summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/ia32/lithium-codegen-ia32.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/ia32/lithium-codegen-ia32.cc')
-rw-r--r--src/3rdparty/v8/src/ia32/lithium-codegen-ia32.cc4158
1 files changed, 4158 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/ia32/lithium-codegen-ia32.cc b/src/3rdparty/v8/src/ia32/lithium-codegen-ia32.cc
new file mode 100644
index 0000000..2c5541b
--- /dev/null
+++ b/src/3rdparty/v8/src/ia32/lithium-codegen-ia32.cc
@@ -0,0 +1,4158 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#if defined(V8_TARGET_ARCH_IA32)
+
+#include "ia32/lithium-codegen-ia32.h"
+#include "code-stubs.h"
+#include "deoptimizer.h"
+#include "stub-cache.h"
+
+namespace v8 {
+namespace internal {
+
+
+// When invoking builtins, we need to record the safepoint in the middle of
+// the invoke instruction sequence generated by the macro assembler.
+class SafepointGenerator : public PostCallGenerator {
+ public:
+ SafepointGenerator(LCodeGen* codegen,
+ LPointerMap* pointers,
+ int deoptimization_index)
+ : codegen_(codegen),
+ pointers_(pointers),
+ deoptimization_index_(deoptimization_index) {}
+ virtual ~SafepointGenerator() { }
+
+ virtual void Generate() {
+ codegen_->RecordSafepoint(pointers_, deoptimization_index_);
+ }
+
+ private:
+ LCodeGen* codegen_;
+ LPointerMap* pointers_;
+ int deoptimization_index_;
+};
+
+
+#define __ masm()->
+
+bool LCodeGen::GenerateCode() {
+ HPhase phase("Code generation", chunk());
+ ASSERT(is_unused());
+ status_ = GENERATING;
+ CpuFeatures::Scope scope(SSE2);
+ return GeneratePrologue() &&
+ GenerateBody() &&
+ GenerateDeferredCode() &&
+ GenerateSafepointTable();
+}
+
+
+void LCodeGen::FinishCode(Handle<Code> code) {
+ ASSERT(is_done());
+ code->set_stack_slots(StackSlotCount());
+ code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
+ PopulateDeoptimizationData(code);
+ Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
+}
+
+
+void LCodeGen::Abort(const char* format, ...) {
+ if (FLAG_trace_bailout) {
+ SmartPointer<char> name(info()->shared_info()->DebugName()->ToCString());
+ PrintF("Aborting LCodeGen in @\"%s\": ", *name);
+ va_list arguments;
+ va_start(arguments, format);
+ OS::VPrint(format, arguments);
+ va_end(arguments);
+ PrintF("\n");
+ }
+ status_ = ABORTED;
+}
+
+
+void LCodeGen::Comment(const char* format, ...) {
+ if (!FLAG_code_comments) return;
+ char buffer[4 * KB];
+ StringBuilder builder(buffer, ARRAY_SIZE(buffer));
+ va_list arguments;
+ va_start(arguments, format);
+ builder.AddFormattedList(format, arguments);
+ va_end(arguments);
+
+ // Copy the string before recording it in the assembler to avoid
+ // issues when the stack allocated buffer goes out of scope.
+ size_t length = builder.position();
+ Vector<char> copy = Vector<char>::New(length + 1);
+ memcpy(copy.start(), builder.Finalize(), copy.length());
+ masm()->RecordComment(copy.start());
+}
+
+
+bool LCodeGen::GeneratePrologue() {
+ ASSERT(is_generating());
+
+#ifdef DEBUG
+ if (strlen(FLAG_stop_at) > 0 &&
+ info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
+ __ int3();
+ }
+#endif
+
+ __ push(ebp); // Caller's frame pointer.
+ __ mov(ebp, esp);
+ __ push(esi); // Callee's context.
+ __ push(edi); // Callee's JS function.
+
+ // Reserve space for the stack slots needed by the code.
+ int slots = StackSlotCount();
+ if (slots > 0) {
+ if (FLAG_debug_code) {
+ __ mov(Operand(eax), Immediate(slots));
+ Label loop;
+ __ bind(&loop);
+ __ push(Immediate(kSlotsZapValue));
+ __ dec(eax);
+ __ j(not_zero, &loop);
+ } else {
+ __ sub(Operand(esp), Immediate(slots * kPointerSize));
+#ifdef _MSC_VER
+ // On windows, you may not access the stack more than one page below
+ // the most recently mapped page. To make the allocated area randomly
+ // accessible, we write to each page in turn (the value is irrelevant).
+ const int kPageSize = 4 * KB;
+ for (int offset = slots * kPointerSize - kPageSize;
+ offset > 0;
+ offset -= kPageSize) {
+ __ mov(Operand(esp, offset), eax);
+ }
+#endif
+ }
+ }
+
+ // Possibly allocate a local context.
+ int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+ if (heap_slots > 0) {
+ Comment(";;; Allocate local context");
+ // Argument to NewContext is the function, which is still in edi.
+ __ push(edi);
+ if (heap_slots <= FastNewContextStub::kMaximumSlots) {
+ FastNewContextStub stub(heap_slots);
+ __ CallStub(&stub);
+ } else {
+ __ CallRuntime(Runtime::kNewContext, 1);
+ }
+ RecordSafepoint(Safepoint::kNoDeoptimizationIndex);
+ // Context is returned in both eax and esi. It replaces the context
+ // passed to us. It's saved in the stack and kept live in esi.
+ __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
+
+ // Copy parameters into context if necessary.
+ int num_parameters = scope()->num_parameters();
+ for (int i = 0; i < num_parameters; i++) {
+ Slot* slot = scope()->parameter(i)->AsSlot();
+ if (slot != NULL && slot->type() == Slot::CONTEXT) {
+ int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+ (num_parameters - 1 - i) * kPointerSize;
+ // Load parameter from stack.
+ __ mov(eax, Operand(ebp, parameter_offset));
+ // Store it in the context.
+ int context_offset = Context::SlotOffset(slot->index());
+ __ mov(Operand(esi, context_offset), eax);
+ // Update the write barrier. This clobbers all involved
+ // registers, so we have to use a third register to avoid
+ // clobbering esi.
+ __ mov(ecx, esi);
+ __ RecordWrite(ecx, context_offset, eax, ebx);
+ }
+ }
+ Comment(";;; End allocate local context");
+ }
+
+ // Trace the call.
+ if (FLAG_trace) {
+ // We have not executed any compiled code yet, so esi still holds the
+ // incoming context.
+ __ CallRuntime(Runtime::kTraceEnter, 0);
+ }
+ return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateBody() {
+ ASSERT(is_generating());
+ bool emit_instructions = true;
+ for (current_instruction_ = 0;
+ !is_aborted() && current_instruction_ < instructions_->length();
+ current_instruction_++) {
+ LInstruction* instr = instructions_->at(current_instruction_);
+ if (instr->IsLabel()) {
+ LLabel* label = LLabel::cast(instr);
+ emit_instructions = !label->HasReplacement();
+ }
+
+ if (emit_instructions) {
+ Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
+ instr->CompileToNative(this);
+ }
+ }
+ return !is_aborted();
+}
+
+
+LInstruction* LCodeGen::GetNextInstruction() {
+ if (current_instruction_ < instructions_->length() - 1) {
+ return instructions_->at(current_instruction_ + 1);
+ } else {
+ return NULL;
+ }
+}
+
+
+bool LCodeGen::GenerateDeferredCode() {
+ ASSERT(is_generating());
+ for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
+ LDeferredCode* code = deferred_[i];
+ __ bind(code->entry());
+ code->Generate();
+ __ jmp(code->exit());
+ }
+
+ // Deferred code is the last part of the instruction sequence. Mark
+ // the generated code as done unless we bailed out.
