summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/objects-inl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/objects-inl.h')
-rw-r--r--src/3rdparty/v8/src/objects-inl.h4166
1 files changed, 4166 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/objects-inl.h b/src/3rdparty/v8/src/objects-inl.h
new file mode 100644
index 0000000..37c51d7
--- /dev/null
+++ b/src/3rdparty/v8/src/objects-inl.h
@@ -0,0 +1,4166 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Review notes:
+//
+// - The use of macros in these inline functions may seem superfluous
+// but it is absolutely needed to make sure gcc generates optimal
+// code. gcc is not happy when attempting to inline too deep.
+//
+
+#ifndef V8_OBJECTS_INL_H_
+#define V8_OBJECTS_INL_H_
+
+#include "objects.h"
+#include "contexts.h"
+#include "conversions-inl.h"
+#include "heap.h"
+#include "isolate.h"
+#include "property.h"
+#include "spaces.h"
+#include "v8memory.h"
+
+namespace v8 {
+namespace internal {
+
+PropertyDetails::PropertyDetails(Smi* smi) {
+ value_ = smi->value();
+}
+
+
+Smi* PropertyDetails::AsSmi() {
+ return Smi::FromInt(value_);
+}
+
+
+PropertyDetails PropertyDetails::AsDeleted() {
+ Smi* smi = Smi::FromInt(value_ | DeletedField::encode(1));
+ return PropertyDetails(smi);
+}
+
+
+#define CAST_ACCESSOR(type) \
+ type* type::cast(Object* object) { \
+ ASSERT(object->Is##type()); \
+ return reinterpret_cast<type*>(object); \
+ }
+
+
+#define INT_ACCESSORS(holder, name, offset) \
+ int holder::name() { return READ_INT_FIELD(this, offset); } \
+ void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); }
+
+
+#define ACCESSORS(holder, name, type, offset) \
+ type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \
+ void holder::set_##name(type* value, WriteBarrierMode mode) { \
+ WRITE_FIELD(this, offset, value); \
+ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, mode); \
+ }
+
+
+// GC-safe accessors do not use HeapObject::GetHeap(), but access TLS instead.
+#define ACCESSORS_GCSAFE(holder, name, type, offset) \
+ type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \
+ void holder::set_##name(type* value, WriteBarrierMode mode) { \
+ WRITE_FIELD(this, offset, value); \
+ CONDITIONAL_WRITE_BARRIER(HEAP, this, offset, mode); \
+ }
+
+
+#define SMI_ACCESSORS(holder, name, offset) \
+ int holder::name() { \
+ Object* value = READ_FIELD(this, offset); \
+ return Smi::cast(value)->value(); \
+ } \
+ void holder::set_##name(int value) { \
+ WRITE_FIELD(this, offset, Smi::FromInt(value)); \
+ }
+
+
+#define BOOL_GETTER(holder, field, name, offset) \
+ bool holder::name() { \
+ return BooleanBit::get(field(), offset); \
+ } \
+
+
+#define BOOL_ACCESSORS(holder, field, name, offset) \
+ bool holder::name() { \
+ return BooleanBit::get(field(), offset); \
+ } \
+ void holder::set_##name(bool value) { \
+ set_##field(BooleanBit::set(field(), offset, value)); \
+ }
+
+
+bool Object::IsInstanceOf(FunctionTemplateInfo* expected) {
+ // There is a constraint on the object; check.
+ if (!this->IsJSObject()) return false;
+ // Fetch the constructor function of the object.
+ Object* cons_obj = JSObject::cast(this)->map()->constructor();
+ if (!cons_obj->IsJSFunction()) return false;
+ JSFunction* fun = JSFunction::cast(cons_obj);
+ // Iterate through the chain of inheriting function templates to
+ // see if the required one occurs.
+ for (Object* type = fun->shared()->function_data();
+ type->IsFunctionTemplateInfo();
+ type = FunctionTemplateInfo::cast(type)->parent_template()) {
+ if (type == expected) return true;
+ }
+ // Didn't find the required type in the inheritance chain.
+ return false;
+}
+
+
+bool Object::IsSmi() {
+ return HAS_SMI_TAG(this);
+}
+
+
+bool Object::IsHeapObject() {
+ return Internals::HasHeapObjectTag(this);
+}
+
+
+bool Object::IsHeapNumber() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == HEAP_NUMBER_TYPE;
+}
+
+
+bool Object::IsString() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE;
+}
+
+
+bool Object::IsSymbol() {
+ if (!this->IsHeapObject()) return false;
+ uint32_t type = HeapObject::cast(this)->map()->instance_type();
+ // Because the symbol tag is non-zero and no non-string types have the
+ // symbol bit set we can test for symbols with a very simple test
+ // operation.
+ ASSERT(kSymbolTag != 0);
+ ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
+ return (type & kIsSymbolMask) != 0;
+}
+
+
+bool Object::IsConsString() {
+ if (!this->IsHeapObject()) return false;
+ uint32_t type = HeapObject::cast(this)->map()->instance_type();
+ return (type & (kIsNotStringMask | kStringRepresentationMask)) ==
+ (kStringTag | kConsStringTag);
+}
+
+
+bool Object::IsSeqString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsSequential();
+}
+
+
+bool Object::IsSeqAsciiString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsSequential() &&
+ String::cast(this)->IsAsciiRepresentation();
+}
+
+
+bool Object::IsSeqTwoByteString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsSequential() &&
+ String::cast(this)->IsTwoByteRepresentation();
+}
+
+
+bool Object::IsExternalString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsExternal();
+}
+
+
+bool Object::IsExternalAsciiString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsExternal() &&
+ String::cast(this)->IsAsciiRepresentation();
+}
+
+
+bool Object::IsExternalTwoByteString() {
+ if (!IsString()) return false;
+ return StringShape(String::cast(this)).IsExternal() &&
+ String::cast(this)->IsTwoByteRepresentation();
+}
+
+
+StringShape::StringShape(String* str)
+ : type_(str->map()->instance_type()) {
+ set_valid();
+ ASSERT((type_ & kIsNotStringMask) == kStringTag);
+}
+
+
+StringShape::StringShape(Map* map)
+ : type_(map->instance_type()) {
+ set_valid();
+ ASSERT((type_ & kIsNotStringMask) == kStringTag);
+}
+
+
+StringShape::StringShape(InstanceType t)
+ : type_(static_cast<uint32_t>(t)) {
+ set_valid();
+ ASSERT((type_ & kIsNotStringMask) == kStringTag);
+}
+
+
+bool StringShape::IsSymbol() {
+ ASSERT(valid());
+ ASSERT(kSymbolTag != 0);
+ return (type_ & kIsSymbolMask) != 0;
+}
+
+
+bool String::IsAsciiRepresentation() {
+ uint32_t type = map()->instance_type();
+ return (type & kStringEncodingMask) == kAsciiStringTag;
+}
+
+
+bool String::IsTwoByteRepresentation() {
+ uint32_t type = map()->instance_type();
+ return (type & kStringEncodingMask) == kTwoByteStringTag;
+}
+
+
+bool String::HasOnlyAsciiChars() {
+ uint32_t type = map()->instance_type();
+ return (type & kStringEncodingMask) == kAsciiStringTag ||
+ (type & kAsciiDataHintMask) == kAsciiDataHintTag;
+}
+
+
+bool StringShape::IsCons() {
+ return (type_ & kStringRepresentationMask) == kConsStringTag;
+}
+
+
+bool StringShape::IsExternal() {
+ return (type_ & kStringRepresentationMask) == kExternalStringTag;
+}
+
+
+bool StringShape::IsSequential() {
+ return (type_ & kStringRepresentationMask) == kSeqStringTag;
+}
+
+
+StringRepresentationTag StringShape::representation_tag() {
+ uint32_t tag = (type_ & kStringRepresentationMask);
+ return static_cast<StringRepresentationTag>(tag);
+}
+
+
+uint32_t StringShape::full_representation_tag() {
+ return (type_ & (kStringRepresentationMask | kStringEncodingMask));
+}
+
+
+STATIC_CHECK((kStringRepresentationMask | kStringEncodingMask) ==
+ Internals::kFullStringRepresentationMask);
+
+
+bool StringShape::IsSequentialAscii() {
+ return full_representation_tag() == (kSeqStringTag | kAsciiStringTag);
+}
+
+
+bool StringShape::IsSequentialTwoByte() {
+ return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag);
+}
+
+
+bool StringShape::IsExternalAscii() {
+ return full_representation_tag() == (kExternalStringTag | kAsciiStringTag);
+}
+
+
+bool StringShape::IsExternalTwoByte() {
+ return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag);
+}
+
+
+STATIC_CHECK((kExternalStringTag | kTwoByteStringTag) ==
+ Internals::kExternalTwoByteRepresentationTag);
+
+
+uc32 FlatStringReader::Get(int index) {
+ ASSERT(0 <= index && index <= length_);
+ if (is_ascii_) {
+ return static_cast<const byte*>(start_)[index];
+ } else {
+ return static_cast<const uc16*>(start_)[index];
+ }
+}
+
+
+bool Object::IsNumber() {
+ return IsSmi() || IsHeapNumber();
+}
+
+
+bool Object::IsByteArray() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == BYTE_ARRAY_TYPE;
+}
+
+
+bool Object::IsExternalPixelArray() {
+ return Object::IsHeapObject() &&
+ HeapObject::cast(this)->map()->instance_type() ==
+ EXTERNAL_PIXEL_ARRAY_TYPE;
+}
+
+
+bool Object::IsExternalArray() {
+ if (!Object::IsHeapObject())
+ return false;
+ InstanceType instance_type =
+ HeapObject::cast(this)->map()->instance_type();
+ return (instance_type >= FIRST_EXTERNAL_ARRAY_TYPE &&
+ instance_type <= LAST_EXTERNAL_ARRAY_TYPE);
+}
+
+
+bool Object::IsExternalByteArray() {
+ return Object::IsHeapObject() &&
+ HeapObject::cast(this)->map()->instance_type() ==
+ EXTERNAL_BYTE_ARRAY_TYPE;
+}
+
+
+bool Object::IsExternalUnsignedByteArray() {
+ return Object::IsHeapObject() &&
+ HeapObject::cast(this)->map()->instance_type() ==
+ EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE;
+}
+
+
+bool Object::IsExternalShortArray() {
+ return Object::IsHeapObject() &&
+ HeapObject::cast(this)->map()->instance_type() ==
+ EXTERNAL_SHORT_ARRAY_TYPE;
+}
+
+
+bool Object::IsExternalUnsignedShortArray() {
+ return Object::IsHeapObject() &&
+ HeapObject::cast(this)->map()->instance_type() ==
+ EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE;
+}
+
+
+bool Object::IsExternalIntArray() {
+ return Object::IsHeapObject() &&
+ HeapObject::cast(this)->map()->instance_type() ==
+ EXTERNAL_INT_ARRAY_TYPE;
+}
+
+
+bool Object::IsExternalUnsignedIntArray() {
+ return Object::IsHeapObject() &&
+ HeapObject::cast(this)->map()->instance_type() ==
+ EXTERNAL_UNSIGNED_INT_ARRAY_TYPE;
+}
+
+
+bool Object::IsExternalFloatArray() {
+ return Object::IsHeapObject() &&
+ HeapObject::cast(this)->map()->instance_type() ==
+ EXTERNAL_FLOAT_ARRAY_TYPE;
+}
+
+
+bool MaybeObject::IsFailure() {
+ return HAS_FAILURE_TAG(this);
+}
+
+
+bool MaybeObject::IsRetryAfterGC() {
+ return HAS_FAILURE_TAG(this)
+ && Failure::cast(this)->type() == Failure::RETRY_AFTER_GC;
+}
+
+
+bool MaybeObject::IsOutOfMemory() {
+ return HAS_FAILURE_TAG(this)
+ && Failure::cast(this)->IsOutOfMemoryException();
+}
+
+
+bool MaybeObject::IsException() {
+ return this == Failure::Exception();
+}
+
+
+bool MaybeObject::IsTheHole() {
+ return !IsFailure() && ToObjectUnchecked()->IsTheHole();
+}
+
+
+Failure* Failure::cast(MaybeObject* obj) {
+ ASSERT(HAS_FAILURE_TAG(obj));
+ return reinterpret_cast<Failure*>(obj);
+}
+
+
+bool Object::IsJSObject() {
+ return IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_OBJECT_TYPE;
+}
+
+
+bool Object::IsJSContextExtensionObject() {
+ return IsHeapObject()
+ && (HeapObject::cast(this)->map()->instance_type() ==
+ JS_CONTEXT_EXTENSION_OBJECT_TYPE);
+}
+
+
+bool Object::IsMap() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == MAP_TYPE;
+}
+
+
+bool Object::IsFixedArray() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == FIXED_ARRAY_TYPE;
+}
+
+
+bool Object::IsDescriptorArray() {
+ return IsFixedArray();
+}
+
+
+bool Object::IsDeoptimizationInputData() {
+ // Must be a fixed array.
+ if (!IsFixedArray()) return false;
+
+ // There's no sure way to detect the difference between a fixed array and
+ // a deoptimization data array. Since this is used for asserts we can
+ // check that the length is zero or else the fixed size plus a multiple of
+ // the entry size.
+ int length = FixedArray::cast(this)->length();
+ if (length == 0) return true;
+
+ length -= DeoptimizationInputData::kFirstDeoptEntryIndex;
+ return length >= 0 &&
+ length % DeoptimizationInputData::kDeoptEntrySize == 0;
+}
+
+
+bool Object::IsDeoptimizationOutputData() {
+ if (!IsFixedArray()) return false;
+ // There's actually no way to see the difference between a fixed array and
+ // a deoptimization data array. Since this is used for asserts we can check
+ // that the length is plausible though.
