object as the receiver
+ // instead of a new JSFunction object. This way, errors are
+ // reported the same way whether or not 'Function' is called
+ // using 'new'.
+ return isolate->context()->global();
+ }
+ }
+
+ // The function should be compiled for the optimization hints to be
+ // available. We cannot use EnsureCompiled because that forces a
+ // compilation through the shared function info which makes it
+ // impossible for us to optimize.
+ Handle<SharedFunctionInfo> shared(function->shared(), isolate);
+ if (!function->is_compiled()) CompileLazy(function, CLEAR_EXCEPTION);
+
+ if (!function->has_initial_map() &&
+ shared->IsInobjectSlackTrackingInProgress()) {
+ // The tracking is already in progress for another function. We can only
+ // track one initial_map at a time, so we force the completion before the
+ // function is called as a constructor for the first time.
+ shared->CompleteInobjectSlackTracking();
+ }
+
+ bool first_allocation = !shared->live_objects_may_exist();
+ Handle<JSObject> result = isolate->factory()->NewJSObject(function);
+ RETURN_IF_EMPTY_HANDLE(isolate, result);
+ // Delay setting the stub if inobject slack tracking is in progress.
+ if (first_allocation && !shared->IsInobjectSlackTrackingInProgress()) {
+ TrySettingInlineConstructStub(isolate, function);
+ }
+
+ isolate->counters()->constructed_objects()->Increment();
+ isolate->counters()->constructed_objects_runtime()->Increment();
+
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FinalizeInstanceSize) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+
+ CONVERT_ARG_CHECKED(JSFunction, function, 0);
+ function->shared()->CompleteInobjectSlackTracking();
+ TrySettingInlineConstructStub(isolate, function);
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LazyCompile) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+
+ Handle<JSFunction> function = args.at<JSFunction>(0);
+#ifdef DEBUG
+ if (FLAG_trace_lazy && !function->shared()->is_compiled()) {
+ PrintF("[lazy: ");
+ function->PrintName();
+ PrintF("]\n");
+ }
+#endif
+
+ // Compile the target function. Here we compile using CompileLazyInLoop in
+ // order to get the optimized version. This helps code like delta-blue
+ // that calls performance-critical routines through constructors. A
+ // constructor call doesn't use a CallIC, it uses a LoadIC followed by a
+ // direct call. Since the in-loop tracking takes place through CallICs
+ // this means that things called through constructors are never known to
+ // be in loops. We compile them as if they are in loops here just in case.
+ ASSERT(!function->is_compiled());
+ if (!CompileLazyInLoop(function, KEEP_EXCEPTION)) {
+ return Failure::Exception();
+ }
+
+ // All done. Return the compiled code.
+ ASSERT(function->is_compiled());
+ return function->code();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LazyRecompile) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ Handle<JSFunction> function = args.at<JSFunction>(0);
+ // If the function is not optimizable or debugger is active continue using the
+ // code from the full compiler.
+ if (!function->shared()->code()->optimizable() ||
+ isolate->debug()->has_break_points()) {
+ if (FLAG_trace_opt) {
+ PrintF("[failed to optimize ");
+ function->PrintName();
+ PrintF(": is code optimizable: %s, is debugger enabled: %s]\n",
+ function->shared()->code()->optimizable() ? "T" : "F",
+ isolate->debug()->has_break_points() ? "T" : "F");
+ }
+ function->ReplaceCode(function->shared()->code());
+ return function->code();
+ }
+ if (CompileOptimized(function, AstNode::kNoNumber, CLEAR_EXCEPTION)) {
+ return function->code();
+ }
+ if (FLAG_trace_opt) {
+ PrintF("[failed to optimize ");
+ function->PrintName();
+ PrintF(": optimized compilation failed]\n");
+ }
+ function->ReplaceCode(function->shared()->code());
+ return function->code();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NotifyDeoptimized) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ RUNTIME_ASSERT(args[0]->IsSmi());
+ Deoptimizer::BailoutType type =
+ static_cast<Deoptimizer::BailoutType>(Smi::cast(args[0])->value());
+ Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
+ ASSERT(isolate->heap()->IsAllocationAllowed());
+ int frames = deoptimizer->output_count();
+
+ JavaScriptFrameIterator it(isolate);
+ JavaScriptFrame* frame = NULL;
+ for (int i = 0; i < frames; i++) {
+ if (i != 0) it.Advance();
+ frame = it.frame();
+ deoptimizer->InsertHeapNumberValues(frames - i - 1, frame);
+ }
+ delete deoptimizer;
+
+ RUNTIME_ASSERT(frame->function()->IsJSFunction());
+ Handle<JSFunction> function(JSFunction::cast(frame->function()), isolate);
+ Handle<Object> arguments;
+ for (int i = frame->ComputeExpressionsCount() - 1; i >= 0; --i) {
+ if (frame->GetExpression(i) == isolate->heap()->arguments_marker()) {
+ if (arguments.is_null()) {
+ // FunctionGetArguments can't throw an exception, so cast away the
+ // doubt with an assert.
+ arguments = Handle<Object>(
+ Accessors::FunctionGetArguments(*function,
+ NULL)->ToObjectUnchecked());
+ ASSERT(*arguments != isolate->heap()->null_value());
+ ASSERT(*arguments != isolate->heap()->undefined_value());
+ }
+ frame->SetExpression(i, *arguments);
+ }
+ }
+
+ isolate->compilation_cache()->MarkForLazyOptimizing(function);
+ if (type == Deoptimizer::EAGER) {
+ RUNTIME_ASSERT(function->IsOptimized());
+ } else {
+ RUNTIME_ASSERT(!function->IsOptimized());
+ }
+
+ // Avoid doing too much work when running with --always-opt and keep
+ // the optimized code around.
+ if (FLAG_always_opt || type == Deoptimizer::LAZY) {
+ return isolate->heap()->undefined_value();
+ }
+
+ // Count the number of optimized activations of the function.
+ int activations = 0;
+ while (!it.done()) {
+ JavaScriptFrame* frame = it.frame();
+ if (frame->is_optimized() && frame->function() == *function) {
+ activations++;
+ }
+ it.Advance();
+ }
+
+ // TODO(kasperl): For now, we cannot support removing the optimized
+ // code when we have recursive invocations of the same function.
+ if (activations == 0) {
+ if (FLAG_trace_deopt) {
+ PrintF("[removing optimized code for: ");
+ function->PrintName();
+ PrintF("]\n");
+ }
+ function->ReplaceCode(function->shared()->code());
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NotifyOSR) {
+ Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
+ delete deoptimizer;
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DeoptimizeFunction) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSFunction, function, 0);
+ if (!function->IsOptimized()) return isolate->heap()->undefined_value();
+
+ Deoptimizer::DeoptimizeFunction(*function);
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CompileForOnStackReplacement) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSFunction, function, 0);
+
+ // We're not prepared to handle a function with arguments object.
+ ASSERT(!function->shared()->scope_info()->HasArgumentsShadow());
+
+ // We have hit a back edge in an unoptimized frame for a function that was
+ // selected for on-stack replacement. Find the unoptimized code object.
+ Handle<Code> unoptimized(function->shared()->code(), isolate);
+ // Keep track of whether we've succeeded in optimizing.
+ bool succeeded = unoptimized->optimizable();
+ if (succeeded) {
+ // If we are trying to do OSR when there are already optimized
+ // activations of the function, it means (a) the function is directly or
+ // indirectly recursive and (b) an optimized invocation has been
+ // deoptimized so that we are currently in an unoptimized activation.
+ // Check for optimized activations of this function.
+ JavaScriptFrameIterator it(isolate);
+ while (succeeded && !it.done()) {
+ JavaScriptFrame* frame = it.frame();
+ succeeded = !frame->is_optimized() || frame->function() != *function;
+ it.Advance();
+ }
+ }
+
+ int ast_id = AstNode::kNoNumber;
+ if (succeeded) {
+ // The top JS function is this one, the PC is somewhere in the
+ // unoptimized code.
+ JavaScriptFrameIterator it(isolate);
+ JavaScriptFrame* frame = it.frame();
+ ASSERT(frame->function() == *function);
+ ASSERT(frame->LookupCode() == *unoptimized);
+ ASSERT(unoptimized->contains(frame->pc()));
+
+ // Use linear search of the unoptimized code's stack check table to find
+ // the AST id matching the PC.
+ Address start = unoptimized->instruction_start();
+ unsigned target_pc_offset = static_cast<unsigned>(frame->pc() - start);
+ Address table_cursor = start + unoptimized->stack_check_table_offset();
+ uint32_t table_length = Memory::uint32_at(table_cursor);
+ table_cursor += kIntSize;
+ for (unsigned i = 0; i < table_length; ++i) {
+ // Table entries are (AST id, pc offset) pairs.
+ uint32_t pc_offset = Memory::uint32_at(table_cursor + kIntSize);
+ if (pc_offset == target_pc_offset) {
+ ast_id = static_cast<int>(Memory::uint32_at(table_cursor));
+ break;
+ }
+ table_cursor += 2 * kIntSize;
+ }
+ ASSERT(ast_id != AstNode::kNoNumber);
+ if (FLAG_trace_osr) {
+ PrintF("[replacing on-stack at AST id %d in ", ast_id);
+ function->PrintName();
+ PrintF("]\n");
+ }
+
+ // Try to compile the optimized code. A true return value from
+ // CompileOptimized means that compilation succeeded, not necessarily
+ // that optimization succeeded.
+ if (CompileOptimized(function, ast_id, CLEAR_EXCEPTION) &&
+ function->IsOptimized()) {
+ DeoptimizationInputData* data = DeoptimizationInputData::cast(
+ function->code()->deoptimization_data());
+ if (data->OsrPcOffset()->value() >= 0) {
+ if (FLAG_trace_osr) {
+ PrintF("[on-stack replacement offset %d in optimized code]\n",
+ data->OsrPcOffset()->value());
+ }
+ ASSERT(data->OsrAstId()->value() == ast_id);
+ } else {
+ // We may never generate the desired OSR entry if we emit an
+ // early deoptimize.
+ succeeded = false;
+ }
+ } else {
+ succeeded = false;
+ }
+ }
+
+ // Revert to the original stack checks in the original unoptimized code.
+ if (FLAG_trace_osr) {
+ PrintF("[restoring original stack checks in ");
+ function->PrintName();
+ PrintF("]\n");
+ }
+ StackCheckStub check_stub;
+ Handle<Code> check_code = check_stub.GetCode();
+ Handle<Code> replacement_code = isolate->builtins()->OnStackReplacement();
+ Deoptimizer::RevertStackCheckCode(*unoptimized,
+ *check_code,
+ *replacement_code);
+
+ // Allow OSR only at nesting level zero again.
+ unoptimized->set_allow_osr_at_loop_nesting_level(0);
+
+ // If the optimization attempt succeeded, return the AST id tagged as a
+ // smi. This tells the builtin that we need to translate the unoptimized
+ // frame to an optimized one.
+ if (succeeded) {
+ ASSERT(function->code()->kind() == Code::OPTIMIZED_FUNCTION);
+ return Smi::FromInt(ast_id);
+ } else {
+ if (function->IsMarkedForLazyRecompilation()) {
+ function->ReplaceCode(function->shared()->code());
+ }
+ return Smi::FromInt(-1);
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionDelegate) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ RUNTIME_ASSERT(!args[0]->IsJSFunction());
+ return *Execution::GetFunctionDelegate(args.at<Object>(0));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetConstructorDelegate) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ RUNTIME_ASSERT(!args[0]->IsJSFunction());
+ return *Execution::GetConstructorDelegate(args.at<Object>(0));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NewContext) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(JSFunction, function, args[0]);
+ int length = function->shared()->scope_info()->NumberOfContextSlots();
+ Object* result;
+ { MaybeObject* maybe_result =
+ isolate->heap()->AllocateFunctionContext(length, function);
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+
+ isolate->set_context(Context::cast(result));
+
+ return result; // non-failure
+}
+
+
+MUST_USE_RESULT static MaybeObject* PushContextHelper(Isolate* isolate,
+ Object* object,
+ bool is_catch_context) {
+ // Convert the object to a proper JavaScript object.
+ Object* js_object = object;
+ if (!js_object->IsJSObject()) {
+ MaybeObject* maybe_js_object = js_object->ToObject();
+ if (!maybe_js_object->ToObject(&js_object)) {
+ if (!Failure::cast(maybe_js_object)->IsInternalError()) {
+ return maybe_js_object;
+ }
+ HandleScope scope(isolate);
+ Handle<Object> handle(object, isolate);
+ Handle<Object> result =
+ isolate->factory()->NewTypeError("with_expression",
+ HandleVector(&handle, 1));
+ return isolate->Throw(*result);
+ }
+ }
+
+ Object* result;
+ { MaybeObject* maybe_result = isolate->heap()->AllocateWithContext(
+ isolate->context(), JSObject::cast(js_object), is_catch_context);
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+
+ Context* context = Context::cast(result);
+ isolate->set_context(context);
+
+ return result;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_PushContext) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ return PushContextHelper(isolate, args[0], false);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_PushCatchContext) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+ return PushContextHelper(isolate, args[0], true);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteContextSlot) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+
+ CONVERT_ARG_CHECKED(Context, context, 0);
+ CONVERT_ARG_CHECKED(String, name, 1);
+
+ int index;
+ PropertyAttributes attributes;
+ ContextLookupFlags flags = FOLLOW_CHAINS;
+ Handle<Object> holder = context->Lookup(name, flags, &index, &attributes);
+
+ // If the slot was not found the result is true.
+ if (holder.is_null()) {
+ return isolate->heap()->true_value();
+ }
+
+ // If the slot was found in a context, it should be DONT_DELETE.
+ if (holder->IsContext()) {
+ return isolate->heap()->false_value();
+ }
+
+ // The slot was found in a JSObject, either a context extension object,
+ // the global object, or an arguments object. Try to delete it
+ // (respecting DONT_DELETE). For consistency with V8's usual behavior,
+ // which allows deleting all parameters in functions that mention
+ // 'arguments', we do this even for the case of slots found on an
+ // arguments object. The slot was found on an arguments object if the
+ // index is non-negative.
+ Handle<JSObject> object = Handle<JSObject>::cast(holder);
+ if (index >= 0) {
+ return object->DeleteElement(index, JSObject::NORMAL_DELETION);
+ } else {
+ return object->DeleteProperty(*name, JSObject::NORMAL_DELETION);
+ }
+}
+
+
+// A mechanism to return a pair of Object pointers in registers (if possible).
+// How this is achieved is calling convention-dependent.
+// All currently supported x86 compiles uses calling conventions that are cdecl
+// variants where a 64-bit value is returned in two 32-bit registers
+// (edx:eax on ia32, r1:r0 on ARM).
+// In AMD-64 calling convention a struct of two pointers is returned in rdx:rax.
+// In Win64 calling convention, a struct of two pointers is returned in memory,
+// allocated by the caller, and passed as a pointer in a hidden first parameter.
+#ifdef V8_HOST_ARCH_64_BIT
+struct ObjectPair {
+ MaybeObject* x;
+ MaybeObject* y;
+};
+
+static inline ObjectPair MakePair(MaybeObject* x, MaybeObject* y) {
+ ObjectPair result = {x, y};
+ // Pointers x and y returned in rax and rdx, in AMD-x64-abi.
+ // In Win64 they are assigned to a hidden first argument.
+ return result;
+}
+#else
+typedef uint64_t ObjectPair;
+static inline ObjectPair MakePair(MaybeObject* x, MaybeObject* y) {
+ return reinterpret_cast<uint32_t>(x) |
+ (reinterpret_cast<ObjectPair>(y) << 32);
+}
+#endif
+
+
+static inline MaybeObject* Unhole(Heap* heap,
+ MaybeObject* x,
+ PropertyAttributes attributes) {
+ ASSERT(!x->IsTheHole() || (attributes & READ_ONLY) != 0);
+ USE(attributes);
+ return x->IsTheHole() ? heap->undefined_value() : x;
+}
+
+
+static JSObject* ComputeReceiverForNonGlobal(Isolate* isolate,
+ JSObject* holder) {
+ ASSERT(!holder->IsGlobalObject());
+ Context* top = isolate->context();
+ // Get the context extension function.
+ JSFunction* context_extension_function =
+ top->global_context()->context_extension_function();
+ // If the holder isn't a context extension object, we just return it
+ // as the receiver. This allows arguments objects to be used as
+ // receivers, but only if they are put in the context scope chain
+ // explicitly via a with-statement.
+ Object* constructor = holder->map()->constructor();
+ if (constructor != context_extension_function) return holder;
+ // Fall back to using the global object as the receiver if the
+ // property turns out to be a local variable allocated in a context
+ // extension object - introduced via eval.
+ return top->global()->global_receiver();
+}
+
+
+static ObjectPair LoadContextSlotHelper(Arguments args,
+ Isolate* isolate,
+ bool throw_error) {
+ HandleScope scope(isolate);
+ ASSERT_EQ(2, args.length());
+
+ if (!args[0]->IsContext() || !args[1]->IsString()) {
+ return MakePair(isolate->ThrowIllegalOperation(), NULL);
+ }
+ Handle<Context> context = args.at<Context>(0);
+ Handle<String> name = args.at<String>(1);
+
+ int index;
+ PropertyAttributes attributes;
+ ContextLookupFlags flags = FOLLOW_CHAINS;
+ Handle<Object> holder = context->Lookup(name, flags, &index, &attributes);
+
+ // If the index is non-negative, the slot has been found in a local
+ // variable or a parameter. Read it from the context object or the
+ // arguments object.
+ if (index >= 0) {
+ // If the "property" we were looking for is a local variable or an
+ // argument in a context, the receiver is the global object; see
+ // ECMA-262, 3rd., 10.1.6 and 10.2.3.
+ JSObject* receiver =
+ isolate->context()->global()->global_receiver();
+ MaybeObject* value = (holder->IsContext())
+ ? Context::cast(*holder)->get(index)
+ : JSObject::cast(*holder)->GetElement(index);
+ return MakePair(Unhole(isolate->heap(), value, attributes), receiver);
+ }
+
+ // If the holder is found, we read the property from it.
+ if (!holder.is_null() && holder->IsJSObject()) {
+ ASSERT(Handle<JSObject>::cast(holder)->HasProperty(*name));
+ JSObject* object = JSObject::cast(*holder);
+ JSObject* receiver;
+ if (object->IsGlobalObject()) {
+ receiver = GlobalObject::cast(object)->global_receiver();
+ } else if (context->is_exception_holder(*holder)) {
+ receiver = isolate->context()->global()->global_receiver();
+ } else {
+ receiver = ComputeReceiverForNonGlobal(isolate, object);
+ }
+ // No need to unhole the value here. This is taken care of by the
+ // GetProperty function.
+ MaybeObject* value = object->GetProperty(*name);
+ return MakePair(value, receiver);
+ }
+
+ if (throw_error) {
+ // The property doesn't exist - throw exception.
+ Handle<Object> reference_error =
+ isolate->factory()->NewReferenceError("not_defined",
+ HandleVector(&name, 1));
+ return MakePair(isolate->Throw(*reference_error), NULL);
+ } else {
+ // The property doesn't exist - return undefined
+ return MakePair(isolate->heap()->undefined_value(),
+ isolate->heap()->undefined_value());
+ }
+}
+
+
+RUNTIME_FUNCTION(ObjectPair, Runtime_LoadContextSlot) {
+ return LoadContextSlotHelper(args, isolate, true);
+}
+
+
+RUNTIME_FUNCTION(ObjectPair, Runtime_LoadContextSlotNoReferenceError) {
+ return LoadContextSlotHelper(args, isolate, false);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StoreContextSlot) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 4);
+
+ Handle<Object> value(args[0], isolate);
+ CONVERT_ARG_CHECKED(Context, context, 1);
+ CONVERT_ARG_CHECKED(String, name, 2);
+ CONVERT_SMI_CHECKED(strict_unchecked, args[3]);
+ RUNTIME_ASSERT(strict_unchecked == kStrictMode ||
+ strict_unchecked == kNonStrictMode);
+ StrictModeFlag strict_mode = static_cast<StrictModeFlag>(strict_unchecked);
+
+ int index;
+ PropertyAttributes attributes;
+ ContextLookupFlags flags = FOLLOW_CHAINS;
+ Handle<Object> holder = context->Lookup(name, flags, &index, &attributes);
+
+ if (index >= 0) {
+ if (holder->IsContext()) {
+ // Ignore if read_only variable.