+ if (!is_aborted()) status_ = DONE;
+ return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateSafepointTable() {
+ ASSERT(is_done());
+ safepoints_.Emit(masm(), StackSlotCount());
+ return !is_aborted();
+}
+
+
+Register LCodeGen::ToRegister(int index) const {
+ return Register::FromAllocationIndex(index);
+}
+
+
+XMMRegister LCodeGen::ToDoubleRegister(int index) const {
+ return XMMRegister::FromAllocationIndex(index);
+}
+
+
+Register LCodeGen::ToRegister(LOperand* op) const {
+ ASSERT(op->IsRegister());
+ return ToRegister(op->index());
+}
+
+
+XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
+ ASSERT(op->IsDoubleRegister());
+ return ToDoubleRegister(op->index());
+}
+
+
+int LCodeGen::ToInteger32(LConstantOperand* op) const {
+ Handle<Object> value = chunk_->LookupLiteral(op);
+ ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
+ ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
+ value->Number());
+ return static_cast<int32_t>(value->Number());
+}
+
+
+Immediate LCodeGen::ToImmediate(LOperand* op) {
+ LConstantOperand* const_op = LConstantOperand::cast(op);
+ Handle<Object> literal = chunk_->LookupLiteral(const_op);
+ Representation r = chunk_->LookupLiteralRepresentation(const_op);
+ if (r.IsInteger32()) {
+ ASSERT(literal->IsNumber());
+ return Immediate(static_cast<int32_t>(literal->Number()));
+ } else if (r.IsDouble()) {
+ Abort("unsupported double immediate");
+ }
+ ASSERT(r.IsTagged());
+ return Immediate(literal);
+}
+
+
+Operand LCodeGen::ToOperand(LOperand* op) const {
+ if (op->IsRegister()) return Operand(ToRegister(op));
+ if (op->IsDoubleRegister()) return Operand(ToDoubleRegister(op));
+ ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
+ int index = op->index();
+ if (index >= 0) {
+ // Local or spill slot. Skip the frame pointer, function, and
+ // context in the fixed part of the frame.
+ return Operand(ebp, -(index + 3) * kPointerSize);
+ } else {
+ // Incoming parameter. Skip the return address.
+ return Operand(ebp, -(index - 1) * kPointerSize);
+ }
+}
+
+
+Operand LCodeGen::HighOperand(LOperand* op) {
+ ASSERT(op->IsDoubleStackSlot());
+ int index = op->index();
+ int offset = (index >= 0) ? index + 3 : index - 1;
+ return Operand(ebp, -offset * kPointerSize);
+}
+
+
+void LCodeGen::WriteTranslation(LEnvironment* environment,
+ Translation* translation) {
+ if (environment == NULL) return;
+
+ // The translation includes one command per value in the environment.
+ int translation_size = environment->values()->length();
+ // The output frame height does not include the parameters.
+ int height = translation_size - environment->parameter_count();
+
+ WriteTranslation(environment->outer(), translation);
+ int closure_id = DefineDeoptimizationLiteral(environment->closure());
+ translation->BeginFrame(environment->ast_id(), closure_id, height);
+ for (int i = 0; i < translation_size; ++i) {
+ LOperand* value = environment->values()->at(i);
+ // spilled_registers_ and spilled_double_registers_ are either
+ // both NULL or both set.
+ if (environment->spilled_registers() != NULL && value != NULL) {
+ if (value->IsRegister() &&
+ environment->spilled_registers()[value->index()] != NULL) {
+ translation->MarkDuplicate();
+ AddToTranslation(translation,
+ environment->spilled_registers()[value->index()],
+ environment->HasTaggedValueAt(i));
+ } else if (
+ value->IsDoubleRegister() &&
+ environment->spilled_double_registers()[value->index()] != NULL) {
+ translation->MarkDuplicate();
+ AddToTranslation(
+ translation,
+ environment->spilled_double_registers()[value->index()],
+ false);
+ }
+ }
+
+ AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
+ }
+}
+
+
+void LCodeGen::AddToTranslation(Translation* translation,
+ LOperand* op,
+ bool is_tagged) {
+ if (op == NULL) {
+ // TODO(twuerthinger): Introduce marker operands to indicate that this value
+ // is not present and must be reconstructed from the deoptimizer. Currently
+ // this is only used for the arguments object.
+ translation->StoreArgumentsObject();
+ } else if (op->IsStackSlot()) {
+ if (is_tagged) {
+ translation->StoreStackSlot(op->index());
+ } else {
+ translation->StoreInt32StackSlot(op->index());
+ }
+ } else if (op->IsDoubleStackSlot()) {
+ translation->StoreDoubleStackSlot(op->index());
+ } else if (op->IsArgument()) {
+ ASSERT(is_tagged);
+ int src_index = StackSlotCount() + op->index();
+ translation->StoreStackSlot(src_index);
+ } else if (op->IsRegister()) {
+ Register reg = ToRegister(op);
+ if (is_tagged) {
+ translation->StoreRegister(reg);
+ } else {
+ translation->StoreInt32Register(reg);
+ }
+ } else if (op->IsDoubleRegister()) {
+ XMMRegister reg = ToDoubleRegister(op);
+ translation->StoreDoubleRegister(reg);
+ } else if (op->IsConstantOperand()) {
+ Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
+ int src_index = DefineDeoptimizationLiteral(literal);
+ translation->StoreLiteral(src_index);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::CallCode(Handle<Code> code,
+ RelocInfo::Mode mode,
+ LInstruction* instr,
+ bool adjusted) {
+ ASSERT(instr != NULL);
+ LPointerMap* pointers = instr->pointer_map();
+ RecordPosition(pointers->position());
+
+ if (!adjusted) {
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ }
+ __ call(code, mode);
+
+ RegisterLazyDeoptimization(instr);
+
+ // Signal that we don't inline smi code before these stubs in the
+ // optimizing code generator.
+ if (code->kind() == Code::TYPE_RECORDING_BINARY_OP_IC ||
+ code->kind() == Code::COMPARE_IC) {
+ __ nop();
+ }
+}
+
+
+void LCodeGen::CallRuntime(const Runtime::Function* fun,
+ int argc,
+ LInstruction* instr,
+ bool adjusted) {
+ ASSERT(instr != NULL);
+ ASSERT(instr->HasPointerMap());
+ LPointerMap* pointers = instr->pointer_map();
+ RecordPosition(pointers->position());
+
+ if (!adjusted) {
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ }
+ __ CallRuntime(fun, argc);
+
+ RegisterLazyDeoptimization(instr);
+}
+
+
+void LCodeGen::RegisterLazyDeoptimization(LInstruction* instr) {
+ // Create the environment to bailout to. If the call has side effects
+ // execution has to continue after the call otherwise execution can continue
+ // from a previous bailout point repeating the call.
