summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/platform-solaris.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/platform-solaris.cc')
-rw-r--r--src/3rdparty/v8/src/platform-solaris.cc796
1 files changed, 796 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/platform-solaris.cc b/src/3rdparty/v8/src/platform-solaris.cc
new file mode 100644
index 0000000..da278f3
--- /dev/null
+++ b/src/3rdparty/v8/src/platform-solaris.cc
@@ -0,0 +1,796 @@
+// Copyright 2006-2009 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Platform specific code for Solaris 10 goes here. For the POSIX comaptible
+// parts the implementation is in platform-posix.cc.
+
+#ifdef __sparc
+# error "V8 does not support the SPARC CPU architecture."
+#endif
+
+#include <sys/stack.h> // for stack alignment
+#include <unistd.h> // getpagesize(), usleep()
+#include <sys/mman.h> // mmap()
+#include <ucontext.h> // walkstack(), getcontext()
+#include <dlfcn.h> // dladdr
+#include <pthread.h>
+#include <sched.h> // for sched_yield
+#include <semaphore.h>
+#include <time.h>
+#include <sys/time.h> // gettimeofday(), timeradd()
+#include <errno.h>
+#include <ieeefp.h> // finite()
+#include <signal.h> // sigemptyset(), etc
+#include <sys/regset.h>
+
+
+#undef MAP_TYPE
+
+#include "v8.h"
+
+#include "platform.h"
+#include "vm-state-inl.h"
+
+
+// It seems there is a bug in some Solaris distributions (experienced in
+// SunOS 5.10 Generic_141445-09) which make it difficult or impossible to
+// access signbit() despite the availability of other C99 math functions.
+#ifndef signbit
+// Test sign - usually defined in math.h
+int signbit(double x) {
+ // We need to take care of the special case of both positive and negative
+ // versions of zero.
+ if (x == 0) {
+ return fpclass(x) & FP_NZERO;
+ } else {
+ // This won't detect negative NaN but that should be okay since we don't
+ // assume that behavior.
+ return x < 0;
+ }
+}
+#endif // signbit
+
+namespace v8 {
+namespace internal {
+
+
+// 0 is never a valid thread id on Solaris since the main thread is 1 and
+// subsequent have their ids incremented from there
+static const pthread_t kNoThread = (pthread_t) 0;
+
+
+double ceiling(double x) {
+ return ceil(x);
+}
+
+
+void OS::Setup() {
+ // Seed the random number generator.
+ // Convert the current time to a 64-bit integer first, before converting it
+ // to an unsigned. Going directly will cause an overflow and the seed to be
+ // set to all ones. The seed will be identical for different instances that
+ // call this setup code within the same millisecond.
+ uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
+ srandom(static_cast<unsigned int>(seed));
+}
+
+
+uint64_t OS::CpuFeaturesImpliedByPlatform() {
+ return 0; // Solaris runs on a lot of things.
+}
+
+
+int OS::ActivationFrameAlignment() {
+ return STACK_ALIGN;
+}
+
+
+void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
+ __asm__ __volatile__("" : : : "memory");
+ *ptr = value;
+}
+
+
+const char* OS::LocalTimezone(double time) {
+ if (isnan(time)) return "";
+ time_t tv = static_cast<time_t>(floor(time/msPerSecond));
+ struct tm* t = localtime(&tv);
+ if (NULL == t) return "";
+ return tzname[0]; // The location of the timezone string on Solaris.
+}
+
+
+double OS::LocalTimeOffset() {
+ // On Solaris, struct tm does not contain a tm_gmtoff field.
+ time_t utc = time(NULL);
+ ASSERT(utc != -1);
+ struct tm* loc = localtime(&utc);
+ ASSERT(loc != NULL);
+ return static_cast<double>((mktime(loc) - utc) * msPerSecond);
+}
+
+
+// We keep the lowest and highest addresses mapped as a quick way of
+// determining that pointers are outside the heap (used mostly in assertions
+// and verification). The estimate is conservative, ie, not all addresses in
+// 'allocated' space are actually allocated to our heap. The range is
+// [lowest, highest), inclusive on the low and and exclusive on the high end.
