summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/ia32/virtual-frame-ia32.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/ia32/virtual-frame-ia32.cc')
-rw-r--r--src/3rdparty/v8/src/ia32/virtual-frame-ia32.cc1366
1 files changed, 1366 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/ia32/virtual-frame-ia32.cc b/src/3rdparty/v8/src/ia32/virtual-frame-ia32.cc
new file mode 100644
index 0000000..0304c32
--- /dev/null
+++ b/src/3rdparty/v8/src/ia32/virtual-frame-ia32.cc
@@ -0,0 +1,1366 @@
+// Copyright 2009 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#if defined(V8_TARGET_ARCH_IA32)
+
+#include "codegen-inl.h"
+#include "register-allocator-inl.h"
+#include "scopes.h"
+#include "virtual-frame-inl.h"
+#include "stub-cache.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm())
+
+void VirtualFrame::SyncElementBelowStackPointer(int index) {
+ // Emit code to write elements below the stack pointer to their
+ // (already allocated) stack address.
+ ASSERT(index <= stack_pointer_);
+ FrameElement element = elements_[index];
+ ASSERT(!element.is_synced());
+ switch (element.type()) {
+ case FrameElement::INVALID:
+ break;
+
+ case FrameElement::MEMORY:
+ // This function should not be called with synced elements.
+ // (memory elements are always synced).
+ UNREACHABLE();
+ break;
+
+ case FrameElement::REGISTER:
+ __ mov(Operand(ebp, fp_relative(index)), element.reg());
+ break;
+
+ case FrameElement::CONSTANT:
+ if (cgen()->IsUnsafeSmi(element.handle())) {
+ cgen()->StoreUnsafeSmiToLocal(fp_relative(index), element.handle());
+ } else {
+ __ Set(Operand(ebp, fp_relative(index)),
+ Immediate(element.handle()));
+ }
+ break;
+
+ case FrameElement::COPY: {
+ int backing_index = element.index();
+ FrameElement backing_element = elements_[backing_index];
+ if (backing_element.is_memory()) {
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ __ mov(temp.reg(), Operand(ebp, fp_relative(backing_index)));
+ __ mov(Operand(ebp, fp_relative(index)), temp.reg());
+ } else {
+ ASSERT(backing_element.is_register());
+ __ mov(Operand(ebp, fp_relative(index)), backing_element.reg());
+ }
+ break;
+ }
+ }
+ elements_[index].set_sync();
+}
+
+
+void VirtualFrame::SyncElementByPushing(int index) {
+ // Sync an element of the frame that is just above the stack pointer
+ // by pushing it.
+ ASSERT(index == stack_pointer_ + 1);
+ stack_pointer_++;
+ FrameElement element = elements_[index];
+
+ switch (element.type()) {
+ case FrameElement::INVALID:
+ __ push(Immediate(Smi::FromInt(0)));
+ break;
+
+ case FrameElement::MEMORY:
+ // No memory elements exist above the stack pointer.
+ UNREACHABLE();
+ break;
+
+ case FrameElement::REGISTER:
+ __ push(element.reg());
+ break;
+
+ case FrameElement::CONSTANT:
+ if (cgen()->IsUnsafeSmi(element.handle())) {
+ cgen()->PushUnsafeSmi(element.handle());
+ } else {
+ __ push(Immediate(element.handle()));
+ }
+ break;
+
+ case FrameElement::COPY: {
+ int backing_index = element.index();
+ FrameElement backing = elements_[backing_index];
+ ASSERT(backing.is_memory() || backing.is_register());
+ if (backing.is_memory()) {
+ __ push(Operand(ebp, fp_relative(backing_index)));
+ } else {
+ __ push(backing.reg());
+ }
+ break;
+ }
+ }
+ elements_[index].set_sync();
+}
+
+
+// Clear the dirty bits for the range of elements in
+// [min(stack_pointer_ + 1,begin), end].
+void VirtualFrame::SyncRange(int begin, int end) {
+ ASSERT(begin >= 0);
+ ASSERT(end < element_count());
+ // Sync elements below the range if they have not been materialized
+ // on the stack.
+ int start = Min(begin, stack_pointer_ + 1);
+
+ // Emit normal push instructions for elements above stack pointer
+ // and use mov instructions if we are below stack pointer.
+ for (int i = start; i <= end; i++) {
+ if (!elements_[i].is_synced()) {
+ if (i <= stack_pointer_) {
+ SyncElementBelowStackPointer(i);
+ } else {
+ SyncElementByPushing(i);
+ }
+ }
+ }
+}
+
+
+void VirtualFrame::MakeMergable() {
+ for (int i = 0; i < element_count(); i++) {
+ FrameElement element = elements_[i];
+
+ // All number type information is reset to unknown for a mergable frame
+ // because of incoming back edges.
+ if (element.is_constant() || element.is_copy()) {
+ if (element.is_synced()) {
+ // Just spill.
+ elements_[i] = FrameElement::MemoryElement(TypeInfo::Unknown());
+ } else {
+ // Allocate to a register.
+ FrameElement backing_element; // Invalid if not a copy.
+ if (element.is_copy()) {
+ backing_element = elements_[element.index()];
+ }
+ Result fresh = cgen()->allocator()->Allocate();
+ ASSERT(fresh.is_valid()); // A register was spilled if all were in use.
+ elements_[i] =
+ FrameElement::RegisterElement(fresh.reg(),
+ FrameElement::NOT_SYNCED,
+ TypeInfo::Unknown());
+ Use(fresh.reg(), i);
+
+ // Emit a move.
+ if (element.is_constant()) {
+ if (cgen()->IsUnsafeSmi(element.handle())) {
+ cgen()->MoveUnsafeSmi(fresh.reg(), element.handle());
+ } else {
+ __ Set(fresh.reg(), Immediate(element.handle()));
+ }
+ } else {
+ ASSERT(element.is_copy());
+ // Copies are only backed by register or memory locations.
+ if (backing_element.is_register()) {
+ // The backing store may have been spilled by allocating,
+ // but that's OK. If it was, the value is right where we
+ // want it.