+ LEnvironment* deoptimization_environment;
+ if (instr->HasDeoptimizationEnvironment()) {
+ deoptimization_environment = instr->deoptimization_environment();
+ } else {
+ deoptimization_environment = instr->environment();
+ }
+
+ RegisterEnvironmentForDeoptimization(deoptimization_environment);
+ RecordSafepoint(instr->pointer_map(),
+ deoptimization_environment->deoptimization_index());
+}
+
+
+void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment) {
+ if (!environment->HasBeenRegistered()) {
+ // Physical stack frame layout:
+ // -x ............. -4 0 ..................................... y
+ // [incoming arguments] [spill slots] [pushed outgoing arguments]
+
+ // Layout of the environment:
+ // 0 ..................................................... size-1
+ // [parameters] [locals] [expression stack including arguments]
+
+ // Layout of the translation:
+ // 0 ........................................................ size - 1 + 4
+ // [expression stack including arguments] [locals] [4 words] [parameters]
+ // |>------------ translation_size ------------<|
+
+ int frame_count = 0;
+ for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
+ ++frame_count;
+ }
+ Translation translation(&translations_, frame_count);
+ WriteTranslation(environment, &translation);
+ int deoptimization_index = deoptimizations_.length();
+ environment->Register(deoptimization_index, translation.index());
+ deoptimizations_.Add(environment);
+ }
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) {
+ RegisterEnvironmentForDeoptimization(environment);
+ ASSERT(environment->HasBeenRegistered());
+ int id = environment->deoptimization_index();
+ Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
+ ASSERT(entry != NULL);
+ if (entry == NULL) {
+ Abort("bailout was not prepared");
+ return;
+ }
+
+ if (FLAG_deopt_every_n_times != 0) {
+ Handle<SharedFunctionInfo> shared(info_->shared_info());
+ Label no_deopt;
+ __ pushfd();
+ __ push(eax);
+ __ push(ebx);
+ __ mov(ebx, shared);
+ __ mov(eax, FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset));
+ __ sub(Operand(eax), Immediate(Smi::FromInt(1)));
+ __ j(not_zero, &no_deopt);
+ if (FLAG_trap_on_deopt) __ int3();
+ __ mov(eax, Immediate(Smi::FromInt(FLAG_deopt_every_n_times)));
+ __ mov(FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset), eax);
+ __ pop(ebx);
+ __ pop(eax);
+ __ popfd();
+ __ jmp(entry, RelocInfo::RUNTIME_ENTRY);
+
+ __ bind(&no_deopt);
+ __ mov(FieldOperand(ebx, SharedFunctionInfo::kDeoptCounterOffset), eax);
+ __ pop(ebx);
+ __ pop(eax);
+ __ popfd();
+ }
+
+ if (cc == no_condition) {
+ if (FLAG_trap_on_deopt) __ int3();
+ __ jmp(entry, RelocInfo::RUNTIME_ENTRY);
+ } else {
+ if (FLAG_trap_on_deopt) {
+ NearLabel done;
+ __ j(NegateCondition(cc), &done);
+ __ int3();
+ __ jmp(entry, RelocInfo::RUNTIME_ENTRY);
+ __ bind(&done);
+ } else {
+ __ j(cc, entry, RelocInfo::RUNTIME_ENTRY, not_taken);
+ }
+ }
+}
+
+
+void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
+ int length = deoptimizations_.length();
+ if (length == 0) return;
+ ASSERT(FLAG_deopt);
+ Handle<DeoptimizationInputData> data =
+ factory()->NewDeoptimizationInputData(length, TENURED);
+
+ Handle<ByteArray> translations = translations_.CreateByteArray();
+ data->SetTranslationByteArray(*translations);
+ data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
+
+ Handle<FixedArray> literals =
+ factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
+ for (int i = 0; i < deoptimization_literals_.length(); i++) {
+ literals->set(i, *deoptimization_literals_[i]);
+ }
+ data->SetLiteralArray(*literals);
+
+ data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
+ data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
+
+ // Populate the deoptimization entries.
+ for (int i = 0; i < length; i++) {
+ LEnvironment* env = deoptimizations_[i];
+ data->SetAstId(i, Smi::FromInt(env->ast_id()));
+ data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
+ data->SetArgumentsStackHeight(i,
+ Smi::FromInt(env->arguments_stack_height()));
+ }
+ code->set_deoptimization_data(*data);
+}
+
+
+int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
+ int result = deoptimization_literals_.length();
+ for (int i = 0; i < deoptimization_literals_.length(); ++i) {
+ if (deoptimization_literals_[i].is_identical_to(literal)) return i;
+ }
+ deoptimization_literals_.Add(literal);
+ return result;
+}
+
+
+void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
+ ASSERT(deoptimization_literals_.length() == 0);
+
+ const ZoneList<Handle<JSFunction> >* inlined_closures =
+ chunk()->inlined_closures();
+
+ for (int i = 0, length = inlined_closures->length();
+ i < length;
+ i++) {
+ DefineDeoptimizationLiteral(inlined_closures->at(i));
+ }
+
+ inlined_function_count_ = deoptimization_literals_.length();
+}
+
+
+void LCodeGen::RecordSafepoint(
+ LPointerMap* pointers,
+ Safepoint::Kind kind,
+ int arguments,
+ int deoptimization_index) {
+ const ZoneList<LOperand*>* operands = pointers->operands();
+ Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
+ kind, arguments, deoptimization_index);
+ for (int i = 0; i < operands->length(); i++) {
+ LOperand* pointer = operands->at(i);
+ if (pointer->IsStackSlot()) {
+ safepoint.DefinePointerSlot(pointer->index());
+ } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
+ safepoint.DefinePointerRegister(ToRegister(pointer));
+ }
+ }
+}
+
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers,
+ int deoptimization_index) {
+ RecordSafepoint(pointers, Safepoint::kSimple, 0, deoptimization_index);
+}
+
+
+void LCodeGen::RecordSafepoint(int deoptimization_index) {
+ LPointerMap empty_pointers(RelocInfo::kNoPosition);
+ RecordSafepoint(&empty_pointers, deoptimization_index);
+}
+
+
+void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
+ int arguments,
+ int deoptimization_index) {
+ RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments,
+ deoptimization_index);
+}
+
+
+void LCodeGen::RecordPosition(int position) {
+ if (!FLAG_debug_info || position == RelocInfo::kNoPosition) return;
+ masm()->positions_recorder()->RecordPosition(position);
+}
+
+
+void LCodeGen::DoLabel(LLabel* label) {
+ if (label->is_loop_header()) {
+ Comment(";;; B%d - LOOP entry", label->block_id());
+ } else {
+ Comment(";;; B%d", label->block_id());
+ }
+ __ bind(label->label());
+ current_block_ = label->block_id();
+ LCodeGen::DoGap(label);
+}
+
+
+void LCodeGen::DoParallelMove(LParallelMove* move) {
+ resolver_.Resolve(move);
+}
+
+
+void LCodeGen::DoGap(LGap* gap) {
+ for (int i = LGap::FIRST_INNER_POSITION;
+ i <= LGap::LAST_INNER_POSITION;
+ i++) {
+ LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
+ LParallelMove* move = gap->GetParallelMove(inner_pos);
+ if (move != NULL) DoParallelMove(move);
+ }
+
+ LInstruction* next = GetNextInstruction();
+ if (next != NULL && next->IsLazyBailout()) {
+ int pc = masm()->pc_offset();
+ safepoints_.SetPcAfterGap(pc);
+ }
+}
+
+
+void LCodeGen::DoParameter(LParameter* instr) {
+ // Nothing to do.
+}
+
+
+void LCodeGen::DoCallStub(LCallStub* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ ASSERT(ToRegister(instr->result()).is(eax));
+ switch (instr->hydrogen()->major_key()) {
+ case CodeStub::RegExpConstructResult: {
+ RegExpConstructResultStub stub;
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::RegExpExec: {
+ RegExpExecStub stub;
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::SubString: {
+ SubStringStub stub;
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::NumberToString: {
+ NumberToStringStub stub;
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::StringAdd: {
+ StringAddStub stub(NO_STRING_ADD_FLAGS);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::StringCompare: {
+ StringCompareStub stub;
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::TranscendentalCache: {
+ TranscendentalCacheStub stub(instr->transcendental_type(),
+ TranscendentalCacheStub::TAGGED);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
+ // Nothing to do.
+}
+
+
+void LCodeGen::DoModI(LModI* instr) {
+ if (instr->hydrogen()->HasPowerOf2Divisor()) {
+ Register dividend = ToRegister(instr->InputAt(0));
+
+ int32_t divisor =
+ HConstant::cast(instr->hydrogen()->right())->Integer32Value();
+
+ if (divisor < 0) divisor = -divisor;
+
+ NearLabel positive_dividend, done;
+ __ test(dividend, Operand(dividend));
+ __ j(not_sign, &positive_dividend);
+ __ neg(dividend);
+ __ and_(dividend, divisor - 1);
+ __ neg(dividend);
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ j(not_zero, &done);
+ DeoptimizeIf(no_condition, instr->environment());
+ }
+ __ bind(&positive_dividend);
+ __ and_(dividend, divisor - 1);
+ __ bind(&done);
+ } else {
+ LOperand* right = instr->InputAt(1);
+ ASSERT(ToRegister(instr->InputAt(0)).is(eax));
+ ASSERT(ToRegister(instr->result()).is(edx));
+
+ Register right_reg = ToRegister(right);
+ ASSERT(!right_reg.is(eax));
+ ASSERT(!right_reg.is(edx));
+
+ // Check for x % 0.