+ if ((attributes & READ_ONLY) == 0) {
+ // Context is a fixed array and set cannot fail.
+ Context::cast(*holder)->set(index, *value);
+ } else if (strict_mode == kStrictMode) {
+ // Setting read only property in strict mode.
+ Handle<Object> error =
+ isolate->factory()->NewTypeError("strict_cannot_assign",
+ HandleVector(&name, 1));
+ return isolate->Throw(*error);
+ }
+ } else {
+ ASSERT((attributes & READ_ONLY) == 0);
+ Handle<Object> result =
+ SetElement(Handle<JSObject>::cast(holder), index, value, strict_mode);
+ if (result.is_null()) {
+ ASSERT(isolate->has_pending_exception());
+ return Failure::Exception();
+ }
+ }
+ return *value;
+ }
+
+ // Slow case: The property is not in a FixedArray context.
+ // It is either in an JSObject extension context or it was not found.
+ Handle<JSObject> context_ext;
+
+ if (!holder.is_null()) {
+ // The property exists in the extension context.
+ context_ext = Handle<JSObject>::cast(holder);
+ } else {
+ // The property was not found. It needs to be stored in the global context.
+ ASSERT(attributes == ABSENT);
+ attributes = NONE;
+ context_ext = Handle<JSObject>(isolate->context()->global());
+ }
+
+ // Set the property, but ignore if read_only variable on the context
+ // extension object itself.
+ if ((attributes & READ_ONLY) == 0 ||
+ (context_ext->GetLocalPropertyAttribute(*name) == ABSENT)) {
+ RETURN_IF_EMPTY_HANDLE(
+ isolate,
+ SetProperty(context_ext, name, value, NONE, strict_mode));
+ } else if (strict_mode == kStrictMode && (attributes & READ_ONLY) != 0) {
+ // Setting read only property in strict mode.
+ Handle<Object> error =
+ isolate->factory()->NewTypeError(
+ "strict_cannot_assign", HandleVector(&name, 1));
+ return isolate->Throw(*error);
+ }
+ return *value;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Throw) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+
+ return isolate->Throw(args[0]);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ReThrow) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+
+ return isolate->ReThrow(args[0]);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_PromoteScheduledException) {
+ ASSERT_EQ(0, args.length());
+ return isolate->PromoteScheduledException();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ThrowReferenceError) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+
+ Handle<Object> name(args[0], isolate);
+ Handle<Object> reference_error =
+ isolate->factory()->NewReferenceError("not_defined",
+ HandleVector(&name, 1));
+ return isolate->Throw(*reference_error);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_StackGuard) {
+ ASSERT(args.length() == 0);
+
+ // First check if this is a real stack overflow.
+ if (isolate->stack_guard()->IsStackOverflow()) {
+ NoHandleAllocation na;
+ return isolate->StackOverflow();
+ }
+
+ return Execution::HandleStackGuardInterrupt();
+}
+
+
+// NOTE: These PrintXXX functions are defined for all builds (not just
+// DEBUG builds) because we may want to be able to trace function
+// calls in all modes.
+static void PrintString(String* str) {
+ // not uncommon to have empty strings
+ if (str->length() > 0) {
+ SmartPointer<char> s =
+ str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
+ PrintF("%s", *s);
+ }
+}
+
+
+static void PrintObject(Object* obj) {
+ if (obj->IsSmi()) {
+ PrintF("%d", Smi::cast(obj)->value());
+ } else if (obj->IsString() || obj->IsSymbol()) {
+ PrintString(String::cast(obj));
+ } else if (obj->IsNumber()) {
+ PrintF("%g", obj->Number());
+ } else if (obj->IsFailure()) {
+ PrintF("<failure>");
+ } else if (obj->IsUndefined()) {
+ PrintF("<undefined>");
+ } else if (obj->IsNull()) {
+ PrintF("<null>");
+ } else if (obj->IsTrue()) {
+ PrintF("<true>");
+ } else if (obj->IsFalse()) {
+ PrintF("<false>");
+ } else {
+ PrintF("%p", reinterpret_cast<void*>(obj));
+ }
+}
+
+
+static int StackSize() {
+ int n = 0;
+ for (JavaScriptFrameIterator it; !it.done(); it.Advance()) n++;
+ return n;
+}
+
+
+static void PrintTransition(Object* result) {
+ // indentation
+ { const int nmax = 80;
+ int n = StackSize();
+ if (n <= nmax)
+ PrintF("%4d:%*s", n, n, "");
+ else
+ PrintF("%4d:%*s", n, nmax, "...");
+ }
+
+ if (result == NULL) {
+ // constructor calls
+ JavaScriptFrameIterator it;
+ JavaScriptFrame* frame = it.frame();
+ if (frame->IsConstructor()) PrintF("new ");
+ // function name
+ Object* fun = frame->function();
+ if (fun->IsJSFunction()) {
+ PrintObject(JSFunction::cast(fun)->shared()->name());
+ } else {
+ PrintObject(fun);
+ }
+ // function arguments
+ // (we are intentionally only printing the actually
+ // supplied parameters, not all parameters required)
+ PrintF("(this=");
+ PrintObject(frame->receiver());
+ const int length = frame->ComputeParametersCount();
+ for (int i = 0; i < length; i++) {
+ PrintF(", ");
+ PrintObject(frame->GetParameter(i));
+ }
+ PrintF(") {\n");
+
+ } else {
+ // function result
+ PrintF("} -> ");
+ PrintObject(result);
+ PrintF("\n");
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_TraceEnter) {
+ ASSERT(args.length() == 0);
+ NoHandleAllocation ha;
+ PrintTransition(NULL);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_TraceExit) {
+ NoHandleAllocation ha;
+ PrintTransition(args[0]);
+ return args[0]; // return TOS
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPrint) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+#ifdef DEBUG
+ if (args[0]->IsString()) {
+ // If we have a string, assume it's a code "marker"
+ // and print some interesting cpu debugging info.
+ JavaScriptFrameIterator it(isolate);
+ JavaScriptFrame* frame = it.frame();
+ PrintF("fp = %p, sp = %p, caller_sp = %p: ",
+ frame->fp(), frame->sp(), frame->caller_sp());
+ } else {
+ PrintF("DebugPrint: ");
+ }
+ args[0]->Print();
+ if (args[0]->IsHeapObject()) {
+ PrintF("\n");
+ HeapObject::cast(args[0])->map()->Print();
+ }
+#else
+ // ShortPrint is available in release mode. Print is not.
+ args[0]->ShortPrint();
+#endif
+ PrintF("\n");
+ Flush();
+
+ return args[0]; // return TOS
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugTrace) {
+ ASSERT(args.length() == 0);
+ NoHandleAllocation ha;
+ isolate->PrintStack();
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DateCurrentTime) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 0);
+
+ // According to ECMA-262, section 15.9.1, page 117, the precision of
+ // the number in a Date object representing a particular instant in
+ // time is milliseconds. Therefore, we floor the result of getting
+ // the OS time.
+ double millis = floor(OS::TimeCurrentMillis());
+ return isolate->heap()->NumberFromDouble(millis);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DateParseString) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+
+ CONVERT_ARG_CHECKED(String, str, 0);
+ FlattenString(str);
+
+ CONVERT_ARG_CHECKED(JSArray, output, 1);
+ RUNTIME_ASSERT(output->HasFastElements());
+
+ AssertNoAllocation no_allocation;
+
+ FixedArray* output_array = FixedArray::cast(output->elements());
+ RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE);
+ bool result;
+ if (str->IsAsciiRepresentation()) {
+ result = DateParser::Parse(str->ToAsciiVector(), output_array);
+ } else {
+ ASSERT(str->IsTwoByteRepresentation());
+ result = DateParser::Parse(str->ToUC16Vector(), output_array);
+ }
+
+ if (result) {
+ return *output;
+ } else {
+ return isolate->heap()->null_value();
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DateLocalTimezone) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ const char* zone = OS::LocalTimezone(x);
+ return isolate->heap()->AllocateStringFromUtf8(CStrVector(zone));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DateLocalTimeOffset) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 0);
+
+ return isolate->heap()->NumberFromDouble(OS::LocalTimeOffset());
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DateDaylightSavingsOffset) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_DOUBLE_CHECKED(x, args[0]);
+ return isolate->heap()->NumberFromDouble(OS::DaylightSavingsOffset(x));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GlobalReceiver) {
+ ASSERT(args.length() == 1);
+ Object* global = args[0];
+ if (!global->IsJSGlobalObject()) return isolate->heap()->null_value();
+ return JSGlobalObject::cast(global)->global_receiver();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ParseJson) {
+ HandleScope scope(isolate);
+ ASSERT_EQ(1, args.length());
+ CONVERT_ARG_CHECKED(String, source, 0);
+
+ Handle<Object> result = JsonParser::Parse(source);
+ if (result.is_null()) {
+ // Syntax error or stack overflow in scanner.
+ ASSERT(isolate->has_pending_exception());
+ return Failure::Exception();
+ }
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CompileString) {
+ HandleScope scope(isolate);
+ ASSERT_EQ(1, args.length());
+ CONVERT_ARG_CHECKED(String, source, 0);
+
+ // Compile source string in the global context.
+ Handle<Context> context(isolate->context()->global_context());
+ Handle<SharedFunctionInfo> shared = Compiler::CompileEval(source,
+ context,
+ true,
+ kNonStrictMode);
+ if (shared.is_null()) return Failure::Exception();
+ Handle<JSFunction> fun =
+ isolate->factory()->NewFunctionFromSharedFunctionInfo(shared,
+ context,
+ NOT_TENURED);
+ return *fun;
+}
+
+
+static ObjectPair CompileGlobalEval(Isolate* isolate,
+ Handle<String> source,
+ Handle<Object> receiver,
+ StrictModeFlag strict_mode) {
+ // Deal with a normal eval call with a string argument. Compile it
+ // and return the compiled function bound in the local context.
+ Handle<SharedFunctionInfo> shared = Compiler::CompileEval(
+ source,
+ Handle<Context>(isolate->context()),
+ isolate->context()->IsGlobalContext(),
+ strict_mode);
+ if (shared.is_null()) return MakePair(Failure::Exception(), NULL);
+ Handle<JSFunction> compiled =
+ isolate->factory()->NewFunctionFromSharedFunctionInfo(
+ shared, Handle<Context>(isolate->context()), NOT_TENURED);
+ return MakePair(*compiled, *receiver);
+}
+
+
+RUNTIME_FUNCTION(ObjectPair, Runtime_ResolvePossiblyDirectEval) {
+ ASSERT(args.length() == 4);
+
+ HandleScope scope(isolate);
+ Handle<Object> callee = args.at<Object>(0);
+ Handle<Object> receiver; // Will be overwritten.
+
+ // Compute the calling context.
+ Handle<Context> context = Handle<Context>(isolate->context(), isolate);
+#ifdef DEBUG
+ // Make sure Isolate::context() agrees with the old code that traversed
+ // the stack frames to compute the context.
+ StackFrameLocator locator;
+ JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
+ ASSERT(Context::cast(frame->context()) == *context);
+#endif
+
+ // Find where the 'eval' symbol is bound. It is unaliased only if
+ // it is bound in the global context.
+ int index = -1;
+ PropertyAttributes attributes = ABSENT;
+ while (true) {
+ receiver = context->Lookup(isolate->factory()->eval_symbol(),
+ FOLLOW_PROTOTYPE_CHAIN,
+ &index, &attributes);
+ // Stop search when eval is found or when the global context is
+ // reached.
+ if (attributes != ABSENT || context->IsGlobalContext()) break;
+ if (context->is_function_context()) {
+ context = Handle<Context>(Context::cast(context->closure()->context()),
+ isolate);
+ } else {
+ context = Handle<Context>(context->previous(), isolate);
+ }
+ }
+
+ // If eval could not be resolved, it has been deleted and we need to
+ // throw a reference error.
+ if (attributes == ABSENT) {
+ Handle<Object> name = isolate->factory()->eval_symbol();
+ Handle<Object> reference_error =
+ isolate->factory()->NewReferenceError("not_defined",
+ HandleVector(&name, 1));
+ return MakePair(isolate->Throw(*reference_error), NULL);
+ }
+
+ if (!context->IsGlobalContext()) {
+ // 'eval' is not bound in the global context. Just call the function
+ // with the given arguments. This is not necessarily the global eval.
+ if (receiver->IsContext()) {
+ context = Handle<Context>::cast(receiver);
+ receiver = Handle<Object>(context->get(index), isolate);
+ } else if (receiver->IsJSContextExtensionObject()) {
+ receiver = Handle<JSObject>(
+ isolate->context()->global()->global_receiver(), isolate);
+ }
+ return MakePair(*callee, *receiver);
+ }
+
+ // 'eval' is bound in the global context, but it may have been overwritten.
+ // Compare it to the builtin 'GlobalEval' function to make sure.
+ if (*callee != isolate->global_context()->global_eval_fun() ||
+ !args[1]->IsString()) {
+ return MakePair(*callee,
+ isolate->context()->global()->global_receiver());
+ }
+
+ ASSERT(args[3]->IsSmi());
+ return CompileGlobalEval(isolate,
+ args.at<String>(1),
+ args.at<Object>(2),
+ static_cast<StrictModeFlag>(
+ Smi::cast(args[3])->value()));
+}
+
+
+RUNTIME_FUNCTION(ObjectPair, Runtime_ResolvePossiblyDirectEvalNoLookup) {
+ ASSERT(args.length() == 4);
+
+ HandleScope scope(isolate);
+ Handle<Object> callee = args.at<Object>(0);
+
+ // 'eval' is bound in the global context, but it may have been overwritten.
+ // Compare it to the builtin 'GlobalEval' function to make sure.
+ if (*callee != isolate->global_context()->global_eval_fun() ||
+ !args[1]->IsString()) {
+ return MakePair(*callee,
+ isolate->context()->global()->global_receiver());
+ }
+
+ ASSERT(args[3]->IsSmi());
+ return CompileGlobalEval(isolate,
+ args.at<String>(1),
+ args.at<Object>(2),
+ static_cast<StrictModeFlag>(
+ Smi::cast(args[3])->value()));
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SetNewFunctionAttributes) {
+ // This utility adjusts the property attributes for newly created Function
+ // object ("new Function(...)") by changing the map.
+ // All it does is changing the prototype property to enumerable
+ // as specified in ECMA262, 15.3.5.2.
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ CONVERT_ARG_CHECKED(JSFunction, func, 0);
+
+ Handle<Map> map = func->shared()->strict_mode()
+ ? isolate->strict_mode_function_instance_map()
+ : isolate->function_instance_map();
+
+ ASSERT(func->map()->instance_type() == map->instance_type());
+ ASSERT(func->map()->instance_size() == map->instance_size());
+ func->set_map(*map);
+ return *func;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_AllocateInNewSpace) {
+ // Allocate a block of memory in NewSpace (filled with a filler).
+ // Use as fallback for allocation in generated code when NewSpace
+ // is full.
+ ASSERT(args.length() == 1);
+ CONVERT_ARG_CHECKED(Smi, size_smi, 0);
+ int size = size_smi->value();
+ RUNTIME_ASSERT(IsAligned(size, kPointerSize));
+ RUNTIME_ASSERT(size > 0);
+ Heap* heap = isolate->heap();
+ const int kMinFreeNewSpaceAfterGC = heap->InitialSemiSpaceSize() * 3/4;
+ RUNTIME_ASSERT(size <= kMinFreeNewSpaceAfterGC);
+ Object* allocation;
+ { MaybeObject* maybe_allocation = heap->new_space()->AllocateRaw(size);
+ if (maybe_allocation->ToObject(&allocation)) {
+ heap->CreateFillerObjectAt(HeapObject::cast(allocation)->address(), size);
+ }
+ return maybe_allocation;
+ }
+}
+
+
+// Push an object unto an array of objects if it is not already in the
+// array. Returns true if the element was pushed on the stack and
+// false otherwise.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_PushIfAbsent) {
+ ASSERT(args.length() == 2);
+ CONVERT_CHECKED(JSArray, array, args[0]);
+ CONVERT_CHECKED(JSObject, element, args[1]);
+ RUNTIME_ASSERT(array->HasFastElements());
+ int length = Smi::cast(array->length())->value();
+ FixedArray* elements = FixedArray::cast(array->elements());
+ for (int i = 0; i < length; i++) {
+ if (elements->get(i) == element) return isolate->heap()->false_value();
+ }
+ Object* obj;
+ // Strict not needed. Used for cycle detection in Array join implementation.
+ { MaybeObject* maybe_obj = array->SetFastElement(length, element,
+ kNonStrictMode);
+ if (!maybe_obj->ToObject(&obj)) return maybe_obj;
+ }
+ return isolate->heap()->true_value();
+}
+
+
+/**
+ * A simple visitor visits every element of Array's.
+ * The backend storage can be a fixed array for fast elements case,
+ * or a dictionary for sparse array. Since Dictionary is a subtype
+ * of FixedArray, the class can be used by both fast and slow cases.
+ * The second parameter of the constructor, fast_elements, specifies
+ * whether the storage is a FixedArray or Dictionary.
+ *
+ * An index limit is used to deal with the situation that a result array
+ * length overflows 32-bit non-negative integer.
+ */
+class ArrayConcatVisitor {
+ public:
+ ArrayConcatVisitor(Isolate* isolate,
+ Handle<FixedArray> storage,
+ bool fast_elements) :
+ isolate_(isolate),
+ storage_(Handle<FixedArray>::cast(
+ isolate->global_handles()->Create(*storage))),
+ index_offset_(0u),
+ fast_elements_(fast_elements) { }
+
+ ~ArrayConcatVisitor() {
+ clear_storage();
+ }
+
+ void visit(uint32_t i, Handle<Object> elm) {
+ if (i >= JSObject::kMaxElementCount - index_offset_) return;
+ uint32_t index = index_offset_ + i;
+
+ if (fast_elements_) {
+ if (index < static_cast<uint32_t>(storage_->length())) {
+ storage_->set(index, *elm);
+ return;
+ }
+ // Our initial estimate of length was foiled, possibly by
+ // getters on the arrays increasing the length of later arrays
+ // during iteration.
+ // This shouldn't happen in anything but pathological cases.
+ SetDictionaryMode(index);
+ // Fall-through to dictionary mode.
+ }
+ ASSERT(!fast_elements_);
+ Handle<NumberDictionary> dict(NumberDictionary::cast(*storage_));
+ Handle<NumberDictionary> result =
+ isolate_->factory()->DictionaryAtNumberPut(dict, index, elm);
+ if (!result.is_identical_to(dict)) {
+ // Dictionary needed to grow.
+ clear_storage();
+ set_storage(*result);
+ }
+}
+
+ void increase_index_offset(uint32_t delta) {
+ if (JSObject::kMaxElementCount - index_offset_ < delta) {
+ index_offset_ = JSObject::kMaxElementCount;
+ } else {
+ index_offset_ += delta;
+ }
+ }
+
+ Handle<JSArray> ToArray() {
+ Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
+ Handle<Object> length =
+ isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
+ Handle<Map> map;
+ if (fast_elements_) {
+ map = isolate_->factory()->GetFastElementsMap(Handle<Map>(array->map()));
+ } else {
+ map = isolate_->factory()->GetSlowElementsMap(Handle<Map>(array->map()));
+ }
+ array->set_map(*map);
+ array->set_length(*length);
+ array->set_elements(*storage_);
+ return array;
+ }
+
+ private:
+ // Convert storage to dictionary mode.