+static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
+static void* highest_ever_allocated = reinterpret_cast<void*>(0);
+
+
+static void UpdateAllocatedSpaceLimits(void* address, int size) {
+ lowest_ever_allocated = Min(lowest_ever_allocated, address);
+ highest_ever_allocated =
+ Max(highest_ever_allocated,
+ reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
+}
+
+
+bool OS::IsOutsideAllocatedSpace(void* address) {
+ return address < lowest_ever_allocated || address >= highest_ever_allocated;
+}
+
+
+size_t OS::AllocateAlignment() {
+ return static_cast<size_t>(getpagesize());
+}
+
+
+void* OS::Allocate(const size_t requested,
+ size_t* allocated,
+ bool is_executable) {
+ const size_t msize = RoundUp(requested, getpagesize());
+ int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
+ void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
+
+ if (mbase == MAP_FAILED) {
+ LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed"));
+ return NULL;
+ }
+ *allocated = msize;
+ UpdateAllocatedSpaceLimits(mbase, msize);
+ return mbase;
+}
+
+
+void OS::Free(void* address, const size_t size) {
+ // TODO(1240712): munmap has a return value which is ignored here.
+ int result = munmap(address, size);
+ USE(result);
+ ASSERT(result == 0);
+}
+
+
+#ifdef ENABLE_HEAP_PROTECTION
+
+void OS::Protect(void* address, size_t size) {
+ // TODO(1240712): mprotect has a return value which is ignored here.
+ mprotect(address, size, PROT_READ);
+}
+
+
+void OS::Unprotect(void* address, size_t size, bool is_executable) {
+ // TODO(1240712): mprotect has a return value which is ignored here.
+ int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
+ mprotect(address, size, prot);
+}
+
+#endif
+
+
+void OS::Sleep(int milliseconds) {
+ useconds_t ms = static_cast<useconds_t>(milliseconds);
+ usleep(1000 * ms);
+}
+
+
+void OS::Abort() {
+ // Redirect to std abort to signal abnormal program termination.
+ abort();
+}
+
+
+void OS::DebugBreak() {
+ asm("int $3");
+}
+
+
+class PosixMemoryMappedFile : public OS::MemoryMappedFile {
+ public:
+ PosixMemoryMappedFile(FILE* file, void* memory, int size)
+ : file_(file), memory_(memory), size_(size) { }
+ virtual ~PosixMemoryMappedFile();
+ virtual void* memory() { return memory_; }
+ virtual int size() { return size_; }
+ private:
+ FILE* file_;
+ void* memory_;
+ int size_;
+};
+
+
+OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
+ FILE* file = fopen(name, "r+");
+ if (file == NULL) return NULL;
+
+ fseek(file, 0, SEEK_END);
+ int size = ftell(file);
+
+ void* memory =
+ mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
+ return new PosixMemoryMappedFile(file, memory, size);
+}
+
+
+OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
+ void* initial) {
+ FILE* file = fopen(name, "w+");
+ if (file == NULL) return NULL;
+ int result = fwrite(initial, size, 1, file);
+ if (result < 1) {
+ fclose(file);
+ return NULL;
+ }
+ void* memory =
+ mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
+ return new PosixMemoryMappedFile(file, memory, size);
+}
+
+
+PosixMemoryMappedFile::~PosixMemoryMappedFile() {
+ if (memory_) munmap(memory_, size_);
+ fclose(file_);
+}
+
+
+void OS::LogSharedLibraryAddresses() {
+}
+
+
+void OS::SignalCodeMovingGC() {
+}
+
+
+struct StackWalker {
+ Vector<OS::StackFrame>& frames;
+ int index;
+};
+
+
+static int StackWalkCallback(uintptr_t pc, int signo, void* data) {
+ struct StackWalker* walker = static_cast<struct StackWalker*>(data);
+ Dl_info info;
+
+ int i = walker->index;
+
+ walker->frames[i].address = reinterpret_cast<void*>(pc);
+
+ // Make sure line termination is in place.