+ if (FixedArray::cast(this)->length() % 2 != 0) return false;
+ return true;
+}
+
+
+bool Object::IsContext() {
+ if (Object::IsHeapObject()) {
+ Heap* heap = HeapObject::cast(this)->GetHeap();
+ return (HeapObject::cast(this)->map() == heap->context_map() ||
+ HeapObject::cast(this)->map() == heap->catch_context_map() ||
+ HeapObject::cast(this)->map() == heap->global_context_map());
+ }
+ return false;
+}
+
+
+bool Object::IsCatchContext() {
+ return Object::IsHeapObject() &&
+ HeapObject::cast(this)->map() ==
+ HeapObject::cast(this)->GetHeap()->catch_context_map();
+}
+
+
+bool Object::IsGlobalContext() {
+ return Object::IsHeapObject() &&
+ HeapObject::cast(this)->map() ==
+ HeapObject::cast(this)->GetHeap()->global_context_map();
+}
+
+
+bool Object::IsJSFunction() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == JS_FUNCTION_TYPE;
+}
+
+
+template <> inline bool Is<JSFunction>(Object* obj) {
+ return obj->IsJSFunction();
+}
+
+
+bool Object::IsCode() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == CODE_TYPE;
+}
+
+
+bool Object::IsOddball() {
+ ASSERT(HEAP->is_safe_to_read_maps());
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == ODDBALL_TYPE;
+}
+
+
+bool Object::IsJSGlobalPropertyCell() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type()
+ == JS_GLOBAL_PROPERTY_CELL_TYPE;
+}
+
+
+bool Object::IsSharedFunctionInfo() {
+ return Object::IsHeapObject() &&
+ (HeapObject::cast(this)->map()->instance_type() ==
+ SHARED_FUNCTION_INFO_TYPE);
+}
+
+
+bool Object::IsJSValue() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == JS_VALUE_TYPE;
+}
+
+
+bool Object::IsJSMessageObject() {
+ return Object::IsHeapObject()
+ && (HeapObject::cast(this)->map()->instance_type() ==
+ JS_MESSAGE_OBJECT_TYPE);
+}
+
+
+bool Object::IsStringWrapper() {
+ return IsJSValue() && JSValue::cast(this)->value()->IsString();
+}
+
+
+bool Object::IsProxy() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == PROXY_TYPE;
+}
+
+
+bool Object::IsBoolean() {
+ return IsOddball() &&
+ ((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0);
+}
+
+
+bool Object::IsJSArray() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == JS_ARRAY_TYPE;
+}
+
+
+bool Object::IsJSRegExp() {
+ return Object::IsHeapObject()
+ && HeapObject::cast(this)->map()->instance_type() == JS_REGEXP_TYPE;
+}
+
+
+template <> inline bool Is<JSArray>(Object* obj) {
+ return obj->IsJSArray();
+}
+
+
+bool Object::IsHashTable() {
+ return Object::IsHeapObject() &&
+ HeapObject::cast(this)->map() ==
+ HeapObject::cast(this)->GetHeap()->hash_table_map();
+}
+
+
+bool Object::IsDictionary() {
+ return IsHashTable() && this !=
+ HeapObject::cast(this)->GetHeap()->symbol_table();
+}
+
+
+bool Object::IsSymbolTable() {
+ return IsHashTable() && this ==
+ HeapObject::cast(this)->GetHeap()->raw_unchecked_symbol_table();
+}
+
+
+bool Object::IsJSFunctionResultCache() {
+ if (!IsFixedArray()) return false;
+ FixedArray* self = FixedArray::cast(this);
+ int length = self->length();
+ if (length < JSFunctionResultCache::kEntriesIndex) return false;
+ if ((length - JSFunctionResultCache::kEntriesIndex)
+ % JSFunctionResultCache::kEntrySize != 0) {
+ return false;
+ }
+#ifdef DEBUG
+ reinterpret_cast<JSFunctionResultCache*>(this)->JSFunctionResultCacheVerify();
+#endif
+ return true;
+}
+
+
+bool Object::IsNormalizedMapCache() {
+ if (!IsFixedArray()) return false;
+ if (FixedArray::cast(this)->length() != NormalizedMapCache::kEntries) {
+ return false;
+ }
+#ifdef DEBUG
+ reinterpret_cast<NormalizedMapCache*>(this)->NormalizedMapCacheVerify();
+#endif
+ return true;
+}
+
+
+bool Object::IsCompilationCacheTable() {
+ return IsHashTable();
+}
+
+
+bool Object::IsCodeCacheHashTable() {
+ return IsHashTable();
+}
+
+
+bool Object::IsMapCache() {
+ return IsHashTable();
+}
+
+
+bool Object::IsPrimitive() {
+ return IsOddball() || IsNumber() || IsString();
+}
+
+
+bool Object::IsJSGlobalProxy() {
+ bool result = IsHeapObject() &&
+ (HeapObject::cast(this)->map()->instance_type() ==
+ JS_GLOBAL_PROXY_TYPE);
+ ASSERT(!result || IsAccessCheckNeeded());
+ return result;
+}
+
+
+bool Object::IsGlobalObject() {
+ if (!IsHeapObject()) return false;
+
+ InstanceType type = HeapObject::cast(this)->map()->instance_type();
+ return type == JS_GLOBAL_OBJECT_TYPE ||
+ type == JS_BUILTINS_OBJECT_TYPE;
+}
+
+
+bool Object::IsJSGlobalObject() {
+ return IsHeapObject() &&
+ (HeapObject::cast(this)->map()->instance_type() ==
+ JS_GLOBAL_OBJECT_TYPE);
+}
+
+
+bool Object::IsJSBuiltinsObject() {
+ return IsHeapObject() &&
+ (HeapObject::cast(this)->map()->instance_type() ==
+ JS_BUILTINS_OBJECT_TYPE);
+}
+
+
+bool Object::IsUndetectableObject() {
+ return IsHeapObject()
+ && HeapObject::cast(this)->map()->is_undetectable();
+}
+
+
+bool Object::IsAccessCheckNeeded() {
+ return IsHeapObject()
+ && HeapObject::cast(this)->map()->is_access_check_needed();
+}
+
+
+bool Object::IsStruct() {
+ if (!IsHeapObject()) return false;
+ switch (HeapObject::cast(this)->map()->instance_type()) {
+#define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true;
+ STRUCT_LIST(MAKE_STRUCT_CASE)
+#undef MAKE_STRUCT_CASE
+ default: return false;
+ }
+}
+
+
+#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
+ bool Object::Is##Name() { \
+ return Object::IsHeapObject() \
+ && HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \
+ }
+ STRUCT_LIST(MAKE_STRUCT_PREDICATE)
+#undef MAKE_STRUCT_PREDICATE
+
+
+bool Object::IsUndefined() {
+ return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUndefined;
+}
+
+
+bool Object::IsNull() {
+ return IsOddball() && Oddball::cast(this)->kind() == Oddball::kNull;
+}
+
+
+bool Object::IsTheHole() {
+ return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTheHole;
+}
+
+
+bool Object::IsTrue() {
+ return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTrue;
+}
+
+
+bool Object::IsFalse() {
+ return IsOddball() && Oddball::cast(this)->kind() == Oddball::kFalse;
+}
+
+
+bool Object::IsArgumentsMarker() {
+ return IsOddball() && Oddball::cast(this)->kind() == Oddball::kArgumentMarker;
+}
+
+
+double Object::Number() {
+ ASSERT(IsNumber());
+ return IsSmi()
+ ? static_cast<double>(reinterpret_cast<Smi*>(this)->value())
+ : reinterpret_cast<HeapNumber*>(this)->value();
+}
+
+
+MaybeObject* Object::ToSmi() {
+ if (IsSmi()) return this;
+ if (IsHeapNumber()) {
+ double value = HeapNumber::cast(this)->value();
+ int int_value = FastD2I(value);
+ if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
+ return Smi::FromInt(int_value);
+ }
+ }
+ return Failure::Exception();
+}
+
+
+bool Object::HasSpecificClassOf(String* name) {
+ return this->IsJSObject() && (JSObject::cast(this)->class_name() == name);
+}
+
+
+MaybeObject* Object::GetElement(uint32_t index) {
+ // GetElement can trigger a getter which can cause allocation.
+ // This was not always the case. This ASSERT is here to catch
+ // leftover incorrect uses.
+ ASSERT(HEAP->IsAllocationAllowed());
+ return GetElementWithReceiver(this, index);
+}
+
+
+Object* Object::GetElementNoExceptionThrown(uint32_t index) {
+ MaybeObject* maybe = GetElementWithReceiver(this, index);
+ ASSERT(!maybe->IsFailure());
+ Object* result = NULL; // Initialization to please compiler.
+ maybe->ToObject(&result);
+ return result;
+}
+
+
+MaybeObject* Object::GetProperty(String* key) {
+ PropertyAttributes attributes;
+ return GetPropertyWithReceiver(this, key, &attributes);
+}
+
+
+MaybeObject* Object::GetProperty(String* key, PropertyAttributes* attributes) {
+ return GetPropertyWithReceiver(this, key, attributes);
+}
+
+
+#define FIELD_ADDR(p, offset) \
+ (reinterpret_cast<byte*>(p) + offset - kHeapObjectTag)
+
+#define READ_FIELD(p, offset) \
+ (*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)))
+
+#define WRITE_FIELD(p, offset, value) \
+ (*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)) = value)
+
+// TODO(isolates): Pass heap in to these macros.
+#define WRITE_BARRIER(object, offset) \
+ object->GetHeap()->RecordWrite(object->address(), offset);
+
+// CONDITIONAL_WRITE_BARRIER must be issued after the actual
+// write due to the assert validating the written value.
+#define CONDITIONAL_WRITE_BARRIER(heap, object, offset, mode) \
+ if (mode == UPDATE_WRITE_BARRIER) { \
+ heap->RecordWrite(object->address(), offset); \
+ } else { \
+ ASSERT(mode == SKIP_WRITE_BARRIER); \
+ ASSERT(heap->InNewSpace(object) || \
+ !heap->InNewSpace(READ_FIELD(object, offset)) || \
+ Page::FromAddress(object->address())-> \
+ IsRegionDirty(object->address() + offset)); \
+ }
+
+#ifndef V8_TARGET_ARCH_MIPS
+ #define READ_DOUBLE_FIELD(p, offset) \
+ (*reinterpret_cast<double*>(FIELD_ADDR(p, offset)))
+#else // V8_TARGET_ARCH_MIPS
+ // Prevent gcc from using load-double (mips ldc1) on (possibly)
+ // non-64-bit aligned HeapNumber::value.
+ static inline double read_double_field(HeapNumber* p, int offset) {
+ union conversion {
+ double d;
+ uint32_t u[2];
+ } c;
+ c.u[0] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)));
+ c.u[1] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4)));
+ return c.d;
+ }
+ #define READ_DOUBLE_FIELD(p, offset) read_double_field(p, offset)
+#endif // V8_TARGET_ARCH_MIPS
+
+
+#ifndef V8_TARGET_ARCH_MIPS
+ #define WRITE_DOUBLE_FIELD(p, offset, value) \
+ (*reinterpret_cast<double*>(FIELD_ADDR(p, offset)) = value)
+#else // V8_TARGET_ARCH_MIPS
+ // Prevent gcc from using store-double (mips sdc1) on (possibly)
+ // non-64-bit aligned HeapNumber::value.
+ static inline void write_double_field(HeapNumber* p, int offset,
+ double value) {
+ union conversion {
+ double d;
+ uint32_t u[2];
+ } c;
+ c.d = value;
+ (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset))) = c.u[0];
+ (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4))) = c.u[1];
+ }
+ #define WRITE_DOUBLE_FIELD(p, offset, value) \
+ write_double_field(p, offset, value)
+#endif // V8_TARGET_ARCH_MIPS
+
+
+#define READ_INT_FIELD(p, offset) \
+ (*reinterpret_cast<int*>(FIELD_ADDR(p, offset)))
+
+#define WRITE_INT_FIELD(p, offset, value) \
+ (*reinterpret_cast<int*>(FIELD_ADDR(p, offset)) = value)
+
+#define READ_INTPTR_FIELD(p, offset) \
+ (*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)))
+
+#define WRITE_INTPTR_FIELD(p, offset, value) \
+ (*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)) = value)
+
+#define READ_UINT32_FIELD(p, offset) \
+ (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)))
+
+#define WRITE_UINT32_FIELD(p, offset, value) \
+ (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)) = value)
+
+#define READ_SHORT_FIELD(p, offset) \
+ (*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)))
+
+#define WRITE_SHORT_FIELD(p, offset, value) \
+ (*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)) = value)
+
+#define READ_BYTE_FIELD(p, offset) \
+ (*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)))
+
+#define WRITE_BYTE_FIELD(p, offset, value) \
+ (*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)) = value)
+
+
+Object** HeapObject::RawField(HeapObject* obj, int byte_offset) {
+ return &READ_FIELD(obj, byte_offset);
+}
+
+
+int Smi::value() {
+ return Internals::SmiValue(this);
+}
+
+
+Smi* Smi::FromInt(int value) {
+ ASSERT(Smi::IsValid(value));
+ int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
+ intptr_t tagged_value =
+ (static_cast<intptr_t>(value) << smi_shift_bits) | kSmiTag;
+ return reinterpret_cast<Smi*>(tagged_value);
+}
+
+
+Smi* Smi::FromIntptr(intptr_t value) {
+ ASSERT(Smi::IsValid(value));
+ int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
+ return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag);
+}
+
+
+Failure::Type Failure::type() const {
+ return static_cast<Type>(value() & kFailureTypeTagMask);
+}
+
+
+bool Failure::IsInternalError() const {
+ return type() == INTERNAL_ERROR;
+}
+
+
+bool Failure::IsOutOfMemoryException() const {
+ return type() == OUT_OF_MEMORY_EXCEPTION;
+}
+
+
+AllocationSpace Failure::allocation_space() const {
+ ASSERT_EQ(RETRY_AFTER_GC, type());
+ return static_cast<AllocationSpace>((value() >> kFailureTypeTagSize)
+ & kSpaceTagMask);
+}
+
+
+Failure* Failure::InternalError() {
+ return Construct(INTERNAL_ERROR);
+}
+
+
+Failure* Failure::Exception() {
+ return Construct(EXCEPTION);
+}
+
+
+Failure* Failure::OutOfMemoryException() {
+ return Construct(OUT_OF_MEMORY_EXCEPTION);
+}
+
+
+intptr_t Failure::value() const {
+ return static_cast<intptr_t>(
+ reinterpret_cast<uintptr_t>(this) >> kFailureTagSize);
+}
+
+
+Failure* Failure::RetryAfterGC() {
+ return RetryAfterGC(NEW_SPACE);
+}
+
+
+Failure* Failure::RetryAfterGC(AllocationSpace space) {
+ ASSERT((space & ~kSpaceTagMask) == 0);
+ return Construct(RETRY_AFTER_GC, space);
+}
+
+
+Failure* Failure::Construct(Type type, intptr_t value) {
+ uintptr_t info =
+ (static_cast<uintptr_t>(value) << kFailureTypeTagSize) | type;
+ ASSERT(((info << kFailureTagSize) >> kFailureTagSize) == info);
+ return reinterpret_cast<Failure*>((info << kFailureTagSize) | kFailureTag);
+}
+
+
+bool Smi::IsValid(intptr_t value) {
+#ifdef DEBUG
+ bool in_range = (value >= kMinValue) && (value <= kMaxValue);
+#endif
+
+#ifdef V8_TARGET_ARCH_X64
+ // To be representable as a long smi, the value must be a 32-bit integer.
+ bool result = (value == static_cast<int32_t>(value));
+#else
+ // To be representable as an tagged small integer, the two
+ // most-significant bits of 'value' must be either 00 or 11 due to
+ // sign-extension. To check this we add 01 to the two
+ // most-significant bits, and check if the most-significant bit is 0
+ //
+ // CAUTION: The original code below:
+ // bool result = ((value + 0x40000000) & 0x80000000) == 0;
+ // may lead to incorrect results according to the C language spec, and
+ // in fact doesn't work correctly with gcc4.1.1 in some cases: The
+ // compiler may produce undefined results in case of signed integer
+ // overflow. The computation must be done w/ unsigned ints.
+ bool result = (static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U);
+#endif
+ ASSERT(result == in_range);
+ return result;
+}
+
+
+MapWord MapWord::FromMap(Map* map) {
+ return MapWord(reinterpret_cast<uintptr_t>(map));
+}
+
+
+Map* MapWord::ToMap() {
+ return reinterpret_cast<Map*>(value_);
+}
+
+
+bool MapWord::IsForwardingAddress() {
+ return HAS_SMI_TAG(reinterpret_cast<Object*>(value_));
+}
+
+
+MapWord MapWord::FromForwardingAddress(HeapObject* object) {
+ Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag;
+ return MapWord(reinterpret_cast<uintptr_t>(raw));
+}
+
+
+HeapObject* MapWord::ToForwardingAddress() {
+ ASSERT(IsForwardingAddress());
+ return HeapObject::FromAddress(reinterpret_cast<Address>(value_));
+}
+
+
+bool MapWord::IsMarked() {
+ return (value_ & kMarkingMask) == 0;
+}
+
+
+void MapWord::SetMark() {
+ value_ &= ~kMarkingMask;
+}
+
+
+void MapWord::ClearMark() {
+ value_ |= kMarkingMask;
+}
+
+
+bool MapWord::IsOverflowed() {
+ return (value_ & kOverflowMask) != 0;
+}
+
+
+void MapWord::SetOverflow() {
+ value_ |= kOverflowMask;
+}
+
+
+void MapWord::ClearOverflow() {
+ value_ &= ~kOverflowMask;
+}
+
+
+MapWord MapWord::EncodeAddress(Address map_address, int offset) {
+ // Offset is the distance in live bytes from the first live object in the
+ // same page. The offset between two objects in the same page should not
+ // exceed the object area size of a page.
+ ASSERT(0 <= offset && offset < Page::kObjectAreaSize);
+
+ uintptr_t compact_offset = offset >> kObjectAlignmentBits;
+ ASSERT(compact_offset < (1 << kForwardingOffsetBits));
+
+ Page* map_page = Page::FromAddress(map_address);
+ ASSERT_MAP_PAGE_INDEX(map_page->mc_page_index);
+
+ uintptr_t map_page_offset =
+ map_page->Offset(map_address) >> kMapAlignmentBits;
+
+ uintptr_t encoding =
+ (compact_offset << kForwardingOffsetShift) |
+ (map_page_offset << kMapPageOffsetShift) |
+ (map_page->mc_page_index << kMapPageIndexShift);
+ return MapWord(encoding);
+}
+
+
+Address MapWord::DecodeMapAddress(MapSpace* map_space) {
+ int map_page_index =
+ static_cast<int>((value_ & kMapPageIndexMask) >> kMapPageIndexShift);
+ ASSERT_MAP_PAGE_INDEX(map_page_index);
+
+ int map_page_offset = static_cast<int>(
+ ((value_ & kMapPageOffsetMask) >> kMapPageOffsetShift) <<
+ kMapAlignmentBits);
+
+ return (map_space->PageAddress(map_page_index) + map_page_offset);
+}
+
+
+int MapWord::DecodeOffset() {
+ // The offset field is represented in the kForwardingOffsetBits
+ // most-significant bits.
+ uintptr_t offset = (value_ >> kForwardingOffsetShift) << kObjectAlignmentBits;
+ ASSERT(offset < static_cast<uintptr_t>(Page::kObjectAreaSize));
+ return static_cast<int>(offset);
+}
+
+
+MapWord MapWord::FromEncodedAddress(Address address) {
+ return MapWord(reinterpret_cast<uintptr_t>(address));
+}
+
+
+Address MapWord::ToEncodedAddress() {
+ return reinterpret_cast<Address>(value_);
+}
+
+
+#ifdef DEBUG
+void HeapObject::VerifyObjectField(int offset) {
+ VerifyPointer(READ_FIELD(this, offset));
+}
+
+void HeapObject::VerifySmiField(int offset) {
+ ASSERT(READ_FIELD(this, offset)->IsSmi());
+}
+#endif
+
+
+Heap* HeapObject::GetHeap() {
+ // During GC, the map pointer in HeapObject is used in various ways that
+ // prevent us from retrieving Heap from the map.