+ void SetDictionaryMode(uint32_t index) {
+ ASSERT(fast_elements_);
+ Handle<FixedArray> current_storage(*storage_);
+ Handle<NumberDictionary> slow_storage(
+ isolate_->factory()->NewNumberDictionary(current_storage->length()));
+ uint32_t current_length = static_cast<uint32_t>(current_storage->length());
+ for (uint32_t i = 0; i < current_length; i++) {
+ HandleScope loop_scope;
+ Handle<Object> element(current_storage->get(i));
+ if (!element->IsTheHole()) {
+ Handle<NumberDictionary> new_storage =
+ isolate_->factory()->DictionaryAtNumberPut(slow_storage, i, element);
+ if (!new_storage.is_identical_to(slow_storage)) {
+ slow_storage = loop_scope.CloseAndEscape(new_storage);
+ }
+ }
+ }
+ clear_storage();
+ set_storage(*slow_storage);
+ fast_elements_ = false;
+ }
+
+ inline void clear_storage() {
+ isolate_->global_handles()->Destroy(
+ Handle<Object>::cast(storage_).location());
+ }
+
+ inline void set_storage(FixedArray* storage) {
+ storage_ = Handle<FixedArray>::cast(
+ isolate_->global_handles()->Create(storage));
+ }
+
+ Isolate* isolate_;
+ Handle<FixedArray> storage_; // Always a global handle.
+ // Index after last seen index. Always less than or equal to
+ // JSObject::kMaxElementCount.
+ uint32_t index_offset_;
+ bool fast_elements_;
+};
+
+
+static uint32_t EstimateElementCount(Handle<JSArray> array) {
+ uint32_t length = static_cast<uint32_t>(array->length()->Number());
+ int element_count = 0;
+ switch (array->GetElementsKind()) {
+ case JSObject::FAST_ELEMENTS: {
+ // Fast elements can't have lengths that are not representable by
+ // a 32-bit signed integer.
+ ASSERT(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
+ int fast_length = static_cast<int>(length);
+ Handle<FixedArray> elements(FixedArray::cast(array->elements()));
+ for (int i = 0; i < fast_length; i++) {
+ if (!elements->get(i)->IsTheHole()) element_count++;
+ }
+ break;
+ }
+ case JSObject::DICTIONARY_ELEMENTS: {
+ Handle<NumberDictionary> dictionary(
+ NumberDictionary::cast(array->elements()));
+ int capacity = dictionary->Capacity();
+ for (int i = 0; i < capacity; i++) {
+ Handle<Object> key(dictionary->KeyAt(i));
+ if (dictionary->IsKey(*key)) {
+ element_count++;
+ }
+ }
+ break;
+ }
+ default:
+ // External arrays are always dense.
+ return length;
+ }
+ // As an estimate, we assume that the prototype doesn't contain any
+ // inherited elements.
+ return element_count;
+}
+
+
+
+template<class ExternalArrayClass, class ElementType>
+static void IterateExternalArrayElements(Isolate* isolate,
+ Handle<JSObject> receiver,
+ bool elements_are_ints,
+ bool elements_are_guaranteed_smis,
+ ArrayConcatVisitor* visitor) {
+ Handle<ExternalArrayClass> array(
+ ExternalArrayClass::cast(receiver->elements()));
+ uint32_t len = static_cast<uint32_t>(array->length());
+
+ ASSERT(visitor != NULL);
+ if (elements_are_ints) {
+ if (elements_are_guaranteed_smis) {
+ for (uint32_t j = 0; j < len; j++) {
+ HandleScope loop_scope;
+ Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get(j))));
+ visitor->visit(j, e);
+ }
+ } else {
+ for (uint32_t j = 0; j < len; j++) {
+ HandleScope loop_scope;
+ int64_t val = static_cast<int64_t>(array->get(j));
+ if (Smi::IsValid(static_cast<intptr_t>(val))) {
+ Handle<Smi> e(Smi::FromInt(static_cast<int>(val)));
+ visitor->visit(j, e);
+ } else {
+ Handle<Object> e =
+ isolate->factory()->NewNumber(static_cast<ElementType>(val));
+ visitor->visit(j, e);
+ }
+ }
+ }
+ } else {
+ for (uint32_t j = 0; j < len; j++) {
+ HandleScope loop_scope(isolate);
+ Handle<Object> e = isolate->factory()->NewNumber(array->get(j));
+ visitor->visit(j, e);
+ }
+ }
+}
+
+
+// Used for sorting indices in a List<uint32_t>.
+static int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
+ uint32_t a = *ap;
+ uint32_t b = *bp;
+ return (a == b) ? 0 : (a < b) ? -1 : 1;
+}
+
+
+static void CollectElementIndices(Handle<JSObject> object,
+ uint32_t range,
+ List<uint32_t>* indices) {
+ JSObject::ElementsKind kind = object->GetElementsKind();
+ switch (kind) {
+ case JSObject::FAST_ELEMENTS: {
+ Handle<FixedArray> elements(FixedArray::cast(object->elements()));
+ uint32_t length = static_cast<uint32_t>(elements->length());
+ if (range < length) length = range;
+ for (uint32_t i = 0; i < length; i++) {
+ if (!elements->get(i)->IsTheHole()) {
+ indices->Add(i);
+ }
+ }
+ break;
+ }
+ case JSObject::DICTIONARY_ELEMENTS: {
+ Handle<NumberDictionary> dict(NumberDictionary::cast(object->elements()));
+ uint32_t capacity = dict->Capacity();
+ for (uint32_t j = 0; j < capacity; j++) {
+ HandleScope loop_scope;
+ Handle<Object> k(dict->KeyAt(j));
+ if (dict->IsKey(*k)) {
+ ASSERT(k->IsNumber());
+ uint32_t index = static_cast<uint32_t>(k->Number());
+ if (index < range) {
+ indices->Add(index);
+ }
+ }
+ }
+ break;
+ }
+ default: {
+ int dense_elements_length;
+ switch (kind) {
+ case JSObject::EXTERNAL_PIXEL_ELEMENTS: {
+ dense_elements_length =
+ ExternalPixelArray::cast(object->elements())->length();
+ break;
+ }
+ case JSObject::EXTERNAL_BYTE_ELEMENTS: {
+ dense_elements_length =
+ ExternalByteArray::cast(object->elements())->length();
+ break;
+ }
+ case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
+ dense_elements_length =
+ ExternalUnsignedByteArray::cast(object->elements())->length();
+ break;
+ }
+ case JSObject::EXTERNAL_SHORT_ELEMENTS: {
+ dense_elements_length =
+ ExternalShortArray::cast(object->elements())->length();
+ break;
+ }
+ case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
+ dense_elements_length =
+ ExternalUnsignedShortArray::cast(object->elements())->length();
+ break;
+ }
+ case JSObject::EXTERNAL_INT_ELEMENTS: {
+ dense_elements_length =
+ ExternalIntArray::cast(object->elements())->length();
+ break;
+ }
+ case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: {
+ dense_elements_length =
+ ExternalUnsignedIntArray::cast(object->elements())->length();
+ break;
+ }
+ case JSObject::EXTERNAL_FLOAT_ELEMENTS: {
+ dense_elements_length =
+ ExternalFloatArray::cast(object->elements())->length();
+ break;
+ }
+ default:
+ UNREACHABLE();
+ dense_elements_length = 0;
+ break;
+ }
+ uint32_t length = static_cast<uint32_t>(dense_elements_length);
+ if (range <= length) {
+ length = range;
+ // We will add all indices, so we might as well clear it first
+ // and avoid duplicates.
+ indices->Clear();
+ }
+ for (uint32_t i = 0; i < length; i++) {
+ indices->Add(i);
+ }
+ if (length == range) return; // All indices accounted for already.
+ break;
+ }
+ }
+
+ Handle<Object> prototype(object->GetPrototype());
+ if (prototype->IsJSObject()) {
+ // The prototype will usually have no inherited element indices,
+ // but we have to check.
+ CollectElementIndices(Handle<JSObject>::cast(prototype), range, indices);
+ }
+}
+
+
+/**
+ * A helper function that visits elements of a JSArray in numerical
+ * order.
+ *
+ * The visitor argument called for each existing element in the array
+ * with the element index and the element's value.
+ * Afterwards it increments the base-index of the visitor by the array
+ * length.
+ * Returns false if any access threw an exception, otherwise true.
+ */
+static bool IterateElements(Isolate* isolate,
+ Handle<JSArray> receiver,
+ ArrayConcatVisitor* visitor) {
+ uint32_t length = static_cast<uint32_t>(receiver->length()->Number());
+ switch (receiver->GetElementsKind()) {
+ case JSObject::FAST_ELEMENTS: {
+ // Run through the elements FixedArray and use HasElement and GetElement
+ // to check the prototype for missing elements.
+ Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
+ int fast_length = static_cast<int>(length);
+ ASSERT(fast_length <= elements->length());
+ for (int j = 0; j < fast_length; j++) {
+ HandleScope loop_scope(isolate);
+ Handle<Object> element_value(elements->get(j), isolate);
+ if (!element_value->IsTheHole()) {
+ visitor->visit(j, element_value);
+ } else if (receiver->HasElement(j)) {
+ // Call GetElement on receiver, not its prototype, or getters won't
+ // have the correct receiver.
+ element_value = GetElement(receiver, j);
+ if (element_value.is_null()) return false;
+ visitor->visit(j, element_value);
+ }
+ }
+ break;
+ }
+ case JSObject::DICTIONARY_ELEMENTS: {
+ Handle<NumberDictionary> dict(receiver->element_dictionary());
+ List<uint32_t> indices(dict->Capacity() / 2);
+ // Collect all indices in the object and the prototypes less
+ // than length. This might introduce duplicates in the indices list.
+ CollectElementIndices(receiver, length, &indices);
+ indices.Sort(&compareUInt32);
+ int j = 0;
+ int n = indices.length();
+ while (j < n) {
+ HandleScope loop_scope;
+ uint32_t index = indices[j];
+ Handle<Object> element = GetElement(receiver, index);
+ if (element.is_null()) return false;
+ visitor->visit(index, element);
+ // Skip to next different index (i.e., omit duplicates).
+ do {
+ j++;
+ } while (j < n && indices[j] == index);
+ }
+ break;
+ }
+ case JSObject::EXTERNAL_PIXEL_ELEMENTS: {
+ Handle<ExternalPixelArray> pixels(ExternalPixelArray::cast(
+ receiver->elements()));
+ for (uint32_t j = 0; j < length; j++) {
+ Handle<Smi> e(Smi::FromInt(pixels->get(j)));
+ visitor->visit(j, e);
+ }
+ break;
+ }
+ case JSObject::EXTERNAL_BYTE_ELEMENTS: {
+ IterateExternalArrayElements<ExternalByteArray, int8_t>(
+ isolate, receiver, true, true, visitor);
+ break;
+ }
+ case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
+ IterateExternalArrayElements<ExternalUnsignedByteArray, uint8_t>(
+ isolate, receiver, true, true, visitor);
+ break;
+ }
+ case JSObject::EXTERNAL_SHORT_ELEMENTS: {
+ IterateExternalArrayElements<ExternalShortArray, int16_t>(
+ isolate, receiver, true, true, visitor);
+ break;
+ }
+ case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
+ IterateExternalArrayElements<ExternalUnsignedShortArray, uint16_t>(
+ isolate, receiver, true, true, visitor);
+ break;
+ }
+ case JSObject::EXTERNAL_INT_ELEMENTS: {
+ IterateExternalArrayElements<ExternalIntArray, int32_t>(
+ isolate, receiver, true, false, visitor);
+ break;
+ }
+ case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: {
+ IterateExternalArrayElements<ExternalUnsignedIntArray, uint32_t>(
+ isolate, receiver, true, false, visitor);
+ break;
+ }
+ case JSObject::EXTERNAL_FLOAT_ELEMENTS: {
+ IterateExternalArrayElements<ExternalFloatArray, float>(
+ isolate, receiver, false, false, visitor);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ visitor->increase_index_offset(length);
+ return true;
+}
+
+
+/**
+ * Array::concat implementation.
+ * See ECMAScript 262, 15.4.4.4.
+ * TODO(581): Fix non-compliance for very large concatenations and update to
+ * following the ECMAScript 5 specification.
+ */
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ArrayConcat) {
+ ASSERT(args.length() == 1);
+ HandleScope handle_scope(isolate);
+
+ CONVERT_ARG_CHECKED(JSArray, arguments, 0);
+ int argument_count = static_cast<int>(arguments->length()->Number());
+ RUNTIME_ASSERT(arguments->HasFastElements());
+ Handle<FixedArray> elements(FixedArray::cast(arguments->elements()));
+
+ // Pass 1: estimate the length and number of elements of the result.
+ // The actual length can be larger if any of the arguments have getters
+ // that mutate other arguments (but will otherwise be precise).
+ // The number of elements is precise if there are no inherited elements.
+
+ uint32_t estimate_result_length = 0;
+ uint32_t estimate_nof_elements = 0;
+ {
+ for (int i = 0; i < argument_count; i++) {
+ HandleScope loop_scope;
+ Handle<Object> obj(elements->get(i));
+ uint32_t length_estimate;
+ uint32_t element_estimate;
+ if (obj->IsJSArray()) {
+ Handle<JSArray> array(Handle<JSArray>::cast(obj));
+ length_estimate =
+ static_cast<uint32_t>(array->length()->Number());
+ element_estimate =
+ EstimateElementCount(array);
+ } else {
+ length_estimate = 1;
+ element_estimate = 1;
+ }
+ // Avoid overflows by capping at kMaxElementCount.
+ if (JSObject::kMaxElementCount - estimate_result_length <
+ length_estimate) {
+ estimate_result_length = JSObject::kMaxElementCount;
+ } else {
+ estimate_result_length += length_estimate;
+ }
+ if (JSObject::kMaxElementCount - estimate_nof_elements <
+ element_estimate) {
+ estimate_nof_elements = JSObject::kMaxElementCount;
+ } else {
+ estimate_nof_elements += element_estimate;
+ }
+ }
+ }
+
+ // If estimated number of elements is more than half of length, a
+ // fixed array (fast case) is more time and space-efficient than a
+ // dictionary.
+ bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length;
+
+ Handle<FixedArray> storage;
+ if (fast_case) {
+ // The backing storage array must have non-existing elements to
+ // preserve holes across concat operations.
+ storage = isolate->factory()->NewFixedArrayWithHoles(
+ estimate_result_length);
+ } else {
+ // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
+ uint32_t at_least_space_for = estimate_nof_elements +
+ (estimate_nof_elements >> 2);
+ storage = Handle<FixedArray>::cast(
+ isolate->factory()->NewNumberDictionary(at_least_space_for));
+ }
+
+ ArrayConcatVisitor visitor(isolate, storage, fast_case);
+
+ for (int i = 0; i < argument_count; i++) {
+ Handle<Object> obj(elements->get(i));
+ if (obj->IsJSArray()) {
+ Handle<JSArray> array = Handle<JSArray>::cast(obj);
+ if (!IterateElements(isolate, array, &visitor)) {
+ return Failure::Exception();
+ }
+ } else {
+ visitor.visit(0, obj);
+ visitor.increase_index_offset(1);
+ }
+ }
+
+ return *visitor.ToArray();
+}
+
+
+// This will not allocate (flatten the string), but it may run
+// very slowly for very deeply nested ConsStrings. For debugging use only.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GlobalPrint) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(String, string, args[0]);
+ StringInputBuffer buffer(string);
+ while (buffer.has_more()) {
+ uint16_t character = buffer.GetNext();
+ PrintF("%c", character);
+ }
+ return string;
+}
+
+// Moves all own elements of an object, that are below a limit, to positions
+// starting at zero. All undefined values are placed after non-undefined values,
+// and are followed by non-existing element. Does not change the length
+// property.
+// Returns the number of non-undefined elements collected.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_RemoveArrayHoles) {
+ ASSERT(args.length() == 2);
+ CONVERT_CHECKED(JSObject, object, args[0]);
+ CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
+ return object->PrepareElementsForSort(limit);
+}
+
+
+// Move contents of argument 0 (an array) to argument 1 (an array)
+RUNTIME_FUNCTION(MaybeObject*, Runtime_MoveArrayContents) {
+ ASSERT(args.length() == 2);
+ CONVERT_CHECKED(JSArray, from, args[0]);
+ CONVERT_CHECKED(JSArray, to, args[1]);
+ HeapObject* new_elements = from->elements();
+ MaybeObject* maybe_new_map;
+ if (new_elements->map() == isolate->heap()->fixed_array_map() ||
+ new_elements->map() == isolate->heap()->fixed_cow_array_map()) {
+ maybe_new_map = to->map()->GetFastElementsMap();
+ } else {
+ maybe_new_map = to->map()->GetSlowElementsMap();
+ }
+ Object* new_map;
+ if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map;
+ to->set_map(Map::cast(new_map));
+ to->set_elements(new_elements);
+ to->set_length(from->length());
+ Object* obj;
+ { MaybeObject* maybe_obj = from->ResetElements();
+ if (!maybe_obj->ToObject(&obj)) return maybe_obj;
+ }
+ from->set_length(Smi::FromInt(0));
+ return to;
+}
+
+
+// How many elements does this object/array have?
+RUNTIME_FUNCTION(MaybeObject*, Runtime_EstimateNumberOfElements) {
+ ASSERT(args.length() == 1);
+ CONVERT_CHECKED(JSObject, object, args[0]);
+ HeapObject* elements = object->elements();
+ if (elements->IsDictionary()) {
+ return Smi::FromInt(NumberDictionary::cast(elements)->NumberOfElements());
+ } else if (object->IsJSArray()) {
+ return JSArray::cast(object)->length();
+ } else {
+ return Smi::FromInt(FixedArray::cast(elements)->length());
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SwapElements) {
+ HandleScope handle_scope(isolate);
+
+ ASSERT_EQ(3, args.length());
+
+ CONVERT_ARG_CHECKED(JSObject, object, 0);
+ Handle<Object> key1 = args.at<Object>(1);
+ Handle<Object> key2 = args.at<Object>(2);
+
+ uint32_t index1, index2;
+ if (!key1->ToArrayIndex(&index1)
+ || !key2->ToArrayIndex(&index2)) {
+ return isolate->ThrowIllegalOperation();
+ }
+
+ Handle<JSObject> jsobject = Handle<JSObject>::cast(object);
+ Handle<Object> tmp1 = GetElement(jsobject, index1);
+ RETURN_IF_EMPTY_HANDLE(isolate, tmp1);
+ Handle<Object> tmp2 = GetElement(jsobject, index2);
+ RETURN_IF_EMPTY_HANDLE(isolate, tmp2);
+
+ RETURN_IF_EMPTY_HANDLE(isolate,
+ SetElement(jsobject, index1, tmp2, kStrictMode));
+ RETURN_IF_EMPTY_HANDLE(isolate,
+ SetElement(jsobject, index2, tmp1, kStrictMode));
+
+ return isolate->heap()->undefined_value();
+}
+
+
+// Returns an array that tells you where in the [0, length) interval an array
+// might have elements. Can either return keys (positive integers) or
+// intervals (pair of a negative integer (-start-1) followed by a
+// positive (length)) or undefined values.
+// Intervals can span over some keys that are not in the object.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetArrayKeys) {
+ ASSERT(args.length() == 2);
+ HandleScope scope(isolate);
+ CONVERT_ARG_CHECKED(JSObject, array, 0);
+ CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
+ if (array->elements()->IsDictionary()) {
+ // Create an array and get all the keys into it, then remove all the
+ // keys that are not integers in the range 0 to length-1.
+ Handle<FixedArray> keys = GetKeysInFixedArrayFor(array, INCLUDE_PROTOS);
+ int keys_length = keys->length();
+ for (int i = 0; i < keys_length; i++) {
+ Object* key = keys->get(i);
+ uint32_t index = 0;
+ if (!key->ToArrayIndex(&index) || index >= length) {
+ // Zap invalid keys.
+ keys->set_undefined(i);
+ }
+ }
+ return *isolate->factory()->NewJSArrayWithElements(keys);
+ } else {
+ ASSERT(array->HasFastElements());
+ Handle<FixedArray> single_interval = isolate->factory()->NewFixedArray(2);
+ // -1 means start of array.
+ single_interval->set(0, Smi::FromInt(-1));
+ uint32_t actual_length =
+ static_cast<uint32_t>(FixedArray::cast(array->elements())->length());
+ uint32_t min_length = actual_length < length ? actual_length : length;
+ Handle<Object> length_object =
+ isolate->factory()->NewNumber(static_cast<double>(min_length));
+ single_interval->set(1, *length_object);
+ return *isolate->factory()->NewJSArrayWithElements(single_interval);
+ }
+}
+
+
+// DefineAccessor takes an optional final argument which is the
+// property attributes (eg, DONT_ENUM, DONT_DELETE). IMPORTANT: due
+// to the way accessors are implemented, it is set for both the getter
+// and setter on the first call to DefineAccessor and ignored on
+// subsequent calls.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DefineAccessor) {
+ RUNTIME_ASSERT(args.length() == 4 || args.length() == 5);
+ // Compute attributes.