+ if (!fresh.reg().is(backing_element.reg())) {
+ __ mov(fresh.reg(), backing_element.reg());
+ }
+ } else {
+ ASSERT(backing_element.is_memory());
+ __ mov(fresh.reg(), Operand(ebp, fp_relative(element.index())));
+ }
+ }
+ }
+ // No need to set the copied flag --- there are no copies.
+ } else {
+ // Clear the copy flag of non-constant, non-copy elements.
+ // They cannot be copied because copies are not allowed.
+ // The copy flag is not relied on before the end of this loop,
+ // including when registers are spilled.
+ elements_[i].clear_copied();
+ elements_[i].set_type_info(TypeInfo::Unknown());
+ }
+ }
+}
+
+
+void VirtualFrame::MergeTo(VirtualFrame* expected) {
+ Comment cmnt(masm(), "[ Merge frame");
+ // We should always be merging the code generator's current frame to an
+ // expected frame.
+ ASSERT(cgen()->frame() == this);
+
+ // Adjust the stack pointer upward (toward the top of the virtual
+ // frame) if necessary.
+ if (stack_pointer_ < expected->stack_pointer_) {
+ int difference = expected->stack_pointer_ - stack_pointer_;
+ stack_pointer_ = expected->stack_pointer_;
+ __ sub(Operand(esp), Immediate(difference * kPointerSize));
+ }
+
+ MergeMoveRegistersToMemory(expected);
+ MergeMoveRegistersToRegisters(expected);
+ MergeMoveMemoryToRegisters(expected);
+
+ // Adjust the stack pointer downward if necessary.
+ if (stack_pointer_ > expected->stack_pointer_) {
+ int difference = stack_pointer_ - expected->stack_pointer_;
+ stack_pointer_ = expected->stack_pointer_;
+ __ add(Operand(esp), Immediate(difference * kPointerSize));
+ }
+
+ // At this point, the frames should be identical.
+ ASSERT(Equals(expected));
+}
+
+
+void VirtualFrame::MergeMoveRegistersToMemory(VirtualFrame* expected) {
+ ASSERT(stack_pointer_ >= expected->stack_pointer_);
+
+ // Move registers, constants, and copies to memory. Perform moves
+ // from the top downward in the frame in order to leave the backing
+ // stores of copies in registers.
+ //
+ // Moving memory-backed copies to memory requires a spare register
+ // for the memory-to-memory moves. Since we are performing a merge,
+ // we use esi (which is already saved in the frame). We keep track
+ // of the index of the frame element esi is caching or kIllegalIndex
+ // if esi has not been disturbed.
+ int esi_caches = kIllegalIndex;
+ for (int i = element_count() - 1; i >= 0; i--) {
+ FrameElement target = expected->elements_[i];
+ if (target.is_register()) continue; // Handle registers later.
+ if (target.is_memory()) {
+ FrameElement source = elements_[i];
+ switch (source.type()) {
+ case FrameElement::INVALID:
+ // Not a legal merge move.
+ UNREACHABLE();
+ break;
+
+ case FrameElement::MEMORY:
+ // Already in place.
+ break;
+
+ case FrameElement::REGISTER:
+ Unuse(source.reg());
+ if (!source.is_synced()) {
+ __ mov(Operand(ebp, fp_relative(i)), source.reg());
+ }
+ break;
+
+ case FrameElement::CONSTANT:
+ if (!source.is_synced()) {
+ if (cgen()->IsUnsafeSmi(source.handle())) {
+ esi_caches = i;
+ cgen()->MoveUnsafeSmi(esi, source.handle());
+ __ mov(Operand(ebp, fp_relative(i)), esi);
+ } else {
+ __ Set(Operand(ebp, fp_relative(i)), Immediate(source.handle()));
+ }
+ }
+ break;
+
+ case FrameElement::COPY:
+ if (!source.is_synced()) {
+ int backing_index = source.index();
+ FrameElement backing_element = elements_[backing_index];
+ if (backing_element.is_memory()) {
+ // If we have to spill a register, we spill esi.
+ if (esi_caches != backing_index) {
+ esi_caches = backing_index;
+ __ mov(esi, Operand(ebp, fp_relative(backing_index)));
+ }
+ __ mov(Operand(ebp, fp_relative(i)), esi);
+ } else {
+ ASSERT(backing_element.is_register());
+ __ mov(Operand(ebp, fp_relative(i)), backing_element.reg());
+ }
+ }
+ break;
+ }
+ }
+ elements_[i] = target;
+ }
+
+ if (esi_caches != kIllegalIndex) {
+ __ mov(esi, Operand(ebp, fp_relative(context_index())));
+ }
+}
+
+
+void VirtualFrame::MergeMoveRegistersToRegisters(VirtualFrame* expected) {
+ // We have already done X-to-memory moves.
+ ASSERT(stack_pointer_ >= expected->stack_pointer_);
+
+ for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
+ // Move the right value into register i if it is currently in a register.
+ int index = expected->register_location(i);
+ int use_index = register_location(i);
+ // Skip if register i is unused in the target or else if source is
+ // not a register (this is not a register-to-register move).
+ if (index == kIllegalIndex || !elements_[index].is_register()) continue;
+
+ Register target = RegisterAllocator::ToRegister(i);
+ Register source = elements_[index].reg();
+ if (index != use_index) {
+ if (use_index == kIllegalIndex) { // Target is currently unused.
+ // Copy contents of source from source to target.
+ // Set frame element register to target.
+ Use(target, index);
+ Unuse(source);
+ __ mov(target, source);
+ } else {
+ // Exchange contents of registers source and target.
+ // Nothing except the register backing use_index has changed.
+ elements_[use_index].set_reg(source);
+ set_register_location(target, index);
+ set_register_location(source, use_index);
+ __ xchg(source, target);
+ }
+ }
+
+ if (!elements_[index].is_synced() &&
+ expected->elements_[index].is_synced()) {
+ __ mov(Operand(ebp, fp_relative(index)), target);
+ }
+ elements_[index] = expected->elements_[index];
+ }
+}
+
+
+void VirtualFrame::MergeMoveMemoryToRegisters(VirtualFrame* expected) {
+ // Move memory, constants, and copies to registers. This is the
+ // final step and since it is not done from the bottom up, but in
+ // register code order, we have special code to ensure that the backing
+ // elements of copies are in their correct locations when we
+ // encounter the copies.