+ // Assert that we are not in GC, implement GC code in a way that it doesn't
+ // pull heap from the map.
+ ASSERT(HEAP->is_safe_to_read_maps());
+ return map()->heap();
+}
+
+
+Isolate* HeapObject::GetIsolate() {
+ return GetHeap()->isolate();
+}
+
+
+Map* HeapObject::map() {
+ return map_word().ToMap();
+}
+
+
+void HeapObject::set_map(Map* value) {
+ set_map_word(MapWord::FromMap(value));
+}
+
+
+MapWord HeapObject::map_word() {
+ return MapWord(reinterpret_cast<uintptr_t>(READ_FIELD(this, kMapOffset)));
+}
+
+
+void HeapObject::set_map_word(MapWord map_word) {
+ // WRITE_FIELD does not invoke write barrier, but there is no need
+ // here.
+ WRITE_FIELD(this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
+}
+
+
+HeapObject* HeapObject::FromAddress(Address address) {
+ ASSERT_TAG_ALIGNED(address);
+ return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
+}
+
+
+Address HeapObject::address() {
+ return reinterpret_cast<Address>(this) - kHeapObjectTag;
+}
+
+
+int HeapObject::Size() {
+ return SizeFromMap(map());
+}
+
+
+void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) {
+ v->VisitPointers(reinterpret_cast<Object**>(FIELD_ADDR(this, start)),
+ reinterpret_cast<Object**>(FIELD_ADDR(this, end)));
+}
+
+
+void HeapObject::IteratePointer(ObjectVisitor* v, int offset) {
+ v->VisitPointer(reinterpret_cast<Object**>(FIELD_ADDR(this, offset)));
+}
+
+
+bool HeapObject::IsMarked() {
+ return map_word().IsMarked();
+}
+
+
+void HeapObject::SetMark() {
+ ASSERT(!IsMarked());
+ MapWord first_word = map_word();
+ first_word.SetMark();
+ set_map_word(first_word);
+}
+
+
+void HeapObject::ClearMark() {
+ ASSERT(IsMarked());
+ MapWord first_word = map_word();
+ first_word.ClearMark();
+ set_map_word(first_word);
+}
+
+
+bool HeapObject::IsOverflowed() {
+ return map_word().IsOverflowed();
+}
+
+
+void HeapObject::SetOverflow() {
+ MapWord first_word = map_word();
+ first_word.SetOverflow();
+ set_map_word(first_word);
+}
+
+
+void HeapObject::ClearOverflow() {
+ ASSERT(IsOverflowed());
+ MapWord first_word = map_word();
+ first_word.ClearOverflow();
+ set_map_word(first_word);
+}
+
+
+double HeapNumber::value() {
+ return READ_DOUBLE_FIELD(this, kValueOffset);
+}
+
+
+void HeapNumber::set_value(double value) {
+ WRITE_DOUBLE_FIELD(this, kValueOffset, value);
+}
+
+
+int HeapNumber::get_exponent() {
+ return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >>
+ kExponentShift) - kExponentBias;
+}
+
+
+int HeapNumber::get_sign() {
+ return READ_INT_FIELD(this, kExponentOffset) & kSignMask;
+}
+
+
+ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset)
+
+
+HeapObject* JSObject::elements() {
+ Object* array = READ_FIELD(this, kElementsOffset);
+ // In the assert below Dictionary is covered under FixedArray.
+ ASSERT(array->IsFixedArray() || array->IsExternalArray());
+ return reinterpret_cast<HeapObject*>(array);
+}
+
+
+void JSObject::set_elements(HeapObject* value, WriteBarrierMode mode) {
+ ASSERT(map()->has_fast_elements() ==
+ (value->map() == GetHeap()->fixed_array_map() ||
+ value->map() == GetHeap()->fixed_cow_array_map()));
+ // In the assert below Dictionary is covered under FixedArray.
+ ASSERT(value->IsFixedArray() || value->IsExternalArray());
+ WRITE_FIELD(this, kElementsOffset, value);
+ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, mode);
+}
+
+
+void JSObject::initialize_properties() {
+ ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
+ WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_fixed_array());
+}
+
+
+void JSObject::initialize_elements() {
+ ASSERT(map()->has_fast_elements());
+ ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
+ WRITE_FIELD(this, kElementsOffset, GetHeap()->empty_fixed_array());
+}
+
+
+MaybeObject* JSObject::ResetElements() {
+ Object* obj;
+ { MaybeObject* maybe_obj = map()->GetFastElementsMap();
+ if (!maybe_obj->ToObject(&obj)) return maybe_obj;
+ }
+ set_map(Map::cast(obj));
+ initialize_elements();
+ return this;
+}
+
+
+ACCESSORS(Oddball, to_string, String, kToStringOffset)
+ACCESSORS(Oddball, to_number, Object, kToNumberOffset)
+
+
+byte Oddball::kind() {
+ return READ_BYTE_FIELD(this, kKindOffset);
+}
+
+
+void Oddball::set_kind(byte value) {
+ WRITE_BYTE_FIELD(this, kKindOffset, value);
+}
+
+
+Object* JSGlobalPropertyCell::value() {
+ return READ_FIELD(this, kValueOffset);
+}
+
+
+void JSGlobalPropertyCell::set_value(Object* val, WriteBarrierMode ignored) {
+ // The write barrier is not used for global property cells.
+ ASSERT(!val->IsJSGlobalPropertyCell());
+ WRITE_FIELD(this, kValueOffset, val);
+}
+
+
+int JSObject::GetHeaderSize() {
+ InstanceType type = map()->instance_type();
+ // Check for the most common kind of JavaScript object before
+ // falling into the generic switch. This speeds up the internal
+ // field operations considerably on average.
+ if (type == JS_OBJECT_TYPE) return JSObject::kHeaderSize;
+ switch (type) {
+ case JS_GLOBAL_PROXY_TYPE:
+ return JSGlobalProxy::kSize;
+ case JS_GLOBAL_OBJECT_TYPE:
+ return JSGlobalObject::kSize;
+ case JS_BUILTINS_OBJECT_TYPE:
+ return JSBuiltinsObject::kSize;
+ case JS_FUNCTION_TYPE:
+ return JSFunction::kSize;
+ case JS_VALUE_TYPE:
+ return JSValue::kSize;
+ case JS_ARRAY_TYPE:
+ return JSValue::kSize;
+ case JS_REGEXP_TYPE:
+ return JSValue::kSize;
+ case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
+ return JSObject::kHeaderSize;
+ case JS_MESSAGE_OBJECT_TYPE:
+ return JSMessageObject::kSize;
+ default:
+ UNREACHABLE();
+ return 0;
+ }
+}
+
+
+int JSObject::GetInternalFieldCount() {
+ ASSERT(1 << kPointerSizeLog2 == kPointerSize);
+ // Make sure to adjust for the number of in-object properties. These
+ // properties do contribute to the size, but are not internal fields.
+ return ((Size() - GetHeaderSize()) >> kPointerSizeLog2) -
+ map()->inobject_properties();
+}
+
+
+int JSObject::GetInternalFieldOffset(int index) {
+ ASSERT(index < GetInternalFieldCount() && index >= 0);
+ return GetHeaderSize() + (kPointerSize * index);
+}
+
+
+Object* JSObject::GetInternalField(int index) {
+ ASSERT(index < GetInternalFieldCount() && index >= 0);
+ // Internal objects do follow immediately after the header, whereas in-object
+ // properties are at the end of the object. Therefore there is no need
+ // to adjust the index here.
+ return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index));
+}
+
+
+void JSObject::SetInternalField(int index, Object* value) {
+ ASSERT(index < GetInternalFieldCount() && index >= 0);
+ // Internal objects do follow immediately after the header, whereas in-object
+ // properties are at the end of the object. Therefore there is no need
+ // to adjust the index here.
+ int offset = GetHeaderSize() + (kPointerSize * index);
+ WRITE_FIELD(this, offset, value);
+ WRITE_BARRIER(this, offset);
+}
+
+
+// Access fast-case object properties at index. The use of these routines
+// is needed to correctly distinguish between properties stored in-object and
+// properties stored in the properties array.
+Object* JSObject::FastPropertyAt(int index) {
+ // Adjust for the number of properties stored in the object.
+ index -= map()->inobject_properties();
+ if (index < 0) {
+ int offset = map()->instance_size() + (index * kPointerSize);
+ return READ_FIELD(this, offset);
+ } else {
+ ASSERT(index < properties()->length());
+ return properties()->get(index);
+ }
+}
+
+
+Object* JSObject::FastPropertyAtPut(int index, Object* value) {
+ // Adjust for the number of properties stored in the object.
+ index -= map()->inobject_properties();
+ if (index < 0) {
+ int offset = map()->instance_size() + (index * kPointerSize);
+ WRITE_FIELD(this, offset, value);
+ WRITE_BARRIER(this, offset);
+ } else {
+ ASSERT(index < properties()->length());
+ properties()->set(index, value);
+ }
+ return value;
+}
+
+
+int JSObject::GetInObjectPropertyOffset(int index) {
+ // Adjust for the number of properties stored in the object.
+ index -= map()->inobject_properties();
+ ASSERT(index < 0);
+ return map()->instance_size() + (index * kPointerSize);
+}
+
+
+Object* JSObject::InObjectPropertyAt(int index) {
+ // Adjust for the number of properties stored in the object.
+ index -= map()->inobject_properties();
+ ASSERT(index < 0);
+ int offset = map()->instance_size() + (index * kPointerSize);
+ return READ_FIELD(this, offset);
+}
+
+
+Object* JSObject::InObjectPropertyAtPut(int index,
+ Object* value,
+ WriteBarrierMode mode) {
+ // Adjust for the number of properties stored in the object.
+ index -= map()->inobject_properties();
+ ASSERT(index < 0);
+ int offset = map()->instance_size() + (index * kPointerSize);
+ WRITE_FIELD(this, offset, value);
+ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, mode);
+ return value;
+}
+
+
+
+void JSObject::InitializeBody(int object_size, Object* value) {
+ ASSERT(!value->IsHeapObject() || !GetHeap()->InNewSpace(value));
+ for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
+ WRITE_FIELD(this, offset, value);
+ }
+}
+
+
+bool JSObject::HasFastProperties() {
+ return !properties()->IsDictionary();
+}
+
+
+int JSObject::MaxFastProperties() {
+ // Allow extra fast properties if the object has more than
+ // kMaxFastProperties in-object properties. When this is the case,
+ // it is very unlikely that the object is being used as a dictionary
+ // and there is a good chance that allowing more map transitions
+ // will be worth it.
+ return Max(map()->inobject_properties(), kMaxFastProperties);
+}
+
+
+void Struct::InitializeBody(int object_size) {
+ Object* value = GetHeap()->undefined_value();
+ for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
+ WRITE_FIELD(this, offset, value);
+ }
+}
+
+
+bool Object::ToArrayIndex(uint32_t* index) {
+ if (IsSmi()) {
+ int value = Smi::cast(this)->value();
+ if (value < 0) return false;
+ *index = value;
+ return true;
+ }
+ if (IsHeapNumber()) {
+ double value = HeapNumber::cast(this)->value();
+ uint32_t uint_value = static_cast<uint32_t>(value);
+ if (value == static_cast<double>(uint_value)) {
+ *index = uint_value;
+ return true;
+ }
+ }
+ return false;
+}
+
+
+bool Object::IsStringObjectWithCharacterAt(uint32_t index) {
+ if (!this->IsJSValue()) return false;
+
+ JSValue* js_value = JSValue::cast(this);
+ if (!js_value->value()->IsString()) return false;
+
+ String* str = String::cast(js_value->value());
+ if (index >= (uint32_t)str->length()) return false;
+
+ return true;
+}
+
+
+Object* FixedArray::get(int index) {
+ ASSERT(index >= 0 && index < this->length());
+ return READ_FIELD(this, kHeaderSize + index * kPointerSize);
+}
+
+
+void FixedArray::set(int index, Smi* value) {
+ ASSERT(map() != HEAP->fixed_cow_array_map());
+ ASSERT(reinterpret_cast<Object*>(value)->IsSmi());
+ int offset = kHeaderSize + index * kPointerSize;
+ WRITE_FIELD(this, offset, value);
+}
+
+
+void FixedArray::set(int index, Object* value) {
+ ASSERT(map() != HEAP->fixed_cow_array_map());
+ ASSERT(index >= 0 && index < this->length());
+ int offset = kHeaderSize + index * kPointerSize;
+ WRITE_FIELD(this, offset, value);
+ WRITE_BARRIER(this, offset);
+}
+
+
+WriteBarrierMode HeapObject::GetWriteBarrierMode(const AssertNoAllocation&) {
+ if (GetHeap()->InNewSpace(this)) return SKIP_WRITE_BARRIER;
+ return UPDATE_WRITE_BARRIER;
+}
+
+
+void FixedArray::set(int index,
+ Object* value,
+ WriteBarrierMode mode) {
+ ASSERT(map() != HEAP->fixed_cow_array_map());
+ ASSERT(index >= 0 && index < this->length());
+ int offset = kHeaderSize + index * kPointerSize;
+ WRITE_FIELD(this, offset, value);
+ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, mode);
+}
+
+
+void FixedArray::fast_set(FixedArray* array, int index, Object* value) {
+ ASSERT(array->map() != HEAP->raw_unchecked_fixed_cow_array_map());
+ ASSERT(index >= 0 && index < array->length());
+ ASSERT(!HEAP->InNewSpace(value));
+ WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value);
+}
+
+
+void FixedArray::set_undefined(int index) {
+ ASSERT(map() != HEAP->fixed_cow_array_map());
+ set_undefined(GetHeap(), index);
+}
+
+
+void FixedArray::set_undefined(Heap* heap, int index) {
+ ASSERT(index >= 0 && index < this->length());
+ ASSERT(!heap->InNewSpace(heap->undefined_value()));
+ WRITE_FIELD(this, kHeaderSize + index * kPointerSize,
+ heap->undefined_value());
+}
+
+
+void FixedArray::set_null(int index) {
+ set_null(GetHeap(), index);
+}
+
+
+void FixedArray::set_null(Heap* heap, int index) {
+ ASSERT(index >= 0 && index < this->length());
+ ASSERT(!heap->InNewSpace(heap->null_value()));
+ WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value());
+}
+
+
+void FixedArray::set_the_hole(int index) {
+ ASSERT(map() != HEAP->fixed_cow_array_map());
+ ASSERT(index >= 0 && index < this->length());
+ ASSERT(!HEAP->InNewSpace(HEAP->the_hole_value()));
+ WRITE_FIELD(this,
+ kHeaderSize + index * kPointerSize,
+ GetHeap()->the_hole_value());
+}
+
+
+void FixedArray::set_unchecked(int index, Smi* value) {
+ ASSERT(reinterpret_cast<Object*>(value)->IsSmi());
+ int offset = kHeaderSize + index * kPointerSize;
+ WRITE_FIELD(this, offset, value);
+}
+
+
+void FixedArray::set_unchecked(Heap* heap,
+ int index,
+ Object* value,
+ WriteBarrierMode mode) {
+ int offset = kHeaderSize + index * kPointerSize;
+ WRITE_FIELD(this, offset, value);
+ CONDITIONAL_WRITE_BARRIER(heap, this, offset, mode);
+}
+
+
+void FixedArray::set_null_unchecked(Heap* heap, int index) {
+ ASSERT(index >= 0 && index < this->length());
+ ASSERT(!HEAP->InNewSpace(heap->null_value()));
+ WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value());
+}
+
+
+Object** FixedArray::data_start() {
+ return HeapObject::RawField(this, kHeaderSize);
+}
+
+
+bool DescriptorArray::IsEmpty() {
+ ASSERT(this->length() > kFirstIndex ||
+ this == HEAP->empty_descriptor_array());
+ return length() <= kFirstIndex;
+}
+
+
+void DescriptorArray::fast_swap(FixedArray* array, int first, int second) {
+ Object* tmp = array->get(first);
+ fast_set(array, first, array->get(second));
+ fast_set(array, second, tmp);
+}
+
+
+int DescriptorArray::Search(String* name) {
+ SLOW_ASSERT(IsSortedNoDuplicates());
+
+ // Check for empty descriptor array.
+ int nof = number_of_descriptors();
+ if (nof == 0) return kNotFound;
+
+ // Fast case: do linear search for small arrays.
+ const int kMaxElementsForLinearSearch = 8;
+ if (StringShape(name).IsSymbol() && nof < kMaxElementsForLinearSearch) {
+ return LinearSearch(name, nof);
+ }
+
+ // Slow case: perform binary search.