+ PropertyAttributes attributes = NONE;
+ if (args.length() == 5) {
+ CONVERT_CHECKED(Smi, attrs, args[4]);
+ int value = attrs->value();
+ // Only attribute bits should be set.
+ ASSERT((value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+ attributes = static_cast<PropertyAttributes>(value);
+ }
+
+ CONVERT_CHECKED(JSObject, obj, args[0]);
+ CONVERT_CHECKED(String, name, args[1]);
+ CONVERT_CHECKED(Smi, flag, args[2]);
+ CONVERT_CHECKED(JSFunction, fun, args[3]);
+ return obj->DefineAccessor(name, flag->value() == 0, fun, attributes);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LookupAccessor) {
+ ASSERT(args.length() == 3);
+ CONVERT_CHECKED(JSObject, obj, args[0]);
+ CONVERT_CHECKED(String, name, args[1]);
+ CONVERT_CHECKED(Smi, flag, args[2]);
+ return obj->LookupAccessor(name, flag->value() == 0);
+}
+
+
+#ifdef ENABLE_DEBUGGER_SUPPORT
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugBreak) {
+ ASSERT(args.length() == 0);
+ return Execution::DebugBreakHelper();
+}
+
+
+// Helper functions for wrapping and unwrapping stack frame ids.
+static Smi* WrapFrameId(StackFrame::Id id) {
+ ASSERT(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4)));
+ return Smi::FromInt(id >> 2);
+}
+
+
+static StackFrame::Id UnwrapFrameId(Smi* wrapped) {
+ return static_cast<StackFrame::Id>(wrapped->value() << 2);
+}
+
+
+// Adds a JavaScript function as a debug event listener.
+// args[0]: debug event listener function to set or null or undefined for
+// clearing the event listener function
+// args[1]: object supplied during callback
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDebugEventListener) {
+ ASSERT(args.length() == 2);
+ RUNTIME_ASSERT(args[0]->IsJSFunction() ||
+ args[0]->IsUndefined() ||
+ args[0]->IsNull());
+ Handle<Object> callback = args.at<Object>(0);
+ Handle<Object> data = args.at<Object>(1);
+ isolate->debugger()->SetEventListener(callback, data);
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Break) {
+ ASSERT(args.length() == 0);
+ isolate->stack_guard()->DebugBreak();
+ return isolate->heap()->undefined_value();
+}
+
+
+static MaybeObject* DebugLookupResultValue(Heap* heap,
+ Object* receiver,
+ String* name,
+ LookupResult* result,
+ bool* caught_exception) {
+ Object* value;
+ switch (result->type()) {
+ case NORMAL:
+ value = result->holder()->GetNormalizedProperty(result);
+ if (value->IsTheHole()) {
+ return heap->undefined_value();
+ }
+ return value;
+ case FIELD:
+ value =
+ JSObject::cast(
+ result->holder())->FastPropertyAt(result->GetFieldIndex());
+ if (value->IsTheHole()) {
+ return heap->undefined_value();
+ }
+ return value;
+ case CONSTANT_FUNCTION:
+ return result->GetConstantFunction();
+ case CALLBACKS: {
+ Object* structure = result->GetCallbackObject();
+ if (structure->IsProxy() || structure->IsAccessorInfo()) {
+ MaybeObject* maybe_value = receiver->GetPropertyWithCallback(
+ receiver, structure, name, result->holder());
+ if (!maybe_value->ToObject(&value)) {
+ if (maybe_value->IsRetryAfterGC()) return maybe_value;
+ ASSERT(maybe_value->IsException());
+ maybe_value = heap->isolate()->pending_exception();
+ heap->isolate()->clear_pending_exception();
+ if (caught_exception != NULL) {
+ *caught_exception = true;
+ }
+ return maybe_value;
+ }
+ return value;
+ } else {
+ return heap->undefined_value();
+ }
+ }
+ case INTERCEPTOR:
+ case MAP_TRANSITION:
+ case EXTERNAL_ARRAY_TRANSITION:
+ case CONSTANT_TRANSITION:
+ case NULL_DESCRIPTOR:
+ return heap->undefined_value();
+ default:
+ UNREACHABLE();
+ }
+ UNREACHABLE();
+ return heap->undefined_value();
+}
+
+
+// Get debugger related details for an object property.
+// args[0]: object holding property
+// args[1]: name of the property
+//
+// The array returned contains the following information:
+// 0: Property value
+// 1: Property details
+// 2: Property value is exception
+// 3: Getter function if defined
+// 4: Setter function if defined
+// Items 2-4 are only filled if the property has either a getter or a setter
+// defined through __defineGetter__ and/or __defineSetter__.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetPropertyDetails) {
+ HandleScope scope(isolate);
+
+ ASSERT(args.length() == 2);
+
+ CONVERT_ARG_CHECKED(JSObject, obj, 0);
+ CONVERT_ARG_CHECKED(String, name, 1);
+
+ // Make sure to set the current context to the context before the debugger was
+ // entered (if the debugger is entered). The reason for switching context here
+ // is that for some property lookups (accessors and interceptors) callbacks
+ // into the embedding application can occour, and the embedding application
+ // could have the assumption that its own global context is the current
+ // context and not some internal debugger context.
+ SaveContext save(isolate);
+ if (isolate->debug()->InDebugger()) {
+ isolate->set_context(*isolate->debug()->debugger_entry()->GetContext());
+ }
+
+ // Skip the global proxy as it has no properties and always delegates to the
+ // real global object.
+ if (obj->IsJSGlobalProxy()) {
+ obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype()));
+ }
+
+
+ // Check if the name is trivially convertible to an index and get the element
+ // if so.
+ uint32_t index;
+ if (name->AsArrayIndex(&index)) {
+ Handle<FixedArray> details = isolate->factory()->NewFixedArray(2);
+ Object* element_or_char;
+ { MaybeObject* maybe_element_or_char =
+ Runtime::GetElementOrCharAt(isolate, obj, index);
+ if (!maybe_element_or_char->ToObject(&element_or_char)) {
+ return maybe_element_or_char;
+ }
+ }
+ details->set(0, element_or_char);
+ details->set(1, PropertyDetails(NONE, NORMAL).AsSmi());
+ return *isolate->factory()->NewJSArrayWithElements(details);
+ }
+
+ // Find the number of objects making up this.
+ int length = LocalPrototypeChainLength(*obj);
+
+ // Try local lookup on each of the objects.
+ Handle<JSObject> jsproto = obj;
+ for (int i = 0; i < length; i++) {
+ LookupResult result;
+ jsproto->LocalLookup(*name, &result);
+ if (result.IsProperty()) {
+ // LookupResult is not GC safe as it holds raw object pointers.
+ // GC can happen later in this code so put the required fields into
+ // local variables using handles when required for later use.
+ PropertyType result_type = result.type();
+ Handle<Object> result_callback_obj;
+ if (result_type == CALLBACKS) {
+ result_callback_obj = Handle<Object>(result.GetCallbackObject(),
+ isolate);
+ }
+ Smi* property_details = result.GetPropertyDetails().AsSmi();
+ // DebugLookupResultValue can cause GC so details from LookupResult needs
+ // to be copied to handles before this.
+ bool caught_exception = false;
+ Object* raw_value;
+ { MaybeObject* maybe_raw_value =
+ DebugLookupResultValue(isolate->heap(), *obj, *name,
+ &result, &caught_exception);
+ if (!maybe_raw_value->ToObject(&raw_value)) return maybe_raw_value;
+ }
+ Handle<Object> value(raw_value, isolate);
+
+ // If the callback object is a fixed array then it contains JavaScript
+ // getter and/or setter.
+ bool hasJavaScriptAccessors = result_type == CALLBACKS &&
+ result_callback_obj->IsFixedArray();
+ Handle<FixedArray> details =
+ isolate->factory()->NewFixedArray(hasJavaScriptAccessors ? 5 : 2);
+ details->set(0, *value);
+ details->set(1, property_details);
+ if (hasJavaScriptAccessors) {
+ details->set(2,
+ caught_exception ? isolate->heap()->true_value()
+ : isolate->heap()->false_value());
+ details->set(3, FixedArray::cast(*result_callback_obj)->get(0));
+ details->set(4, FixedArray::cast(*result_callback_obj)->get(1));
+ }
+
+ return *isolate->factory()->NewJSArrayWithElements(details);
+ }
+ if (i < length - 1) {
+ jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
+ }
+ }
+
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetProperty) {
+ HandleScope scope(isolate);
+
+ ASSERT(args.length() == 2);
+
+ CONVERT_ARG_CHECKED(JSObject, obj, 0);
+ CONVERT_ARG_CHECKED(String, name, 1);
+
+ LookupResult result;
+ obj->Lookup(*name, &result);
+ if (result.IsProperty()) {
+ return DebugLookupResultValue(isolate->heap(), *obj, *name, &result, NULL);
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+// Return the property type calculated from the property details.
+// args[0]: smi with property details.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyTypeFromDetails) {
+ ASSERT(args.length() == 1);
+ CONVERT_CHECKED(Smi, details, args[0]);
+ PropertyType type = PropertyDetails(details).type();
+ return Smi::FromInt(static_cast<int>(type));
+}
+
+
+// Return the property attribute calculated from the property details.
+// args[0]: smi with property details.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyAttributesFromDetails) {
+ ASSERT(args.length() == 1);
+ CONVERT_CHECKED(Smi, details, args[0]);
+ PropertyAttributes attributes = PropertyDetails(details).attributes();
+ return Smi::FromInt(static_cast<int>(attributes));
+}
+
+
+// Return the property insertion index calculated from the property details.
+// args[0]: smi with property details.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPropertyIndexFromDetails) {
+ ASSERT(args.length() == 1);
+ CONVERT_CHECKED(Smi, details, args[0]);
+ int index = PropertyDetails(details).index();
+ return Smi::FromInt(index);
+}
+
+
+// Return property value from named interceptor.
+// args[0]: object
+// args[1]: property name
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugNamedInterceptorPropertyValue) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+ CONVERT_ARG_CHECKED(JSObject, obj, 0);
+ RUNTIME_ASSERT(obj->HasNamedInterceptor());
+ CONVERT_ARG_CHECKED(String, name, 1);
+
+ PropertyAttributes attributes;
+ return obj->GetPropertyWithInterceptor(*obj, *name, &attributes);
+}
+
+
+// Return element value from indexed interceptor.
+// args[0]: object
+// args[1]: index
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugIndexedInterceptorElementValue) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+ CONVERT_ARG_CHECKED(JSObject, obj, 0);
+ RUNTIME_ASSERT(obj->HasIndexedInterceptor());
+ CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]);
+
+ return obj->GetElementWithInterceptor(*obj, index);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CheckExecutionState) {
+ ASSERT(args.length() >= 1);
+ CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+ // Check that the break id is valid.
+ if (isolate->debug()->break_id() == 0 ||
+ break_id != isolate->debug()->break_id()) {
+ return isolate->Throw(
+ isolate->heap()->illegal_execution_state_symbol());
+ }
+
+ return isolate->heap()->true_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFrameCount) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+
+ // Check arguments.
+ Object* result;
+ { MaybeObject* maybe_result = Runtime_CheckExecutionState(
+ RUNTIME_ARGUMENTS(isolate, args));
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+
+ // Count all frames which are relevant to debugging stack trace.
+ int n = 0;
+ StackFrame::Id id = isolate->debug()->break_frame_id();
+ if (id == StackFrame::NO_ID) {
+ // If there is no JavaScript stack frame count is 0.
+ return Smi::FromInt(0);
+ }
+ for (JavaScriptFrameIterator it(isolate, id); !it.done(); it.Advance()) n++;
+ return Smi::FromInt(n);
+}
+
+
+static const int kFrameDetailsFrameIdIndex = 0;
+static const int kFrameDetailsReceiverIndex = 1;
+static const int kFrameDetailsFunctionIndex = 2;
+static const int kFrameDetailsArgumentCountIndex = 3;
+static const int kFrameDetailsLocalCountIndex = 4;
+static const int kFrameDetailsSourcePositionIndex = 5;
+static const int kFrameDetailsConstructCallIndex = 6;
+static const int kFrameDetailsAtReturnIndex = 7;
+static const int kFrameDetailsDebuggerFrameIndex = 8;
+static const int kFrameDetailsFirstDynamicIndex = 9;
+
+// Return an array with frame details
+// args[0]: number: break id
+// args[1]: number: frame index
+//
+// The array returned contains the following information:
+// 0: Frame id
+// 1: Receiver
+// 2: Function
+// 3: Argument count
+// 4: Local count
+// 5: Source position
+// 6: Constructor call
+// 7: Is at return
+// 8: Debugger frame
+// Arguments name, value
+// Locals name, value
+// Return value if any
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFrameDetails) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+
+ // Check arguments.
+ Object* check;
+ { MaybeObject* maybe_check = Runtime_CheckExecutionState(
+ RUNTIME_ARGUMENTS(isolate, args));
+ if (!maybe_check->ToObject(&check)) return maybe_check;
+ }
+ CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
+ Heap* heap = isolate->heap();
+
+ // Find the relevant frame with the requested index.
+ StackFrame::Id id = isolate->debug()->break_frame_id();
+ if (id == StackFrame::NO_ID) {
+ // If there are no JavaScript stack frames return undefined.
+ return heap->undefined_value();
+ }
+ int count = 0;
+ JavaScriptFrameIterator it(isolate, id);
+ for (; !it.done(); it.Advance()) {
+ if (count == index) break;
+ count++;
+ }
+ if (it.done()) return heap->undefined_value();
+
+ bool is_optimized_frame =
+ it.frame()->LookupCode()->kind() == Code::OPTIMIZED_FUNCTION;
+
+ // Traverse the saved contexts chain to find the active context for the
+ // selected frame.
+ SaveContext* save = isolate->save_context();
+ while (save != NULL && !save->below(it.frame())) {
+ save = save->prev();
+ }
+ ASSERT(save != NULL);
+
+ // Get the frame id.
+ Handle<Object> frame_id(WrapFrameId(it.frame()->id()), isolate);
+
+ // Find source position.
+ int position =
+ it.frame()->LookupCode()->SourcePosition(it.frame()->pc());
+
+ // Check for constructor frame.
+ bool constructor = it.frame()->IsConstructor();
+
+ // Get scope info and read from it for local variable information.
+ Handle<JSFunction> function(JSFunction::cast(it.frame()->function()));
+ Handle<SerializedScopeInfo> scope_info(function->shared()->scope_info());
+ ScopeInfo<> info(*scope_info);
+
+ // Get the context.
+ Handle<Context> context(Context::cast(it.frame()->context()));
+
+ // Get the locals names and values into a temporary array.
+ //
+ // TODO(1240907): Hide compiler-introduced stack variables
+ // (e.g. .result)? For users of the debugger, they will probably be
+ // confusing.
+ Handle<FixedArray> locals =
+ isolate->factory()->NewFixedArray(info.NumberOfLocals() * 2);
+
+ // Fill in the names of the locals.
+ for (int i = 0; i < info.NumberOfLocals(); i++) {
+ locals->set(i * 2, *info.LocalName(i));
+ }
+
+ // Fill in the values of the locals.
+ for (int i = 0; i < info.NumberOfLocals(); i++) {
+ if (is_optimized_frame) {
+ // If we are inspecting an optimized frame use undefined as the
+ // value for all locals.
+ //
+ // TODO(1140): We should be able to get the correct values
+ // for locals in optimized frames.
+ locals->set(i * 2 + 1, isolate->heap()->undefined_value());
+ } else if (i < info.number_of_stack_slots()) {
+ // Get the value from the stack.
+ locals->set(i * 2 + 1, it.frame()->GetExpression(i));
+ } else {
+ // Traverse the context chain to the function context as all local
+ // variables stored in the context will be on the function context.
+ Handle<String> name = info.LocalName(i);
+ while (!context->is_function_context()) {
+ context = Handle<Context>(context->previous());
+ }
+ ASSERT(context->is_function_context());
+ locals->set(i * 2 + 1,
+ context->get(scope_info->ContextSlotIndex(*name, NULL)));
+ }
+ }
+
+ // Check whether this frame is positioned at return. If not top
+ // frame or if the frame is optimized it cannot be at a return.
+ bool at_return = false;
+ if (!is_optimized_frame && index == 0) {
+ at_return = isolate->debug()->IsBreakAtReturn(it.frame());
+ }
+
+ // If positioned just before return find the value to be returned and add it
+ // to the frame information.
+ Handle<Object> return_value = isolate->factory()->undefined_value();
+ if (at_return) {
+ StackFrameIterator it2(isolate);
+ Address internal_frame_sp = NULL;
+ while (!it2.done()) {
+ if (it2.frame()->is_internal()) {
+ internal_frame_sp = it2.frame()->sp();
+ } else {
+ if (it2.frame()->is_java_script()) {
+ if (it2.frame()->id() == it.frame()->id()) {
+ // The internal frame just before the JavaScript frame contains the
+ // value to return on top. A debug break at return will create an
+ // internal frame to store the return value (eax/rax/r0) before
+ // entering the debug break exit frame.
+ if (internal_frame_sp != NULL) {
+ return_value =
+ Handle<Object>(Memory::Object_at(internal_frame_sp),
+ isolate);
+ break;
+ }
+ }
+ }
+
+ // Indicate that the previous frame was not an internal frame.
+ internal_frame_sp = NULL;
+ }
+ it2.Advance();
+ }
+ }
+
+ // Now advance to the arguments adapter frame (if any). It contains all
+ // the provided parameters whereas the function frame always have the number
+ // of arguments matching the functions parameters. The rest of the
+ // information (except for what is collected above) is the same.
+ it.AdvanceToArgumentsFrame();
+
+ // Find the number of arguments to fill. At least fill the number of
+ // parameters for the function and fill more if more parameters are provided.
+ int argument_count = info.number_of_parameters();
+ if (argument_count < it.frame()->ComputeParametersCount()) {
+ argument_count = it.frame()->ComputeParametersCount();
+ }
+
+ // Calculate the size of the result.
+ int details_size = kFrameDetailsFirstDynamicIndex +
+ 2 * (argument_count + info.NumberOfLocals()) +
+ (at_return ? 1 : 0);
+ Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
+
+ // Add the frame id.
+ details->set(kFrameDetailsFrameIdIndex, *frame_id);
+
+ // Add the function (same as in function frame).
+ details->set(kFrameDetailsFunctionIndex, it.frame()->function());
+
+ // Add the arguments count.
+ details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count));
+
+ // Add the locals count
+ details->set(kFrameDetailsLocalCountIndex,
+ Smi::FromInt(info.NumberOfLocals()));
+
+ // Add the source position.
+ if (position != RelocInfo::kNoPosition) {
+ details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position));
+ } else {
+ details->set(kFrameDetailsSourcePositionIndex, heap->undefined_value());
+ }
+
+ // Add the constructor information.
+ details->set(kFrameDetailsConstructCallIndex, heap->ToBoolean(constructor));
+
+ // Add the at return information.
+ details->set(kFrameDetailsAtReturnIndex, heap->ToBoolean(at_return));
+
+ // Add information on whether this frame is invoked in the debugger context.
+ details->set(kFrameDetailsDebuggerFrameIndex,
+ heap->ToBoolean(*save->context() ==
+ *isolate->debug()->debug_context()));
+
+ // Fill the dynamic part.
+ int details_index = kFrameDetailsFirstDynamicIndex;
+
+ // Add arguments name and value.
+ for (int i = 0; i < argument_count; i++) {
+ // Name of the argument.
+ if (i < info.number_of_parameters()) {
+ details->set(details_index++, *info.parameter_name(i));
+ } else {
+ details->set(details_index++, heap->undefined_value());
+ }
+
+ // Parameter value. If we are inspecting an optimized frame, use
+ // undefined as the value.
+ //
+ // TODO(3141533): We should be able to get the actual parameter
+ // value for optimized frames.