+ for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
+ int index = expected->register_location(i);
+ if (index != kIllegalIndex) {
+ FrameElement source = elements_[index];
+ FrameElement target = expected->elements_[index];
+ Register target_reg = RegisterAllocator::ToRegister(i);
+ ASSERT(target.reg().is(target_reg));
+ switch (source.type()) {
+ case FrameElement::INVALID: // Fall through.
+ UNREACHABLE();
+ break;
+ case FrameElement::REGISTER:
+ ASSERT(source.Equals(target));
+ // Go to next iteration. Skips Use(target_reg) and syncing
+ // below. It is safe to skip syncing because a target
+ // register frame element would only be synced if all source
+ // elements were.
+ continue;
+ break;
+ case FrameElement::MEMORY:
+ ASSERT(index <= stack_pointer_);
+ __ mov(target_reg, Operand(ebp, fp_relative(index)));
+ break;
+
+ case FrameElement::CONSTANT:
+ if (cgen()->IsUnsafeSmi(source.handle())) {
+ cgen()->MoveUnsafeSmi(target_reg, source.handle());
+ } else {
+ __ Set(target_reg, Immediate(source.handle()));
+ }
+ break;
+
+ case FrameElement::COPY: {
+ int backing_index = source.index();
+ FrameElement backing = elements_[backing_index];
+ ASSERT(backing.is_memory() || backing.is_register());
+ if (backing.is_memory()) {
+ ASSERT(backing_index <= stack_pointer_);
+ // Code optimization if backing store should also move
+ // to a register: move backing store to its register first.
+ if (expected->elements_[backing_index].is_register()) {
+ FrameElement new_backing = expected->elements_[backing_index];
+ Register new_backing_reg = new_backing.reg();
+ ASSERT(!is_used(new_backing_reg));
+ elements_[backing_index] = new_backing;
+ Use(new_backing_reg, backing_index);
+ __ mov(new_backing_reg,
+ Operand(ebp, fp_relative(backing_index)));
+ __ mov(target_reg, new_backing_reg);
+ } else {
+ __ mov(target_reg, Operand(ebp, fp_relative(backing_index)));
+ }
+ } else {
+ __ mov(target_reg, backing.reg());
+ }
+ }
+ }
+ // Ensure the proper sync state.
+ if (target.is_synced() && !source.is_synced()) {
+ __ mov(Operand(ebp, fp_relative(index)), target_reg);
+ }
+ Use(target_reg, index);
+ elements_[index] = target;
+ }
+ }
+}
+
+
+void VirtualFrame::Enter() {
+ // Registers live on entry: esp, ebp, esi, edi.
+ Comment cmnt(masm(), "[ Enter JS frame");
+
+#ifdef DEBUG
+ if (FLAG_debug_code) {
+ // Verify that edi contains a JS function. The following code
+ // relies on eax being available for use.
+ __ test(edi, Immediate(kSmiTagMask));
+ __ Check(not_zero,
+ "VirtualFrame::Enter - edi is not a function (smi check).");
+ __ CmpObjectType(edi, JS_FUNCTION_TYPE, eax);
+ __ Check(equal,
+ "VirtualFrame::Enter - edi is not a function (map check).");
+ }
+#endif
+
+ EmitPush(ebp);
+
+ __ mov(ebp, Operand(esp));
+
+ // Store the context in the frame. The context is kept in esi and a
+ // copy is stored in the frame. The external reference to esi
+ // remains.
+ EmitPush(esi);
+
+ // Store the function in the frame. The frame owns the register
+ // reference now (ie, it can keep it in edi or spill it later).
+ Push(edi);
+ SyncElementAt(element_count() - 1);
+ cgen()->allocator()->Unuse(edi);
+}
+
+
+void VirtualFrame::Exit() {
+ Comment cmnt(masm(), "[ Exit JS frame");
+ // Record the location of the JS exit code for patching when setting
+ // break point.
+ __ RecordJSReturn();
+
+ // Avoid using the leave instruction here, because it is too
+ // short. We need the return sequence to be a least the size of a
+ // call instruction to support patching the exit code in the
+ // debugger. See VisitReturnStatement for the full return sequence.
+ __ mov(esp, Operand(ebp));
+ stack_pointer_ = frame_pointer();
+ for (int i = element_count() - 1; i > stack_pointer_; i--) {
+ FrameElement last = elements_.RemoveLast();
+ if (last.is_register()) {
+ Unuse(last.reg());
+ }
+ }
+
+ EmitPop(ebp);
+}
+
+
+void VirtualFrame::AllocateStackSlots() {
+ int count = local_count();
+ if (count > 0) {
+ Comment cmnt(masm(), "[ Allocate space for locals");
+ // The locals are initialized to a constant (the undefined value), but
+ // we sync them with the actual frame to allocate space for spilling
+ // them later. First sync everything above the stack pointer so we can
+ // use pushes to allocate and initialize the locals.
+ SyncRange(stack_pointer_ + 1, element_count() - 1);
+ Handle<Object> undefined = FACTORY->undefined_value();
+ FrameElement initial_value =
+ FrameElement::ConstantElement(undefined, FrameElement::SYNCED);
+ if (count == 1) {
+ __ push(Immediate(undefined));
+ } else if (count < kLocalVarBound) {
+ // For less locals the unrolled loop is more compact.
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ __ Set(temp.reg(), Immediate(undefined));
+ for (int i = 0; i < count; i++) {
+ __ push(temp.reg());
+ }
+ } else {
+ // For more locals a loop in generated code is more compact.