+ return BinarySearch(name, 0, nof - 1);
+}
+
+
+int DescriptorArray::SearchWithCache(String* name) {
+ int number = GetIsolate()->descriptor_lookup_cache()->Lookup(this, name);
+ if (number == DescriptorLookupCache::kAbsent) {
+ number = Search(name);
+ GetIsolate()->descriptor_lookup_cache()->Update(this, name, number);
+ }
+ return number;
+}
+
+
+String* DescriptorArray::GetKey(int descriptor_number) {
+ ASSERT(descriptor_number < number_of_descriptors());
+ return String::cast(get(ToKeyIndex(descriptor_number)));
+}
+
+
+Object* DescriptorArray::GetValue(int descriptor_number) {
+ ASSERT(descriptor_number < number_of_descriptors());
+ return GetContentArray()->get(ToValueIndex(descriptor_number));
+}
+
+
+Smi* DescriptorArray::GetDetails(int descriptor_number) {
+ ASSERT(descriptor_number < number_of_descriptors());
+ return Smi::cast(GetContentArray()->get(ToDetailsIndex(descriptor_number)));
+}
+
+
+PropertyType DescriptorArray::GetType(int descriptor_number) {
+ ASSERT(descriptor_number < number_of_descriptors());
+ return PropertyDetails(GetDetails(descriptor_number)).type();
+}
+
+
+int DescriptorArray::GetFieldIndex(int descriptor_number) {
+ return Descriptor::IndexFromValue(GetValue(descriptor_number));
+}
+
+
+JSFunction* DescriptorArray::GetConstantFunction(int descriptor_number) {
+ return JSFunction::cast(GetValue(descriptor_number));
+}
+
+
+Object* DescriptorArray::GetCallbacksObject(int descriptor_number) {
+ ASSERT(GetType(descriptor_number) == CALLBACKS);
+ return GetValue(descriptor_number);
+}
+
+
+AccessorDescriptor* DescriptorArray::GetCallbacks(int descriptor_number) {
+ ASSERT(GetType(descriptor_number) == CALLBACKS);
+ Proxy* p = Proxy::cast(GetCallbacksObject(descriptor_number));
+ return reinterpret_cast<AccessorDescriptor*>(p->proxy());
+}
+
+
+bool DescriptorArray::IsProperty(int descriptor_number) {
+ return GetType(descriptor_number) < FIRST_PHANTOM_PROPERTY_TYPE;
+}
+
+
+bool DescriptorArray::IsTransition(int descriptor_number) {
+ PropertyType t = GetType(descriptor_number);
+ return t == MAP_TRANSITION || t == CONSTANT_TRANSITION ||
+ t == EXTERNAL_ARRAY_TRANSITION;
+}
+
+
+bool DescriptorArray::IsNullDescriptor(int descriptor_number) {
+ return GetType(descriptor_number) == NULL_DESCRIPTOR;
+}
+
+
+bool DescriptorArray::IsDontEnum(int descriptor_number) {
+ return PropertyDetails(GetDetails(descriptor_number)).IsDontEnum();
+}
+
+
+void DescriptorArray::Get(int descriptor_number, Descriptor* desc) {
+ desc->Init(GetKey(descriptor_number),
+ GetValue(descriptor_number),
+ GetDetails(descriptor_number));
+}
+
+
+void DescriptorArray::Set(int descriptor_number, Descriptor* desc) {
+ // Range check.
+ ASSERT(descriptor_number < number_of_descriptors());
+
+ // Make sure none of the elements in desc are in new space.
+ ASSERT(!HEAP->InNewSpace(desc->GetKey()));
+ ASSERT(!HEAP->InNewSpace(desc->GetValue()));
+
+ fast_set(this, ToKeyIndex(descriptor_number), desc->GetKey());
+ FixedArray* content_array = GetContentArray();
+ fast_set(content_array, ToValueIndex(descriptor_number), desc->GetValue());
+ fast_set(content_array, ToDetailsIndex(descriptor_number),
+ desc->GetDetails().AsSmi());
+}
+
+
+void DescriptorArray::CopyFrom(int index, DescriptorArray* src, int src_index) {
+ Descriptor desc;
+ src->Get(src_index, &desc);
+ Set(index, &desc);
+}
+
+
+void DescriptorArray::Swap(int first, int second) {
+ fast_swap(this, ToKeyIndex(first), ToKeyIndex(second));
+ FixedArray* content_array = GetContentArray();
+ fast_swap(content_array, ToValueIndex(first), ToValueIndex(second));
+ fast_swap(content_array, ToDetailsIndex(first), ToDetailsIndex(second));
+}
+
+
+template<typename Shape, typename Key>
+int HashTable<Shape, Key>::FindEntry(Key key) {
+ return FindEntry(GetIsolate(), key);
+}
+
+
+// Find entry for key otherwise return kNotFound.
+template<typename Shape, typename Key>
+int HashTable<Shape, Key>::FindEntry(Isolate* isolate, Key key) {
+ uint32_t capacity = Capacity();
+ uint32_t entry = FirstProbe(Shape::Hash(key), capacity);
+ uint32_t count = 1;
+ // EnsureCapacity will guarantee the hash table is never full.
+ while (true) {
+ Object* element = KeyAt(entry);
+ if (element == isolate->heap()->undefined_value()) break; // Empty entry.
+ if (element != isolate->heap()->null_value() &&
+ Shape::IsMatch(key, element)) return entry;
+ entry = NextProbe(entry, count++, capacity);
+ }
+ return kNotFound;
+}
+
+
+bool NumberDictionary::requires_slow_elements() {
+ Object* max_index_object = get(kMaxNumberKeyIndex);
+ if (!max_index_object->IsSmi()) return false;
+ return 0 !=
+ (Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask);
+}
+
+uint32_t NumberDictionary::max_number_key() {
+ ASSERT(!requires_slow_elements());
+ Object* max_index_object = get(kMaxNumberKeyIndex);
+ if (!max_index_object->IsSmi()) return 0;
+ uint32_t value = static_cast<uint32_t>(Smi::cast(max_index_object)->value());
+ return value >> kRequiresSlowElementsTagSize;
+}
+
+void NumberDictionary::set_requires_slow_elements() {
+ set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask));
+}
+
+
+// ------------------------------------
+// Cast operations
+
+
+CAST_ACCESSOR(FixedArray)
+CAST_ACCESSOR(DescriptorArray)
+CAST_ACCESSOR(DeoptimizationInputData)
+CAST_ACCESSOR(DeoptimizationOutputData)
+CAST_ACCESSOR(SymbolTable)
+CAST_ACCESSOR(JSFunctionResultCache)
+CAST_ACCESSOR(NormalizedMapCache)
+CAST_ACCESSOR(CompilationCacheTable)
+CAST_ACCESSOR(CodeCacheHashTable)
+CAST_ACCESSOR(MapCache)
+CAST_ACCESSOR(String)
+CAST_ACCESSOR(SeqString)
+CAST_ACCESSOR(SeqAsciiString)
+CAST_ACCESSOR(SeqTwoByteString)
+CAST_ACCESSOR(ConsString)
+CAST_ACCESSOR(ExternalString)
+CAST_ACCESSOR(ExternalAsciiString)
+CAST_ACCESSOR(ExternalTwoByteString)
+CAST_ACCESSOR(JSObject)
+CAST_ACCESSOR(Smi)
+CAST_ACCESSOR(HeapObject)
+CAST_ACCESSOR(HeapNumber)
+CAST_ACCESSOR(Oddball)
+CAST_ACCESSOR(JSGlobalPropertyCell)
+CAST_ACCESSOR(SharedFunctionInfo)
+CAST_ACCESSOR(Map)
+CAST_ACCESSOR(JSFunction)
+CAST_ACCESSOR(GlobalObject)
+CAST_ACCESSOR(JSGlobalProxy)
+CAST_ACCESSOR(JSGlobalObject)
+CAST_ACCESSOR(JSBuiltinsObject)
+CAST_ACCESSOR(Code)
+CAST_ACCESSOR(JSArray)
+CAST_ACCESSOR(JSRegExp)
+CAST_ACCESSOR(Proxy)
+CAST_ACCESSOR(ByteArray)
+CAST_ACCESSOR(ExternalArray)
+CAST_ACCESSOR(ExternalByteArray)
+CAST_ACCESSOR(ExternalUnsignedByteArray)
+CAST_ACCESSOR(ExternalShortArray)
+CAST_ACCESSOR(ExternalUnsignedShortArray)
+CAST_ACCESSOR(ExternalIntArray)
+CAST_ACCESSOR(ExternalUnsignedIntArray)
+CAST_ACCESSOR(ExternalFloatArray)
+CAST_ACCESSOR(ExternalPixelArray)
+CAST_ACCESSOR(Struct)
+
+
+#define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name)
+ STRUCT_LIST(MAKE_STRUCT_CAST)
+#undef MAKE_STRUCT_CAST
+
+
+template <typename Shape, typename Key>
+HashTable<Shape, Key>* HashTable<Shape, Key>::cast(Object* obj) {
+ ASSERT(obj->IsHashTable());
+ return reinterpret_cast<HashTable*>(obj);
+}
+
+
+SMI_ACCESSORS(FixedArray, length, kLengthOffset)
+SMI_ACCESSORS(ByteArray, length, kLengthOffset)
+
+INT_ACCESSORS(ExternalArray, length, kLengthOffset)
+
+
+SMI_ACCESSORS(String, length, kLengthOffset)
+
+
+uint32_t String::hash_field() {
+ return READ_UINT32_FIELD(this, kHashFieldOffset);
+}
+
+
+void String::set_hash_field(uint32_t value) {
+ WRITE_UINT32_FIELD(this, kHashFieldOffset, value);
+#if V8_HOST_ARCH_64_BIT
+ WRITE_UINT32_FIELD(this, kHashFieldOffset + kIntSize, 0);
+#endif
+}
+
+
+bool String::Equals(String* other) {
+ if (other == this) return true;
+ if (StringShape(this).IsSymbol() && StringShape(other).IsSymbol()) {
+ return false;
+ }
+ return SlowEquals(other);
+}
+
+
+MaybeObject* String::TryFlatten(PretenureFlag pretenure) {
+ if (!StringShape(this).IsCons()) return this;
+ ConsString* cons = ConsString::cast(this);
+ if (cons->second()->length() == 0) return cons->first();
+ return SlowTryFlatten(pretenure);
+}
+
+
+String* String::TryFlattenGetString(PretenureFlag pretenure) {
+ MaybeObject* flat = TryFlatten(pretenure);
+ Object* successfully_flattened;
+ if (flat->ToObject(&successfully_flattened)) {
+ return String::cast(successfully_flattened);
+ }
+ return this;
+}
+
+
+uint16_t String::Get(int index) {
+ ASSERT(index >= 0 && index < length());
+ switch (StringShape(this).full_representation_tag()) {
+ case kSeqStringTag | kAsciiStringTag:
+ return SeqAsciiString::cast(this)->SeqAsciiStringGet(index);
+ case kSeqStringTag | kTwoByteStringTag:
+ return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index);
+ case kConsStringTag | kAsciiStringTag:
+ case kConsStringTag | kTwoByteStringTag:
+ return ConsString::cast(this)->ConsStringGet(index);
+ case kExternalStringTag | kAsciiStringTag:
+ return ExternalAsciiString::cast(this)->ExternalAsciiStringGet(index);
+ case kExternalStringTag | kTwoByteStringTag:
+ return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index);
+ default:
+ break;
+ }
+
+ UNREACHABLE();
+ return 0;
+}
+
+
+void String::Set(int index, uint16_t value) {
+ ASSERT(index >= 0 && index < length());
+ ASSERT(StringShape(this).IsSequential());
+
+ return this->IsAsciiRepresentation()
+ ? SeqAsciiString::cast(this)->SeqAsciiStringSet(index, value)
+ : SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value);
+}
+
+
+bool String::IsFlat() {
+ switch (StringShape(this).representation_tag()) {
+ case kConsStringTag: {
+ String* second = ConsString::cast(this)->second();
+ // Only flattened strings have second part empty.