+ if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
+ __ test(right_reg, ToOperand(right));
+ DeoptimizeIf(zero, instr->environment());
+ }
+
+ // Sign extend to edx.
+ __ cdq();
+
+ // Check for (0 % -x) that will produce negative zero.
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ NearLabel positive_left;
+ NearLabel done;
+ __ test(eax, Operand(eax));
+ __ j(not_sign, &positive_left);
+ __ idiv(right_reg);
+
+ // Test the remainder for 0, because then the result would be -0.
+ __ test(edx, Operand(edx));
+ __ j(not_zero, &done);
+
+ DeoptimizeIf(no_condition, instr->environment());
+ __ bind(&positive_left);
+ __ idiv(right_reg);
+ __ bind(&done);
+ } else {
+ __ idiv(right_reg);
+ }
+ }
+}
+
+
+void LCodeGen::DoDivI(LDivI* instr) {
+ LOperand* right = instr->InputAt(1);
+ ASSERT(ToRegister(instr->result()).is(eax));
+ ASSERT(ToRegister(instr->InputAt(0)).is(eax));
+ ASSERT(!ToRegister(instr->InputAt(1)).is(eax));
+ ASSERT(!ToRegister(instr->InputAt(1)).is(edx));
+
+ Register left_reg = eax;
+
+ // Check for x / 0.
+ Register right_reg = ToRegister(right);
+ if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
+ __ test(right_reg, ToOperand(right));
+ DeoptimizeIf(zero, instr->environment());
+ }
+
+ // Check for (0 / -x) that will produce negative zero.
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ NearLabel left_not_zero;
+ __ test(left_reg, Operand(left_reg));
+ __ j(not_zero, &left_not_zero);
+ __ test(right_reg, ToOperand(right));
+ DeoptimizeIf(sign, instr->environment());
+ __ bind(&left_not_zero);
+ }
+
+ // Check for (-kMinInt / -1).
+ if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ NearLabel left_not_min_int;
+ __ cmp(left_reg, kMinInt);
+ __ j(not_zero, &left_not_min_int);
+ __ cmp(right_reg, -1);
+ DeoptimizeIf(zero, instr->environment());
+ __ bind(&left_not_min_int);
+ }
+
+ // Sign extend to edx.
+ __ cdq();
+ __ idiv(right_reg);
+
+ // Deoptimize if remainder is not 0.
+ __ test(edx, Operand(edx));
+ DeoptimizeIf(not_zero, instr->environment());
+}
+
+
+void LCodeGen::DoMulI(LMulI* instr) {
+ Register left = ToRegister(instr->InputAt(0));
+ LOperand* right = instr->InputAt(1);
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ mov(ToRegister(instr->TempAt(0)), left);
+ }
+
+ if (right->IsConstantOperand()) {
+ // Try strength reductions on the multiplication.
+ // All replacement instructions are at most as long as the imul
+ // and have better latency.
+ int constant = ToInteger32(LConstantOperand::cast(right));
+ if (constant == -1) {
+ __ neg(left);
+ } else if (constant == 0) {
+ __ xor_(left, Operand(left));
+ } else if (constant == 2) {
+ __ add(left, Operand(left));
+ } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ // If we know that the multiplication can't overflow, it's safe to
+ // use instructions that don't set the overflow flag for the
+ // multiplication.
+ switch (constant) {
+ case 1:
+ // Do nothing.
+ break;
+ case 3:
+ __ lea(left, Operand(left, left, times_2, 0));
+ break;
+ case 4:
+ __ shl(left, 2);
+ break;
+ case 5:
+ __ lea(left, Operand(left, left, times_4, 0));
+ break;
+ case 8:
+ __ shl(left, 3);
+ break;
+ case 9:
+ __ lea(left, Operand(left, left, times_8, 0));
+ break;
+ case 16:
+ __ shl(left, 4);
+ break;
+ default:
+ __ imul(left, left, constant);
+ break;
+ }
+ } else {
+ __ imul(left, left, constant);
+ }
+ } else {
+ __ imul(left, ToOperand(right));
+ }
+
+ if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ DeoptimizeIf(overflow, instr->environment());
+ }
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // Bail out if the result is supposed to be negative zero.
+ NearLabel done;
+ __ test(left, Operand(left));
+ __ j(not_zero, &done);
+ if (right->IsConstantOperand()) {
+ if (ToInteger32(LConstantOperand::cast(right)) <= 0) {
+ DeoptimizeIf(no_condition, instr->environment());
+ }
+ } else {
+ // Test the non-zero operand for negative sign.
+ __ or_(ToRegister(instr->TempAt(0)), ToOperand(right));
+ DeoptimizeIf(sign, instr->environment());
+ }
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoBitI(LBitI* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ ASSERT(left->Equals(instr->result()));
+ ASSERT(left->IsRegister());
+
+ if (right->IsConstantOperand()) {
+ int right_operand = ToInteger32(LConstantOperand::cast(right));
+ switch (instr->op()) {
+ case Token::BIT_AND:
+ __ and_(ToRegister(left), right_operand);
+ break;
+ case Token::BIT_OR:
+ __ or_(ToRegister(left), right_operand);
+ break;
+ case Token::BIT_XOR:
+ __ xor_(ToRegister(left), right_operand);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ switch (instr->op()) {
+ case Token::BIT_AND:
+ __ and_(ToRegister(left), ToOperand(right));
+ break;
+ case Token::BIT_OR:
+ __ or_(ToRegister(left), ToOperand(right));
+ break;
+ case Token::BIT_XOR:
+ __ xor_(ToRegister(left), ToOperand(right));
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoShiftI(LShiftI* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ ASSERT(left->Equals(instr->result()));
+ ASSERT(left->IsRegister());
+ if (right->IsRegister()) {
+ ASSERT(ToRegister(right).is(ecx));
+
+ switch (instr->op()) {
+ case Token::SAR:
+ __ sar_cl(ToRegister(left));
+ break;
+ case Token::SHR:
+ __ shr_cl(ToRegister(left));
+ if (instr->can_deopt()) {
+ __ test(ToRegister(left), Immediate(0x80000000));
+ DeoptimizeIf(not_zero, instr->environment());
+ }
+ break;
+ case Token::SHL:
+ __ shl_cl(ToRegister(left));
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ int value = ToInteger32(LConstantOperand::cast(right));
+ uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
+ switch (instr->op()) {
+ case Token::SAR:
+ if (shift_count != 0) {
+ __ sar(ToRegister(left), shift_count);
+ }
+ break;
+ case Token::SHR:
+ if (shift_count == 0 && instr->can_deopt()) {
+ __ test(ToRegister(left), Immediate(0x80000000));
+ DeoptimizeIf(not_zero, instr->environment());
+ } else {
+ __ shr(ToRegister(left), shift_count);
+ }
+ break;
+ case Token::SHL:
+ if (shift_count != 0) {
+ __ shl(ToRegister(left), shift_count);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoSubI(LSubI* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ ASSERT(left->Equals(instr->result()));
+
+ if (right->IsConstantOperand()) {
+ __ sub(ToOperand(left), ToImmediate(right));
+ } else {
+ __ sub(ToRegister(left), ToOperand(right));
+ }
+ if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ DeoptimizeIf(overflow, instr->environment());
+ }
+}
+
+
+void LCodeGen::DoConstantI(LConstantI* instr) {
+ ASSERT(instr->result()->IsRegister());
+ __ Set(ToRegister(instr->result()), Immediate(instr->value()));
+}
+
+
+void LCodeGen::DoConstantD(LConstantD* instr) {
+ ASSERT(instr->result()->IsDoubleRegister());
+ XMMRegister res = ToDoubleRegister(instr->result());
+ double v = instr->value();
+ // Use xor to produce +0.0 in a fast and compact way, but avoid to
+ // do so if the constant is -0.0.