+ Label alloc_locals_loop;
+ Result cnt = cgen()->allocator()->Allocate();
+ Result tmp = cgen()->allocator()->Allocate();
+ ASSERT(cnt.is_valid());
+ ASSERT(tmp.is_valid());
+ __ mov(cnt.reg(), Immediate(count));
+ __ mov(tmp.reg(), Immediate(undefined));
+ __ bind(&alloc_locals_loop);
+ __ push(tmp.reg());
+ __ dec(cnt.reg());
+ __ j(not_zero, &alloc_locals_loop);
+ }
+ for (int i = 0; i < count; i++) {
+ elements_.Add(initial_value);
+ stack_pointer_++;
+ }
+ }
+}
+
+
+void VirtualFrame::SaveContextRegister() {
+ ASSERT(elements_[context_index()].is_memory());
+ __ mov(Operand(ebp, fp_relative(context_index())), esi);
+}
+
+
+void VirtualFrame::RestoreContextRegister() {
+ ASSERT(elements_[context_index()].is_memory());
+ __ mov(esi, Operand(ebp, fp_relative(context_index())));
+}
+
+
+void VirtualFrame::PushReceiverSlotAddress() {
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ __ lea(temp.reg(), ParameterAt(-1));
+ Push(&temp);
+}
+
+
+int VirtualFrame::InvalidateFrameSlotAt(int index) {
+ FrameElement original = elements_[index];
+
+ // Is this element the backing store of any copies?
+ int new_backing_index = kIllegalIndex;
+ if (original.is_copied()) {
+ // Verify it is copied, and find first copy.
+ for (int i = index + 1; i < element_count(); i++) {
+ if (elements_[i].is_copy() && elements_[i].index() == index) {
+ new_backing_index = i;
+ break;
+ }
+ }
+ }
+
+ if (new_backing_index == kIllegalIndex) {
+ // No copies found, return kIllegalIndex.
+ if (original.is_register()) {
+ Unuse(original.reg());
+ }
+ elements_[index] = FrameElement::InvalidElement();
+ return kIllegalIndex;
+ }
+
+ // This is the backing store of copies.
+ Register backing_reg;
+ if (original.is_memory()) {
+ Result fresh = cgen()->allocator()->Allocate();
+ ASSERT(fresh.is_valid());
+ Use(fresh.reg(), new_backing_index);
+ backing_reg = fresh.reg();
+ __ mov(backing_reg, Operand(ebp, fp_relative(index)));
+ } else {
+ // The original was in a register.
+ backing_reg = original.reg();
+ set_register_location(backing_reg, new_backing_index);
+ }
+ // Invalidate the element at index.
+ elements_[index] = FrameElement::InvalidElement();
+ // Set the new backing element.
+ if (elements_[new_backing_index].is_synced()) {
+ elements_[new_backing_index] =
+ FrameElement::RegisterElement(backing_reg,
+ FrameElement::SYNCED,
+ original.type_info());
+ } else {
+ elements_[new_backing_index] =
+ FrameElement::RegisterElement(backing_reg,
+ FrameElement::NOT_SYNCED,
+ original.type_info());
+ }
+ // Update the other copies.
+ for (int i = new_backing_index + 1; i < element_count(); i++) {
+ if (elements_[i].is_copy() && elements_[i].index() == index) {
+ elements_[i].set_index(new_backing_index);
+ elements_[new_backing_index].set_copied();
+ }
+ }
+ return new_backing_index;
+}
+
+
+void VirtualFrame::TakeFrameSlotAt(int index) {
+ ASSERT(index >= 0);
+ ASSERT(index <= element_count());
+ FrameElement original = elements_[index];
+ int new_backing_store_index = InvalidateFrameSlotAt(index);
+ if (new_backing_store_index != kIllegalIndex) {
+ elements_.Add(CopyElementAt(new_backing_store_index));
+ return;
+ }
+
+ switch (original.type()) {
+ case FrameElement::MEMORY: {
+ // Emit code to load the original element's data into a register.
+ // Push that register as a FrameElement on top of the frame.
+ Result fresh = cgen()->allocator()->Allocate();
+ ASSERT(fresh.is_valid());
+ FrameElement new_element =
+ FrameElement::RegisterElement(fresh.reg(),
+ FrameElement::NOT_SYNCED,
+ original.type_info());
+ Use(fresh.reg(), element_count());
+ elements_.Add(new_element);
+ __ mov(fresh.reg(), Operand(ebp, fp_relative(index)));
+ break;
+ }
+ case FrameElement::REGISTER:
+ Use(original.reg(), element_count());
+ // Fall through.
+ case FrameElement::CONSTANT:
+ case FrameElement::COPY:
+ original.clear_sync();
+ elements_.Add(original);
+ break;
+ case FrameElement::INVALID:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void VirtualFrame::StoreToFrameSlotAt(int index) {
+ // Store the value on top of the frame to the virtual frame slot at
+ // a given index. The value on top of the frame is left in place.
+ // This is a duplicating operation, so it can create copies.
+ ASSERT(index >= 0);
+ ASSERT(index < element_count());
+
+ int top_index = element_count() - 1;
+ FrameElement top = elements_[top_index];
+ FrameElement original = elements_[index];
+ if (top.is_copy() && top.index() == index) return;
+ ASSERT(top.is_valid());
+
+ InvalidateFrameSlotAt(index);
+
+ // InvalidateFrameSlotAt can potentially change any frame element, due
+ // to spilling registers to allocate temporaries in order to preserve
+ // the copy-on-write semantics of aliased elements. Reload top from
+ // the frame.
+ top = elements_[top_index];
+
+ if (top.is_copy()) {
+ // There are two cases based on the relative positions of the
+ // stored-to slot and the backing slot of the top element.
+ int backing_index = top.index();
+ ASSERT(backing_index != index);
+ if (backing_index < index) {
+ // 1. The top element is a copy of a slot below the stored-to
+ // slot. The stored-to slot becomes an unsynced copy of that
+ // same backing slot.
+ elements_[index] = CopyElementAt(backing_index);
+ } else {
+ // 2. The top element is a copy of a slot above the stored-to
+ // slot. The stored-to slot becomes the new (unsynced) backing
+ // slot and both the top element and the element at the former
+ // backing slot become copies of it. The sync state of the top
+ // and former backing elements is preserved.
+ FrameElement backing_element = elements_[backing_index];
+ ASSERT(backing_element.is_memory() || backing_element.is_register());
+ if (backing_element.is_memory()) {
+ // Because sets of copies are canonicalized to be backed by
+ // their lowest frame element, and because memory frame
+ // elements are backed by the corresponding stack address, we
+ // have to move the actual value down in the stack.