+ walker->frames[i].text[OS::kStackWalkMaxTextLen - 1] = '\0';
+
+ Vector<char> text = MutableCStrVector(walker->frames[i].text,
+ OS::kStackWalkMaxTextLen);
+
+ if (dladdr(reinterpret_cast<void*>(pc), &info) == 0) {
+ OS::SNPrintF(text, "[0x%p]", pc);
+ } else if ((info.dli_fname != NULL && info.dli_sname != NULL)) {
+ // We have symbol info.
+ OS::SNPrintF(text, "%s'%s+0x%x", info.dli_fname, info.dli_sname, pc);
+ } else {
+ // No local symbol info.
+ OS::SNPrintF(text,
+ "%s'0x%p [0x%p]",
+ info.dli_fname,
+ pc - reinterpret_cast<uintptr_t>(info.dli_fbase),
+ pc);
+ }
+ walker->index++;
+ return 0;
+}
+
+
+int OS::StackWalk(Vector<OS::StackFrame> frames) {
+ ucontext_t ctx;
+ struct StackWalker walker = { frames, 0 };
+
+ if (getcontext(&ctx) < 0) return kStackWalkError;
+
+ if (!walkcontext(&ctx, StackWalkCallback, &walker)) {
+ return kStackWalkError;
+ }
+
+ return walker.index;
+}
+
+
+// Constants used for mmap.
+static const int kMmapFd = -1;
+static const int kMmapFdOffset = 0;
+
+
+VirtualMemory::VirtualMemory(size_t size) {
+ address_ = mmap(NULL, size, PROT_NONE,
+ MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
+ kMmapFd, kMmapFdOffset);
+ size_ = size;
+}
+
+
+VirtualMemory::~VirtualMemory() {
+ if (IsReserved()) {
+ if (0 == munmap(address(), size())) address_ = MAP_FAILED;
+ }
+}
+
+
+bool VirtualMemory::IsReserved() {
+ return address_ != MAP_FAILED;
+}
+
+
+bool VirtualMemory::Commit(void* address, size_t size, bool executable) {
+ int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0);
+ if (MAP_FAILED == mmap(address, size, prot,
+ MAP_PRIVATE | MAP_ANON | MAP_FIXED,
+ kMmapFd, kMmapFdOffset)) {
+ return false;
+ }
+
+ UpdateAllocatedSpaceLimits(address, size);
+ return true;
+}
+
+
+bool VirtualMemory::Uncommit(void* address, size_t size) {
+ return mmap(address, size, PROT_NONE,
+ MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
+ kMmapFd, kMmapFdOffset) != MAP_FAILED;
+}
+
+
+class ThreadHandle::PlatformData : public Malloced {
+ public:
+ explicit PlatformData(ThreadHandle::Kind kind) {
+ Initialize(kind);
+ }
+
+ void Initialize(ThreadHandle::Kind kind) {
+ switch (kind) {
+ case ThreadHandle::SELF: thread_ = pthread_self(); break;
+ case ThreadHandle::INVALID: thread_ = kNoThread; break;
+ }
+ }
+
+ pthread_t thread_; // Thread handle for pthread.