+ if (!is_optimized_frame &&
+ (i < it.frame()->ComputeParametersCount())) {
+ details->set(details_index++, it.frame()->GetParameter(i));
+ } else {
+ details->set(details_index++, heap->undefined_value());
+ }
+ }
+
+ // Add locals name and value from the temporary copy from the function frame.
+ for (int i = 0; i < info.NumberOfLocals() * 2; i++) {
+ details->set(details_index++, locals->get(i));
+ }
+
+ // Add the value being returned.
+ if (at_return) {
+ details->set(details_index++, *return_value);
+ }
+
+ // Add the receiver (same as in function frame).
+ // THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE
+ // THE FRAME ITERATOR TO WRAP THE RECEIVER.
+ Handle<Object> receiver(it.frame()->receiver(), isolate);
+ if (!receiver->IsJSObject()) {
+ // If the receiver is NOT a JSObject we have hit an optimization
+ // where a value object is not converted into a wrapped JS objects.
+ // To hide this optimization from the debugger, we wrap the receiver
+ // by creating correct wrapper object based on the calling frame's
+ // global context.
+ it.Advance();
+ Handle<Context> calling_frames_global_context(
+ Context::cast(Context::cast(it.frame()->context())->global_context()));
+ receiver =
+ isolate->factory()->ToObject(receiver, calling_frames_global_context);
+ }
+ details->set(kFrameDetailsReceiverIndex, *receiver);
+
+ ASSERT_EQ(details_size, details_index);
+ return *isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+// Copy all the context locals into an object used to materialize a scope.
+static bool CopyContextLocalsToScopeObject(
+ Isolate* isolate,
+ Handle<SerializedScopeInfo> serialized_scope_info,
+ ScopeInfo<>& scope_info,
+ Handle<Context> context,
+ Handle<JSObject> scope_object) {
+ // Fill all context locals to the context extension.
+ for (int i = Context::MIN_CONTEXT_SLOTS;
+ i < scope_info.number_of_context_slots();
+ i++) {
+ int context_index = serialized_scope_info->ContextSlotIndex(
+ *scope_info.context_slot_name(i), NULL);
+
+ // Don't include the arguments shadow (.arguments) context variable.
+ if (*scope_info.context_slot_name(i) !=
+ isolate->heap()->arguments_shadow_symbol()) {
+ RETURN_IF_EMPTY_HANDLE_VALUE(
+ isolate,
+ SetProperty(scope_object,
+ scope_info.context_slot_name(i),
+ Handle<Object>(context->get(context_index), isolate),
+ NONE,
+ kNonStrictMode),
+ false);
+ }
+ }
+
+ return true;
+}
+
+
+// Create a plain JSObject which materializes the local scope for the specified
+// frame.
+static Handle<JSObject> MaterializeLocalScope(Isolate* isolate,
+ JavaScriptFrame* frame) {
+ Handle<JSFunction> function(JSFunction::cast(frame->function()));
+ Handle<SharedFunctionInfo> shared(function->shared());
+ Handle<SerializedScopeInfo> serialized_scope_info(shared->scope_info());
+ ScopeInfo<> scope_info(*serialized_scope_info);
+
+ // Allocate and initialize a JSObject with all the arguments, stack locals
+ // heap locals and extension properties of the debugged function.
+ Handle<JSObject> local_scope =
+ isolate->factory()->NewJSObject(isolate->object_function());
+
+ // First fill all parameters.
+ for (int i = 0; i < scope_info.number_of_parameters(); ++i) {
+ RETURN_IF_EMPTY_HANDLE_VALUE(
+ isolate,
+ SetProperty(local_scope,
+ scope_info.parameter_name(i),
+ Handle<Object>(frame->GetParameter(i), isolate),
+ NONE,
+ kNonStrictMode),
+ Handle<JSObject>());
+ }
+
+ // Second fill all stack locals.
+ for (int i = 0; i < scope_info.number_of_stack_slots(); i++) {
+ RETURN_IF_EMPTY_HANDLE_VALUE(
+ isolate,
+ SetProperty(local_scope,
+ scope_info.stack_slot_name(i),
+ Handle<Object>(frame->GetExpression(i), isolate),
+ NONE,
+ kNonStrictMode),
+ Handle<JSObject>());
+ }
+
+ // Third fill all context locals.
+ Handle<Context> frame_context(Context::cast(frame->context()));
+ Handle<Context> function_context(frame_context->fcontext());
+ if (!CopyContextLocalsToScopeObject(isolate,
+ serialized_scope_info, scope_info,
+ function_context, local_scope)) {
+ return Handle<JSObject>();
+ }
+
+ // Finally copy any properties from the function context extension. This will
+ // be variables introduced by eval.
+ if (function_context->closure() == *function) {
+ if (function_context->has_extension() &&
+ !function_context->IsGlobalContext()) {
+ Handle<JSObject> ext(JSObject::cast(function_context->extension()));
+ Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS);
+ for (int i = 0; i < keys->length(); i++) {
+ // Names of variables introduced by eval are strings.
+ ASSERT(keys->get(i)->IsString());
+ Handle<String> key(String::cast(keys->get(i)));
+ RETURN_IF_EMPTY_HANDLE_VALUE(
+ isolate,
+ SetProperty(local_scope,
+ key,
+ GetProperty(ext, key),
+ NONE,
+ kNonStrictMode),
+ Handle<JSObject>());
+ }
+ }
+ }
+ return local_scope;
+}
+
+
+// Create a plain JSObject which materializes the closure content for the
+// context.
+static Handle<JSObject> MaterializeClosure(Isolate* isolate,
+ Handle<Context> context) {
+ ASSERT(context->is_function_context());
+
+ Handle<SharedFunctionInfo> shared(context->closure()->shared());
+ Handle<SerializedScopeInfo> serialized_scope_info(shared->scope_info());
+ ScopeInfo<> scope_info(*serialized_scope_info);
+
+ // Allocate and initialize a JSObject with all the content of theis function
+ // closure.
+ Handle<JSObject> closure_scope =
+ isolate->factory()->NewJSObject(isolate->object_function());
+
+ // Check whether the arguments shadow object exists.
+ int arguments_shadow_index =
+ shared->scope_info()->ContextSlotIndex(
+ isolate->heap()->arguments_shadow_symbol(), NULL);
+ if (arguments_shadow_index >= 0) {
+ // In this case all the arguments are available in the arguments shadow
+ // object.
+ Handle<JSObject> arguments_shadow(
+ JSObject::cast(context->get(arguments_shadow_index)));
+ for (int i = 0; i < scope_info.number_of_parameters(); ++i) {
+ // We don't expect exception-throwing getters on the arguments shadow.
+ Object* element = arguments_shadow->GetElement(i)->ToObjectUnchecked();
+ RETURN_IF_EMPTY_HANDLE_VALUE(
+ isolate,
+ SetProperty(closure_scope,
+ scope_info.parameter_name(i),
+ Handle<Object>(element, isolate),
+ NONE,
+ kNonStrictMode),
+ Handle<JSObject>());
+ }
+ }
+
+ // Fill all context locals to the context extension.
+ if (!CopyContextLocalsToScopeObject(isolate,
+ serialized_scope_info, scope_info,
+ context, closure_scope)) {
+ return Handle<JSObject>();
+ }
+
+ // Finally copy any properties from the function context extension. This will
+ // be variables introduced by eval.
+ if (context->has_extension()) {
+ Handle<JSObject> ext(JSObject::cast(context->extension()));
+ Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS);
+ for (int i = 0; i < keys->length(); i++) {
+ // Names of variables introduced by eval are strings.
+ ASSERT(keys->get(i)->IsString());
+ Handle<String> key(String::cast(keys->get(i)));
+ RETURN_IF_EMPTY_HANDLE_VALUE(
+ isolate,
+ SetProperty(closure_scope,
+ key,
+ GetProperty(ext, key),
+ NONE,
+ kNonStrictMode),
+ Handle<JSObject>());
+ }
+ }
+
+ return closure_scope;
+}
+
+
+// Iterate over the actual scopes visible from a stack frame. All scopes are
+// backed by an actual context except the local scope, which is inserted
+// "artifically" in the context chain.
+class ScopeIterator {
+ public:
+ enum ScopeType {
+ ScopeTypeGlobal = 0,
+ ScopeTypeLocal,
+ ScopeTypeWith,
+ ScopeTypeClosure,
+ // Every catch block contains an implicit with block (its parameter is
+ // a JSContextExtensionObject) that extends current scope with a variable
+ // holding exception object. Such with blocks are treated as scopes of their
+ // own type.
+ ScopeTypeCatch
+ };
+
+ ScopeIterator(Isolate* isolate, JavaScriptFrame* frame)
+ : isolate_(isolate),
+ frame_(frame),
+ function_(JSFunction::cast(frame->function())),
+ context_(Context::cast(frame->context())),
+ local_done_(false),
+ at_local_(false) {
+
+ // Check whether the first scope is actually a local scope.
+ if (context_->IsGlobalContext()) {
+ // If there is a stack slot for .result then this local scope has been
+ // created for evaluating top level code and it is not a real local scope.
+ // Checking for the existence of .result seems fragile, but the scope info
+ // saved with the code object does not otherwise have that information.
+ int index = function_->shared()->scope_info()->
+ StackSlotIndex(isolate_->heap()->result_symbol());
+ at_local_ = index < 0;
+ } else if (context_->is_function_context()) {
+ at_local_ = true;
+ }
+ }
+
+ // More scopes?
+ bool Done() { return context_.is_null(); }
+
+ // Move to the next scope.
+ void Next() {
+ // If at a local scope mark the local scope as passed.
+ if (at_local_) {
+ at_local_ = false;
+ local_done_ = true;
+
+ // If the current context is not associated with the local scope the
+ // current context is the next real scope, so don't move to the next
+ // context in this case.
+ if (context_->closure() != *function_) {
+ return;
+ }
+ }
+
+ // The global scope is always the last in the chain.
+ if (context_->IsGlobalContext()) {
+ context_ = Handle<Context>();
+ return;
+ }
+
+ // Move to the next context.
+ if (context_->is_function_context()) {
+ context_ = Handle<Context>(Context::cast(context_->closure()->context()));
+ } else {
+ context_ = Handle<Context>(context_->previous());
+ }
+
+ // If passing the local scope indicate that the current scope is now the
+ // local scope.
+ if (!local_done_ &&
+ (context_->IsGlobalContext() || (context_->is_function_context()))) {
+ at_local_ = true;
+ }
+ }
+
+ // Return the type of the current scope.
+ int Type() {
+ if (at_local_) {
+ return ScopeTypeLocal;
+ }
+ if (context_->IsGlobalContext()) {
+ ASSERT(context_->global()->IsGlobalObject());
+ return ScopeTypeGlobal;
+ }
+ if (context_->is_function_context()) {
+ return ScopeTypeClosure;
+ }
+ ASSERT(context_->has_extension());
+ // Current scope is either an explicit with statement or a with statement
+ // implicitely generated for a catch block.
+ // If the extension object here is a JSContextExtensionObject then
+ // current with statement is one frome a catch block otherwise it's a
+ // regular with statement.
+ if (context_->extension()->IsJSContextExtensionObject()) {
+ return ScopeTypeCatch;
+ }
+ return ScopeTypeWith;
+ }
+
+ // Return the JavaScript object with the content of the current scope.
+ Handle<JSObject> ScopeObject() {
+ switch (Type()) {
+ case ScopeIterator::ScopeTypeGlobal:
+ return Handle<JSObject>(CurrentContext()->global());
+ break;
+ case ScopeIterator::ScopeTypeLocal:
+ // Materialize the content of the local scope into a JSObject.
+ return MaterializeLocalScope(isolate_, frame_);
+ break;
+ case ScopeIterator::ScopeTypeWith:
+ case ScopeIterator::ScopeTypeCatch:
+ // Return the with object.
+ return Handle<JSObject>(CurrentContext()->extension());
+ break;
+ case ScopeIterator::ScopeTypeClosure:
+ // Materialize the content of the closure scope into a JSObject.
+ return MaterializeClosure(isolate_, CurrentContext());
+ break;
+ }
+ UNREACHABLE();
+ return Handle<JSObject>();
+ }
+
+ // Return the context for this scope. For the local context there might not
+ // be an actual context.
+ Handle<Context> CurrentContext() {
+ if (at_local_ && context_->closure() != *function_) {
+ return Handle<Context>();
+ }
+ return context_;
+ }
+
+#ifdef DEBUG
+ // Debug print of the content of the current scope.
+ void DebugPrint() {
+ switch (Type()) {
+ case ScopeIterator::ScopeTypeGlobal:
+ PrintF("Global:\n");
+ CurrentContext()->Print();
+ break;
+
+ case ScopeIterator::ScopeTypeLocal: {
+ PrintF("Local:\n");
+ ScopeInfo<> scope_info(function_->shared()->scope_info());
+ scope_info.Print();
+ if (!CurrentContext().is_null()) {
+ CurrentContext()->Print();
+ if (CurrentContext()->has_extension()) {
+ Handle<JSObject> extension =
+ Handle<JSObject>(CurrentContext()->extension());
+ if (extension->IsJSContextExtensionObject()) {
+ extension->Print();
+ }
+ }
+ }
+ break;
+ }
+
+ case ScopeIterator::ScopeTypeWith: {
+ PrintF("With:\n");
+ Handle<JSObject> extension =
+ Handle<JSObject>(CurrentContext()->extension());
+ extension->Print();
+ break;
+ }
+
+ case ScopeIterator::ScopeTypeCatch: {
+ PrintF("Catch:\n");
+ Handle<JSObject> extension =
+ Handle<JSObject>(CurrentContext()->extension());
+ extension->Print();
+ break;
+ }
+
+ case ScopeIterator::ScopeTypeClosure: {
+ PrintF("Closure:\n");
+ CurrentContext()->Print();
+ if (CurrentContext()->has_extension()) {
+ Handle<JSObject> extension =
+ Handle<JSObject>(CurrentContext()->extension());
+ if (extension->IsJSContextExtensionObject()) {
+ extension->Print();
+ }
+ }
+ break;
+ }
+
+ default:
+ UNREACHABLE();
+ }
+ PrintF("\n");
+ }
+#endif
+
+ private:
+ Isolate* isolate_;
+ JavaScriptFrame* frame_;
+ Handle<JSFunction> function_;
+ Handle<Context> context_;
+ bool local_done_;
+ bool at_local_;
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator);
+};
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScopeCount) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+
+ // Check arguments.
+ Object* check;
+ { MaybeObject* maybe_check = Runtime_CheckExecutionState(
+ RUNTIME_ARGUMENTS(isolate, args));
+ if (!maybe_check->ToObject(&check)) return maybe_check;
+ }
+ CONVERT_CHECKED(Smi, wrapped_id, args[1]);
+
+ // Get the frame where the debugging is performed.
+ StackFrame::Id id = UnwrapFrameId(wrapped_id);
+ JavaScriptFrameIterator it(isolate, id);
+ JavaScriptFrame* frame = it.frame();
+
+ // Count the visible scopes.
+ int n = 0;
+ for (ScopeIterator it(isolate, frame); !it.Done(); it.Next()) {
+ n++;
+ }
+
+ return Smi::FromInt(n);
+}
+
+
+static const int kScopeDetailsTypeIndex = 0;
+static const int kScopeDetailsObjectIndex = 1;
+static const int kScopeDetailsSize = 2;
+
+// Return an array with scope details
+// args[0]: number: break id
+// args[1]: number: frame index
+// args[2]: number: scope index
+//
+// The array returned contains the following information:
+// 0: Scope type
+// 1: Scope object
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScopeDetails) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 3);
+
+ // Check arguments.
+ Object* check;
+ { MaybeObject* maybe_check = Runtime_CheckExecutionState(
+ RUNTIME_ARGUMENTS(isolate, args));
+ if (!maybe_check->ToObject(&check)) return maybe_check;
+ }
+ CONVERT_CHECKED(Smi, wrapped_id, args[1]);
+ CONVERT_NUMBER_CHECKED(int, index, Int32, args[2]);
+
+ // Get the frame where the debugging is performed.
+ StackFrame::Id id = UnwrapFrameId(wrapped_id);
+ JavaScriptFrameIterator frame_it(isolate, id);
+ JavaScriptFrame* frame = frame_it.frame();
+
+ // Find the requested scope.
+ int n = 0;
+ ScopeIterator it(isolate, frame);
+ for (; !it.Done() && n < index; it.Next()) {
+ n++;
+ }
+ if (it.Done()) {
+ return isolate->heap()->undefined_value();
+ }
+
+ // Calculate the size of the result.
+ int details_size = kScopeDetailsSize;
+ Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
+
+ // Fill in scope details.
+ details->set(kScopeDetailsTypeIndex, Smi::FromInt(it.Type()));
+ Handle<JSObject> scope_object = it.ScopeObject();
+ RETURN_IF_EMPTY_HANDLE(isolate, scope_object);
+ details->set(kScopeDetailsObjectIndex, *scope_object);
+
+ return *isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugPrintScopes) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 0);
+
+#ifdef DEBUG
+ // Print the scopes for the top frame.
+ StackFrameLocator locator;
+ JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
+ for (ScopeIterator it(isolate, frame); !it.Done(); it.Next()) {
+ it.DebugPrint();
+ }
+#endif
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetThreadCount) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+
+ // Check arguments.
+ Object* result;
+ { MaybeObject* maybe_result = Runtime_CheckExecutionState(
+ RUNTIME_ARGUMENTS(isolate, args));
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+
+ // Count all archived V8 threads.
+ int n = 0;
+ for (ThreadState* thread =
+ isolate->thread_manager()->FirstThreadStateInUse();
+ thread != NULL;
+ thread = thread->Next()) {
+ n++;
+ }
+
+ // Total number of threads is current thread and archived threads.
+ return Smi::FromInt(n + 1);
+}
+
+
+static const int kThreadDetailsCurrentThreadIndex = 0;
+static const int kThreadDetailsThreadIdIndex = 1;
+static const int kThreadDetailsSize = 2;
+
+// Return an array with thread details
+// args[0]: number: break id
+// args[1]: number: thread index
+//
+// The array returned contains the following information:
+// 0: Is current thread?
+// 1: Thread id
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetThreadDetails) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+
+ // Check arguments.
+ Object* check;
+ { MaybeObject* maybe_check = Runtime_CheckExecutionState(
+ RUNTIME_ARGUMENTS(isolate, args));
+ if (!maybe_check->ToObject(&check)) return maybe_check;
+ }
+ CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
+
+ // Allocate array for result.
+ Handle<FixedArray> details =
+ isolate->factory()->NewFixedArray(kThreadDetailsSize);
+
+ // Thread index 0 is current thread.
+ if (index == 0) {
+ // Fill the details.
+ details->set(kThreadDetailsCurrentThreadIndex,
+ isolate->heap()->true_value());
+ details->set(kThreadDetailsThreadIdIndex,
+ Smi::FromInt(
+ isolate->thread_manager()->CurrentId()));
+ } else {
+ // Find the thread with the requested index.
+ int n = 1;
+ ThreadState* thread =
+ isolate->thread_manager()->FirstThreadStateInUse();
+ while (index != n && thread != NULL) {
+ thread = thread->Next();
+ n++;
+ }
+ if (thread == NULL) {
+ return isolate->heap()->undefined_value();
+ }
+
+ // Fill the details.
+ details->set(kThreadDetailsCurrentThreadIndex,
+ isolate->heap()->false_value());
+ details->set(kThreadDetailsThreadIdIndex, Smi::FromInt(thread->id()));
+ }
+
+ // Convert to JS array and return.
+ return *isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+// Sets the disable break state
+// args[0]: disable break state
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SetDisableBreak) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ CONVERT_BOOLEAN_CHECKED(disable_break, args[0]);
+ isolate->debug()->set_disable_break(disable_break);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetBreakLocations) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+
+ CONVERT_ARG_CHECKED(JSFunction, fun, 0);
+ Handle<SharedFunctionInfo> shared(fun->shared());
+ // Find the number of break points
+ Handle<Object> break_locations = Debug::GetSourceBreakLocations(shared);
+ if (break_locations->IsUndefined()) return isolate->heap()->undefined_value();
+ // Return array as JS array
+ return *isolate->factory()->NewJSArrayWithElements(
+ Handle<FixedArray>::cast(break_locations));
+}
+
+
+// Set a break point in a function
+// args[0]: function
+// args[1]: number: break source position (within the function source)
+// args[2]: number: break point object
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SetFunctionBreakPoint) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 3);
+ CONVERT_ARG_CHECKED(JSFunction, fun, 0);
+ Handle<SharedFunctionInfo> shared(fun->shared());
+ CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
+ RUNTIME_ASSERT(source_position >= 0);
+ Handle<Object> break_point_object_arg = args.at<Object>(2);
+
+ // Set break point.