+ //
+ // TODO(209): considering allocating the stored-to slot to the
+ // temp register. Alternatively, allow copies to appear in
+ // any order in the frame and lazily move the value down to
+ // the slot.
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ __ mov(temp.reg(), Operand(ebp, fp_relative(backing_index)));
+ __ mov(Operand(ebp, fp_relative(index)), temp.reg());
+ } else {
+ set_register_location(backing_element.reg(), index);
+ if (backing_element.is_synced()) {
+ // If the element is a register, we will not actually move
+ // anything on the stack but only update the virtual frame
+ // element.
+ backing_element.clear_sync();
+ }
+ }
+ elements_[index] = backing_element;
+
+ // The old backing element becomes a copy of the new backing
+ // element.
+ FrameElement new_element = CopyElementAt(index);
+ elements_[backing_index] = new_element;
+ if (backing_element.is_synced()) {
+ elements_[backing_index].set_sync();
+ }
+
+ // All the copies of the old backing element (including the top
+ // element) become copies of the new backing element.
+ for (int i = backing_index + 1; i < element_count(); i++) {
+ if (elements_[i].is_copy() && elements_[i].index() == backing_index) {
+ elements_[i].set_index(index);
+ }
+ }
+ }
+ return;
+ }
+
+ // Move the top element to the stored-to slot and replace it (the
+ // top element) with a copy.
+ elements_[index] = top;
+ if (top.is_memory()) {
+ // TODO(209): consider allocating the stored-to slot to the temp
+ // register. Alternatively, allow copies to appear in any order
+ // in the frame and lazily move the value down to the slot.
+ FrameElement new_top = CopyElementAt(index);
+ new_top.set_sync();
+ elements_[top_index] = new_top;
+
+ // The sync state of the former top element is correct (synced).
+ // Emit code to move the value down in the frame.
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ __ mov(temp.reg(), Operand(esp, 0));
+ __ mov(Operand(ebp, fp_relative(index)), temp.reg());
+ } else if (top.is_register()) {
+ set_register_location(top.reg(), index);
+ // The stored-to slot has the (unsynced) register reference and
+ // the top element becomes a copy. The sync state of the top is
+ // preserved.
+ FrameElement new_top = CopyElementAt(index);
+ if (top.is_synced()) {
+ new_top.set_sync();
+ elements_[index].clear_sync();
+ }
+ elements_[top_index] = new_top;
+ } else {
+ // The stored-to slot holds the same value as the top but
+ // unsynced. (We do not have copies of constants yet.)
+ ASSERT(top.is_constant());
+ elements_[index].clear_sync();
+ }
+}
+
+
+void VirtualFrame::UntaggedPushFrameSlotAt(int index) {
+ ASSERT(index >= 0);
+ ASSERT(index <= element_count());
+ FrameElement original = elements_[index];
+ if (original.is_copy()) {
+ original = elements_[original.index()];
+ index = original.index();
+ }
+
+ switch (original.type()) {
+ case FrameElement::MEMORY:
+ case FrameElement::REGISTER: {
+ Label done;
+ // Emit code to load the original element's data into a register.
+ // Push that register as a FrameElement on top of the frame.
+ Result fresh = cgen()->allocator()->Allocate();
+ ASSERT(fresh.is_valid());
+ Register fresh_reg = fresh.reg();
+ FrameElement new_element =
+ FrameElement::RegisterElement(fresh_reg,
+ FrameElement::NOT_SYNCED,
+ original.type_info());
+ new_element.set_untagged_int32(true);
+ Use(fresh_reg, element_count());
+ fresh.Unuse(); // BreakTarget does not handle a live Result well.
+ elements_.Add(new_element);
+ if (original.is_register()) {
+ __ mov(fresh_reg, original.reg());
+ } else {
+ ASSERT(original.is_memory());
+ __ mov(fresh_reg, Operand(ebp, fp_relative(index)));
+ }
+ // Now convert the value to int32, or bail out.
+ if (original.type_info().IsSmi()) {
+ __ SmiUntag(fresh_reg);
+ // Pushing the element is completely done.
+ } else {
+ __ test(fresh_reg, Immediate(kSmiTagMask));
+ Label not_smi;
+ __ j(not_zero, &not_smi);
+ __ SmiUntag(fresh_reg);
+ __ jmp(&done);
+
+ __ bind(&not_smi);
+ if (!original.type_info().IsNumber()) {
+ __ cmp(FieldOperand(fresh_reg, HeapObject::kMapOffset),
+ FACTORY->heap_number_map());
+ cgen()->unsafe_bailout_->Branch(not_equal);
+ }
+
+ if (!CpuFeatures::IsSupported(SSE2)) {
+ UNREACHABLE();
+ } else {
+ CpuFeatures::Scope use_sse2(SSE2);
+ __ movdbl(xmm0, FieldOperand(fresh_reg, HeapNumber::kValueOffset));
+ __ cvttsd2si(fresh_reg, Operand(xmm0));
+ __ cvtsi2sd(xmm1, Operand(fresh_reg));
+ __ ucomisd(xmm0, xmm1);
+ cgen()->unsafe_bailout_->Branch(not_equal);
+ cgen()->unsafe_bailout_->Branch(parity_even); // NaN.
+ // Test for negative zero.
+ __ test(fresh_reg, Operand(fresh_reg));
+ __ j(not_zero, &done);
+ __ movmskpd(fresh_reg, xmm0);
+ __ and_(fresh_reg, 0x1);
+ cgen()->unsafe_bailout_->Branch(not_equal);
+ }
+ __ bind(&done);
+ }
+ break;
+ }
+ case FrameElement::CONSTANT:
+ elements_.Add(CopyElementAt(index));
+ elements_[element_count() - 1].set_untagged_int32(true);
+ break;
+ case FrameElement::COPY:
+ case FrameElement::INVALID:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void VirtualFrame::PushTryHandler(HandlerType type) {
+ ASSERT(cgen()->HasValidEntryRegisters());
+ // Grow the expression stack by handler size less one (the return
+ // address is already pushed by a call instruction).