+ if (BitCast<uint64_t, double>(v) == 0) {
+ __ xorpd(res, res);
+ } else {
+ Register temp = ToRegister(instr->TempAt(0));
+ uint64_t int_val = BitCast<uint64_t, double>(v);
+ int32_t lower = static_cast<int32_t>(int_val);
+ int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
+ if (CpuFeatures::IsSupported(SSE4_1)) {
+ CpuFeatures::Scope scope(SSE4_1);
+ if (lower != 0) {
+ __ Set(temp, Immediate(lower));
+ __ movd(res, Operand(temp));
+ __ Set(temp, Immediate(upper));
+ __ pinsrd(res, Operand(temp), 1);
+ } else {
+ __ xorpd(res, res);
+ __ Set(temp, Immediate(upper));
+ __ pinsrd(res, Operand(temp), 1);
+ }
+ } else {
+ __ Set(temp, Immediate(upper));
+ __ movd(res, Operand(temp));
+ __ psllq(res, 32);
+ if (lower != 0) {
+ __ Set(temp, Immediate(lower));
+ __ movd(xmm0, Operand(temp));
+ __ por(res, xmm0);
+ }
+ }
+ }
+}
+
+
+void LCodeGen::DoConstantT(LConstantT* instr) {
+ ASSERT(instr->result()->IsRegister());
+ __ Set(ToRegister(instr->result()), Immediate(instr->value()));
+}
+
+
+void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
+ Register result = ToRegister(instr->result());
+ Register array = ToRegister(instr->InputAt(0));
+ __ mov(result, FieldOperand(array, JSArray::kLengthOffset));
+}
+
+
+void LCodeGen::DoFixedArrayLength(LFixedArrayLength* instr) {
+ Register result = ToRegister(instr->result());
+ Register array = ToRegister(instr->InputAt(0));
+ __ mov(result, FieldOperand(array, FixedArray::kLengthOffset));
+}
+
+
+void LCodeGen::DoExternalArrayLength(LExternalArrayLength* instr) {
+ Register result = ToRegister(instr->result());
+ Register array = ToRegister(instr->InputAt(0));
+ __ mov(result, FieldOperand(array, ExternalArray::kLengthOffset));
+}
+
+
+void LCodeGen::DoValueOf(LValueOf* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+ Register map = ToRegister(instr->TempAt(0));
+ ASSERT(input.is(result));
+ NearLabel done;
+ // If the object is a smi return the object.
+ __ test(input, Immediate(kSmiTagMask));
+ __ j(zero, &done);
+
+ // If the object is not a value type, return the object.
+ __ CmpObjectType(input, JS_VALUE_TYPE, map);
+ __ j(not_equal, &done);
+ __ mov(result, FieldOperand(input, JSValue::kValueOffset));
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoBitNotI(LBitNotI* instr) {
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->Equals(instr->result()));
+ __ not_(ToRegister(input));
+}
+
+
+void LCodeGen::DoThrow(LThrow* instr) {
+ __ push(ToOperand(instr->InputAt(0)));
+ CallRuntime(Runtime::kThrow, 1, instr, false);
+
+ if (FLAG_debug_code) {
+ Comment("Unreachable code.");
+ __ int3();
+ }
+}
+
+
+void LCodeGen::DoAddI(LAddI* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ ASSERT(left->Equals(instr->result()));
+
+ if (right->IsConstantOperand()) {
+ __ add(ToOperand(left), ToImmediate(right));
+ } else {
+ __ add(ToRegister(left), ToOperand(right));
+ }
+
+ if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ DeoptimizeIf(overflow, instr->environment());
+ }
+}
+
+
+void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
+ XMMRegister left = ToDoubleRegister(instr->InputAt(0));
+ XMMRegister right = ToDoubleRegister(instr->InputAt(1));
+ XMMRegister result = ToDoubleRegister(instr->result());
+ // Modulo uses a fixed result register.
+ ASSERT(instr->op() == Token::MOD || left.is(result));
+ switch (instr->op()) {
+ case Token::ADD:
+ __ addsd(left, right);
+ break;
+ case Token::SUB:
+ __ subsd(left, right);
+ break;
+ case Token::MUL:
+ __ mulsd(left, right);
+ break;
+ case Token::DIV:
+ __ divsd(left, right);
+ break;
+ case Token::MOD: {
+ // Pass two doubles as arguments on the stack.
+ __ PrepareCallCFunction(4, eax);
+ __ movdbl(Operand(esp, 0 * kDoubleSize), left);
+ __ movdbl(Operand(esp, 1 * kDoubleSize), right);
+ __ CallCFunction(
+ ExternalReference::double_fp_operation(Token::MOD, isolate()),
+ 4);
+
+ // Return value is in st(0) on ia32.
+ // Store it into the (fixed) result register.
+ __ sub(Operand(esp), Immediate(kDoubleSize));
+ __ fstp_d(Operand(esp, 0));
+ __ movdbl(result, Operand(esp, 0));
+ __ add(Operand(esp), Immediate(kDoubleSize));
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+}
+
+
+void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
+ ASSERT(ToRegister(instr->InputAt(0)).is(edx));
+ ASSERT(ToRegister(instr->InputAt(1)).is(eax));
+ ASSERT(ToRegister(instr->result()).is(eax));
+
+ TypeRecordingBinaryOpStub stub(instr->op(), NO_OVERWRITE);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
+}
+
+
+int LCodeGen::GetNextEmittedBlock(int block) {
+ for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
+ LLabel* label = chunk_->GetLabel(i);
+ if (!label->HasReplacement()) return i;
+ }
+ return -1;
+}
+
+
+void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) {
+ int next_block = GetNextEmittedBlock(current_block_);
+ right_block = chunk_->LookupDestination(right_block);
+ left_block = chunk_->LookupDestination(left_block);
+
+ if (right_block == left_block) {
+ EmitGoto(left_block);
+ } else if (left_block == next_block) {
+ __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
+ } else if (right_block == next_block) {
+ __ j(cc, chunk_->GetAssemblyLabel(left_block));
+ } else {
+ __ j(cc, chunk_->GetAssemblyLabel(left_block));
+ __ jmp(chunk_->GetAssemblyLabel(right_block));
+ }
+}
+
+
+void LCodeGen::DoBranch(LBranch* instr) {
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ Representation r = instr->hydrogen()->representation();
+ if (r.IsInteger32()) {
+ Register reg = ToRegister(instr->InputAt(0));
+ __ test(reg, Operand(reg));
+ EmitBranch(true_block, false_block, not_zero);
+ } else if (r.IsDouble()) {
+ XMMRegister reg = ToDoubleRegister(instr->InputAt(0));
+ __ xorpd(xmm0, xmm0);
+ __ ucomisd(reg, xmm0);
+ EmitBranch(true_block, false_block, not_equal);
+ } else {
+ ASSERT(r.IsTagged());
+ Register reg = ToRegister(instr->InputAt(0));
+ if (instr->hydrogen()->type().IsBoolean()) {
+ __ cmp(reg, factory()->true_value());
+ EmitBranch(true_block, false_block, equal);
+ } else {
+ Label* true_label = chunk_->GetAssemblyLabel(true_block);
+ Label* false_label = chunk_->GetAssemblyLabel(false_block);
+
+ __ cmp(reg, factory()->undefined_value());
+ __ j(equal, false_label);
+ __ cmp(reg, factory()->true_value());
+ __ j(equal, true_label);
+ __ cmp(reg, factory()->false_value());
+ __ j(equal, false_label);
+ __ test(reg, Operand(reg));
+ __ j(equal, false_label);
+ __ test(reg, Immediate(kSmiTagMask));
+ __ j(zero, true_label);
+
+ // Test for double values. Zero is false.