+ return second->length() == 0;
+ }
+ default:
+ return true;
+ }
+}
+
+
+uint16_t SeqAsciiString::SeqAsciiStringGet(int index) {
+ ASSERT(index >= 0 && index < length());
+ return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
+}
+
+
+void SeqAsciiString::SeqAsciiStringSet(int index, uint16_t value) {
+ ASSERT(index >= 0 && index < length() && value <= kMaxAsciiCharCode);
+ WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize,
+ static_cast<byte>(value));
+}
+
+
+Address SeqAsciiString::GetCharsAddress() {
+ return FIELD_ADDR(this, kHeaderSize);
+}
+
+
+char* SeqAsciiString::GetChars() {
+ return reinterpret_cast<char*>(GetCharsAddress());
+}
+
+
+Address SeqTwoByteString::GetCharsAddress() {
+ return FIELD_ADDR(this, kHeaderSize);
+}
+
+
+uc16* SeqTwoByteString::GetChars() {
+ return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize));
+}
+
+
+uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) {
+ ASSERT(index >= 0 && index < length());
+ return READ_SHORT_FIELD(this, kHeaderSize + index * kShortSize);
+}
+
+
+void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) {
+ ASSERT(index >= 0 && index < length());
+ WRITE_SHORT_FIELD(this, kHeaderSize + index * kShortSize, value);
+}
+
+
+int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) {
+ return SizeFor(length());
+}
+
+
+int SeqAsciiString::SeqAsciiStringSize(InstanceType instance_type) {
+ return SizeFor(length());
+}
+
+
+String* ConsString::first() {
+ return String::cast(READ_FIELD(this, kFirstOffset));
+}
+
+
+Object* ConsString::unchecked_first() {
+ return READ_FIELD(this, kFirstOffset);
+}
+
+
+void ConsString::set_first(String* value, WriteBarrierMode mode) {
+ WRITE_FIELD(this, kFirstOffset, value);
+ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kFirstOffset, mode);
+}
+
+
+String* ConsString::second() {
+ return String::cast(READ_FIELD(this, kSecondOffset));
+}
+
+
+Object* ConsString::unchecked_second() {
+ return READ_FIELD(this, kSecondOffset);
+}
+
+
+void ConsString::set_second(String* value, WriteBarrierMode mode) {
+ WRITE_FIELD(this, kSecondOffset, value);
+ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kSecondOffset, mode);
+}
+
+
+ExternalAsciiString::Resource* ExternalAsciiString::resource() {
+ return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
+}
+
+
+void ExternalAsciiString::set_resource(
+ ExternalAsciiString::Resource* resource) {
+ *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)) = resource;
+}
+
+
+ExternalTwoByteString::Resource* ExternalTwoByteString::resource() {
+ return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
+}
+
+
+void ExternalTwoByteString::set_resource(
+ ExternalTwoByteString::Resource* resource) {
+ *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)) = resource;
+}
+
+
+void JSFunctionResultCache::MakeZeroSize() {
+ set_finger_index(kEntriesIndex);
+ set_size(kEntriesIndex);
+}
+
+
+void JSFunctionResultCache::Clear() {
+ int cache_size = size();
+ Object** entries_start = RawField(this, OffsetOfElementAt(kEntriesIndex));
+ MemsetPointer(entries_start,
+ GetHeap()->the_hole_value(),
+ cache_size - kEntriesIndex);
+ MakeZeroSize();
+}
+
+
+int JSFunctionResultCache::size() {
+ return Smi::cast(get(kCacheSizeIndex))->value();
+}
+
+
+void JSFunctionResultCache::set_size(int size) {
+ set(kCacheSizeIndex, Smi::FromInt(size));
+}
+
+
+int JSFunctionResultCache::finger_index() {
+ return Smi::cast(get(kFingerIndex))->value();
+}
+
+
+void JSFunctionResultCache::set_finger_index(int finger_index) {
+ set(kFingerIndex, Smi::FromInt(finger_index));
+}
+
+
+byte ByteArray::get(int index) {
+ ASSERT(index >= 0 && index < this->length());
+ return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
+}
+
+
+void ByteArray::set(int index, byte value) {
+ ASSERT(index >= 0 && index < this->length());
+ WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
+}
+
+
+int ByteArray::get_int(int index) {
+ ASSERT(index >= 0 && (index * kIntSize) < this->length());
+ return READ_INT_FIELD(this, kHeaderSize + index * kIntSize);
+}
+
+
+ByteArray* ByteArray::FromDataStartAddress(Address address) {
+ ASSERT_TAG_ALIGNED(address);
+ return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag);
+}
+
+
+Address ByteArray::GetDataStartAddress() {
+ return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
+}
+
+
+uint8_t* ExternalPixelArray::external_pixel_pointer() {
+ return reinterpret_cast<uint8_t*>(external_pointer());
+}
+
+
+uint8_t ExternalPixelArray::get(int index) {
+ ASSERT((index >= 0) && (index < this->length()));
+ uint8_t* ptr = external_pixel_pointer();
+ return ptr[index];
+}
+
+
+void ExternalPixelArray::set(int index, uint8_t value) {
+ ASSERT((index >= 0) && (index < this->length()));
+ uint8_t* ptr = external_pixel_pointer();
+ ptr[index] = value;
+}
+
+
+void* ExternalArray::external_pointer() {
+ intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset);
+ return reinterpret_cast<void*>(ptr);
+}
+
+
+void ExternalArray::set_external_pointer(void* value, WriteBarrierMode mode) {
+ intptr_t ptr = reinterpret_cast<intptr_t>(value);
+ WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr);
+}
+
+
+int8_t ExternalByteArray::get(int index) {
+ ASSERT((index >= 0) && (index < this->length()));
+ int8_t* ptr = static_cast<int8_t*>(external_pointer());
+ return ptr[index];
+}
+
+
+void ExternalByteArray::set(int index, int8_t value) {
+ ASSERT((index >= 0) && (index < this->length()));
+ int8_t* ptr = static_cast<int8_t*>(external_pointer());
+ ptr[index] = value;
+}
+
+
+uint8_t ExternalUnsignedByteArray::get(int index) {
+ ASSERT((index >= 0) && (index < this->length()));
+ uint8_t* ptr = static_cast<uint8_t*>(external_pointer());
+ return ptr[index];
+}
+
+
+void ExternalUnsignedByteArray::set(int index, uint8_t value) {
+ ASSERT((index >= 0) && (index < this->length()));
+ uint8_t* ptr = static_cast<uint8_t*>(external_pointer());
+ ptr[index] = value;
+}
+
+
+int16_t ExternalShortArray::get(int index) {
+ ASSERT((index >= 0) && (index < this->length()));
+ int16_t* ptr = static_cast<int16_t*>(external_pointer());
+ return ptr[index];
+}
+
+
+void ExternalShortArray::set(int index, int16_t value) {
+ ASSERT((index >= 0) && (index < this->length()));
+ int16_t* ptr = static_cast<int16_t*>(external_pointer());
+ ptr[index] = value;
+}
+
+
+uint16_t ExternalUnsignedShortArray::get(int index) {
+ ASSERT((index >= 0) && (index < this->length()));
+ uint16_t* ptr = static_cast<uint16_t*>(external_pointer());
+ return ptr[index];
+}
+
+
+void ExternalUnsignedShortArray::set(int index, uint16_t value) {
+ ASSERT((index >= 0) && (index < this->length()));
+ uint16_t* ptr = static_cast<uint16_t*>(external_pointer());
+ ptr[index] = value;
+}
+
+
+int32_t ExternalIntArray::get(int index) {
+ ASSERT((index >= 0) && (index < this->length()));
+ int32_t* ptr = static_cast<int32_t*>(external_pointer());
+ return ptr[index];
+}
+
+
+void ExternalIntArray::set(int index, int32_t value) {
+ ASSERT((index >= 0) && (index < this->length()));
+ int32_t* ptr = static_cast<int32_t*>(external_pointer());
+ ptr[index] = value;
+}
+
+
+uint32_t ExternalUnsignedIntArray::get(int index) {
+ ASSERT((index >= 0) && (index < this->length()));
+ uint32_t* ptr = static_cast<uint32_t*>(external_pointer());
+ return ptr[index];
+}
+
+
+void ExternalUnsignedIntArray::set(int index, uint32_t value) {
+ ASSERT((index >= 0) && (index < this->length()));
+ uint32_t* ptr = static_cast<uint32_t*>(external_pointer());
+ ptr[index] = value;
+}
+
+
+float ExternalFloatArray::get(int index) {
+ ASSERT((index >= 0) && (index < this->length()));
+ float* ptr = static_cast<float*>(external_pointer());
+ return ptr[index];
+}
+
+
+void ExternalFloatArray::set(int index, float value) {
+ ASSERT((index >= 0) && (index < this->length()));
+ float* ptr = static_cast<float*>(external_pointer());
+ ptr[index] = value;
+}
+
+
+int Map::visitor_id() {
+ return READ_BYTE_FIELD(this, kVisitorIdOffset);
+}
+
+
+void Map::set_visitor_id(int id) {
+ ASSERT(0 <= id && id < 256);
+ WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast<byte>(id));
+}
+
+
+int Map::instance_size() {
+ return READ_BYTE_FIELD(this, kInstanceSizeOffset) << kPointerSizeLog2;
+}
+
+
+int Map::inobject_properties() {
+ return READ_BYTE_FIELD(this, kInObjectPropertiesOffset);
+}
+
+
+int Map::pre_allocated_property_fields() {
+ return READ_BYTE_FIELD(this, kPreAllocatedPropertyFieldsOffset);
+}
+
+
+int HeapObject::SizeFromMap(Map* map) {
+ int instance_size = map->instance_size();
+ if (instance_size != kVariableSizeSentinel) return instance_size;
+ // We can ignore the "symbol" bit becase it is only set for symbols
+ // and implies a string type.
+ int instance_type = static_cast<int>(map->instance_type()) & ~kIsSymbolMask;
+ // Only inline the most frequent cases.
+ if (instance_type == FIXED_ARRAY_TYPE) {
+ return FixedArray::BodyDescriptor::SizeOf(map, this);
+ }
+ if (instance_type == ASCII_STRING_TYPE) {
+ return SeqAsciiString::SizeFor(
+ reinterpret_cast<SeqAsciiString*>(this)->length());
+ }
+ if (instance_type == BYTE_ARRAY_TYPE) {
+ return reinterpret_cast<ByteArray*>(this)->ByteArraySize();
+ }
+ if (instance_type == STRING_TYPE) {
+ return SeqTwoByteString::SizeFor(
+ reinterpret_cast<SeqTwoByteString*>(this)->length());
+ }
+ ASSERT(instance_type == CODE_TYPE);
+ return reinterpret_cast<Code*>(this)->CodeSize();
+}
+
+
+void Map::set_instance_size(int value) {
+ ASSERT_EQ(0, value & (kPointerSize - 1));
+ value >>= kPointerSizeLog2;
+ ASSERT(0 <= value && value < 256);
+ WRITE_BYTE_FIELD(this, kInstanceSizeOffset, static_cast<byte>(value));
+}
+
+
+void Map::set_inobject_properties(int value) {
+ ASSERT(0 <= value && value < 256);
+ WRITE_BYTE_FIELD(this, kInObjectPropertiesOffset, static_cast<byte>(value));
+}
+
+
+void Map::set_pre_allocated_property_fields(int value) {
+ ASSERT(0 <= value && value < 256);
+ WRITE_BYTE_FIELD(this,
+ kPreAllocatedPropertyFieldsOffset,
+ static_cast<byte>(value));
+}
+
+
+InstanceType Map::instance_type() {
+ return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset));
+}
+
+
+void Map::set_instance_type(InstanceType value) {
+ WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value);
+}
+
+
+int Map::unused_property_fields() {
+ return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset);
+}
+
+
+void Map::set_unused_property_fields(int value) {
+ WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255));
+}
+
+
+byte Map::bit_field() {
+ return READ_BYTE_FIELD(this, kBitFieldOffset);
+}
+
+
+void Map::set_bit_field(byte value) {
+ WRITE_BYTE_FIELD(this, kBitFieldOffset, value);
+}
+
+
+byte Map::bit_field2() {
+ return READ_BYTE_FIELD(this, kBitField2Offset);
+}
+
+
+void Map::set_bit_field2(byte value) {
+ WRITE_BYTE_FIELD(this, kBitField2Offset, value);
+}
+
+
+void Map::set_non_instance_prototype(bool value) {
+ if (value) {
+ set_bit_field(bit_field() | (1 << kHasNonInstancePrototype));
+ } else {
+ set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype));
+ }
+}
+
+
+bool Map::has_non_instance_prototype() {
+ return ((1 << kHasNonInstancePrototype) & bit_field()) != 0;
+}
+
+
+void Map::set_function_with_prototype(bool value) {
+ if (value) {
+ set_bit_field2(bit_field2() | (1 << kFunctionWithPrototype));
+ } else {
+ set_bit_field2(bit_field2() & ~(1 << kFunctionWithPrototype));
+ }
+}
+
+
+bool Map::function_with_prototype() {
+ return ((1 << kFunctionWithPrototype) & bit_field2()) != 0;
+}
+
+
+void Map::set_is_access_check_needed(bool access_check_needed) {
+ if (access_check_needed) {
+ set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded));
+ } else {
+ set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded));
+ }
+}
+
+
+bool Map::is_access_check_needed() {
+ return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0;
+}
+
+
+void Map::set_is_extensible(bool value) {
+ if (value) {
+ set_bit_field2(bit_field2() | (1 << kIsExtensible));
+ } else {
+ set_bit_field2(bit_field2() & ~(1 << kIsExtensible));
+ }
+}
+
+bool Map::is_extensible() {
+ return ((1 << kIsExtensible) & bit_field2()) != 0;
+}
+
+
+void Map::set_attached_to_shared_function_info(bool value) {
+ if (value) {
+ set_bit_field2(bit_field2() | (1 << kAttachedToSharedFunctionInfo));
+ } else {
+ set_bit_field2(bit_field2() & ~(1 << kAttachedToSharedFunctionInfo));
+ }
+}
+
+bool Map::attached_to_shared_function_info() {
+ return ((1 << kAttachedToSharedFunctionInfo) & bit_field2()) != 0;
+}
+
+
+void Map::set_is_shared(bool value) {
+ if (value) {
+ set_bit_field2(bit_field2() | (1 << kIsShared));
+ } else {
+ set_bit_field2(bit_field2() & ~(1 << kIsShared));
+ }
+}
+
+bool Map::is_shared() {
+ return ((1 << kIsShared) & bit_field2()) != 0;
+}
+
+
+JSFunction* Map::unchecked_constructor() {
+ return reinterpret_cast<JSFunction*>(READ_FIELD(this, kConstructorOffset));
+}
+
+
+Code::Flags Code::flags() {
+ return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset));
+}
+
+
+void Code::set_flags(Code::Flags flags) {
+ STATIC_ASSERT(Code::NUMBER_OF_KINDS <= (kFlagsKindMask >> kFlagsKindShift)+1);
+ // Make sure that all call stubs have an arguments count.
+ ASSERT((ExtractKindFromFlags(flags) != CALL_IC &&
+ ExtractKindFromFlags(flags) != KEYED_CALL_IC) ||
+ ExtractArgumentsCountFromFlags(flags) >= 0);
+ WRITE_INT_FIELD(this, kFlagsOffset, flags);
+}
+
+
+Code::Kind Code::kind() {
+ return ExtractKindFromFlags(flags());
+}
+
+
+InLoopFlag Code::ic_in_loop() {
+ return ExtractICInLoopFromFlags(flags());
+}
+
+
+InlineCacheState Code::ic_state() {
+ InlineCacheState result = ExtractICStateFromFlags(flags());
+ // Only allow uninitialized or debugger states for non-IC code
+ // objects. This is used in the debugger to determine whether or not
+ // a call to code object has been replaced with a debug break call.
+ ASSERT(is_inline_cache_stub() ||
+ result == UNINITIALIZED ||
+ result == DEBUG_BREAK ||
+ result == DEBUG_PREPARE_STEP_IN);
+ return result;
+}
+
+
+Code::ExtraICState Code::extra_ic_state() {
+ ASSERT(is_inline_cache_stub());
+ return ExtractExtraICStateFromFlags(flags());
+}
+
+
+PropertyType Code::type() {
+ ASSERT(ic_state() == MONOMORPHIC);
+ return ExtractTypeFromFlags(flags());
+}
+
+
+int Code::arguments_count() {
+ ASSERT(is_call_stub() || is_keyed_call_stub() || kind() == STUB);
+ return ExtractArgumentsCountFromFlags(flags());
+}
+
+
+int Code::major_key() {
+ ASSERT(kind() == STUB ||
+ kind() == BINARY_OP_IC ||
+ kind() == TYPE_RECORDING_BINARY_OP_IC ||
+ kind() == COMPARE_IC);
+ return READ_BYTE_FIELD(this, kStubMajorKeyOffset);
+}
+
+
+void Code::set_major_key(int major) {
+ ASSERT(kind() == STUB ||
+ kind() == BINARY_OP_IC ||
+ kind() == TYPE_RECORDING_BINARY_OP_IC ||
+ kind() == COMPARE_IC);
+ ASSERT(0 <= major && major < 256);
+ WRITE_BYTE_FIELD(this, kStubMajorKeyOffset, major);
+}
+
+
+bool Code::optimizable() {
+ ASSERT(kind() == FUNCTION);
+ return READ_BYTE_FIELD(this, kOptimizableOffset) == 1;
+}
+
+
+void Code::set_optimizable(bool value) {
+ ASSERT(kind() == FUNCTION);
+ WRITE_BYTE_FIELD(this, kOptimizableOffset, value ? 1 : 0);
+}
+
+
+bool Code::has_deoptimization_support() {
+ ASSERT(kind() == FUNCTION);
+ return READ_BYTE_FIELD(this, kHasDeoptimizationSupportOffset) == 1;
+}
+
+
+void Code::set_has_deoptimization_support(bool value) {
+ ASSERT(kind() == FUNCTION);
+ WRITE_BYTE_FIELD(this, kHasDeoptimizationSupportOffset, value ? 1 : 0);
+}
+
+
+int Code::allow_osr_at_loop_nesting_level() {
+ ASSERT(kind() == FUNCTION);
+ return READ_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset);
+}
+
+
+void Code::set_allow_osr_at_loop_nesting_level(int level) {
+ ASSERT(kind() == FUNCTION);
+ ASSERT(level >= 0 && level <= kMaxLoopNestingMarker);
+ WRITE_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset, level);
+}
+
+
+unsigned Code::stack_slots() {
+ ASSERT(kind() == OPTIMIZED_FUNCTION);
+ return READ_UINT32_FIELD(this, kStackSlotsOffset);
+}
+
+
+void Code::set_stack_slots(unsigned slots) {
+ ASSERT(kind() == OPTIMIZED_FUNCTION);
+ WRITE_UINT32_FIELD(this, kStackSlotsOffset, slots);
+}
+
+
+unsigned Code::safepoint_table_offset() {
+ ASSERT(kind() == OPTIMIZED_FUNCTION);
+ return READ_UINT32_FIELD(this, kSafepointTableOffsetOffset);
+}
+
+
+void Code::set_safepoint_table_offset(unsigned offset) {
+ ASSERT(kind() == OPTIMIZED_FUNCTION);
+ ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize)));
+ WRITE_UINT32_FIELD(this, kSafepointTableOffsetOffset, offset);
+}
+
+
+unsigned Code::stack_check_table_offset() {
+ ASSERT(kind() == FUNCTION);
+ return READ_UINT32_FIELD(this, kStackCheckTableOffsetOffset);
+}
+
+
+void Code::set_stack_check_table_offset(unsigned offset) {
+ ASSERT(kind() == FUNCTION);
+ ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize)));
+ WRITE_UINT32_FIELD(this, kStackCheckTableOffsetOffset, offset);
+}
+
+
+CheckType Code::check_type() {
+ ASSERT(is_call_stub() || is_keyed_call_stub());
+ byte type = READ_BYTE_FIELD(this, kCheckTypeOffset);
+ return static_cast<CheckType>(type);
+}
+
+
+void Code::set_check_type(CheckType value) {
+ ASSERT(is_call_stub() || is_keyed_call_stub());
+ WRITE_BYTE_FIELD(this, kCheckTypeOffset, value);
+}
+
+
+ExternalArrayType Code::external_array_type() {
+ ASSERT(is_external_array_load_stub() || is_external_array_store_stub());
+ byte type = READ_BYTE_FIELD(this, kExternalArrayTypeOffset);
+ return static_cast<ExternalArrayType>(type);
+}
+
+
+void Code::set_external_array_type(ExternalArrayType value) {
+ ASSERT(is_external_array_load_stub() || is_external_array_store_stub());
+ WRITE_BYTE_FIELD(this, kExternalArrayTypeOffset, value);
+}
+
+
+byte Code::binary_op_type() {
+ ASSERT(is_binary_op_stub());
+ return READ_BYTE_FIELD(this, kBinaryOpTypeOffset);
+}
+
+
+void Code::set_binary_op_type(byte value) {
+ ASSERT(is_binary_op_stub());
+ WRITE_BYTE_FIELD(this, kBinaryOpTypeOffset, value);
+}
+
+
+byte Code::type_recording_binary_op_type() {
+ ASSERT(is_type_recording_binary_op_stub());
+ return READ_BYTE_FIELD(this, kBinaryOpTypeOffset);
+}
+
+
+void Code::set_type_recording_binary_op_type(byte value) {
+ ASSERT(is_type_recording_binary_op_stub());
+ WRITE_BYTE_FIELD(this, kBinaryOpTypeOffset, value);
+}
+
+
+byte Code::type_recording_binary_op_result_type() {
+ ASSERT(is_type_recording_binary_op_stub());
+ return READ_BYTE_FIELD(this, kBinaryOpReturnTypeOffset);
+}
+
+
+void Code::set_type_recording_binary_op_result_type(byte value) {
+ ASSERT(is_type_recording_binary_op_stub());
+ WRITE_BYTE_FIELD(this, kBinaryOpReturnTypeOffset, value);
+}
+
+
+byte Code::compare_state() {
+ ASSERT(is_compare_ic_stub());
+ return READ_BYTE_FIELD(this, kCompareStateOffset);
+}
+
+
+void Code::set_compare_state(byte value) {
+ ASSERT(is_compare_ic_stub());
+ WRITE_BYTE_FIELD(this, kCompareStateOffset, value);
+}
+
+
+bool Code::is_inline_cache_stub() {
+ Kind kind = this->kind();
+ return kind >= FIRST_IC_KIND && kind <= LAST_IC_KIND;
+}
+
+
+Code::Flags Code::ComputeFlags(Kind kind,
+ InLoopFlag in_loop,
+ InlineCacheState ic_state,
+ ExtraICState extra_ic_state,
+ PropertyType type,
+ int argc,
+ InlineCacheHolderFlag holder) {
+ // Extra IC state is only allowed for monomorphic call IC stubs
+ // or for store IC stubs.