+ Adjust(kHandlerSize - 1);
+ __ PushTryHandler(IN_JAVASCRIPT, type);
+}
+
+
+Result VirtualFrame::RawCallStub(CodeStub* stub) {
+ ASSERT(cgen()->HasValidEntryRegisters());
+ __ CallStub(stub);
+ Result result = cgen()->allocator()->Allocate(eax);
+ ASSERT(result.is_valid());
+ return result;
+}
+
+
+Result VirtualFrame::CallStub(CodeStub* stub, Result* arg) {
+ PrepareForCall(0, 0);
+ arg->ToRegister(eax);
+ arg->Unuse();
+ return RawCallStub(stub);
+}
+
+
+Result VirtualFrame::CallStub(CodeStub* stub, Result* arg0, Result* arg1) {
+ PrepareForCall(0, 0);
+
+ if (arg0->is_register() && arg0->reg().is(eax)) {
+ if (arg1->is_register() && arg1->reg().is(edx)) {
+ // Wrong registers.
+ __ xchg(eax, edx);
+ } else {
+ // Register edx is free for arg0, which frees eax for arg1.
+ arg0->ToRegister(edx);
+ arg1->ToRegister(eax);
+ }
+ } else {
+ // Register eax is free for arg1, which guarantees edx is free for
+ // arg0.
+ arg1->ToRegister(eax);
+ arg0->ToRegister(edx);
+ }
+
+ arg0->Unuse();
+ arg1->Unuse();
+ return RawCallStub(stub);
+}
+
+
+Result VirtualFrame::CallJSFunction(int arg_count) {
+ Result function = Pop();
+
+ // InvokeFunction requires function in edi. Move it in there.
+ function.ToRegister(edi);
+ function.Unuse();
+
+ // +1 for receiver.
+ PrepareForCall(arg_count + 1, arg_count + 1);
+ ASSERT(cgen()->HasValidEntryRegisters());
+ ParameterCount count(arg_count);
+ __ InvokeFunction(edi, count, CALL_FUNCTION);
+ RestoreContextRegister();
+ Result result = cgen()->allocator()->Allocate(eax);
+ ASSERT(result.is_valid());
+ return result;
+}
+
+
+Result VirtualFrame::CallRuntime(const Runtime::Function* f, int arg_count) {
+ PrepareForCall(arg_count, arg_count);
+ ASSERT(cgen()->HasValidEntryRegisters());
+ __ CallRuntime(f, arg_count);
+ Result result = cgen()->allocator()->Allocate(eax);
+ ASSERT(result.is_valid());
+ return result;
+}
+
+
+Result VirtualFrame::CallRuntime(Runtime::FunctionId id, int arg_count) {
+ PrepareForCall(arg_count, arg_count);
+ ASSERT(cgen()->HasValidEntryRegisters());
+ __ CallRuntime(id, arg_count);
+ Result result = cgen()->allocator()->Allocate(eax);
+ ASSERT(result.is_valid());
+ return result;
+}
+
+
+#ifdef ENABLE_DEBUGGER_SUPPORT
+void VirtualFrame::DebugBreak() {
+ PrepareForCall(0, 0);
+ ASSERT(cgen()->HasValidEntryRegisters());
+ __ DebugBreak();
+ Result result = cgen()->allocator()->Allocate(eax);
+ ASSERT(result.is_valid());
+}
+#endif
+
+
+Result VirtualFrame::InvokeBuiltin(Builtins::JavaScript id,
+ InvokeFlag flag,
+ int arg_count) {
+ PrepareForCall(arg_count, arg_count);
+ ASSERT(cgen()->HasValidEntryRegisters());
+ __ InvokeBuiltin(id, flag);
+ Result result = cgen()->allocator()->Allocate(eax);
+ ASSERT(result.is_valid());
+ return result;
+}
+
+
+Result VirtualFrame::RawCallCodeObject(Handle<Code> code,
+ RelocInfo::Mode rmode) {
+ ASSERT(cgen()->HasValidEntryRegisters());
+ __ call(code, rmode);
+ Result result = cgen()->allocator()->Allocate(eax);
+ ASSERT(result.is_valid());
+ return result;
+}
+
+
+// This function assumes that the only results that could be in a_reg or b_reg
+// are a and b. Other results can be live, but must not be in a_reg or b_reg.
+void VirtualFrame::MoveResultsToRegisters(Result* a,
+ Result* b,
+ Register a_reg,
+ Register b_reg) {
+ if (a->is_register() && a->reg().is(a_reg)) {
+ b->ToRegister(b_reg);
+ } else if (!cgen()->allocator()->is_used(a_reg)) {
+ a->ToRegister(a_reg);
+ b->ToRegister(b_reg);
+ } else if (cgen()->allocator()->is_used(b_reg)) {
+ // a must be in b_reg, b in a_reg.
+ __ xchg(a_reg, b_reg);
+ // Results a and b will be invalidated, so it is ok if they are switched.
+ } else {
+ b->ToRegister(b_reg);
+ a->ToRegister(a_reg);
+ }
+ a->Unuse();
+ b->Unuse();
+}
+
+
+Result VirtualFrame::CallLoadIC(RelocInfo::Mode mode) {
+ // Name and receiver are on the top of the frame. The IC expects
+ // name in ecx and receiver in eax.
+ Result name = Pop();
+ Result receiver = Pop();
+ PrepareForCall(0, 0); // No stack arguments.
+ MoveResultsToRegisters(&name, &receiver, ecx, eax);
+
+ Handle<Code> ic(Isolate::Current()->builtins()->builtin(
+ Builtins::kLoadIC_Initialize));
+ return RawCallCodeObject(ic, mode);
+}
+
+
+Result VirtualFrame::CallKeyedLoadIC(RelocInfo::Mode mode) {
+ // Key and receiver are on top of the frame. Put them in eax and edx.