+};
+
+
+ThreadHandle::ThreadHandle(Kind kind) {
+ data_ = new PlatformData(kind);
+}
+
+
+void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
+ data_->Initialize(kind);
+}
+
+
+ThreadHandle::~ThreadHandle() {
+ delete data_;
+}
+
+
+bool ThreadHandle::IsSelf() const {
+ return pthread_equal(data_->thread_, pthread_self());
+}
+
+
+bool ThreadHandle::IsValid() const {
+ return data_->thread_ != kNoThread;
+}
+
+
+Thread::Thread(Isolate* isolate, const Options& options)
+ : ThreadHandle(ThreadHandle::INVALID),
+ isolate_(isolate),
+ stack_size_(options.stack_size) {
+ set_name(options.name);
+}
+
+
+Thread::Thread(Isolate* isolate, const char* name)
+ : ThreadHandle(ThreadHandle::INVALID),
+ isolate_(isolate),
+ stack_size_(0) {
+ set_name(name);
+}
+
+
+Thread::~Thread() {
+}
+
+
+static void* ThreadEntry(void* arg) {
+ Thread* thread = reinterpret_cast<Thread*>(arg);
+ // This is also initialized by the first argument to pthread_create() but we
+ // don't know which thread will run first (the original thread or the new
+ // one) so we initialize it here too.
+ thread->thread_handle_data()->thread_ = pthread_self();
+ ASSERT(thread->IsValid());
+ Thread::SetThreadLocal(Isolate::isolate_key(), thread->isolate());
+ thread->Run();
+ return NULL;
+}
+
+
+void Thread::set_name(const char* name) {
+ strncpy(name_, name, sizeof(name_));
+ name_[sizeof(name_) - 1] = '\0';
+}
+
+
+void Thread::Start() {
+ pthread_attr_t* attr_ptr = NULL;
+ pthread_attr_t attr;
+ if (stack_size_ > 0) {
+ pthread_attr_init(&attr);
+ pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
+ attr_ptr = &attr;
+ }
+ pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
+ ASSERT(IsValid());
+}
+
+
+void Thread::Join() {
+ pthread_join(thread_handle_data()->thread_, NULL);
+}
+
+
+Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
+ pthread_key_t key;
+ int result = pthread_key_create(&key, NULL);
+ USE(result);
+ ASSERT(result == 0);
+ return static_cast<LocalStorageKey>(key);
+}
+
+
+void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
+ pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
+ int result = pthread_key_delete(pthread_key);
+ USE(result);
+ ASSERT(result == 0);
+}
+
+
+void* Thread::GetThreadLocal(LocalStorageKey key) {
+ pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
+ return pthread_getspecific(pthread_key);
+}
+
+
+void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
+ pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
+ pthread_setspecific(pthread_key, value);
+}
+
+
+void Thread::YieldCPU() {
+ sched_yield();
+}
+
+
+class SolarisMutex : public Mutex {
+ public:
+
+ SolarisMutex() {
+ pthread_mutexattr_t attr;
+ pthread_mutexattr_init(&attr);
+ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
+ pthread_mutex_init(&mutex_, &attr);
+ }
+
+ ~SolarisMutex() { pthread_mutex_destroy(&mutex_); }
+
+ int Lock() { return pthread_mutex_lock(&mutex_); }
+
+ int Unlock() { return pthread_mutex_unlock(&mutex_); }
+
+ virtual bool TryLock() {
+ int result = pthread_mutex_trylock(&mutex_);
+ // Return false if the lock is busy and locking failed.
+ if (result == EBUSY) {
+ return false;
+ }
+ ASSERT(result == 0); // Verify no other errors.
+ return true;
+ }
+
+ private:
+ pthread_mutex_t mutex_;
+};
+
+
+Mutex* OS::CreateMutex() {
+ return new SolarisMutex();
+}
+
+
+class SolarisSemaphore : public Semaphore {
+ public:
+ explicit SolarisSemaphore(int count) { sem_init(&sem_, 0, count); }
+ virtual ~SolarisSemaphore() { sem_destroy(&sem_); }
+
+ virtual void Wait();
+ virtual bool Wait(int timeout);
+ virtual void Signal() { sem_post(&sem_); }
+ private:
+ sem_t sem_;
+};
+
+
+void SolarisSemaphore::Wait() {
+ while (true) {
+ int result = sem_wait(&sem_);
+ if (result == 0) return; // Successfully got semaphore.
+ CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
+ }
+}
+
+
+#ifndef TIMEVAL_TO_TIMESPEC
+#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
+ (ts)->tv_sec = (tv)->tv_sec; \
+ (ts)->tv_nsec = (tv)->tv_usec * 1000; \
+} while (false)
+#endif
+
+
+#ifndef timeradd
+#define timeradd(a, b, result) \
+ do { \
+ (result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \
+ (result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \
+ if ((result)->tv_usec >= 1000000) { \
+ ++(result)->tv_sec; \
+ (result)->tv_usec -= 1000000; \
+ } \
+ } while (0)
+#endif
+
+
+bool SolarisSemaphore::Wait(int timeout) {
+ const long kOneSecondMicros = 1000000; // NOLINT
+
+ // Split timeout into second and nanosecond parts.
+ struct timeval delta;
+ delta.tv_usec = timeout % kOneSecondMicros;
+ delta.tv_sec = timeout / kOneSecondMicros;
+
+ struct timeval current_time;
+ // Get the current time.
+ if (gettimeofday(&current_time, NULL) == -1) {
+ return false;
+ }
+
+ // Calculate time for end of timeout.
+ struct timeval end_time;
+ timeradd(&current_time, &delta, &end_time);
+
+ struct timespec ts;
+ TIMEVAL_TO_TIMESPEC(&end_time, &ts);
+ // Wait for semaphore signalled or timeout.
+ while (true) {
+ int result = sem_timedwait(&sem_, &ts);
+ if (result == 0) return true; // Successfully got semaphore.
+ if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
+ CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
+ }
+}
+
+
+Semaphore* OS::CreateSemaphore(int count) {
+ return new SolarisSemaphore(count);
+}
+
+
+#ifdef ENABLE_LOGGING_AND_PROFILING
+
+static Sampler* active_sampler_ = NULL;
+static pthread_t vm_tid_ = 0;
+
+
+static pthread_t GetThreadID() {
+ return pthread_self();
+}
+
+
+static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
+ USE(info);
+ if (signal != SIGPROF) return;
+ if (active_sampler_ == NULL || !active_sampler_->IsActive()) return;
+ if (vm_tid_ != GetThreadID()) return;
+
+ TickSample sample_obj;
+ TickSample* sample = CpuProfiler::TickSampleEvent();
+ if (sample == NULL) sample = &sample_obj;
+
+ // Extracting the sample from the context is extremely machine dependent.
+ ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
+ mcontext_t& mcontext = ucontext->uc_mcontext;
+ sample->state = Top::current_vm_state();
+
+ sample->pc = reinterpret_cast<Address>(mcontext.gregs[REG_PC]);
+ sample->sp = reinterpret_cast<Address>(mcontext.gregs[REG_SP]);
+ sample->fp = reinterpret_cast<Address>(mcontext.gregs[REG_FP]);
+
+ active_sampler_->SampleStack(sample);
+ active_sampler_->Tick(sample);
+}
+
+
+class Sampler::PlatformData : public Malloced {
+ public:
+ enum SleepInterval {
+ FULL_INTERVAL,
+ HALF_INTERVAL
+ };
+
+ explicit PlatformData(Sampler* sampler)
+ : sampler_(sampler),
+ signal_handler_installed_(false),
+ vm_tgid_(getpid()),
+ signal_sender_launched_(false) {
+ }
+
+ void SignalSender() {
+ while (sampler_->IsActive()) {
+ if (rate_limiter_.SuspendIfNecessary()) continue;
+ if (sampler_->IsProfiling() && RuntimeProfiler::IsEnabled()) {
+ SendProfilingSignal();
+ Sleep(HALF_INTERVAL);
+ RuntimeProfiler::NotifyTick();
+ Sleep(HALF_INTERVAL);
+ } else {
+ if (sampler_->IsProfiling()) SendProfilingSignal();
+ if (RuntimeProfiler::IsEnabled()) RuntimeProfiler::NotifyTick();
+ Sleep(FULL_INTERVAL);
+ }
+ }
+ }
+
+ void SendProfilingSignal() {
+ if (!signal_handler_installed_) return;
+ pthread_kill(vm_tid_, SIGPROF);
+ }
+
+ void Sleep(SleepInterval full_or_half) {
+ // Convert ms to us and subtract 100 us to compensate delays
+ // occuring during signal delivery.