+ ASSERT(extra_ic_state == kNoExtraICState ||
+ (kind == CALL_IC && (ic_state == MONOMORPHIC ||
+ ic_state == MONOMORPHIC_PROTOTYPE_FAILURE)) ||
+ (kind == STORE_IC) ||
+ (kind == KEYED_STORE_IC));
+ // Compute the bit mask.
+ int bits = kind << kFlagsKindShift;
+ if (in_loop) bits |= kFlagsICInLoopMask;
+ bits |= ic_state << kFlagsICStateShift;
+ bits |= type << kFlagsTypeShift;
+ bits |= extra_ic_state << kFlagsExtraICStateShift;
+ bits |= argc << kFlagsArgumentsCountShift;
+ if (holder == PROTOTYPE_MAP) bits |= kFlagsCacheInPrototypeMapMask;
+ // Cast to flags and validate result before returning it.
+ Flags result = static_cast<Flags>(bits);
+ ASSERT(ExtractKindFromFlags(result) == kind);
+ ASSERT(ExtractICStateFromFlags(result) == ic_state);
+ ASSERT(ExtractICInLoopFromFlags(result) == in_loop);
+ ASSERT(ExtractTypeFromFlags(result) == type);
+ ASSERT(ExtractExtraICStateFromFlags(result) == extra_ic_state);
+ ASSERT(ExtractArgumentsCountFromFlags(result) == argc);
+ return result;
+}
+
+
+Code::Flags Code::ComputeMonomorphicFlags(Kind kind,
+ PropertyType type,
+ ExtraICState extra_ic_state,
+ InlineCacheHolderFlag holder,
+ InLoopFlag in_loop,
+ int argc) {
+ return ComputeFlags(
+ kind, in_loop, MONOMORPHIC, extra_ic_state, type, argc, holder);
+}
+
+
+Code::Kind Code::ExtractKindFromFlags(Flags flags) {
+ int bits = (flags & kFlagsKindMask) >> kFlagsKindShift;
+ return static_cast<Kind>(bits);
+}
+
+
+InlineCacheState Code::ExtractICStateFromFlags(Flags flags) {
+ int bits = (flags & kFlagsICStateMask) >> kFlagsICStateShift;
+ return static_cast<InlineCacheState>(bits);
+}
+
+
+Code::ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) {
+ int bits = (flags & kFlagsExtraICStateMask) >> kFlagsExtraICStateShift;
+ return static_cast<ExtraICState>(bits);
+}
+
+
+InLoopFlag Code::ExtractICInLoopFromFlags(Flags flags) {
+ int bits = (flags & kFlagsICInLoopMask);
+ return bits != 0 ? IN_LOOP : NOT_IN_LOOP;
+}
+
+
+PropertyType Code::ExtractTypeFromFlags(Flags flags) {
+ int bits = (flags & kFlagsTypeMask) >> kFlagsTypeShift;
+ return static_cast<PropertyType>(bits);
+}
+
+
+int Code::ExtractArgumentsCountFromFlags(Flags flags) {
+ return (flags & kFlagsArgumentsCountMask) >> kFlagsArgumentsCountShift;
+}
+
+
+InlineCacheHolderFlag Code::ExtractCacheHolderFromFlags(Flags flags) {
+ int bits = (flags & kFlagsCacheInPrototypeMapMask);
+ return bits != 0 ? PROTOTYPE_MAP : OWN_MAP;
+}
+
+
+Code::Flags Code::RemoveTypeFromFlags(Flags flags) {
+ int bits = flags & ~kFlagsTypeMask;
+ return static_cast<Flags>(bits);
+}
+
+
+Code* Code::GetCodeFromTargetAddress(Address address) {
+ HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize);
+ // GetCodeFromTargetAddress might be called when marking objects during mark
+ // sweep. reinterpret_cast is therefore used instead of the more appropriate
+ // Code::cast. Code::cast does not work when the object's map is
+ // marked.
+ Code* result = reinterpret_cast<Code*>(code);
+ return result;
+}
+
+
+Isolate* Map::isolate() {
+ return heap()->isolate();
+}
+
+
+Heap* Map::heap() {
+ // NOTE: address() helper is not used to save one instruction.
+ Heap* heap = Page::FromAddress(reinterpret_cast<Address>(this))->heap_;
+ ASSERT(heap != NULL);
+ ASSERT(heap->isolate() == Isolate::Current());
+ return heap;
+}
+
+
+Heap* Code::heap() {
+ // NOTE: address() helper is not used to save one instruction.
+ Heap* heap = Page::FromAddress(reinterpret_cast<Address>(this))->heap_;
+ ASSERT(heap != NULL);
+ ASSERT(heap->isolate() == Isolate::Current());
+ return heap;
+}
+
+
+Isolate* Code::isolate() {
+ return heap()->isolate();
+}
+
+
+Heap* JSGlobalPropertyCell::heap() {
+ // NOTE: address() helper is not used to save one instruction.
+ Heap* heap = Page::FromAddress(reinterpret_cast<Address>(this))->heap_;
+ ASSERT(heap != NULL);
+ ASSERT(heap->isolate() == Isolate::Current());
+ return heap;
+}
+
+
+Isolate* JSGlobalPropertyCell::isolate() {
+ return heap()->isolate();
+}
+
+
+Object* Code::GetObjectFromEntryAddress(Address location_of_address) {
+ return HeapObject::
+ FromAddress(Memory::Address_at(location_of_address) - Code::kHeaderSize);
+}
+
+
+Object* Map::prototype() {
+ return READ_FIELD(this, kPrototypeOffset);
+}
+
+
+void Map::set_prototype(Object* value, WriteBarrierMode mode) {
+ ASSERT(value->IsNull() || value->IsJSObject());
+ WRITE_FIELD(this, kPrototypeOffset, value);
+ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, mode);
+}
+
+
+MaybeObject* Map::GetFastElementsMap() {
+ if (has_fast_elements()) return this;
+ Object* obj;
+ { MaybeObject* maybe_obj = CopyDropTransitions();
+ if (!maybe_obj->ToObject(&obj)) return maybe_obj;
+ }
+ Map* new_map = Map::cast(obj);
+ new_map->set_has_fast_elements(true);
+ isolate()->counters()->map_slow_to_fast_elements()->Increment();
+ return new_map;
+}
+
+
+MaybeObject* Map::GetSlowElementsMap() {
+ if (!has_fast_elements()) return this;
+ Object* obj;
+ { MaybeObject* maybe_obj = CopyDropTransitions();
+ if (!maybe_obj->ToObject(&obj)) return maybe_obj;
+ }
+ Map* new_map = Map::cast(obj);
+ new_map->set_has_fast_elements(false);
+ isolate()->counters()->map_fast_to_slow_elements()->Increment();
+ return new_map;
+}
+
+
+ACCESSORS(Map, instance_descriptors, DescriptorArray,
+ kInstanceDescriptorsOffset)
+ACCESSORS(Map, code_cache, Object, kCodeCacheOffset)
+ACCESSORS(Map, constructor, Object, kConstructorOffset)
+
+ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset)
+ACCESSORS(JSFunction, literals, FixedArray, kLiteralsOffset)
+ACCESSORS_GCSAFE(JSFunction, next_function_link, Object,
+ kNextFunctionLinkOffset)
+
+ACCESSORS(GlobalObject, builtins, JSBuiltinsObject, kBuiltinsOffset)
+ACCESSORS(GlobalObject, global_context, Context, kGlobalContextOffset)
+ACCESSORS(GlobalObject, global_receiver, JSObject, kGlobalReceiverOffset)
+
+ACCESSORS(JSGlobalProxy, context, Object, kContextOffset)
+
+ACCESSORS(AccessorInfo, getter, Object, kGetterOffset)
+ACCESSORS(AccessorInfo, setter, Object, kSetterOffset)
+ACCESSORS(AccessorInfo, data, Object, kDataOffset)
+ACCESSORS(AccessorInfo, name, Object, kNameOffset)
+ACCESSORS(AccessorInfo, flag, Smi, kFlagOffset)
+
+ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset)
+ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset)
+ACCESSORS(AccessCheckInfo, data, Object, kDataOffset)
+
+ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset)
+ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset)
+ACCESSORS(InterceptorInfo, query, Object, kQueryOffset)
+ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset)
+ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset)
+ACCESSORS(InterceptorInfo, data, Object, kDataOffset)
+
+ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset)
+ACCESSORS(CallHandlerInfo, data, Object, kDataOffset)
+
+ACCESSORS(TemplateInfo, tag, Object, kTagOffset)
+ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset)
+
+ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset)
+ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset)
+ACCESSORS(FunctionTemplateInfo, property_accessors, Object,
+ kPropertyAccessorsOffset)
+ACCESSORS(FunctionTemplateInfo, prototype_template, Object,
+ kPrototypeTemplateOffset)
+ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset)
+ACCESSORS(FunctionTemplateInfo, named_property_handler, Object,
+ kNamedPropertyHandlerOffset)
+ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object,
+ kIndexedPropertyHandlerOffset)
+ACCESSORS(FunctionTemplateInfo, instance_template, Object,
+ kInstanceTemplateOffset)
+ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset)
+ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset)
+ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object,
+ kInstanceCallHandlerOffset)
+ACCESSORS(FunctionTemplateInfo, access_check_info, Object,
+ kAccessCheckInfoOffset)
+ACCESSORS(FunctionTemplateInfo, flag, Smi, kFlagOffset)
+
+ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset)
+ACCESSORS(ObjectTemplateInfo, internal_field_count, Object,
+ kInternalFieldCountOffset)
+
+ACCESSORS(SignatureInfo, receiver, Object, kReceiverOffset)
+ACCESSORS(SignatureInfo, args, Object, kArgsOffset)
+
+ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset)
+
+ACCESSORS(Script, source, Object, kSourceOffset)
+ACCESSORS(Script, name, Object, kNameOffset)
+ACCESSORS(Script, id, Object, kIdOffset)
+ACCESSORS(Script, line_offset, Smi, kLineOffsetOffset)
+ACCESSORS(Script, column_offset, Smi, kColumnOffsetOffset)
+ACCESSORS(Script, data, Object, kDataOffset)
+ACCESSORS(Script, context_data, Object, kContextOffset)
+ACCESSORS(Script, wrapper, Proxy, kWrapperOffset)
+ACCESSORS(Script, type, Smi, kTypeOffset)
+ACCESSORS(Script, compilation_type, Smi, kCompilationTypeOffset)
+ACCESSORS(Script, line_ends, Object, kLineEndsOffset)
+ACCESSORS(Script, eval_from_shared, Object, kEvalFromSharedOffset)
+ACCESSORS(Script, eval_from_instructions_offset, Smi,
+ kEvalFrominstructionsOffsetOffset)
+
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex)
+ACCESSORS(DebugInfo, original_code, Code, kOriginalCodeIndex)
+ACCESSORS(DebugInfo, code, Code, kPatchedCodeIndex)
+ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex)
+
+ACCESSORS(BreakPointInfo, code_position, Smi, kCodePositionIndex)
+ACCESSORS(BreakPointInfo, source_position, Smi, kSourcePositionIndex)
+ACCESSORS(BreakPointInfo, statement_position, Smi, kStatementPositionIndex)
+ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex)
+#endif
+
+ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset)
+ACCESSORS_GCSAFE(SharedFunctionInfo, construct_stub, Code, kConstructStubOffset)
+ACCESSORS_GCSAFE(SharedFunctionInfo, initial_map, Object, kInitialMapOffset)
+ACCESSORS(SharedFunctionInfo, instance_class_name, Object,
+ kInstanceClassNameOffset)
+ACCESSORS(SharedFunctionInfo, function_data, Object, kFunctionDataOffset)
+ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset)
+ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset)
+ACCESSORS(SharedFunctionInfo, inferred_name, String, kInferredNameOffset)
+ACCESSORS(SharedFunctionInfo, this_property_assignments, Object,
+ kThisPropertyAssignmentsOffset)
+
+BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype,
+ kHiddenPrototypeBit)
+BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit)
+BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check,
+ kNeedsAccessCheckBit)
+BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression,
+ kIsExpressionBit)
+BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel,
+ kIsTopLevelBit)
+BOOL_GETTER(SharedFunctionInfo, compiler_hints,
+ has_only_simple_this_property_assignments,
+ kHasOnlySimpleThisPropertyAssignments)
+BOOL_ACCESSORS(SharedFunctionInfo,
+ compiler_hints,
+ allows_lazy_compilation,
+ kAllowLazyCompilation)
+
+
+#if V8_HOST_ARCH_32_BIT
+SMI_ACCESSORS(SharedFunctionInfo, length, kLengthOffset)
+SMI_ACCESSORS(SharedFunctionInfo, formal_parameter_count,
+ kFormalParameterCountOffset)
+SMI_ACCESSORS(SharedFunctionInfo, expected_nof_properties,
+ kExpectedNofPropertiesOffset)
+SMI_ACCESSORS(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
+SMI_ACCESSORS(SharedFunctionInfo, start_position_and_type,
+ kStartPositionAndTypeOffset)
+SMI_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset)
+SMI_ACCESSORS(SharedFunctionInfo, function_token_position,
+ kFunctionTokenPositionOffset)
+SMI_ACCESSORS(SharedFunctionInfo, compiler_hints,
+ kCompilerHintsOffset)
+SMI_ACCESSORS(SharedFunctionInfo, this_property_assignments_count,
+ kThisPropertyAssignmentsCountOffset)
+SMI_ACCESSORS(SharedFunctionInfo, opt_count, kOptCountOffset)
+#else
+
+#define PSEUDO_SMI_ACCESSORS_LO(holder, name, offset) \
+ STATIC_ASSERT(holder::offset % kPointerSize == 0); \
+ int holder::name() { \
+ int value = READ_INT_FIELD(this, offset); \
+ ASSERT(kHeapObjectTag == 1); \
+ ASSERT((value & kHeapObjectTag) == 0); \
+ return value >> 1; \
+ } \
+ void holder::set_##name(int value) { \
+ ASSERT(kHeapObjectTag == 1); \
+ ASSERT((value & 0xC0000000) == 0xC0000000 || \
+ (value & 0xC0000000) == 0x000000000); \
+ WRITE_INT_FIELD(this, \
+ offset, \
+ (value << 1) & ~kHeapObjectTag); \
+ }
+
+#define PSEUDO_SMI_ACCESSORS_HI(holder, name, offset) \
+ STATIC_ASSERT(holder::offset % kPointerSize == kIntSize); \
+ INT_ACCESSORS(holder, name, offset)
+
+
+PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, length, kLengthOffset)
+PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
+ formal_parameter_count,
+ kFormalParameterCountOffset)
+
+PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
+ expected_nof_properties,
+ kExpectedNofPropertiesOffset)
+PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
+
+PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, end_position, kEndPositionOffset)
+PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
+ start_position_and_type,
+ kStartPositionAndTypeOffset)
+
+PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
+ function_token_position,
+ kFunctionTokenPositionOffset)
+PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
+ compiler_hints,
+ kCompilerHintsOffset)
+
+PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
+ this_property_assignments_count,
+ kThisPropertyAssignmentsCountOffset)
+PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, opt_count, kOptCountOffset)
+#endif
+
+
+int SharedFunctionInfo::construction_count() {
+ return READ_BYTE_FIELD(this, kConstructionCountOffset);
+}
+
+
+void SharedFunctionInfo::set_construction_count(int value) {
+ ASSERT(0 <= value && value < 256);
+ WRITE_BYTE_FIELD(this, kConstructionCountOffset, static_cast<byte>(value));
+}
+
+
+bool SharedFunctionInfo::live_objects_may_exist() {
+ return (compiler_hints() & (1 << kLiveObjectsMayExist)) != 0;
+}
+
+
+void SharedFunctionInfo::set_live_objects_may_exist(bool value) {
+ if (value) {
+ set_compiler_hints(compiler_hints() | (1 << kLiveObjectsMayExist));
+ } else {
+ set_compiler_hints(compiler_hints() & ~(1 << kLiveObjectsMayExist));
+ }
+}
+
+
+bool SharedFunctionInfo::IsInobjectSlackTrackingInProgress() {
+ return initial_map() != HEAP->undefined_value();
+}
+
+
+bool SharedFunctionInfo::optimization_disabled() {
+ return BooleanBit::get(compiler_hints(), kOptimizationDisabled);
+}
+
+
+void SharedFunctionInfo::set_optimization_disabled(bool disable) {
+ set_compiler_hints(BooleanBit::set(compiler_hints(),
+ kOptimizationDisabled,
+ disable));
+ // If disabling optimizations we reflect that in the code object so
+ // it will not be counted as optimizable code.