+ isolate->debug()->SetBreakPoint(shared, break_point_object_arg,
+ &source_position);
+
+ return Smi::FromInt(source_position);
+}
+
+
+Object* Runtime::FindSharedFunctionInfoInScript(Isolate* isolate,
+ Handle<Script> script,
+ int position) {
+ // Iterate the heap looking for SharedFunctionInfo generated from the
+ // script. The inner most SharedFunctionInfo containing the source position
+ // for the requested break point is found.
+ // NOTE: This might require several heap iterations. If the SharedFunctionInfo
+ // which is found is not compiled it is compiled and the heap is iterated
+ // again as the compilation might create inner functions from the newly
+ // compiled function and the actual requested break point might be in one of
+ // these functions.
+ bool done = false;
+ // The current candidate for the source position:
+ int target_start_position = RelocInfo::kNoPosition;
+ Handle<SharedFunctionInfo> target;
+ while (!done) {
+ HeapIterator iterator;
+ for (HeapObject* obj = iterator.next();
+ obj != NULL; obj = iterator.next()) {
+ if (obj->IsSharedFunctionInfo()) {
+ Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(obj));
+ if (shared->script() == *script) {
+ // If the SharedFunctionInfo found has the requested script data and
+ // contains the source position it is a candidate.
+ int start_position = shared->function_token_position();
+ if (start_position == RelocInfo::kNoPosition) {
+ start_position = shared->start_position();
+ }
+ if (start_position <= position &&
+ position <= shared->end_position()) {
+ // If there is no candidate or this function is within the current
+ // candidate this is the new candidate.
+ if (target.is_null()) {
+ target_start_position = start_position;
+ target = shared;
+ } else {
+ if (target_start_position == start_position &&
+ shared->end_position() == target->end_position()) {
+ // If a top-level function contain only one function
+ // declartion the source for the top-level and the function is
+ // the same. In that case prefer the non top-level function.
+ if (!shared->is_toplevel()) {
+ target_start_position = start_position;
+ target = shared;
+ }
+ } else if (target_start_position <= start_position &&
+ shared->end_position() <= target->end_position()) {
+ // This containment check includes equality as a function inside
+ // a top-level function can share either start or end position
+ // with the top-level function.
+ target_start_position = start_position;
+ target = shared;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ if (target.is_null()) {
+ return isolate->heap()->undefined_value();
+ }
+
+ // If the candidate found is compiled we are done. NOTE: when lazy
+ // compilation of inner functions is introduced some additional checking
+ // needs to be done here to compile inner functions.
+ done = target->is_compiled();
+ if (!done) {
+ // If the candidate is not compiled compile it to reveal any inner
+ // functions which might contain the requested source position.
+ CompileLazyShared(target, KEEP_EXCEPTION);
+ }
+ }
+
+ return *target;
+}
+
+
+// Changes the state of a break point in a script and returns source position
+// where break point was set. NOTE: Regarding performance see the NOTE for
+// GetScriptFromScriptData.
+// args[0]: script to set break point in
+// args[1]: number: break source position (within the script source)
+// args[2]: number: break point object
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SetScriptBreakPoint) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 3);
+ CONVERT_ARG_CHECKED(JSValue, wrapper, 0);
+ CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
+ RUNTIME_ASSERT(source_position >= 0);
+ Handle<Object> break_point_object_arg = args.at<Object>(2);
+
+ // Get the script from the script wrapper.
+ RUNTIME_ASSERT(wrapper->value()->IsScript());
+ Handle<Script> script(Script::cast(wrapper->value()));
+
+ Object* result = Runtime::FindSharedFunctionInfoInScript(
+ isolate, script, source_position);
+ if (!result->IsUndefined()) {
+ Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(result));
+ // Find position within function. The script position might be before the
+ // source position of the first function.
+ int position;
+ if (shared->start_position() > source_position) {
+ position = 0;
+ } else {
+ position = source_position - shared->start_position();
+ }
+ isolate->debug()->SetBreakPoint(shared, break_point_object_arg, &position);
+ position += shared->start_position();
+ return Smi::FromInt(position);
+ }
+ return isolate->heap()->undefined_value();
+}
+
+
+// Clear a break point
+// args[0]: number: break point object
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ClearBreakPoint) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ Handle<Object> break_point_object_arg = args.at<Object>(0);
+
+ // Clear break point.
+ isolate->debug()->ClearBreakPoint(break_point_object_arg);
+
+ return isolate->heap()->undefined_value();
+}
+
+
+// Change the state of break on exceptions.
+// args[0]: Enum value indicating whether to affect caught/uncaught exceptions.
+// args[1]: Boolean indicating on/off.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ChangeBreakOnException) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 2);
+ RUNTIME_ASSERT(args[0]->IsNumber());
+ CONVERT_BOOLEAN_CHECKED(enable, args[1]);
+
+ // If the number doesn't match an enum value, the ChangeBreakOnException
+ // function will default to affecting caught exceptions.
+ ExceptionBreakType type =
+ static_cast<ExceptionBreakType>(NumberToUint32(args[0]));
+ // Update break point state.
+ isolate->debug()->ChangeBreakOnException(type, enable);
+ return isolate->heap()->undefined_value();
+}
+
+
+// Returns the state of break on exceptions
+// args[0]: boolean indicating uncaught exceptions
+RUNTIME_FUNCTION(MaybeObject*, Runtime_IsBreakOnException) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ RUNTIME_ASSERT(args[0]->IsNumber());
+
+ ExceptionBreakType type =
+ static_cast<ExceptionBreakType>(NumberToUint32(args[0]));
+ bool result = isolate->debug()->IsBreakOnException(type);
+ return Smi::FromInt(result);
+}
+
+
+// Prepare for stepping
+// args[0]: break id for checking execution state
+// args[1]: step action from the enumeration StepAction
+// args[2]: number of times to perform the step, for step out it is the number
+// of frames to step down.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_PrepareStep) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 3);
+ // Check arguments.
+ Object* check;
+ { MaybeObject* maybe_check = Runtime_CheckExecutionState(
+ RUNTIME_ARGUMENTS(isolate, args));
+ if (!maybe_check->ToObject(&check)) return maybe_check;
+ }
+ if (!args[1]->IsNumber() || !args[2]->IsNumber()) {
+ return isolate->Throw(isolate->heap()->illegal_argument_symbol());
+ }
+
+ // Get the step action and check validity.
+ StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1]));
+ if (step_action != StepIn &&
+ step_action != StepNext &&
+ step_action != StepOut &&
+ step_action != StepInMin &&
+ step_action != StepMin) {
+ return isolate->Throw(isolate->heap()->illegal_argument_symbol());
+ }
+
+ // Get the number of steps.
+ int step_count = NumberToInt32(args[2]);
+ if (step_count < 1) {
+ return isolate->Throw(isolate->heap()->illegal_argument_symbol());
+ }
+
+ // Clear all current stepping setup.
+ isolate->debug()->ClearStepping();
+
+ // Prepare step.
+ isolate->debug()->PrepareStep(static_cast<StepAction>(step_action),
+ step_count);
+ return isolate->heap()->undefined_value();
+}
+
+
+// Clear all stepping set by PrepareStep.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ClearStepping) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 0);
+ isolate->debug()->ClearStepping();
+ return isolate->heap()->undefined_value();
+}
+
+
+// Creates a copy of the with context chain. The copy of the context chain is
+// is linked to the function context supplied.
+static Handle<Context> CopyWithContextChain(Handle<Context> context_chain,
+ Handle<Context> function_context) {
+ // At the bottom of the chain. Return the function context to link to.
+ if (context_chain->is_function_context()) {
+ return function_context;
+ }
+
+ // Recursively copy the with contexts.
+ Handle<Context> previous(context_chain->previous());
+ Handle<JSObject> extension(JSObject::cast(context_chain->extension()));
+ Handle<Context> context = CopyWithContextChain(function_context, previous);
+ return context->GetIsolate()->factory()->NewWithContext(
+ context, extension, context_chain->IsCatchContext());
+}
+
+
+// Helper function to find or create the arguments object for
+// Runtime_DebugEvaluate.
+static Handle<Object> GetArgumentsObject(Isolate* isolate,
+ JavaScriptFrame* frame,
+ Handle<JSFunction> function,
+ Handle<SerializedScopeInfo> scope_info,
+ const ScopeInfo<>* sinfo,
+ Handle<Context> function_context) {
+ // Try to find the value of 'arguments' to pass as parameter. If it is not
+ // found (that is the debugged function does not reference 'arguments' and
+ // does not support eval) then create an 'arguments' object.
+ int index;
+ if (sinfo->number_of_stack_slots() > 0) {
+ index = scope_info->StackSlotIndex(isolate->heap()->arguments_symbol());
+ if (index != -1) {
+ return Handle<Object>(frame->GetExpression(index), isolate);
+ }
+ }
+
+ if (sinfo->number_of_context_slots() > Context::MIN_CONTEXT_SLOTS) {
+ index = scope_info->ContextSlotIndex(isolate->heap()->arguments_symbol(),
+ NULL);
+ if (index != -1) {
+ return Handle<Object>(function_context->get(index), isolate);
+ }
+ }
+
+ const int length = frame->ComputeParametersCount();
+ Handle<JSObject> arguments =
+ isolate->factory()->NewArgumentsObject(function, length);
+ Handle<FixedArray> array = isolate->factory()->NewFixedArray(length);
+
+ AssertNoAllocation no_gc;
+ WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
+ for (int i = 0; i < length; i++) {
+ array->set(i, frame->GetParameter(i), mode);
+ }
+ arguments->set_elements(*array);
+ return arguments;
+}
+
+
+static const char kSourceStr[] =
+ "(function(arguments,__source__){return eval(__source__);})";
+
+
+// Evaluate a piece of JavaScript in the context of a stack frame for
+// debugging. This is accomplished by creating a new context which in its
+// extension part has all the parameters and locals of the function on the
+// stack frame. A function which calls eval with the code to evaluate is then
+// compiled in this context and called in this context. As this context
+// replaces the context of the function on the stack frame a new (empty)
+// function is created as well to be used as the closure for the context.
+// This function and the context acts as replacements for the function on the
+// stack frame presenting the same view of the values of parameters and
+// local variables as if the piece of JavaScript was evaluated at the point
+// where the function on the stack frame is currently stopped.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugEvaluate) {
+ HandleScope scope(isolate);
+
+ // Check the execution state and decode arguments frame and source to be
+ // evaluated.
+ ASSERT(args.length() == 5);
+ Object* check_result;
+ { MaybeObject* maybe_check_result = Runtime_CheckExecutionState(
+ RUNTIME_ARGUMENTS(isolate, args));
+ if (!maybe_check_result->ToObject(&check_result)) {
+ return maybe_check_result;
+ }
+ }
+ CONVERT_CHECKED(Smi, wrapped_id, args[1]);
+ CONVERT_ARG_CHECKED(String, source, 2);
+ CONVERT_BOOLEAN_CHECKED(disable_break, args[3]);
+ Handle<Object> additional_context(args[4]);
+
+ // Handle the processing of break.
+ DisableBreak disable_break_save(disable_break);
+
+ // Get the frame where the debugging is performed.
+ StackFrame::Id id = UnwrapFrameId(wrapped_id);
+ JavaScriptFrameIterator it(isolate, id);
+ JavaScriptFrame* frame = it.frame();
+ Handle<JSFunction> function(JSFunction::cast(frame->function()));
+ Handle<SerializedScopeInfo> scope_info(function->shared()->scope_info());
+ ScopeInfo<> sinfo(*scope_info);
+
+ // Traverse the saved contexts chain to find the active context for the
+ // selected frame.
+ SaveContext* save = isolate->save_context();
+ while (save != NULL && !save->below(frame)) {
+ save = save->prev();
+ }
+ ASSERT(save != NULL);
+ SaveContext savex(isolate);
+ isolate->set_context(*(save->context()));
+
+ // Create the (empty) function replacing the function on the stack frame for
+ // the purpose of evaluating in the context created below. It is important
+ // that this function does not describe any parameters and local variables
+ // in the context. If it does then this will cause problems with the lookup
+ // in Context::Lookup, where context slots for parameters and local variables
+ // are looked at before the extension object.
+ Handle<JSFunction> go_between =
+ isolate->factory()->NewFunction(isolate->factory()->empty_string(),
+ isolate->factory()->undefined_value());
+ go_between->set_context(function->context());
+#ifdef DEBUG
+ ScopeInfo<> go_between_sinfo(go_between->shared()->scope_info());
+ ASSERT(go_between_sinfo.number_of_parameters() == 0);
+ ASSERT(go_between_sinfo.number_of_context_slots() == 0);
+#endif
+
+ // Materialize the content of the local scope into a JSObject.
+ Handle<JSObject> local_scope = MaterializeLocalScope(isolate, frame);
+ RETURN_IF_EMPTY_HANDLE(isolate, local_scope);
+
+ // Allocate a new context for the debug evaluation and set the extension
+ // object build.
+ Handle<Context> context =
+ isolate->factory()->NewFunctionContext(Context::MIN_CONTEXT_SLOTS,
+ go_between);
+ context->set_extension(*local_scope);
+ // Copy any with contexts present and chain them in front of this context.
+ Handle<Context> frame_context(Context::cast(frame->context()));
+ Handle<Context> function_context(frame_context->fcontext());
+ context = CopyWithContextChain(frame_context, context);
+
+ if (additional_context->IsJSObject()) {
+ context = isolate->factory()->NewWithContext(context,
+ Handle<JSObject>::cast(additional_context), false);
+ }
+
+ // Wrap the evaluation statement in a new function compiled in the newly
+ // created context. The function has one parameter which has to be called
+ // 'arguments'. This it to have access to what would have been 'arguments' in
+ // the function being debugged.
+ // function(arguments,__source__) {return eval(__source__);}
+
+ Handle<String> function_source =
+ isolate->factory()->NewStringFromAscii(
+ Vector<const char>(kSourceStr, sizeof(kSourceStr) - 1));
+
+ // Currently, the eval code will be executed in non-strict mode,
+ // even in the strict code context.
+ Handle<SharedFunctionInfo> shared =
+ Compiler::CompileEval(function_source,
+ context,
+ context->IsGlobalContext(),
+ kNonStrictMode);
+ if (shared.is_null()) return Failure::Exception();
+ Handle<JSFunction> compiled_function =
+ isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context);
+
+ // Invoke the result of the compilation to get the evaluation function.
+ bool has_pending_exception;
+ Handle<Object> receiver(frame->receiver(), isolate);
+ Handle<Object> evaluation_function =
+ Execution::Call(compiled_function, receiver, 0, NULL,
+ &has_pending_exception);
+ if (has_pending_exception) return Failure::Exception();
+
+ Handle<Object> arguments = GetArgumentsObject(isolate, frame,
+ function, scope_info,
+ &sinfo, function_context);
+
+ // Invoke the evaluation function and return the result.
+ const int argc = 2;
+ Object** argv[argc] = { arguments.location(),
+ Handle<Object>::cast(source).location() };
+ Handle<Object> result =
+ Execution::Call(Handle<JSFunction>::cast(evaluation_function), receiver,
+ argc, argv, &has_pending_exception);
+ if (has_pending_exception) return Failure::Exception();
+
+ // Skip the global proxy as it has no properties and always delegates to the
+ // real global object.
+ if (result->IsJSGlobalProxy()) {
+ result = Handle<JSObject>(JSObject::cast(result->GetPrototype()));
+ }
+
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugEvaluateGlobal) {
+ HandleScope scope(isolate);
+
+ // Check the execution state and decode arguments frame and source to be
+ // evaluated.
+ ASSERT(args.length() == 4);
+ Object* check_result;
+ { MaybeObject* maybe_check_result = Runtime_CheckExecutionState(
+ RUNTIME_ARGUMENTS(isolate, args));
+ if (!maybe_check_result->ToObject(&check_result)) {
+ return maybe_check_result;
+ }
+ }
+ CONVERT_ARG_CHECKED(String, source, 1);
+ CONVERT_BOOLEAN_CHECKED(disable_break, args[2]);
+ Handle<Object> additional_context(args[3]);
+
+ // Handle the processing of break.
+ DisableBreak disable_break_save(disable_break);
+
+ // Enter the top context from before the debugger was invoked.
+ SaveContext save(isolate);
+ SaveContext* top = &save;
+ while (top != NULL && *top->context() == *isolate->debug()->debug_context()) {
+ top = top->prev();
+ }
+ if (top != NULL) {
+ isolate->set_context(*top->context());
+ }
+
+ // Get the global context now set to the top context from before the
+ // debugger was invoked.
+ Handle<Context> context = isolate->global_context();
+
+ bool is_global = true;
+
+ if (additional_context->IsJSObject()) {
+ // Create a function context first, than put 'with' context on top of it.
+ Handle<JSFunction> go_between = isolate->factory()->NewFunction(
+ isolate->factory()->empty_string(),
+ isolate->factory()->undefined_value());
+ go_between->set_context(*context);
+ context =
+ isolate->factory()->NewFunctionContext(
+ Context::MIN_CONTEXT_SLOTS, go_between);
+ context->set_extension(JSObject::cast(*additional_context));
+ is_global = false;
+ }
+
+ // Compile the source to be evaluated.
+ // Currently, the eval code will be executed in non-strict mode,
+ // even in the strict code context.
+ Handle<SharedFunctionInfo> shared =
+ Compiler::CompileEval(source, context, is_global, kNonStrictMode);
+ if (shared.is_null()) return Failure::Exception();
+ Handle<JSFunction> compiled_function =
+ Handle<JSFunction>(
+ isolate->factory()->NewFunctionFromSharedFunctionInfo(shared,
+ context));
+
+ // Invoke the result of the compilation to get the evaluation function.
+ bool has_pending_exception;
+ Handle<Object> receiver = isolate->global();
+ Handle<Object> result =
+ Execution::Call(compiled_function, receiver, 0, NULL,
+ &has_pending_exception);
+ if (has_pending_exception) return Failure::Exception();
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetLoadedScripts) {
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 0);
+
+ // Fill the script objects.
+ Handle<FixedArray> instances = isolate->debug()->GetLoadedScripts();
+
+ // Convert the script objects to proper JS objects.
+ for (int i = 0; i < instances->length(); i++) {
+ Handle<Script> script = Handle<Script>(Script::cast(instances->get(i)));
+ // Get the script wrapper in a local handle before calling GetScriptWrapper,
+ // because using
+ // instances->set(i, *GetScriptWrapper(script))
+ // is unsafe as GetScriptWrapper might call GC and the C++ compiler might
+ // already have deferenced the instances handle.
+ Handle<JSValue> wrapper = GetScriptWrapper(script);
+ instances->set(i, *wrapper);
+ }
+
+ // Return result as a JS array.
+ Handle<JSObject> result =
+ isolate->factory()->NewJSObject(isolate->array_function());
+ Handle<JSArray>::cast(result)->SetContent(*instances);
+ return *result;
+}
+
+
+// Helper function used by Runtime_DebugReferencedBy below.
+static int DebugReferencedBy(JSObject* target,
+ Object* instance_filter, int max_references,
+ FixedArray* instances, int instances_size,
+ JSFunction* arguments_function) {
+ NoHandleAllocation ha;
+ AssertNoAllocation no_alloc;
+
+ // Iterate the heap.
+ int count = 0;
+ JSObject* last = NULL;
+ HeapIterator iterator;
+ HeapObject* heap_obj = NULL;
+ while (((heap_obj = iterator.next()) != NULL) &&
+ (max_references == 0 || count < max_references)) {
+ // Only look at all JSObjects.