+ NearLabel call_stub;
+ __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
+ factory()->heap_number_map());
+ __ j(not_equal, &call_stub);
+ __ fldz();
+ __ fld_d(FieldOperand(reg, HeapNumber::kValueOffset));
+ __ FCmp();
+ __ j(zero, false_label);
+ __ jmp(true_label);
+
+ // The conversion stub doesn't cause garbage collections so it's
+ // safe to not record a safepoint after the call.
+ __ bind(&call_stub);
+ ToBooleanStub stub;
+ __ pushad();
+ __ push(reg);
+ __ CallStub(&stub);
+ __ test(eax, Operand(eax));
+ __ popad();
+ EmitBranch(true_block, false_block, not_zero);
+ }
+ }
+}
+
+
+void LCodeGen::EmitGoto(int block, LDeferredCode* deferred_stack_check) {
+ block = chunk_->LookupDestination(block);
+ int next_block = GetNextEmittedBlock(current_block_);
+ if (block != next_block) {
+ // Perform stack overflow check if this goto needs it before jumping.
+ if (deferred_stack_check != NULL) {
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ cmp(esp, Operand::StaticVariable(stack_limit));
+ __ j(above_equal, chunk_->GetAssemblyLabel(block));
+ __ jmp(deferred_stack_check->entry());
+ deferred_stack_check->SetExit(chunk_->GetAssemblyLabel(block));
+ } else {
+ __ jmp(chunk_->GetAssemblyLabel(block));
+ }
+ }
+}
+
+
+void LCodeGen::DoDeferredStackCheck(LGoto* instr) {
+ __ pushad();
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex);
+ __ popad();
+}
+
+void LCodeGen::DoGoto(LGoto* instr) {
+ class DeferredStackCheck: public LDeferredCode {
+ public:
+ DeferredStackCheck(LCodeGen* codegen, LGoto* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
+ private:
+ LGoto* instr_;
+ };
+
+ DeferredStackCheck* deferred = NULL;
+ if (instr->include_stack_check()) {
+ deferred = new DeferredStackCheck(this, instr);
+ }
+ EmitGoto(instr->block_id(), deferred);
+}
+
+
+Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
+ Condition cond = no_condition;
+ switch (op) {
+ case Token::EQ:
+ case Token::EQ_STRICT:
+ cond = equal;
+ break;
+ case Token::LT:
+ cond = is_unsigned ? below : less;
+ break;
+ case Token::GT:
+ cond = is_unsigned ? above : greater;
+ break;
+ case Token::LTE:
+ cond = is_unsigned ? below_equal : less_equal;
+ break;
+ case Token::GTE:
+ cond = is_unsigned ? above_equal : greater_equal;
+ break;
+ case Token::IN:
+ case Token::INSTANCEOF:
+ default:
+ UNREACHABLE();
+ }
+ return cond;
+}
+
+
+void LCodeGen::EmitCmpI(LOperand* left, LOperand* right) {
+ if (right->IsConstantOperand()) {
+ __ cmp(ToOperand(left), ToImmediate(right));
+ } else {
+ __ cmp(ToRegister(left), ToOperand(right));
+ }
+}
+
+
+void LCodeGen::DoCmpID(LCmpID* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ LOperand* result = instr->result();
+
+ NearLabel unordered;
+ if (instr->is_double()) {
+ // Don't base result on EFLAGS when a NaN is involved. Instead
+ // jump to the unordered case, which produces a false value.
+ __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
+ __ j(parity_even, &unordered, not_taken);
+ } else {
+ EmitCmpI(left, right);
+ }
+
+ NearLabel done;
+ Condition cc = TokenToCondition(instr->op(), instr->is_double());
+ __ mov(ToRegister(result), factory()->true_value());
+ __ j(cc, &done);
+
+ __ bind(&unordered);
+ __ mov(ToRegister(result), factory()->false_value());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+
+ if (instr->is_double()) {
+ // Don't base result on EFLAGS when a NaN is involved. Instead
+ // jump to the false block.
+ __ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
+ __ j(parity_even, chunk_->GetAssemblyLabel(false_block));
+ } else {
+ EmitCmpI(left, right);
+ }
+
+ Condition cc = TokenToCondition(instr->op(), instr->is_double());
+ EmitBranch(true_block, false_block, cc);
+}
+
+
+void LCodeGen::DoCmpJSObjectEq(LCmpJSObjectEq* instr) {
+ Register left = ToRegister(instr->InputAt(0));
+ Register right = ToRegister(instr->InputAt(1));
+ Register result = ToRegister(instr->result());
+
+ __ cmp(left, Operand(right));
+ __ mov(result, factory()->true_value());
+ NearLabel done;
+ __ j(equal, &done);
+ __ mov(result, factory()->false_value());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoCmpJSObjectEqAndBranch(LCmpJSObjectEqAndBranch* instr) {
+ Register left = ToRegister(instr->InputAt(0));
+ Register right = ToRegister(instr->InputAt(1));
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+
+ __ cmp(left, Operand(right));
+ EmitBranch(true_block, false_block, equal);
+}
+
+
+void LCodeGen::DoIsNull(LIsNull* instr) {
+ Register reg = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+
+ // TODO(fsc): If the expression is known to be a smi, then it's
+ // definitely not null. Materialize false.
+
+ __ cmp(reg, factory()->null_value());
+ if (instr->is_strict()) {
+ __ mov(result, factory()->true_value());
+ NearLabel done;
+ __ j(equal, &done);
+ __ mov(result, factory()->false_value());
+ __ bind(&done);
+ } else {
+ NearLabel true_value, false_value, done;
+ __ j(equal, &true_value);
+ __ cmp(reg, factory()->undefined_value());
+ __ j(equal, &true_value);
+ __ test(reg, Immediate(kSmiTagMask));
+ __ j(zero, &false_value);
+ // Check for undetectable objects by looking in the bit field in
+ // the map. The object has already been smi checked.
+ Register scratch = result;
+ __ mov(scratch, FieldOperand(reg, HeapObject::kMapOffset));
+ __ movzx_b(scratch, FieldOperand(scratch, Map::kBitFieldOffset));
+ __ test(scratch, Immediate(1 << Map::kIsUndetectable));
+ __ j(not_zero, &true_value);
+ __ bind(&false_value);
+ __ mov(result, factory()->false_value());
+ __ jmp(&done);
+ __ bind(&true_value);
+ __ mov(result, factory()->true_value());
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoIsNullAndBranch(LIsNullAndBranch* instr) {
+ Register reg = ToRegister(instr->InputAt(0));
+
+ // TODO(fsc): If the expression is known to be a smi, then it's
+ // definitely not null. Jump to the false block.
+
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ __ cmp(reg, factory()->null_value());
+ if (instr->is_strict()) {
+ EmitBranch(true_block, false_block, equal);
+ } else {
+ Label* true_label = chunk_->GetAssemblyLabel(true_block);
+ Label* false_label = chunk_->GetAssemblyLabel(false_block);
+ __ j(equal, true_label);
+ __ cmp(reg, factory()->undefined_value());
+ __ j(equal, true_label);
+ __ test(reg, Immediate(kSmiTagMask));
+ __ j(zero, false_label);
+ // Check for undetectable objects by looking in the bit field in
+ // the map. The object has already been smi checked.
+ Register scratch = ToRegister(instr->TempAt(0));
+ __ mov(scratch, FieldOperand(reg, HeapObject::kMapOffset));
+ __ movzx_b(scratch, FieldOperand(scratch, Map::kBitFieldOffset));
+ __ test(scratch, Immediate(1 << Map::kIsUndetectable));
+ EmitBranch(true_block, false_block, not_zero);
+ }
+}
+
+
+Condition LCodeGen::EmitIsObject(Register input,
+ Register temp1,
+ Register temp2,
+ Label* is_not_object,
+ Label* is_object) {
+ ASSERT(!input.is(temp1));
+ ASSERT(!input.is(temp2));
+ ASSERT(!temp1.is(temp2));
+
+ __ test(input, Immediate(kSmiTagMask));
+ __ j(equal, is_not_object);
+
+ __ cmp(input, isolate()->factory()->null_value());
+ __ j(equal, is_object);
+
+ __ mov(temp1, FieldOperand(input, HeapObject::kMapOffset));
+ // Undetectable objects behave like undefined.