+ if ((code()->kind() == Code::FUNCTION) && disable) {
+ code()->set_optimizable(false);
+ }
+}
+
+
+bool SharedFunctionInfo::strict_mode() {
+ return BooleanBit::get(compiler_hints(), kStrictModeFunction);
+}
+
+
+void SharedFunctionInfo::set_strict_mode(bool value) {
+ set_compiler_hints(BooleanBit::set(compiler_hints(),
+ kStrictModeFunction,
+ value));
+}
+
+
+ACCESSORS(CodeCache, default_cache, FixedArray, kDefaultCacheOffset)
+ACCESSORS(CodeCache, normal_type_cache, Object, kNormalTypeCacheOffset)
+
+bool Script::HasValidSource() {
+ Object* src = this->source();
+ if (!src->IsString()) return true;
+ String* src_str = String::cast(src);
+ if (!StringShape(src_str).IsExternal()) return true;
+ if (src_str->IsAsciiRepresentation()) {
+ return ExternalAsciiString::cast(src)->resource() != NULL;
+ } else if (src_str->IsTwoByteRepresentation()) {
+ return ExternalTwoByteString::cast(src)->resource() != NULL;
+ }
+ return true;
+}
+
+
+void SharedFunctionInfo::DontAdaptArguments() {
+ ASSERT(code()->kind() == Code::BUILTIN);
+ set_formal_parameter_count(kDontAdaptArgumentsSentinel);
+}
+
+
+int SharedFunctionInfo::start_position() {
+ return start_position_and_type() >> kStartPositionShift;
+}
+
+
+void SharedFunctionInfo::set_start_position(int start_position) {
+ set_start_position_and_type((start_position << kStartPositionShift)
+ | (start_position_and_type() & ~kStartPositionMask));
+}
+
+
+Code* SharedFunctionInfo::code() {
+ return Code::cast(READ_FIELD(this, kCodeOffset));
+}
+
+
+Code* SharedFunctionInfo::unchecked_code() {
+ return reinterpret_cast<Code*>(READ_FIELD(this, kCodeOffset));
+}
+
+
+void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) {
+ WRITE_FIELD(this, kCodeOffset, value);
+ ASSERT(!Isolate::Current()->heap()->InNewSpace(value));
+}
+
+
+SerializedScopeInfo* SharedFunctionInfo::scope_info() {
+ return reinterpret_cast<SerializedScopeInfo*>(
+ READ_FIELD(this, kScopeInfoOffset));
+}
+
+
+void SharedFunctionInfo::set_scope_info(SerializedScopeInfo* value,
+ WriteBarrierMode mode) {
+ WRITE_FIELD(this, kScopeInfoOffset, reinterpret_cast<Object*>(value));
+ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kScopeInfoOffset, mode);
+}
+
+
+Smi* SharedFunctionInfo::deopt_counter() {
+ return reinterpret_cast<Smi*>(READ_FIELD(this, kDeoptCounterOffset));
+}
+
+
+void SharedFunctionInfo::set_deopt_counter(Smi* value) {
+ WRITE_FIELD(this, kDeoptCounterOffset, value);
+}
+
+
+bool SharedFunctionInfo::is_compiled() {
+ return code() !=
+ Isolate::Current()->builtins()->builtin(Builtins::kLazyCompile);
+}
+
+
+bool SharedFunctionInfo::IsApiFunction() {
+ return function_data()->IsFunctionTemplateInfo();
+}
+
+
+FunctionTemplateInfo* SharedFunctionInfo::get_api_func_data() {
+ ASSERT(IsApiFunction());
+ return FunctionTemplateInfo::cast(function_data());
+}
+
+
+bool SharedFunctionInfo::HasBuiltinFunctionId() {
+ return function_data()->IsSmi();
+}
+
+
+BuiltinFunctionId SharedFunctionInfo::builtin_function_id() {
+ ASSERT(HasBuiltinFunctionId());
+ return static_cast<BuiltinFunctionId>(Smi::cast(function_data())->value());
+}
+
+
+int SharedFunctionInfo::code_age() {
+ return (compiler_hints() >> kCodeAgeShift) & kCodeAgeMask;
+}
+
+
+void SharedFunctionInfo::set_code_age(int code_age) {
+ set_compiler_hints(compiler_hints() |
+ ((code_age & kCodeAgeMask) << kCodeAgeShift));
+}
+
+
+bool SharedFunctionInfo::has_deoptimization_support() {
+ Code* code = this->code();
+ return code->kind() == Code::FUNCTION && code->has_deoptimization_support();
+}
+
+
+bool JSFunction::IsBuiltin() {
+ return context()->global()->IsJSBuiltinsObject();
+}
+
+
+bool JSFunction::NeedsArgumentsAdaption() {
+ return shared()->formal_parameter_count() !=
+ SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+}
+
+
+bool JSFunction::IsOptimized() {
+ return code()->kind() == Code::OPTIMIZED_FUNCTION;
+}
+
+
+bool JSFunction::IsMarkedForLazyRecompilation() {
+ return code() == GetIsolate()->builtins()->builtin(Builtins::kLazyRecompile);
+}
+
+
+Code* JSFunction::code() {
+ return Code::cast(unchecked_code());
+}
+
+
+Code* JSFunction::unchecked_code() {
+ return reinterpret_cast<Code*>(
+ Code::GetObjectFromEntryAddress(FIELD_ADDR(this, kCodeEntryOffset)));
+}
+
+
+void JSFunction::set_code(Code* value) {
+ // Skip the write barrier because code is never in new space.
+ ASSERT(!HEAP->InNewSpace(value));
+ Address entry = value->entry();
+ WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry));
+}
+
+
+void JSFunction::ReplaceCode(Code* code) {
+ bool was_optimized = IsOptimized();
+ bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION;
+
+ set_code(code);
+
+ // Add/remove the function from the list of optimized functions for this
+ // context based on the state change.
+ if (!was_optimized && is_optimized) {
+ context()->global_context()->AddOptimizedFunction(this);
+ }
+ if (was_optimized && !is_optimized) {
+ context()->global_context()->RemoveOptimizedFunction(this);
+ }
+}
+
+
+Context* JSFunction::context() {
+ return Context::cast(READ_FIELD(this, kContextOffset));
+}
+
+
+Object* JSFunction::unchecked_context() {
+ return READ_FIELD(this, kContextOffset);
+}
+
+
+SharedFunctionInfo* JSFunction::unchecked_shared() {
+ return reinterpret_cast<SharedFunctionInfo*>(
+ READ_FIELD(this, kSharedFunctionInfoOffset));
+}
+
+
+void JSFunction::set_context(Object* value) {
+ ASSERT(value->IsUndefined() || value->IsContext());
+ WRITE_FIELD(this, kContextOffset, value);
+ WRITE_BARRIER(this, kContextOffset);
+}
+
+ACCESSORS(JSFunction, prototype_or_initial_map, Object,
+ kPrototypeOrInitialMapOffset)
+
+
+Map* JSFunction::initial_map() {
+ return Map::cast(prototype_or_initial_map());
+}
+
+
+void JSFunction::set_initial_map(Map* value) {
+ set_prototype_or_initial_map(value);
+}
+
+
+bool JSFunction::has_initial_map() {
+ return prototype_or_initial_map()->IsMap();
+}
+
+
+bool JSFunction::has_instance_prototype() {
+ return has_initial_map() || !prototype_or_initial_map()->IsTheHole();
+}
+
+
+bool JSFunction::has_prototype() {
+ return map()->has_non_instance_prototype() || has_instance_prototype();
+}
+
+
+Object* JSFunction::instance_prototype() {
+ ASSERT(has_instance_prototype());
+ if (has_initial_map()) return initial_map()->prototype();
+ // When there is no initial map and the prototype is a JSObject, the
+ // initial map field is used for the prototype field.
+ return prototype_or_initial_map();
+}
+
+
+Object* JSFunction::prototype() {
+ ASSERT(has_prototype());
+ // If the function's prototype property has been set to a non-JSObject
+ // value, that value is stored in the constructor field of the map.
+ if (map()->has_non_instance_prototype()) return map()->constructor();
+ return instance_prototype();
+}
+
+bool JSFunction::should_have_prototype() {
+ return map()->function_with_prototype();
+}
+
+
+bool JSFunction::is_compiled() {
+ return code() != GetIsolate()->builtins()->builtin(Builtins::kLazyCompile);
+}
+
+
+int JSFunction::NumberOfLiterals() {
+ return literals()->length();
+}
+
+
+Object* JSBuiltinsObject::javascript_builtin(Builtins::JavaScript id) {
+ ASSERT(id < kJSBuiltinsCount); // id is unsigned.
+ return READ_FIELD(this, OffsetOfFunctionWithId(id));
+}
+
+
+void JSBuiltinsObject::set_javascript_builtin(Builtins::JavaScript id,
+ Object* value) {
+ ASSERT(id < kJSBuiltinsCount); // id is unsigned.
+ WRITE_FIELD(this, OffsetOfFunctionWithId(id), value);
+ WRITE_BARRIER(this, OffsetOfFunctionWithId(id));
+}
+
+
+Code* JSBuiltinsObject::javascript_builtin_code(Builtins::JavaScript id) {
+ ASSERT(id < kJSBuiltinsCount); // id is unsigned.
+ return Code::cast(READ_FIELD(this, OffsetOfCodeWithId(id)));
+}
+
+
+void JSBuiltinsObject::set_javascript_builtin_code(Builtins::JavaScript id,
+ Code* value) {
+ ASSERT(id < kJSBuiltinsCount); // id is unsigned.
+ WRITE_FIELD(this, OffsetOfCodeWithId(id), value);
+ ASSERT(!HEAP->InNewSpace(value));
+}
+
+
+Address Proxy::proxy() {
+ return AddressFrom<Address>(READ_INTPTR_FIELD(this, kProxyOffset));
+}
+
+
+void Proxy::set_proxy(Address value) {
+ WRITE_INTPTR_FIELD(this, kProxyOffset, OffsetFrom(value));
+}
+
+
+ACCESSORS(JSValue, value, Object, kValueOffset)
+
+
+JSValue* JSValue::cast(Object* obj) {
+ ASSERT(obj->IsJSValue());
+ ASSERT(HeapObject::cast(obj)->Size() == JSValue::kSize);
+ return reinterpret_cast<JSValue*>(obj);
+}
+
+
+ACCESSORS(JSMessageObject, type, String, kTypeOffset)
+ACCESSORS(JSMessageObject, arguments, JSArray, kArgumentsOffset)
+ACCESSORS(JSMessageObject, script, Object, kScriptOffset)
+ACCESSORS(JSMessageObject, stack_trace, Object, kStackTraceOffset)
+ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset)
+SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset)
+SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset)
+
+
+JSMessageObject* JSMessageObject::cast(Object* obj) {
+ ASSERT(obj->IsJSMessageObject());
+ ASSERT(HeapObject::cast(obj)->Size() == JSMessageObject::kSize);
+ return reinterpret_cast<JSMessageObject*>(obj);
+}
+
+
+INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset)
+ACCESSORS(Code, relocation_info, ByteArray, kRelocationInfoOffset)
+ACCESSORS(Code, deoptimization_data, FixedArray, kDeoptimizationDataOffset)
+
+
+byte* Code::instruction_start() {
+ return FIELD_ADDR(this, kHeaderSize);
+}
+
+
+byte* Code::instruction_end() {
+ return instruction_start() + instruction_size();
+}
+
+
+int Code::body_size() {
+ return RoundUp(instruction_size(), kObjectAlignment);
+}
+
+
+FixedArray* Code::unchecked_deoptimization_data() {
+ return reinterpret_cast<FixedArray*>(
+ READ_FIELD(this, kDeoptimizationDataOffset));
+}
+
+
+ByteArray* Code::unchecked_relocation_info() {
+ return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset));
+}
+
+
+byte* Code::relocation_start() {
+ return unchecked_relocation_info()->GetDataStartAddress();
+}
+
+
+int Code::relocation_size() {
+ return unchecked_relocation_info()->length();
+}
+
+
+byte* Code::entry() {
+ return instruction_start();
+}
+
+
+bool Code::contains(byte* pc) {
+ return (instruction_start() <= pc) &&
+ (pc <= instruction_start() + instruction_size());
+}
+
+
+ACCESSORS(JSArray, length, Object, kLengthOffset)
+
+
+ACCESSORS(JSRegExp, data, Object, kDataOffset)
+
+
+JSRegExp::Type JSRegExp::TypeTag() {
+ Object* data = this->data();
+ if (data->IsUndefined()) return JSRegExp::NOT_COMPILED;
+ Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex));
+ return static_cast<JSRegExp::Type>(smi->value());
+}
+
+
+int JSRegExp::CaptureCount() {
+ switch (TypeTag()) {
+ case ATOM:
+ return 0;
+ case IRREGEXP:
+ return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value();
+ default:
+ UNREACHABLE();
+ return -1;
+ }
+}
+
+
+JSRegExp::Flags JSRegExp::GetFlags() {
+ ASSERT(this->data()->IsFixedArray());
+ Object* data = this->data();
+ Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex));
+ return Flags(smi->value());
+}
+
+
+String* JSRegExp::Pattern() {
+ ASSERT(this->data()->IsFixedArray());
+ Object* data = this->data();
+ String* pattern= String::cast(FixedArray::cast(data)->get(kSourceIndex));
+ return pattern;
+}
+
+
+Object* JSRegExp::DataAt(int index) {
+ ASSERT(TypeTag() != NOT_COMPILED);
+ return FixedArray::cast(data())->get(index);
+}
+
+
+void JSRegExp::SetDataAt(int index, Object* value) {
+ ASSERT(TypeTag() != NOT_COMPILED);
+ ASSERT(index >= kDataIndex); // Only implementation data can be set this way.
+ FixedArray::cast(data())->set(index, value);
+}
+
+
+JSObject::ElementsKind JSObject::GetElementsKind() {
+ if (map()->has_fast_elements()) {
+ ASSERT(elements()->map() == GetHeap()->fixed_array_map() ||
+ elements()->map() == GetHeap()->fixed_cow_array_map());
+ return FAST_ELEMENTS;
+ }
+ HeapObject* array = elements();
+ if (array->IsFixedArray()) {
+ // FAST_ELEMENTS or DICTIONARY_ELEMENTS are both stored in a
+ // FixedArray, but FAST_ELEMENTS is already handled above.