+ if (heap_obj->IsJSObject()) {
+ // Skip context extension objects and argument arrays as these are
+ // checked in the context of functions using them.
+ JSObject* obj = JSObject::cast(heap_obj);
+ if (obj->IsJSContextExtensionObject() ||
+ obj->map()->constructor() == arguments_function) {
+ continue;
+ }
+
+ // Check if the JS object has a reference to the object looked for.
+ if (obj->ReferencesObject(target)) {
+ // Check instance filter if supplied. This is normally used to avoid
+ // references from mirror objects (see Runtime_IsInPrototypeChain).
+ if (!instance_filter->IsUndefined()) {
+ Object* V = obj;
+ while (true) {
+ Object* prototype = V->GetPrototype();
+ if (prototype->IsNull()) {
+ break;
+ }
+ if (instance_filter == prototype) {
+ obj = NULL; // Don't add this object.
+ break;
+ }
+ V = prototype;
+ }
+ }
+
+ if (obj != NULL) {
+ // Valid reference found add to instance array if supplied an update
+ // count.
+ if (instances != NULL && count < instances_size) {
+ instances->set(count, obj);
+ }
+ last = obj;
+ count++;
+ }
+ }
+ }
+ }
+
+ // Check for circular reference only. This can happen when the object is only
+ // referenced from mirrors and has a circular reference in which case the
+ // object is not really alive and would have been garbage collected if not
+ // referenced from the mirror.
+ if (count == 1 && last == target) {
+ count = 0;
+ }
+
+ // Return the number of referencing objects found.
+ return count;
+}
+
+
+// Scan the heap for objects with direct references to an object
+// args[0]: the object to find references to
+// args[1]: constructor function for instances to exclude (Mirror)
+// args[2]: the the maximum number of objects to return
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugReferencedBy) {
+ ASSERT(args.length() == 3);
+
+ // First perform a full GC in order to avoid references from dead objects.
+ isolate->heap()->CollectAllGarbage(false);
+
+ // Check parameters.
+ CONVERT_CHECKED(JSObject, target, args[0]);
+ Object* instance_filter = args[1];
+ RUNTIME_ASSERT(instance_filter->IsUndefined() ||
+ instance_filter->IsJSObject());
+ CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]);
+ RUNTIME_ASSERT(max_references >= 0);
+
+ // Get the constructor function for context extension and arguments array.
+ JSObject* arguments_boilerplate =
+ isolate->context()->global_context()->arguments_boilerplate();
+ JSFunction* arguments_function =
+ JSFunction::cast(arguments_boilerplate->map()->constructor());
+
+ // Get the number of referencing objects.
+ int count;
+ count = DebugReferencedBy(target, instance_filter, max_references,
+ NULL, 0, arguments_function);
+
+ // Allocate an array to hold the result.
+ Object* object;
+ { MaybeObject* maybe_object = isolate->heap()->AllocateFixedArray(count);
+ if (!maybe_object->ToObject(&object)) return maybe_object;
+ }
+ FixedArray* instances = FixedArray::cast(object);
+
+ // Fill the referencing objects.
+ count = DebugReferencedBy(target, instance_filter, max_references,
+ instances, count, arguments_function);
+
+ // Return result as JS array.
+ Object* result;
+ { MaybeObject* maybe_result = isolate->heap()->AllocateJSObject(
+ isolate->context()->global_context()->array_function());
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+ JSArray::cast(result)->SetContent(instances);
+ return result;
+}
+
+
+// Helper function used by Runtime_DebugConstructedBy below.
+static int DebugConstructedBy(JSFunction* constructor, int max_references,
+ FixedArray* instances, int instances_size) {
+ AssertNoAllocation no_alloc;
+
+ // Iterate the heap.
+ int count = 0;
+ HeapIterator iterator;
+ HeapObject* heap_obj = NULL;
+ while (((heap_obj = iterator.next()) != NULL) &&
+ (max_references == 0 || count < max_references)) {
+ // Only look at all JSObjects.
+ if (heap_obj->IsJSObject()) {
+ JSObject* obj = JSObject::cast(heap_obj);
+ if (obj->map()->constructor() == constructor) {
+ // Valid reference found add to instance array if supplied an update
+ // count.
+ if (instances != NULL && count < instances_size) {
+ instances->set(count, obj);
+ }
+ count++;
+ }
+ }
+ }
+
+ // Return the number of referencing objects found.
+ return count;
+}
+
+
+// Scan the heap for objects constructed by a specific function.
+// args[0]: the constructor to find instances of
+// args[1]: the the maximum number of objects to return
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugConstructedBy) {
+ ASSERT(args.length() == 2);
+
+ // First perform a full GC in order to avoid dead objects.
+ isolate->heap()->CollectAllGarbage(false);
+
+ // Check parameters.
+ CONVERT_CHECKED(JSFunction, constructor, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]);
+ RUNTIME_ASSERT(max_references >= 0);
+
+ // Get the number of referencing objects.
+ int count;
+ count = DebugConstructedBy(constructor, max_references, NULL, 0);
+
+ // Allocate an array to hold the result.
+ Object* object;
+ { MaybeObject* maybe_object = isolate->heap()->AllocateFixedArray(count);
+ if (!maybe_object->ToObject(&object)) return maybe_object;
+ }
+ FixedArray* instances = FixedArray::cast(object);
+
+ // Fill the referencing objects.
+ count = DebugConstructedBy(constructor, max_references, instances, count);
+
+ // Return result as JS array.
+ Object* result;
+ { MaybeObject* maybe_result = isolate->heap()->AllocateJSObject(
+ isolate->context()->global_context()->array_function());
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+ JSArray::cast(result)->SetContent(instances);
+ return result;
+}
+
+
+// Find the effective prototype object as returned by __proto__.
+// args[0]: the object to find the prototype for.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugGetPrototype) {
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(JSObject, obj, args[0]);
+
+ // Use the __proto__ accessor.
+ return Accessors::ObjectPrototype.getter(obj, NULL);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SystemBreak) {
+ ASSERT(args.length() == 0);
+ CPU::DebugBreak();
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugDisassembleFunction) {
+#ifdef DEBUG
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ // Get the function and make sure it is compiled.
+ CONVERT_ARG_CHECKED(JSFunction, func, 0);
+ Handle<SharedFunctionInfo> shared(func->shared());
+ if (!EnsureCompiled(shared, KEEP_EXCEPTION)) {
+ return Failure::Exception();
+ }
+ func->code()->PrintLn();
+#endif // DEBUG
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DebugDisassembleConstructor) {
+#ifdef DEBUG
+ HandleScope scope(isolate);
+ ASSERT(args.length() == 1);
+ // Get the function and make sure it is compiled.
+ CONVERT_ARG_CHECKED(JSFunction, func, 0);
+ Handle<SharedFunctionInfo> shared(func->shared());
+ if (!EnsureCompiled(shared, KEEP_EXCEPTION)) {
+ return Failure::Exception();
+ }
+ shared->construct_stub()->PrintLn();
+#endif // DEBUG
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_FunctionGetInferredName) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(JSFunction, f, args[0]);
+ return f->shared()->inferred_name();
+}
+
+
+static int FindSharedFunctionInfosForScript(Script* script,
+ FixedArray* buffer) {
+ AssertNoAllocation no_allocations;
+
+ int counter = 0;
+ int buffer_size = buffer->length();
+ HeapIterator iterator;
+ for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
+ ASSERT(obj != NULL);
+ if (!obj->IsSharedFunctionInfo()) {
+ continue;
+ }
+ SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
+ if (shared->script() != script) {
+ continue;
+ }
+ if (counter < buffer_size) {
+ buffer->set(counter, shared);
+ }
+ counter++;
+ }
+ return counter;
+}
+
+// For a script finds all SharedFunctionInfo's in the heap that points
+// to this script. Returns JSArray of SharedFunctionInfo wrapped
+// in OpaqueReferences.
+RUNTIME_FUNCTION(MaybeObject*,
+ Runtime_LiveEditFindSharedFunctionInfosForScript) {
+ ASSERT(args.length() == 1);
+ HandleScope scope(isolate);
+ CONVERT_CHECKED(JSValue, script_value, args[0]);
+
+ Handle<Script> script = Handle<Script>(Script::cast(script_value->value()));
+
+ const int kBufferSize = 32;
+
+ Handle<FixedArray> array;
+ array = isolate->factory()->NewFixedArray(kBufferSize);
+ int number = FindSharedFunctionInfosForScript(*script, *array);
+ if (number > kBufferSize) {
+ array = isolate->factory()->NewFixedArray(number);
+ FindSharedFunctionInfosForScript(*script, *array);
+ }
+
+ Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(array);
+ result->set_length(Smi::FromInt(number));
+
+ LiveEdit::WrapSharedFunctionInfos(result);
+
+ return *result;
+}
+
+// For a script calculates compilation information about all its functions.
+// The script source is explicitly specified by the second argument.
+// The source of the actual script is not used, however it is important that
+// all generated code keeps references to this particular instance of script.
+// Returns a JSArray of compilation infos. The array is ordered so that
+// each function with all its descendant is always stored in a continues range
+// with the function itself going first. The root function is a script function.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditGatherCompileInfo) {
+ ASSERT(args.length() == 2);
+ HandleScope scope(isolate);
+ CONVERT_CHECKED(JSValue, script, args[0]);
+ CONVERT_ARG_CHECKED(String, source, 1);
+ Handle<Script> script_handle = Handle<Script>(Script::cast(script->value()));
+
+ JSArray* result = LiveEdit::GatherCompileInfo(script_handle, source);
+
+ if (isolate->has_pending_exception()) {
+ return Failure::Exception();
+ }
+
+ return result;
+}
+
+// Changes the source of the script to a new_source.
+// If old_script_name is provided (i.e. is a String), also creates a copy of
+// the script with its original source and sends notification to debugger.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceScript) {
+ ASSERT(args.length() == 3);
+ HandleScope scope(isolate);
+ CONVERT_CHECKED(JSValue, original_script_value, args[0]);
+ CONVERT_ARG_CHECKED(String, new_source, 1);
+ Handle<Object> old_script_name(args[2], isolate);
+
+ CONVERT_CHECKED(Script, original_script_pointer,
+ original_script_value->value());
+ Handle<Script> original_script(original_script_pointer);
+
+ Object* old_script = LiveEdit::ChangeScriptSource(original_script,
+ new_source,
+ old_script_name);
+
+ if (old_script->IsScript()) {
+ Handle<Script> script_handle(Script::cast(old_script));
+ return *(GetScriptWrapper(script_handle));
+ } else {
+ return isolate->heap()->null_value();
+ }
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditFunctionSourceUpdated) {
+ ASSERT(args.length() == 1);
+ HandleScope scope(isolate);
+ CONVERT_ARG_CHECKED(JSArray, shared_info, 0);
+ return LiveEdit::FunctionSourceUpdated(shared_info);
+}
+
+
+// Replaces code of SharedFunctionInfo with a new one.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceFunctionCode) {
+ ASSERT(args.length() == 2);
+ HandleScope scope(isolate);
+ CONVERT_ARG_CHECKED(JSArray, new_compile_info, 0);
+ CONVERT_ARG_CHECKED(JSArray, shared_info, 1);
+
+ return LiveEdit::ReplaceFunctionCode(new_compile_info, shared_info);
+}
+
+// Connects SharedFunctionInfo to another script.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditFunctionSetScript) {
+ ASSERT(args.length() == 2);
+ HandleScope scope(isolate);
+ Handle<Object> function_object(args[0], isolate);
+ Handle<Object> script_object(args[1], isolate);
+
+ if (function_object->IsJSValue()) {
+ Handle<JSValue> function_wrapper = Handle<JSValue>::cast(function_object);
+ if (script_object->IsJSValue()) {
+ CONVERT_CHECKED(Script, script, JSValue::cast(*script_object)->value());
+ script_object = Handle<Object>(script, isolate);
+ }
+
+ LiveEdit::SetFunctionScript(function_wrapper, script_object);
+ } else {
+ // Just ignore this. We may not have a SharedFunctionInfo for some functions
+ // and we check it in this function.
+ }
+
+ return isolate->heap()->undefined_value();
+}
+
+
+// In a code of a parent function replaces original function as embedded object
+// with a substitution one.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditReplaceRefToNestedFunction) {
+ ASSERT(args.length() == 3);
+ HandleScope scope(isolate);
+
+ CONVERT_ARG_CHECKED(JSValue, parent_wrapper, 0);
+ CONVERT_ARG_CHECKED(JSValue, orig_wrapper, 1);
+ CONVERT_ARG_CHECKED(JSValue, subst_wrapper, 2);
+
+ LiveEdit::ReplaceRefToNestedFunction(parent_wrapper, orig_wrapper,
+ subst_wrapper);
+
+ return isolate->heap()->undefined_value();
+}
+
+
+// Updates positions of a shared function info (first parameter) according
+// to script source change. Text change is described in second parameter as
+// array of groups of 3 numbers:
+// (change_begin, change_end, change_end_new_position).
+// Each group describes a change in text; groups are sorted by change_begin.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditPatchFunctionPositions) {
+ ASSERT(args.length() == 2);
+ HandleScope scope(isolate);
+ CONVERT_ARG_CHECKED(JSArray, shared_array, 0);
+ CONVERT_ARG_CHECKED(JSArray, position_change_array, 1);
+
+ return LiveEdit::PatchFunctionPositions(shared_array, position_change_array);
+}
+
+
+// For array of SharedFunctionInfo's (each wrapped in JSValue)
+// checks that none of them have activations on stacks (of any thread).
+// Returns array of the same length with corresponding results of
+// LiveEdit::FunctionPatchabilityStatus type.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditCheckAndDropActivations) {
+ ASSERT(args.length() == 2);
+ HandleScope scope(isolate);
+ CONVERT_ARG_CHECKED(JSArray, shared_array, 0);
+ CONVERT_BOOLEAN_CHECKED(do_drop, args[1]);
+
+ return *LiveEdit::CheckAndDropActivations(shared_array, do_drop);
+}
+
+// Compares 2 strings line-by-line, then token-wise and returns diff in form
+// of JSArray of triplets (pos1, pos1_end, pos2_end) describing list
+// of diff chunks.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_LiveEditCompareStrings) {
+ ASSERT(args.length() == 2);
+ HandleScope scope(isolate);
+ CONVERT_ARG_CHECKED(String, s1, 0);
+ CONVERT_ARG_CHECKED(String, s2, 1);
+
+ return *LiveEdit::CompareStrings(s1, s2);
+}
+
+
+// A testing entry. Returns statement position which is the closest to
+// source_position.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFunctionCodePositionFromSource) {
+ ASSERT(args.length() == 2);
+ HandleScope scope(isolate);
+ CONVERT_ARG_CHECKED(JSFunction, function, 0);
+ CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
+
+ Handle<Code> code(function->code(), isolate);
+
+ if (code->kind() != Code::FUNCTION &&
+ code->kind() != Code::OPTIMIZED_FUNCTION) {
+ return isolate->heap()->undefined_value();
+ }
+
+ RelocIterator it(*code, RelocInfo::ModeMask(RelocInfo::STATEMENT_POSITION));
+ int closest_pc = 0;
+ int distance = kMaxInt;
+ while (!it.done()) {
+ int statement_position = static_cast<int>(it.rinfo()->data());
+ // Check if this break point is closer that what was previously found.
+ if (source_position <= statement_position &&
+ statement_position - source_position < distance) {
+ closest_pc =
+ static_cast<int>(it.rinfo()->pc() - code->instruction_start());
+ distance = statement_position - source_position;
+ // Check whether we can't get any closer.
+ if (distance == 0) break;
+ }
+ it.next();
+ }
+
+ return Smi::FromInt(closest_pc);
+}
+
+
+// Calls specified function with or without entering the debugger.
+// This is used in unit tests to run code as if debugger is entered or simply
+// to have a stack with C++ frame in the middle.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ExecuteInDebugContext) {
+ ASSERT(args.length() == 2);
+ HandleScope scope(isolate);
+ CONVERT_ARG_CHECKED(JSFunction, function, 0);
+ CONVERT_BOOLEAN_CHECKED(without_debugger, args[1]);
+
+ Handle<Object> result;
+ bool pending_exception;
+ {
+ if (without_debugger) {
+ result = Execution::Call(function, isolate->global(), 0, NULL,
+ &pending_exception);
+ } else {
+ EnterDebugger enter_debugger;
+ result = Execution::Call(function, isolate->global(), 0, NULL,
+ &pending_exception);
+ }
+ }
+ if (!pending_exception) {
+ return *result;
+ } else {
+ return Failure::Exception();
+ }
+}
+
+
+// Sets a v8 flag.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SetFlags) {
+ CONVERT_CHECKED(String, arg, args[0]);
+ SmartPointer<char> flags =
+ arg->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
+ FlagList::SetFlagsFromString(*flags, StrLength(*flags));
+ return isolate->heap()->undefined_value();
+}
+
+
+// Performs a GC.
+// Presently, it only does a full GC.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CollectGarbage) {
+ isolate->heap()->CollectAllGarbage(true);
+ return isolate->heap()->undefined_value();
+}
+
+
+// Gets the current heap usage.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetHeapUsage) {
+ int usage = static_cast<int>(isolate->heap()->SizeOfObjects());
+ if (!Smi::IsValid(usage)) {
+ return *isolate->factory()->NewNumberFromInt(usage);
+ }
+ return Smi::FromInt(usage);
+}
+
+
+// Captures a live object list from the present heap.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_HasLOLEnabled) {
+#ifdef LIVE_OBJECT_LIST
+ return isolate->heap()->true_value();
+#else
+ return isolate->heap()->false_value();
+#endif
+}
+
+
+// Captures a live object list from the present heap.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CaptureLOL) {
+#ifdef LIVE_OBJECT_LIST
+ return LiveObjectList::Capture();
+#else
+ return isolate->heap()->undefined_value();
+#endif
+}
+
+
+// Deletes the specified live object list.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DeleteLOL) {
+#ifdef LIVE_OBJECT_LIST
+ CONVERT_SMI_CHECKED(id, args[0]);
+ bool success = LiveObjectList::Delete(id);
+ return success ? isolate->heap()->true_value() :
+ isolate->heap()->false_value();
+#else
+ return isolate->heap()->undefined_value();
+#endif
+}
+
+
+// Generates the response to a debugger request for a dump of the objects
+// contained in the difference between the captured live object lists
+// specified by id1 and id2.
+// If id1 is 0 (i.e. not a valid lol), then the whole of lol id2 will be
+// dumped.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_DumpLOL) {
+#ifdef LIVE_OBJECT_LIST
+ HandleScope scope;
+ CONVERT_SMI_CHECKED(id1, args[0]);
+ CONVERT_SMI_CHECKED(id2, args[1]);
+ CONVERT_SMI_CHECKED(start, args[2]);
+ CONVERT_SMI_CHECKED(count, args[3]);
+ CONVERT_ARG_CHECKED(JSObject, filter_obj, 4);
+ EnterDebugger enter_debugger;
+ return LiveObjectList::Dump(id1, id2, start, count, filter_obj);
+#else
+ return isolate->heap()->undefined_value();
+#endif
+}
+
+
+// Gets the specified object as requested by the debugger.
+// This is only used for obj ids shown in live object lists.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLOLObj) {
+#ifdef LIVE_OBJECT_LIST
+ CONVERT_SMI_CHECKED(obj_id, args[0]);
+ Object* result = LiveObjectList::GetObj(obj_id);
+ return result;
+#else
+ return isolate->heap()->undefined_value();
+#endif
+}
+
+
+// Gets the obj id for the specified address if valid.