+ __ movzx_b(temp2, FieldOperand(temp1, Map::kBitFieldOffset));
+ __ test(temp2, Immediate(1 << Map::kIsUndetectable));
+ __ j(not_zero, is_not_object);
+
+ __ movzx_b(temp2, FieldOperand(temp1, Map::kInstanceTypeOffset));
+ __ cmp(temp2, FIRST_JS_OBJECT_TYPE);
+ __ j(below, is_not_object);
+ __ cmp(temp2, LAST_JS_OBJECT_TYPE);
+ return below_equal;
+}
+
+
+void LCodeGen::DoIsObject(LIsObject* instr) {
+ Register reg = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+ Register temp = ToRegister(instr->TempAt(0));
+ Label is_false, is_true, done;
+
+ Condition true_cond = EmitIsObject(reg, result, temp, &is_false, &is_true);
+ __ j(true_cond, &is_true);
+
+ __ bind(&is_false);
+ __ mov(result, factory()->false_value());
+ __ jmp(&done);
+
+ __ bind(&is_true);
+ __ mov(result, factory()->true_value());
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
+ Register reg = ToRegister(instr->InputAt(0));
+ Register temp = ToRegister(instr->TempAt(0));
+ Register temp2 = ToRegister(instr->TempAt(1));
+
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+ Label* true_label = chunk_->GetAssemblyLabel(true_block);
+ Label* false_label = chunk_->GetAssemblyLabel(false_block);
+
+ Condition true_cond = EmitIsObject(reg, temp, temp2, false_label, true_label);
+
+ EmitBranch(true_block, false_block, true_cond);
+}
+
+
+void LCodeGen::DoIsSmi(LIsSmi* instr) {
+ Operand input = ToOperand(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+
+ ASSERT(instr->hydrogen()->value()->representation().IsTagged());
+ __ test(input, Immediate(kSmiTagMask));
+ __ mov(result, factory()->true_value());
+ NearLabel done;
+ __ j(zero, &done);
+ __ mov(result, factory()->false_value());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
+ Operand input = ToOperand(instr->InputAt(0));
+
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ __ test(input, Immediate(kSmiTagMask));
+ EmitBranch(true_block, false_block, zero);
+}
+
+
+static InstanceType TestType(HHasInstanceType* instr) {
+ InstanceType from = instr->from();
+ InstanceType to = instr->to();
+ if (from == FIRST_TYPE) return to;
+ ASSERT(from == to || to == LAST_TYPE);
+ return from;
+}
+
+
+static Condition BranchCondition(HHasInstanceType* instr) {
+ InstanceType from = instr->from();
+ InstanceType to = instr->to();
+ if (from == to) return equal;
+ if (to == LAST_TYPE) return above_equal;
+ if (from == FIRST_TYPE) return below_equal;
+ UNREACHABLE();
+ return equal;
+}
+
+
+void LCodeGen::DoHasInstanceType(LHasInstanceType* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+
+ ASSERT(instr->hydrogen()->value()->representation().IsTagged());
+ __ test(input, Immediate(kSmiTagMask));
+ NearLabel done, is_false;
+ __ j(zero, &is_false);
+ __ CmpObjectType(input, TestType(instr->hydrogen()), result);
+ __ j(NegateCondition(BranchCondition(instr->hydrogen())), &is_false);
+ __ mov(result, factory()->true_value());
+ __ jmp(&done);
+ __ bind(&is_false);
+ __ mov(result, factory()->false_value());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register temp = ToRegister(instr->TempAt(0));
+
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ Label* false_label = chunk_->GetAssemblyLabel(false_block);
+
+ __ test(input, Immediate(kSmiTagMask));
+ __ j(zero, false_label);
+
+ __ CmpObjectType(input, TestType(instr->hydrogen()), temp);
+ EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen()));
+}
+
+
+void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+
+ if (FLAG_debug_code) {
+ __ AbortIfNotString(input);
+ }
+
+ __ mov(result, FieldOperand(input, String::kHashFieldOffset));
+ __ IndexFromHash(result, result);
+}
+
+
+void LCodeGen::DoHasCachedArrayIndex(LHasCachedArrayIndex* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+
+ ASSERT(instr->hydrogen()->value()->representation().IsTagged());
+ __ mov(result, factory()->true_value());
+ __ test(FieldOperand(input, String::kHashFieldOffset),
+ Immediate(String::kContainsCachedArrayIndexMask));
+ NearLabel done;
+ __ j(zero, &done);
+ __ mov(result, factory()->false_value());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoHasCachedArrayIndexAndBranch(
+ LHasCachedArrayIndexAndBranch* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ __ test(FieldOperand(input, String::kHashFieldOffset),
+ Immediate(String::kContainsCachedArrayIndexMask));
+ EmitBranch(true_block, false_block, equal);
+}
+
+
+// Branches to a label or falls through with the answer in the z flag. Trashes
+// the temp registers, but not the input. Only input and temp2 may alias.
+void LCodeGen::EmitClassOfTest(Label* is_true,
+ Label* is_false,
+ Handle<String>class_name,
+ Register input,
+ Register temp,
+ Register temp2) {
+ ASSERT(!input.is(temp));
+ ASSERT(!temp.is(temp2)); // But input and temp2 may be the same register.
+ __ test(input, Immediate(kSmiTagMask));
+ __ j(zero, is_false);
+ __ CmpObjectType(input, FIRST_JS_OBJECT_TYPE, temp);
+ __ j(below, is_false);
+
+ // Map is now in temp.
+ // Functions have class 'Function'.
+ __ CmpInstanceType(temp, JS_FUNCTION_TYPE);
+ if (class_name->IsEqualTo(CStrVector("Function"))) {
+ __ j(equal, is_true);
+ } else {
+ __ j(equal, is_false);
+ }
+
+ // Check if the constructor in the map is a function.
+ __ mov(temp, FieldOperand(temp, Map::kConstructorOffset));
+
+ // As long as JS_FUNCTION_TYPE is the last instance type and it is
+ // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
+ // LAST_JS_OBJECT_TYPE.
+ ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
+ ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
+
+ // Objects with a non-function constructor have class 'Object'.
+ __ CmpObjectType(temp, JS_FUNCTION_TYPE, temp2);
+ if (class_name->IsEqualTo(CStrVector("Object"))) {
+ __ j(not_equal, is_true);
+ } else {
+ __ j(not_equal, is_false);
+ }
+
+ // temp now contains the constructor function. Grab the
+ // instance class name from there.
+ __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(temp, FieldOperand(temp,
+ SharedFunctionInfo::kInstanceClassNameOffset));
+ // The class name we are testing against is a symbol because it's a literal.
+ // The name in the constructor is a symbol because of the way the context is
+ // booted. This routine isn't expected to work for random API-created
+ // classes and it doesn't have to because you can't access it with natives
+ // syntax. Since both sides are symbols it is sufficient to use an identity
+ // comparison.
+ __ cmp(temp, class_name);
+ // End with the answer in the z flag.
+}
+
+
+void LCodeGen::DoClassOfTest(LClassOfTest* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+ ASSERT(input.is(result));
+ Register temp = ToRegister(instr->TempAt(0));
+ Handle<String> class_name = instr->hydrogen()->class_name();
+ NearLabel done;
+ Label is_true, is_false;
+
+ EmitClassOfTest(&is_true, &is_false, class_name, input, temp, input);
+
+ __ j(not_equal, &is_false);
+
+ __ bind(&is_true);
+ __ mov(result, factory()->true_value());
+ __ jmp(&done);
+
+ __ bind(&is_false);
+ __ mov(result, factory()->false_value());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register temp = ToRegister(instr->TempAt(0));
+ Register temp2 = ToRegister(instr->TempAt(1));
+ if (input.is(temp)) {
+ // Swap.