+ ASSERT(array->IsDictionary());
+ return DICTIONARY_ELEMENTS;
+ }
+ ASSERT(!map()->has_fast_elements());
+ if (array->IsExternalArray()) {
+ switch (array->map()->instance_type()) {
+ case EXTERNAL_BYTE_ARRAY_TYPE:
+ return EXTERNAL_BYTE_ELEMENTS;
+ case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
+ return EXTERNAL_UNSIGNED_BYTE_ELEMENTS;
+ case EXTERNAL_SHORT_ARRAY_TYPE:
+ return EXTERNAL_SHORT_ELEMENTS;
+ case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
+ return EXTERNAL_UNSIGNED_SHORT_ELEMENTS;
+ case EXTERNAL_INT_ARRAY_TYPE:
+ return EXTERNAL_INT_ELEMENTS;
+ case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
+ return EXTERNAL_UNSIGNED_INT_ELEMENTS;
+ case EXTERNAL_PIXEL_ARRAY_TYPE:
+ return EXTERNAL_PIXEL_ELEMENTS;
+ default:
+ break;
+ }
+ }
+ ASSERT(array->map()->instance_type() == EXTERNAL_FLOAT_ARRAY_TYPE);
+ return EXTERNAL_FLOAT_ELEMENTS;
+}
+
+
+bool JSObject::HasFastElements() {
+ return GetElementsKind() == FAST_ELEMENTS;
+}
+
+
+bool JSObject::HasDictionaryElements() {
+ return GetElementsKind() == DICTIONARY_ELEMENTS;
+}
+
+
+bool JSObject::HasExternalArrayElements() {
+ HeapObject* array = elements();
+ ASSERT(array != NULL);
+ return array->IsExternalArray();
+}
+
+
+#define EXTERNAL_ELEMENTS_CHECK(name, type) \
+bool JSObject::HasExternal##name##Elements() { \
+ HeapObject* array = elements(); \
+ ASSERT(array != NULL); \
+ if (!array->IsHeapObject()) \
+ return false; \
+ return array->map()->instance_type() == type; \
+}
+
+
+EXTERNAL_ELEMENTS_CHECK(Byte, EXTERNAL_BYTE_ARRAY_TYPE)
+EXTERNAL_ELEMENTS_CHECK(UnsignedByte, EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)
+EXTERNAL_ELEMENTS_CHECK(Short, EXTERNAL_SHORT_ARRAY_TYPE)
+EXTERNAL_ELEMENTS_CHECK(UnsignedShort,
+ EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)
+EXTERNAL_ELEMENTS_CHECK(Int, EXTERNAL_INT_ARRAY_TYPE)
+EXTERNAL_ELEMENTS_CHECK(UnsignedInt,
+ EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)
+EXTERNAL_ELEMENTS_CHECK(Float,
+ EXTERNAL_FLOAT_ARRAY_TYPE)
+EXTERNAL_ELEMENTS_CHECK(Pixel, EXTERNAL_PIXEL_ARRAY_TYPE)
+
+
+bool JSObject::HasNamedInterceptor() {
+ return map()->has_named_interceptor();
+}
+
+
+bool JSObject::HasIndexedInterceptor() {
+ return map()->has_indexed_interceptor();
+}
+
+
+bool JSObject::AllowsSetElementsLength() {
+ bool result = elements()->IsFixedArray();
+ ASSERT(result == !HasExternalArrayElements());
+ return result;
+}
+
+
+MaybeObject* JSObject::EnsureWritableFastElements() {
+ ASSERT(HasFastElements());
+ FixedArray* elems = FixedArray::cast(elements());
+ Isolate* isolate = GetIsolate();
+ if (elems->map() != isolate->heap()->fixed_cow_array_map()) return elems;
+ Object* writable_elems;
+ { MaybeObject* maybe_writable_elems = isolate->heap()->CopyFixedArrayWithMap(
+ elems, isolate->heap()->fixed_array_map());
+ if (!maybe_writable_elems->ToObject(&writable_elems)) {
+ return maybe_writable_elems;
+ }
+ }
+ set_elements(FixedArray::cast(writable_elems));
+ isolate->counters()->cow_arrays_converted()->Increment();
+ return writable_elems;
+}
+
+
+StringDictionary* JSObject::property_dictionary() {
+ ASSERT(!HasFastProperties());
+ return StringDictionary::cast(properties());
+}
+
+
+NumberDictionary* JSObject::element_dictionary() {
+ ASSERT(HasDictionaryElements());
+ return NumberDictionary::cast(elements());
+}
+
+
+bool String::IsHashFieldComputed(uint32_t field) {
+ return (field & kHashNotComputedMask) == 0;
+}
+
+
+bool String::HasHashCode() {
+ return IsHashFieldComputed(hash_field());
+}
+
+
+uint32_t String::Hash() {
+ // Fast case: has hash code already been computed?
+ uint32_t field = hash_field();
+ if (IsHashFieldComputed(field)) return field >> kHashShift;
+ // Slow case: compute hash code and set it.
+ return ComputeAndSetHash();
+}
+
+
+StringHasher::StringHasher(int length)
+ : length_(length),
+ raw_running_hash_(0),
+ array_index_(0),
+ is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize),
+ is_first_char_(true),
+ is_valid_(true) { }
+
+
+bool StringHasher::has_trivial_hash() {
+ return length_ > String::kMaxHashCalcLength;
+}
+
+
+void StringHasher::AddCharacter(uc32 c) {
+ // Use the Jenkins one-at-a-time hash function to update the hash
+ // for the given character.
+ raw_running_hash_ += c;
+ raw_running_hash_ += (raw_running_hash_ << 10);
+ raw_running_hash_ ^= (raw_running_hash_ >> 6);
+ // Incremental array index computation.
+ if (is_array_index_) {
+ if (c < '0' || c > '9') {
+ is_array_index_ = false;
+ } else {
+ int d = c - '0';
+ if (is_first_char_) {
+ is_first_char_ = false;
+ if (c == '0' && length_ > 1) {
+ is_array_index_ = false;
+ return;
+ }
+ }
+ if (array_index_ > 429496729U - ((d + 2) >> 3)) {
+ is_array_index_ = false;
+ } else {
+ array_index_ = array_index_ * 10 + d;
+ }
+ }
+ }
+}
+
+
+void StringHasher::AddCharacterNoIndex(uc32 c) {
+ ASSERT(!is_array_index());
+ raw_running_hash_ += c;
+ raw_running_hash_ += (raw_running_hash_ << 10);
+ raw_running_hash_ ^= (raw_running_hash_ >> 6);
+}
+
+
+uint32_t StringHasher::GetHash() {
+ // Get the calculated raw hash value and do some more bit ops to distribute
+ // the hash further. Ensure that we never return zero as the hash value.
+ uint32_t result = raw_running_hash_;
+ result += (result << 3);
+ result ^= (result >> 11);
+ result += (result << 15);
+ if (result == 0) {
+ result = 27;
+ }
+ return result;
+}
+
+
+template <typename schar>
+uint32_t HashSequentialString(const schar* chars, int length) {
+ StringHasher hasher(length);
+ if (!hasher.has_trivial_hash()) {
+ int i;
+ for (i = 0; hasher.is_array_index() && (i < length); i++) {
+ hasher.AddCharacter(chars[i]);
+ }
+ for (; i < length; i++) {
+ hasher.AddCharacterNoIndex(chars[i]);
+ }
+ }
+ return hasher.GetHashField();
+}
+
+
+bool String::AsArrayIndex(uint32_t* index) {
+ uint32_t field = hash_field();
+ if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) {
+ return false;
+ }
+ return SlowAsArrayIndex(index);
+}
+
+
+Object* JSObject::GetPrototype() {
+ return JSObject::cast(this)->map()->prototype();
+}
+
+
+PropertyAttributes JSObject::GetPropertyAttribute(String* key) {
+ return GetPropertyAttributeWithReceiver(this, key);
+}
+
+// TODO(504): this may be useful in other places too where JSGlobalProxy
+// is used.
+Object* JSObject::BypassGlobalProxy() {
+ if (IsJSGlobalProxy()) {
+ Object* proto = GetPrototype();
+ if (proto->IsNull()) return GetHeap()->undefined_value();
+ ASSERT(proto->IsJSGlobalObject());
+ return proto;
+ }
+ return this;
+}
+
+
+bool JSObject::HasHiddenPropertiesObject() {
+ ASSERT(!IsJSGlobalProxy());
+ return GetPropertyAttributePostInterceptor(this,
+ GetHeap()->hidden_symbol(),
+ false) != ABSENT;
+}
+
+
+Object* JSObject::GetHiddenPropertiesObject() {
+ ASSERT(!IsJSGlobalProxy());
+ PropertyAttributes attributes;
+ // You can't install a getter on a property indexed by the hidden symbol,
+ // so we can be sure that GetLocalPropertyPostInterceptor returns a real
+ // object.
+ Object* result =
+ GetLocalPropertyPostInterceptor(this,
+ GetHeap()->hidden_symbol(),
+ &attributes)->ToObjectUnchecked();
+ return result;
+}
+
+
+MaybeObject* JSObject::SetHiddenPropertiesObject(Object* hidden_obj) {
+ ASSERT(!IsJSGlobalProxy());
+ return SetPropertyPostInterceptor(GetHeap()->hidden_symbol(),
+ hidden_obj,
+ DONT_ENUM,
+ kNonStrictMode);
+}
+
+
+bool JSObject::HasElement(uint32_t index) {
+ return HasElementWithReceiver(this, index);
+}
+
+
+bool AccessorInfo::all_can_read() {
+ return BooleanBit::get(flag(), kAllCanReadBit);
+}
+
+
+void AccessorInfo::set_all_can_read(bool value) {
+ set_flag(BooleanBit::set(flag(), kAllCanReadBit, value));
+}
+
+
+bool AccessorInfo::all_can_write() {
+ return BooleanBit::get(flag(), kAllCanWriteBit);
+}
+
+
+void AccessorInfo::set_all_can_write(bool value) {
+ set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value));
+}
+
+
+bool AccessorInfo::prohibits_overwriting() {
+ return BooleanBit::get(flag(), kProhibitsOverwritingBit);
+}
+
+
+void AccessorInfo::set_prohibits_overwriting(bool value) {
+ set_flag(BooleanBit::set(flag(), kProhibitsOverwritingBit, value));
+}
+
+
+PropertyAttributes AccessorInfo::property_attributes() {
+ return AttributesField::decode(static_cast<uint32_t>(flag()->value()));
+}
+
+
+void AccessorInfo::set_property_attributes(PropertyAttributes attributes) {
+ ASSERT(AttributesField::is_valid(attributes));
+ int rest_value = flag()->value() & ~AttributesField::mask();
+ set_flag(Smi::FromInt(rest_value | AttributesField::encode(attributes)));
+}
+
+template<typename Shape, typename Key>
+void Dictionary<Shape, Key>::SetEntry(int entry,
+ Object* key,
+ Object* value,
+ PropertyDetails details) {
+ ASSERT(!key->IsString() || details.IsDeleted() || details.index() > 0);
+ int index = HashTable<Shape, Key>::EntryToIndex(entry);
+ AssertNoAllocation no_gc;
+ WriteBarrierMode mode = FixedArray::GetWriteBarrierMode(no_gc);
+ FixedArray::set(index, key, mode);
+ FixedArray::set(index+1, value, mode);
+ FixedArray::fast_set(this, index+2, details.AsSmi());
+}
+
+
+bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) {
+ ASSERT(other->IsNumber());
+ return key == static_cast<uint32_t>(other->Number());
+}
+
+
+uint32_t NumberDictionaryShape::Hash(uint32_t key) {
+ return ComputeIntegerHash(key);
+}
+
+
+uint32_t NumberDictionaryShape::HashForObject(uint32_t key, Object* other) {
+ ASSERT(other->IsNumber());
+ return ComputeIntegerHash(static_cast<uint32_t>(other->Number()));
+}
+
+
+MaybeObject* NumberDictionaryShape::AsObject(uint32_t key) {
+ return Isolate::Current()->heap()->NumberFromUint32(key);
+}
+
+
+bool StringDictionaryShape::IsMatch(String* key, Object* other) {
+ // We know that all entries in a hash table had their hash keys created.
+ // Use that knowledge to have fast failure.
+ if (key->Hash() != String::cast(other)->Hash()) return false;
+ return key->Equals(String::cast(other));
+}
+
+
+uint32_t StringDictionaryShape::Hash(String* key) {
+ return key->Hash();
+}
+
+
+uint32_t StringDictionaryShape::HashForObject(String* key, Object* other) {
+ return String::cast(other)->Hash();
+}
+
+
+MaybeObject* StringDictionaryShape::AsObject(String* key) {
+ return key;
+}
+
+
+void Map::ClearCodeCache(Heap* heap) {
+ // No write barrier is needed since empty_fixed_array is not in new space.
+ // Please note this function is used during marking:
+ // - MarkCompactCollector::MarkUnmarkedObject
+ ASSERT(!heap->InNewSpace(heap->raw_unchecked_empty_fixed_array()));
+ WRITE_FIELD(this, kCodeCacheOffset, heap->raw_unchecked_empty_fixed_array());
+}
+
+
+void JSArray::EnsureSize(int required_size) {
+ ASSERT(HasFastElements());
+ FixedArray* elts = FixedArray::cast(elements());
+ const int kArraySizeThatFitsComfortablyInNewSpace = 128;
+ if (elts->length() < required_size) {
+ // Doubling in size would be overkill, but leave some slack to avoid
+ // constantly growing.
+ Expand(required_size + (required_size >> 3));
+ // It's a performance benefit to keep a frequently used array in new-space.
+ } else if (!GetHeap()->new_space()->Contains(elts) &&
+ required_size < kArraySizeThatFitsComfortablyInNewSpace) {
+ // Expand will allocate a new backing store in new space even if the size
+ // we asked for isn't larger than what we had before.
+ Expand(required_size);
+ }
+}
+
+
+void JSArray::set_length(Smi* length) {
+ set_length(static_cast<Object*>(length), SKIP_WRITE_BARRIER);
+}
+
+
+void JSArray::SetContent(FixedArray* storage) {
+ set_length(Smi::FromInt(storage->length()));
+ set_elements(storage);
+}
+
+
+MaybeObject* FixedArray::Copy() {
+ if (length() == 0) return this;
+ return GetHeap()->CopyFixedArray(this);
+}
+
+
+Relocatable::Relocatable(Isolate* isolate) {
+ ASSERT(isolate == Isolate::Current());
+ isolate_ = isolate;
+ prev_ = isolate->relocatable_top();
+ isolate->set_relocatable_top(this);
+}
+
+
+Relocatable::~Relocatable() {
+ ASSERT(isolate_ == Isolate::Current());
+ ASSERT_EQ(isolate_->relocatable_top(), this);
+ isolate_->set_relocatable_top(prev_);
+}
+
+
+int JSObject::BodyDescriptor::SizeOf(Map* map, HeapObject* object) {
+ return map->instance_size();
+}
+
+
+void Proxy::ProxyIterateBody(ObjectVisitor* v) {
+ v->VisitExternalReference(
+ reinterpret_cast<Address *>(FIELD_ADDR(this, kProxyOffset)));
+}
+
+
+template<typename StaticVisitor>
+void Proxy::ProxyIterateBody() {
+ StaticVisitor::VisitExternalReference(
+ reinterpret_cast<Address *>(FIELD_ADDR(this, kProxyOffset)));
+}
+
+
+void ExternalAsciiString::ExternalAsciiStringIterateBody(ObjectVisitor* v) {
+ typedef v8::String::ExternalAsciiStringResource Resource;
+ v->VisitExternalAsciiString(
+ reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
+}
+
+
+template<typename StaticVisitor>
+void ExternalAsciiString::ExternalAsciiStringIterateBody() {
+ typedef v8::String::ExternalAsciiStringResource Resource;
+ StaticVisitor::VisitExternalAsciiString(
+ reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
+}
+
+
+void ExternalTwoByteString::ExternalTwoByteStringIterateBody(ObjectVisitor* v) {
+ typedef v8::String::ExternalStringResource Resource;
+ v->VisitExternalTwoByteString(
+ reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
+}
+
+
+template<typename StaticVisitor>
+void ExternalTwoByteString::ExternalTwoByteStringIterateBody() {
+ typedef v8::String::ExternalStringResource Resource;
+ StaticVisitor::VisitExternalTwoByteString(
+ reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
+}
+
+#define SLOT_ADDR(obj, offset) \
+ reinterpret_cast<Object**>((obj)->address() + offset)
+
+template<int start_offset, int end_offset, int size>
+void FixedBodyDescriptor<start_offset, end_offset, size>::IterateBody(
+ HeapObject* obj,
+ ObjectVisitor* v) {
+ v->VisitPointers(SLOT_ADDR(obj, start_offset), SLOT_ADDR(obj, end_offset));
+}
+
+
+template<int start_offset>
+void FlexibleBodyDescriptor<start_offset>::IterateBody(HeapObject* obj,
+ int object_size,
+ ObjectVisitor* v) {
+ v->VisitPointers(SLOT_ADDR(obj, start_offset), SLOT_ADDR(obj, object_size));
+}
+
+#undef SLOT_ADDR
+
+
+#undef CAST_ACCESSOR
+#undef INT_ACCESSORS
+#undef SMI_ACCESSORS
+#undef ACCESSORS
+#undef FIELD_ADDR
+#undef READ_FIELD
+#undef WRITE_FIELD
+#undef WRITE_BARRIER
+#undef CONDITIONAL_WRITE_BARRIER
+#undef READ_MEMADDR_FIELD
+#undef WRITE_MEMADDR_FIELD
+#undef READ_DOUBLE_FIELD
+#undef WRITE_DOUBLE_FIELD
+#undef READ_INT_FIELD
+#undef WRITE_INT_FIELD
+#undef READ_SHORT_FIELD
+#undef WRITE_SHORT_FIELD
+#undef READ_BYTE_FIELD
+#undef WRITE_BYTE_FIELD
+
+
+} } // namespace v8::internal
+
+#endif // V8_OBJECTS_INL_H_