+ Result key = Pop();
+ Result receiver = Pop();
+ PrepareForCall(0, 0);
+ MoveResultsToRegisters(&key, &receiver, eax, edx);
+
+ Handle<Code> ic(Isolate::Current()->builtins()->builtin(
+ Builtins::kKeyedLoadIC_Initialize));
+ return RawCallCodeObject(ic, mode);
+}
+
+
+Result VirtualFrame::CallStoreIC(Handle<String> name,
+ bool is_contextual,
+ StrictModeFlag strict_mode) {
+ // Value and (if not contextual) receiver are on top of the frame.
+ // The IC expects name in ecx, value in eax, and receiver in edx.
+ Handle<Code> ic(Isolate::Current()->builtins()->builtin(
+ (strict_mode == kStrictMode) ? Builtins::kStoreIC_Initialize_Strict
+ : Builtins::kStoreIC_Initialize));
+
+ Result value = Pop();
+ RelocInfo::Mode mode;
+ if (is_contextual) {
+ PrepareForCall(0, 0);
+ value.ToRegister(eax);
+ __ mov(edx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ value.Unuse();
+ mode = RelocInfo::CODE_TARGET_CONTEXT;
+ } else {
+ Result receiver = Pop();
+ PrepareForCall(0, 0);
+ MoveResultsToRegisters(&value, &receiver, eax, edx);
+ mode = RelocInfo::CODE_TARGET;
+ }
+ __ mov(ecx, name);
+ return RawCallCodeObject(ic, mode);
+}
+
+
+Result VirtualFrame::CallKeyedStoreIC(StrictModeFlag strict_mode) {
+ // Value, key, and receiver are on the top of the frame. The IC
+ // expects value in eax, key in ecx, and receiver in edx.
+ Result value = Pop();
+ Result key = Pop();
+ Result receiver = Pop();
+ PrepareForCall(0, 0);
+ if (!cgen()->allocator()->is_used(eax) ||
+ (value.is_register() && value.reg().is(eax))) {
+ if (!cgen()->allocator()->is_used(eax)) {
+ value.ToRegister(eax);
+ }
+ MoveResultsToRegisters(&key, &receiver, ecx, edx);
+ value.Unuse();
+ } else if (!cgen()->allocator()->is_used(ecx) ||
+ (key.is_register() && key.reg().is(ecx))) {
+ if (!cgen()->allocator()->is_used(ecx)) {
+ key.ToRegister(ecx);
+ }
+ MoveResultsToRegisters(&value, &receiver, eax, edx);
+ key.Unuse();
+ } else if (!cgen()->allocator()->is_used(edx) ||
+ (receiver.is_register() && receiver.reg().is(edx))) {
+ if (!cgen()->allocator()->is_used(edx)) {
+ receiver.ToRegister(edx);
+ }
+ MoveResultsToRegisters(&key, &value, ecx, eax);
+ receiver.Unuse();
+ } else {
+ // All three registers are used, and no value is in the correct place.
+ // We have one of the two circular permutations of eax, ecx, edx.
+ ASSERT(value.is_register());
+ if (value.reg().is(ecx)) {
+ __ xchg(eax, edx);
+ __ xchg(eax, ecx);
+ } else {
+ __ xchg(eax, ecx);
+ __ xchg(eax, edx);
+ }
+ value.Unuse();
+ key.Unuse();
+ receiver.Unuse();
+ }
+
+ Handle<Code> ic(Isolate::Current()->builtins()->builtin(
+ (strict_mode == kStrictMode) ? Builtins::kKeyedStoreIC_Initialize_Strict
+ : Builtins::kKeyedStoreIC_Initialize));
+ return RawCallCodeObject(ic, RelocInfo::CODE_TARGET);
+}
+
+
+Result VirtualFrame::CallCallIC(RelocInfo::Mode mode,
+ int arg_count,
+ int loop_nesting) {
+ // Function name, arguments, and receiver are on top of the frame.
+ // The IC expects the name in ecx and the rest on the stack and
+ // drops them all.
+ InLoopFlag in_loop = loop_nesting > 0 ? IN_LOOP : NOT_IN_LOOP;
+ Handle<Code> ic = Isolate::Current()->stub_cache()->ComputeCallInitialize(
+ arg_count, in_loop);
+ // Spill args, receiver, and function. The call will drop args and
+ // receiver.
+ Result name = Pop();
+ PrepareForCall(arg_count + 1, arg_count + 1); // Arguments + receiver.
+ name.ToRegister(ecx);
+ name.Unuse();
+ return RawCallCodeObject(ic, mode);
+}
+
+
+Result VirtualFrame::CallKeyedCallIC(RelocInfo::Mode mode,
+ int arg_count,
+ int loop_nesting) {
+ // Function name, arguments, and receiver are on top of the frame.
+ // The IC expects the name in ecx and the rest on the stack and
+ // drops them all.
+ InLoopFlag in_loop = loop_nesting > 0 ? IN_LOOP : NOT_IN_LOOP;
+ Handle<Code> ic =
+ Isolate::Current()->stub_cache()->ComputeKeyedCallInitialize(arg_count,
+ in_loop);
+ // Spill args, receiver, and function. The call will drop args and
+ // receiver.
+ Result name = Pop();
+ PrepareForCall(arg_count + 1, arg_count + 1); // Arguments + receiver.
+ name.ToRegister(ecx);
+ name.Unuse();
+ return RawCallCodeObject(ic, mode);
+}
+
+
+Result VirtualFrame::CallConstructor(int arg_count) {
+ // Arguments, receiver, and function are on top of the frame. The
+ // IC expects arg count in eax, function in edi, and the arguments
+ // and receiver on the stack.
+ Handle<Code> ic(Isolate::Current()->builtins()->builtin(
+ Builtins::kJSConstructCall));
+ // Duplicate the function before preparing the frame.
+ PushElementAt(arg_count);
+ Result function = Pop();
+ PrepareForCall(arg_count + 1, arg_count + 1); // Spill function and args.
+ function.ToRegister(edi);
+
+ // Constructors are called with the number of arguments in register
+ // eax for now. Another option would be to have separate construct
+ // call trampolines per different arguments counts encountered.