+// This is only used for obj ids shown in live object lists.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLOLObjId) {
+#ifdef LIVE_OBJECT_LIST
+ HandleScope scope;
+ CONVERT_ARG_CHECKED(String, address, 0);
+ Object* result = LiveObjectList::GetObjId(address);
+ return result;
+#else
+ return isolate->heap()->undefined_value();
+#endif
+}
+
+
+// Gets the retainers that references the specified object alive.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLOLObjRetainers) {
+#ifdef LIVE_OBJECT_LIST
+ HandleScope scope;
+ CONVERT_SMI_CHECKED(obj_id, args[0]);
+ RUNTIME_ASSERT(args[1]->IsUndefined() || args[1]->IsJSObject());
+ RUNTIME_ASSERT(args[2]->IsUndefined() || args[2]->IsBoolean());
+ RUNTIME_ASSERT(args[3]->IsUndefined() || args[3]->IsSmi());
+ RUNTIME_ASSERT(args[4]->IsUndefined() || args[4]->IsSmi());
+ CONVERT_ARG_CHECKED(JSObject, filter_obj, 5);
+
+ Handle<JSObject> instance_filter;
+ if (args[1]->IsJSObject()) {
+ instance_filter = args.at<JSObject>(1);
+ }
+ bool verbose = false;
+ if (args[2]->IsBoolean()) {
+ verbose = args[2]->IsTrue();
+ }
+ int start = 0;
+ if (args[3]->IsSmi()) {
+ start = Smi::cast(args[3])->value();
+ }
+ int limit = Smi::kMaxValue;
+ if (args[4]->IsSmi()) {
+ limit = Smi::cast(args[4])->value();
+ }
+
+ return LiveObjectList::GetObjRetainers(obj_id,
+ instance_filter,
+ verbose,
+ start,
+ limit,
+ filter_obj);
+#else
+ return isolate->heap()->undefined_value();
+#endif
+}
+
+
+// Gets the reference path between 2 objects.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetLOLPath) {
+#ifdef LIVE_OBJECT_LIST
+ HandleScope scope;
+ CONVERT_SMI_CHECKED(obj_id1, args[0]);
+ CONVERT_SMI_CHECKED(obj_id2, args[1]);
+ RUNTIME_ASSERT(args[2]->IsUndefined() || args[2]->IsJSObject());
+
+ Handle<JSObject> instance_filter;
+ if (args[2]->IsJSObject()) {
+ instance_filter = args.at<JSObject>(2);
+ }
+
+ Object* result =
+ LiveObjectList::GetPath(obj_id1, obj_id2, instance_filter);
+ return result;
+#else
+ return isolate->heap()->undefined_value();
+#endif
+}
+
+
+// Generates the response to a debugger request for a list of all
+// previously captured live object lists.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_InfoLOL) {
+#ifdef LIVE_OBJECT_LIST
+ CONVERT_SMI_CHECKED(start, args[0]);
+ CONVERT_SMI_CHECKED(count, args[1]);
+ return LiveObjectList::Info(start, count);
+#else
+ return isolate->heap()->undefined_value();
+#endif
+}
+
+
+// Gets a dump of the specified object as requested by the debugger.
+// This is only used for obj ids shown in live object lists.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_PrintLOLObj) {
+#ifdef LIVE_OBJECT_LIST
+ HandleScope scope;
+ CONVERT_SMI_CHECKED(obj_id, args[0]);
+ Object* result = LiveObjectList::PrintObj(obj_id);
+ return result;
+#else
+ return isolate->heap()->undefined_value();
+#endif
+}
+
+
+// Resets and releases all previously captured live object lists.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ResetLOL) {
+#ifdef LIVE_OBJECT_LIST
+ LiveObjectList::Reset();
+ return isolate->heap()->undefined_value();
+#else
+ return isolate->heap()->undefined_value();
+#endif
+}
+
+
+// Generates the response to a debugger request for a summary of the types
+// of objects in the difference between the captured live object lists
+// specified by id1 and id2.
+// If id1 is 0 (i.e. not a valid lol), then the whole of lol id2 will be
+// summarized.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_SummarizeLOL) {
+#ifdef LIVE_OBJECT_LIST
+ HandleScope scope;
+ CONVERT_SMI_CHECKED(id1, args[0]);
+ CONVERT_SMI_CHECKED(id2, args[1]);
+ CONVERT_ARG_CHECKED(JSObject, filter_obj, 2);
+
+ EnterDebugger enter_debugger;
+ return LiveObjectList::Summarize(id1, id2, filter_obj);
+#else
+ return isolate->heap()->undefined_value();
+#endif
+}
+
+#endif // ENABLE_DEBUGGER_SUPPORT
+
+
+#ifdef ENABLE_LOGGING_AND_PROFILING
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ProfilerResume) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_CHECKED(Smi, smi_modules, args[0]);
+ CONVERT_CHECKED(Smi, smi_tag, args[1]);
+ v8::V8::ResumeProfilerEx(smi_modules->value(), smi_tag->value());
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ProfilerPause) {
+ NoHandleAllocation ha;
+ ASSERT(args.length() == 2);
+
+ CONVERT_CHECKED(Smi, smi_modules, args[0]);
+ CONVERT_CHECKED(Smi, smi_tag, args[1]);
+ v8::V8::PauseProfilerEx(smi_modules->value(), smi_tag->value());
+ return isolate->heap()->undefined_value();
+}
+
+#endif // ENABLE_LOGGING_AND_PROFILING
+
+// Finds the script object from the script data. NOTE: This operation uses
+// heap traversal to find the function generated for the source position
+// for the requested break point. For lazily compiled functions several heap
+// traversals might be required rendering this operation as a rather slow
+// operation. However for setting break points which is normally done through
+// some kind of user interaction the performance is not crucial.
+static Handle<Object> Runtime_GetScriptFromScriptName(
+ Handle<String> script_name) {
+ // Scan the heap for Script objects to find the script with the requested
+ // script data.
+ Handle<Script> script;
+ HeapIterator iterator;
+ HeapObject* obj = NULL;
+ while (script.is_null() && ((obj = iterator.next()) != NULL)) {
+ // If a script is found check if it has the script data requested.
+ if (obj->IsScript()) {
+ if (Script::cast(obj)->name()->IsString()) {
+ if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) {
+ script = Handle<Script>(Script::cast(obj));
+ }
+ }
+ }
+ }
+
+ // If no script with the requested script data is found return undefined.
+ if (script.is_null()) return FACTORY->undefined_value();
+
+ // Return the script found.
+ return GetScriptWrapper(script);
+}
+
+
+// Get the script object from script data. NOTE: Regarding performance
+// see the NOTE for GetScriptFromScriptData.
+// args[0]: script data for the script to find the source for
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetScript) {
+ HandleScope scope(isolate);
+
+ ASSERT(args.length() == 1);
+
+ CONVERT_CHECKED(String, script_name, args[0]);
+
+ // Find the requested script.
+ Handle<Object> result =
+ Runtime_GetScriptFromScriptName(Handle<String>(script_name));
+ return *result;
+}
+
+
+// Determines whether the given stack frame should be displayed in
+// a stack trace. The caller is the error constructor that asked
+// for the stack trace to be collected. The first time a construct
+// call to this function is encountered it is skipped. The seen_caller
+// in/out parameter is used to remember if the caller has been seen
+// yet.
+static bool ShowFrameInStackTrace(StackFrame* raw_frame, Object* caller,
+ bool* seen_caller) {
+ // Only display JS frames.
+ if (!raw_frame->is_java_script())
+ return false;
+ JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame);
+ Object* raw_fun = frame->function();
+ // Not sure when this can happen but skip it just in case.
+ if (!raw_fun->IsJSFunction())
+ return false;
+ if ((raw_fun == caller) && !(*seen_caller)) {
+ *seen_caller = true;
+ return false;
+ }
+ // Skip all frames until we've seen the caller. Also, skip the most
+ // obvious builtin calls. Some builtin calls (such as Number.ADD
+ // which is invoked using 'call') are very difficult to recognize
+ // so we're leaving them in for now.
+ return *seen_caller && !frame->receiver()->IsJSBuiltinsObject();
+}
+
+
+// Collect the raw data for a stack trace. Returns an array of 4
+// element segments each containing a receiver, function, code and
+// native code offset.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_CollectStackTrace) {
+ ASSERT_EQ(args.length(), 2);
+ Handle<Object> caller = args.at<Object>(0);
+ CONVERT_NUMBER_CHECKED(int32_t, limit, Int32, args[1]);
+
+ HandleScope scope(isolate);
+ Factory* factory = isolate->factory();
+
+ limit = Max(limit, 0); // Ensure that limit is not negative.
+ int initial_size = Min(limit, 10);
+ Handle<FixedArray> elements =
+ factory->NewFixedArrayWithHoles(initial_size * 4);
+
+ StackFrameIterator iter(isolate);
+ // If the caller parameter is a function we skip frames until we're
+ // under it before starting to collect.
+ bool seen_caller = !caller->IsJSFunction();
+ int cursor = 0;
+ int frames_seen = 0;
+ while (!iter.done() && frames_seen < limit) {
+ StackFrame* raw_frame = iter.frame();
+ if (ShowFrameInStackTrace(raw_frame, *caller, &seen_caller)) {
+ frames_seen++;
+ JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame);
+ // Set initial size to the maximum inlining level + 1 for the outermost
+ // function.
+ List<FrameSummary> frames(Compiler::kMaxInliningLevels + 1);
+ frame->Summarize(&frames);
+ for (int i = frames.length() - 1; i >= 0; i--) {
+ if (cursor + 4 > elements->length()) {
+ int new_capacity = JSObject::NewElementsCapacity(elements->length());
+ Handle<FixedArray> new_elements =
+ factory->NewFixedArrayWithHoles(new_capacity);
+ for (int i = 0; i < cursor; i++) {
+ new_elements->set(i, elements->get(i));
+ }
+ elements = new_elements;
+ }
+ ASSERT(cursor + 4 <= elements->length());
+
+ Handle<Object> recv = frames[i].receiver();
+ Handle<JSFunction> fun = frames[i].function();
+ Handle<Code> code = frames[i].code();
+ Handle<Smi> offset(Smi::FromInt(frames[i].offset()));
+ elements->set(cursor++, *recv);
+ elements->set(cursor++, *fun);
+ elements->set(cursor++, *code);
+ elements->set(cursor++, *offset);
+ }
+ }
+ iter.Advance();
+ }
+ Handle<JSArray> result = factory->NewJSArrayWithElements(elements);
+ result->set_length(Smi::FromInt(cursor));
+ return *result;
+}
+
+
+// Returns V8 version as a string.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetV8Version) {
+ ASSERT_EQ(args.length(), 0);
+
+ NoHandleAllocation ha;
+
+ const char* version_string = v8::V8::GetVersion();
+
+ return isolate->heap()->AllocateStringFromAscii(CStrVector(version_string),
+ NOT_TENURED);
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Abort) {
+ ASSERT(args.length() == 2);
+ OS::PrintError("abort: %s\n", reinterpret_cast<char*>(args[0]) +
+ Smi::cast(args[1])->value());
+ isolate->PrintStack();
+ OS::Abort();
+ UNREACHABLE();
+ return NULL;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_GetFromCache) {
+ // This is only called from codegen, so checks might be more lax.
+ CONVERT_CHECKED(JSFunctionResultCache, cache, args[0]);
+ Object* key = args[1];
+
+ int finger_index = cache->finger_index();
+ Object* o = cache->get(finger_index);
+ if (o == key) {
+ // The fastest case: hit the same place again.
+ return cache->get(finger_index + 1);
+ }
+
+ for (int i = finger_index - 2;
+ i >= JSFunctionResultCache::kEntriesIndex;
+ i -= 2) {
+ o = cache->get(i);
+ if (o == key) {
+ cache->set_finger_index(i);
+ return cache->get(i + 1);
+ }
+ }
+
+ int size = cache->size();
+ ASSERT(size <= cache->length());
+
+ for (int i = size - 2; i > finger_index; i -= 2) {
+ o = cache->get(i);
+ if (o == key) {
+ cache->set_finger_index(i);
+ return cache->get(i + 1);
+ }
+ }
+
+ // There is no value in the cache. Invoke the function and cache result.
+ HandleScope scope(isolate);
+
+ Handle<JSFunctionResultCache> cache_handle(cache);
+ Handle<Object> key_handle(key);
+ Handle<Object> value;
+ {
+ Handle<JSFunction> factory(JSFunction::cast(
+ cache_handle->get(JSFunctionResultCache::kFactoryIndex)));
+ // TODO(antonm): consider passing a receiver when constructing a cache.
+ Handle<Object> receiver(isolate->global_context()->global());
+ // This handle is nor shared, nor used later, so it's safe.
+ Object** argv[] = { key_handle.location() };
+ bool pending_exception = false;
+ value = Execution::Call(factory,
+ receiver,
+ 1,
+ argv,
+ &pending_exception);
+ if (pending_exception) return Failure::Exception();
+ }
+
+#ifdef DEBUG
+ cache_handle->JSFunctionResultCacheVerify();
+#endif
+
+ // Function invocation may have cleared the cache. Reread all the data.
+ finger_index = cache_handle->finger_index();
+ size = cache_handle->size();
+
+ // If we have spare room, put new data into it, otherwise evict post finger
+ // entry which is likely to be the least recently used.
+ int index = -1;
+ if (size < cache_handle->length()) {
+ cache_handle->set_size(size + JSFunctionResultCache::kEntrySize);
+ index = size;
+ } else {
+ index = finger_index + JSFunctionResultCache::kEntrySize;
+ if (index == cache_handle->length()) {
+ index = JSFunctionResultCache::kEntriesIndex;
+ }
+ }
+
+ ASSERT(index % 2 == 0);
+ ASSERT(index >= JSFunctionResultCache::kEntriesIndex);
+ ASSERT(index < cache_handle->length());
+
+ cache_handle->set(index, *key_handle);
+ cache_handle->set(index + 1, *value);
+ cache_handle->set_finger_index(index);
+
+#ifdef DEBUG
+ cache_handle->JSFunctionResultCacheVerify();
+#endif
+
+ return *value;
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_NewMessageObject) {
+ HandleScope scope(isolate);
+ CONVERT_ARG_CHECKED(String, type, 0);
+ CONVERT_ARG_CHECKED(JSArray, arguments, 1);
+ return *isolate->factory()->NewJSMessageObject(
+ type,
+ arguments,
+ 0,
+ 0,
+ isolate->factory()->undefined_value(),
+ isolate->factory()->undefined_value(),
+ isolate->factory()->undefined_value());
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetType) {
+ CONVERT_CHECKED(JSMessageObject, message, args[0]);
+ return message->type();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetArguments) {
+ CONVERT_CHECKED(JSMessageObject, message, args[0]);
+ return message->arguments();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetStartPosition) {
+ CONVERT_CHECKED(JSMessageObject, message, args[0]);
+ return Smi::FromInt(message->start_position());
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_MessageGetScript) {
+ CONVERT_CHECKED(JSMessageObject, message, args[0]);
+ return message->script();
+}
+
+
+#ifdef DEBUG
+// ListNatives is ONLY used by the fuzz-natives.js in debug mode
+// Exclude the code in release mode.
+RUNTIME_FUNCTION(MaybeObject*, Runtime_ListNatives) {
+ ASSERT(args.length() == 0);
+ HandleScope scope;
+#define COUNT_ENTRY(Name, argc, ressize) + 1
+ int entry_count = 0
+ RUNTIME_FUNCTION_LIST(COUNT_ENTRY)
+ INLINE_FUNCTION_LIST(COUNT_ENTRY)
+ INLINE_RUNTIME_FUNCTION_LIST(COUNT_ENTRY);
+#undef COUNT_ENTRY
+ Factory* factory = isolate->factory();
+ Handle<FixedArray> elements = factory->NewFixedArray(entry_count);
+ int index = 0;
+ bool inline_runtime_functions = false;
+#define ADD_ENTRY(Name, argc, ressize) \
+ { \
+ HandleScope inner; \
+ Handle<String> name; \
+ /* Inline runtime functions have an underscore in front of the name. */ \
+ if (inline_runtime_functions) { \
+ name = factory->NewStringFromAscii( \
+ Vector<const char>("_" #Name, StrLength("_" #Name))); \
+ } else { \
+ name = factory->NewStringFromAscii( \
+ Vector<const char>(#Name, StrLength(#Name))); \
+ } \
+ Handle<FixedArray> pair_elements = factory->NewFixedArray(2); \
+ pair_elements->set(0, *name); \
+ pair_elements->set(1, Smi::FromInt(argc)); \
+ Handle<JSArray> pair = factory->NewJSArrayWithElements(pair_elements); \
+ elements->set(index++, *pair); \
+ }
+ inline_runtime_functions = false;
+ RUNTIME_FUNCTION_LIST(ADD_ENTRY)
+ inline_runtime_functions = true;
+ INLINE_FUNCTION_LIST(ADD_ENTRY)
+ INLINE_RUNTIME_FUNCTION_LIST(ADD_ENTRY)
+#undef ADD_ENTRY
+ ASSERT_EQ(index, entry_count);
+ Handle<JSArray> result = factory->NewJSArrayWithElements(elements);
+ return *result;
+}
+#endif
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_Log) {
+ ASSERT(args.length() == 2);
+ CONVERT_CHECKED(String, format, args[0]);
+ CONVERT_CHECKED(JSArray, elms, args[1]);
+ Vector<const char> chars = format->ToAsciiVector();
+ LOGGER->LogRuntime(chars, elms);
+ return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(MaybeObject*, Runtime_IS_VAR) {
+ UNREACHABLE(); // implemented as macro in the parser
+ return NULL;
+}
+
+
+// ----------------------------------------------------------------------------
+// Implementation of Runtime
+
+#define F(name, number_of_args, result_size) \
+ { Runtime::k##name, Runtime::RUNTIME, #name, \
+ FUNCTION_ADDR(Runtime_##name), number_of_args, result_size },
+
+
+#define I(name, number_of_args, result_size) \
+ { Runtime::kInline##name, Runtime::INLINE, \
+ "_" #name, NULL, number_of_args, result_size },
+
+static const Runtime::Function kIntrinsicFunctions[] = {
+ RUNTIME_FUNCTION_LIST(F)
+ INLINE_FUNCTION_LIST(I)
+ INLINE_RUNTIME_FUNCTION_LIST(I)
+};
+
+
+MaybeObject* Runtime::InitializeIntrinsicFunctionNames(Heap* heap,
+ Object* dictionary) {
+ ASSERT(Isolate::Current()->heap() == heap);
+ ASSERT(dictionary != NULL);
+ ASSERT(StringDictionary::cast(dictionary)->NumberOfElements() == 0);
+ for (int i = 0; i < kNumFunctions; ++i) {
+ Object* name_symbol;
+ { MaybeObject* maybe_name_symbol =
+ heap->LookupAsciiSymbol(kIntrinsicFunctions[i].name);
+ if (!maybe_name_symbol->ToObject(&name_symbol)) return maybe_name_symbol;
+ }
+ StringDictionary* string_dictionary = StringDictionary::cast(dictionary);
+ { MaybeObject* maybe_dictionary = string_dictionary->Add(
+ String::cast(name_symbol),
+ Smi::FromInt(i),
+ PropertyDetails(NONE, NORMAL));
+ if (!maybe_dictionary->ToObject(&dictionary)) {
+ // Non-recoverable failure. Calling code must restart heap
+ // initialization.
+ return maybe_dictionary;
+ }
+ }
+ }
+ return dictionary;
+}
+
+
+const Runtime::Function* Runtime::FunctionForSymbol(Handle<String> name) {
+ Heap* heap = name->GetHeap();
+ int entry = heap->intrinsic_function_names()->FindEntry(*name);
+ if (entry != kNotFound) {
+ Object* smi_index = heap->intrinsic_function_names()->ValueAt(entry);
+ int function_index = Smi::cast(smi_index)->value();
+ return &(kIntrinsicFunctions[function_index]);
+ }
+ return NULL;
+}
+
+
+const Runtime::Function* Runtime::FunctionForId(Runtime::FunctionId id) {
+ return &(kIntrinsicFunctions[static_cast<int>(id)]);
+}
+
+
+void Runtime::PerformGC(Object* result) {
+ Isolate* isolate = Isolate::Current();
+ Failure* failure = Failure::cast(result);
+ if (failure->IsRetryAfterGC()) {
+ // Try to do a garbage collection; ignore it if it fails. The C
+ // entry stub will throw an out-of-memory exception in that case.
+ isolate->heap()->CollectGarbage(failure->allocation_space());
+ } else {
+ // Handle last resort GC and make sure to allow future allocations
+ // to grow the heap without causing GCs (if possible).
+ isolate->counters()->gc_last_resort_from_js()->Increment();
+ isolate->heap()->CollectAllGarbage(false);
+ }
+}
+
+
+} } // namespace v8::internal