+ useconds_t interval = sampler_->interval_ * 1000 - 100;
+ if (full_or_half == HALF_INTERVAL) interval /= 2;
+ int result = usleep(interval);
+#ifdef DEBUG
+ if (result != 0 && errno != EINTR) {
+ fprintf(stderr,
+ "SignalSender usleep error; interval = %u, errno = %d\n",
+ interval,
+ errno);
+ ASSERT(result == 0 || errno == EINTR);
+ }
+#endif
+ USE(result);
+ }
+
+ Sampler* sampler_;
+ bool signal_handler_installed_;
+ struct sigaction old_signal_handler_;
+ int vm_tgid_;
+ bool signal_sender_launched_;
+ pthread_t signal_sender_thread_;
+ RuntimeProfilerRateLimiter rate_limiter_;
+};
+
+
+static void* SenderEntry(void* arg) {
+ Sampler::PlatformData* data =
+ reinterpret_cast<Sampler::PlatformData*>(arg);
+ data->SignalSender();
+ return 0;
+}
+
+
+Sampler::Sampler(Isolate* isolate, int interval)
+ : isolate_(isolate),
+ interval_(interval),
+ profiling_(false),
+ active_(false),
+ samples_taken_(0) {
+ data_ = new PlatformData(this);
+}
+
+
+Sampler::~Sampler() {
+ ASSERT(!data_->signal_sender_launched_);
+ delete data_;
+}
+
+
+void Sampler::Start() {
+ // There can only be one active sampler at the time on POSIX
+ // platforms.
+ ASSERT(!IsActive());
+ vm_tid_ = GetThreadID();
+
+ // Request profiling signals.
+ struct sigaction sa;
+ sa.sa_sigaction = ProfilerSignalHandler;
+ sigemptyset(&sa.sa_mask);
+ sa.sa_flags = SA_RESTART | SA_SIGINFO;
+ data_->signal_handler_installed_ =
+ sigaction(SIGPROF, &sa, &data_->old_signal_handler_) == 0;
+
+ // Start a thread that sends SIGPROF signal to VM thread.
+ // Sending the signal ourselves instead of relying on itimer provides
+ // much better accuracy.
+ SetActive(true);
+ if (pthread_create(
+ &data_->signal_sender_thread_, NULL, SenderEntry, data_) == 0) {
+ data_->signal_sender_launched_ = true;
+ }
+
+ // Set this sampler as the active sampler.
+ active_sampler_ = this;
+}
+
+
+void Sampler::Stop() {
+ SetActive(false);
+
+ // Wait for signal sender termination (it will exit after setting
+ // active_ to false).
+ if (data_->signal_sender_launched_) {
+ Top::WakeUpRuntimeProfilerThreadBeforeShutdown();
+ pthread_join(data_->signal_sender_thread_, NULL);
+ data_->signal_sender_launched_ = false;
+ }
+
+ // Restore old signal handler
+ if (data_->signal_handler_installed_) {
+ sigaction(SIGPROF, &data_->old_signal_handler_, 0);
+ data_->signal_handler_installed_ = false;
+ }
+
+ // This sampler is no longer the active sampler.
+ active_sampler_ = NULL;
+}
+
+#endif // ENABLE_LOGGING_AND_PROFILING
+
+} } // namespace v8::internal