+ Result num_args = cgen()->allocator()->Allocate(eax);
+ ASSERT(num_args.is_valid());
+ __ Set(num_args.reg(), Immediate(arg_count));
+
+ function.Unuse();
+ num_args.Unuse();
+ return RawCallCodeObject(ic, RelocInfo::CONSTRUCT_CALL);
+}
+
+
+void VirtualFrame::Drop(int count) {
+ ASSERT(count >= 0);
+ ASSERT(height() >= count);
+ int num_virtual_elements = (element_count() - 1) - stack_pointer_;
+
+ // Emit code to lower the stack pointer if necessary.
+ if (num_virtual_elements < count) {
+ int num_dropped = count - num_virtual_elements;
+ stack_pointer_ -= num_dropped;
+ __ add(Operand(esp), Immediate(num_dropped * kPointerSize));
+ }
+
+ // Discard elements from the virtual frame and free any registers.
+ for (int i = 0; i < count; i++) {
+ FrameElement dropped = elements_.RemoveLast();
+ if (dropped.is_register()) {
+ Unuse(dropped.reg());
+ }
+ }
+}
+
+
+Result VirtualFrame::Pop() {
+ FrameElement element = elements_.RemoveLast();
+ int index = element_count();
+ ASSERT(element.is_valid());
+ ASSERT(element.is_untagged_int32() == cgen()->in_safe_int32_mode());
+
+ // Get number type information of the result.
+ TypeInfo info;
+ if (!element.is_copy()) {
+ info = element.type_info();
+ } else {
+ info = elements_[element.index()].type_info();
+ }
+
+ bool pop_needed = (stack_pointer_ == index);
+ if (pop_needed) {
+ stack_pointer_--;
+ if (element.is_memory()) {
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ __ pop(temp.reg());
+ temp.set_type_info(info);
+ temp.set_untagged_int32(element.is_untagged_int32());
+ return temp;
+ }
+
+ __ add(Operand(esp), Immediate(kPointerSize));
+ }
+ ASSERT(!element.is_memory());
+
+ // The top element is a register, constant, or a copy. Unuse
+ // registers and follow copies to their backing store.
+ if (element.is_register()) {
+ Unuse(element.reg());
+ } else if (element.is_copy()) {
+ ASSERT(!element.is_untagged_int32());
+ ASSERT(element.index() < index);
+ index = element.index();
+ element = elements_[index];
+ }
+ ASSERT(!element.is_copy());
+
+ // The element is memory, a register, or a constant.
+ if (element.is_memory()) {
+ // Memory elements could only be the backing store of a copy.
+ // Allocate the original to a register.
+ ASSERT(index <= stack_pointer_);
+ ASSERT(!element.is_untagged_int32());
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ Use(temp.reg(), index);
+ FrameElement new_element =
+ FrameElement::RegisterElement(temp.reg(),
+ FrameElement::SYNCED,
+ element.type_info());
+ // Preserve the copy flag on the element.
+ if (element.is_copied()) new_element.set_copied();
+ elements_[index] = new_element;
+ __ mov(temp.reg(), Operand(ebp, fp_relative(index)));
+ return Result(temp.reg(), info);
+ } else if (element.is_register()) {
+ Result return_value(element.reg(), info);
+ return_value.set_untagged_int32(element.is_untagged_int32());
+ return return_value;
+ } else {
+ ASSERT(element.is_constant());
+ Result return_value(element.handle());
+ return_value.set_untagged_int32(element.is_untagged_int32());
+ return return_value;
+ }
+}
+
+
+void VirtualFrame::EmitPop(Register reg) {
+ ASSERT(stack_pointer_ == element_count() - 1);
+ stack_pointer_--;
+ elements_.RemoveLast();
+ __ pop(reg);
+}
+
+
+void VirtualFrame::EmitPop(Operand operand) {
+ ASSERT(stack_pointer_ == element_count() - 1);
+ stack_pointer_--;
+ elements_.RemoveLast();
+ __ pop(operand);
+}
+
+
+void VirtualFrame::EmitPush(Register reg, TypeInfo info) {
+ ASSERT(stack_pointer_ == element_count() - 1);
+ elements_.Add(FrameElement::MemoryElement(info));
+ stack_pointer_++;
+ __ push(reg);
+}
+
+
+void VirtualFrame::EmitPush(Operand operand, TypeInfo info) {
+ ASSERT(stack_pointer_ == element_count() - 1);
+ elements_.Add(FrameElement::MemoryElement(info));
+ stack_pointer_++;
+ __ push(operand);
+}
+
+
+void VirtualFrame::EmitPush(Immediate immediate, TypeInfo info) {
+ ASSERT(stack_pointer_ == element_count() - 1);
+ elements_.Add(FrameElement::MemoryElement(info));
+ stack_pointer_++;
+ __ push(immediate);
+}
+
+
+void VirtualFrame::PushUntaggedElement(Handle<Object> value) {
+ ASSERT(!ConstantPoolOverflowed());
+ elements_.Add(FrameElement::ConstantElement(value, FrameElement::NOT_SYNCED));
+ elements_[element_count() - 1].set_untagged_int32(true);
+}
+
+
+void VirtualFrame::Push(Expression* expr) {
+ ASSERT(expr->IsTrivial());
+
+ Literal* lit = expr->AsLiteral();
+ if (lit != NULL) {
+ Push(lit->handle());
+ return;
+ }
+
+ VariableProxy* proxy = expr->AsVariableProxy();
+ if (proxy != NULL) {
+ Slot* slot = proxy->var()->AsSlot();
+ if (slot->type() == Slot::LOCAL) {
+ PushLocalAt(slot->index());
+ return;
+ }
+ if (slot->type() == Slot::PARAMETER) {
+ PushParameterAt(slot->index());
+ return;
+ }
+ }
+ UNREACHABLE();
+}
+
+
+void VirtualFrame::Push(Handle<Object> value) {
+ if (ConstantPoolOverflowed()) {
+ Result temp = cgen()->allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ __ Set(temp.reg(), Immediate(value));
+ Push(&temp);
+ } else {
+ FrameElement element =
+ FrameElement::ConstantElement(value, FrameElement::NOT_SYNCED);
+ elements_.Add(element);
+ }
+}
+
+
+#undef __
+
+} } // namespace v8::internal
+
+#endif // V8_TARGET_ARCH_IA32