+ Register swapper = temp;
+ temp = temp2;
+ temp2 = swapper;
+ }
+ Handle<String> class_name = instr->hydrogen()->class_name();
+
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ Label* true_label = chunk_->GetAssemblyLabel(true_block);
+ Label* false_label = chunk_->GetAssemblyLabel(false_block);
+
+ EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2);
+
+ EmitBranch(true_block, false_block, equal);
+}
+
+
+void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
+ Register reg = ToRegister(instr->InputAt(0));
+ int true_block = instr->true_block_id();
+ int false_block = instr->false_block_id();
+
+ __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
+ EmitBranch(true_block, false_block, equal);
+}
+
+
+void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
+ // Object and function are in fixed registers defined by the stub.
+ ASSERT(ToRegister(instr->context()).is(esi));
+ InstanceofStub stub(InstanceofStub::kArgsInRegisters);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+
+ NearLabel true_value, done;
+ __ test(eax, Operand(eax));
+ __ j(zero, &true_value);
+ __ mov(ToRegister(instr->result()), factory()->false_value());
+ __ jmp(&done);
+ __ bind(&true_value);
+ __ mov(ToRegister(instr->result()), factory()->true_value());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoInstanceOfAndBranch(LInstanceOfAndBranch* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ InstanceofStub stub(InstanceofStub::kArgsInRegisters);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ __ test(eax, Operand(eax));
+ EmitBranch(true_block, false_block, zero);
+}
+
+
+void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
+ class DeferredInstanceOfKnownGlobal: public LDeferredCode {
+ public:
+ DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
+ LInstanceOfKnownGlobal* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() {
+ codegen()->DoDeferredLInstanceOfKnownGlobal(instr_, &map_check_);
+ }
+
+ Label* map_check() { return &map_check_; }
+
+ private:
+ LInstanceOfKnownGlobal* instr_;
+ Label map_check_;
+ };
+
+ DeferredInstanceOfKnownGlobal* deferred;
+ deferred = new DeferredInstanceOfKnownGlobal(this, instr);
+
+ Label done, false_result;
+ Register object = ToRegister(instr->InputAt(0));
+ Register temp = ToRegister(instr->TempAt(0));
+
+ // A Smi is not an instance of anything.
+ __ test(object, Immediate(kSmiTagMask));
+ __ j(zero, &false_result, not_taken);
+
+ // This is the inlined call site instanceof cache. The two occurences of the
+ // hole value will be patched to the last map/result pair generated by the
+ // instanceof stub.
+ NearLabel cache_miss;
+ Register map = ToRegister(instr->TempAt(0));
+ __ mov(map, FieldOperand(object, HeapObject::kMapOffset));
+ __ bind(deferred->map_check()); // Label for calculating code patching.
+ __ cmp(map, factory()->the_hole_value()); // Patched to cached map.
+ __ j(not_equal, &cache_miss, not_taken);
+ __ mov(eax, factory()->the_hole_value()); // Patched to either true or false.
+ __ jmp(&done);
+
+ // The inlined call site cache did not match. Check for null and string
+ // before calling the deferred code.
+ __ bind(&cache_miss);
+ // Null is not an instance of anything.
+ __ cmp(object, factory()->null_value());
+ __ j(equal, &false_result);
+
+ // String values are not instances of anything.
+ Condition is_string = masm_->IsObjectStringType(object, temp, temp);
+ __ j(is_string, &false_result);
+
+ // Go to the deferred code.
+ __ jmp(deferred->entry());
+
+ __ bind(&false_result);
+ __ mov(ToRegister(instr->result()), factory()->false_value());
+
+ // Here result has either true or false. Deferred code also produces true or
+ // false object.
+ __ bind(deferred->exit());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoDeferredLInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
+ Label* map_check) {
+ __ PushSafepointRegisters();
+
+ InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
+ flags = static_cast<InstanceofStub::Flags>(
+ flags | InstanceofStub::kArgsInRegisters);
+ flags = static_cast<InstanceofStub::Flags>(
+ flags | InstanceofStub::kCallSiteInlineCheck);
+ flags = static_cast<InstanceofStub::Flags>(
+ flags | InstanceofStub::kReturnTrueFalseObject);
+ InstanceofStub stub(flags);
+
+ // Get the temp register reserved by the instruction. This needs to be edi as
+ // its slot of the pushing of safepoint registers is used to communicate the
+ // offset to the location of the map check.
+ Register temp = ToRegister(instr->TempAt(0));
+ ASSERT(temp.is(edi));
+ __ mov(InstanceofStub::right(), Immediate(instr->function()));
+ static const int kAdditionalDelta = 16;
+ int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
+ __ mov(temp, Immediate(delta));
+ __ StoreToSafepointRegisterSlot(temp, temp);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
+ // Put the result value into the eax slot and restore all registers.
+ __ StoreToSafepointRegisterSlot(eax, eax);
+ __ PopSafepointRegisters();
+}
+
+
+static Condition ComputeCompareCondition(Token::Value op) {
+ switch (op) {
+ case Token::EQ_STRICT:
+ case Token::EQ:
+ return equal;
+ case Token::LT:
+ return less;
+ case Token::GT:
+ return greater;
+ case Token::LTE:
+ return less_equal;
+ case Token::GTE:
+ return greater_equal;
+ default:
+ UNREACHABLE();
+ return no_condition;
+ }
+}
+
+
+void LCodeGen::DoCmpT(LCmpT* instr) {
+ Token::Value op = instr->op();
+
+ Handle<Code> ic = CompareIC::GetUninitialized(op);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr, false);
+
+ Condition condition = ComputeCompareCondition(op);
+ if (op == Token::GT || op == Token::LTE) {
+ condition = ReverseCondition(condition);
+ }
+ NearLabel true_value, done;
+ __ test(eax, Operand(eax));
+ __ j(condition, &true_value);
+ __ mov(ToRegister(instr->result()), factory()->false_value());
+ __ jmp(&done);
+ __ bind(&true_value);
+ __ mov(ToRegister(instr->result()), factory()->true_value());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoCmpTAndBranch(LCmpTAndBranch* instr) {
+ Token::Value op = instr->op();
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ Handle<Code> ic = CompareIC::GetUninitialized(op);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr, false);
+
+ // The compare stub expects compare condition and the input operands
+ // reversed for GT and LTE.
+ Condition condition = ComputeCompareCondition(op);
+ if (op == Token::GT || op == Token::LTE) {
+ condition = ReverseCondition(condition);
+ }
+ __ test(eax, Operand(eax));
+ EmitBranch(true_block, false_block, condition);
+}
+
+
+void LCodeGen::DoReturn(LReturn* instr) {
+ if (FLAG_trace) {
+ // Preserve the return value on the stack and rely on the runtime call
+ // to return the value in the same register. We're leaving the code
+ // managed by the register allocator and tearing down the frame, it's
+ // safe to write to the context register.
+ __ push(eax);
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntime(Runtime::kTraceExit, 1);
+ }
+ __ mov(esp, ebp);
+ __ pop(ebp);
+ __ Ret((ParameterCount() + 1) * kPointerSize, ecx);
+}
+
+
+void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
+ Register result = ToRegister(instr->result());
+ __ mov(result, Operand::Cell(instr->hydrogen()->cell()));
+ if (instr->hydrogen()->check_hole_value()) {
+ __ cmp(result, factory()->the_hole_value());
+ DeoptimizeIf(equal, instr->environment());
+ }
+}
+
+
+void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ ASSERT(ToRegister(instr->global_object()).is(eax));
+ ASSERT(ToRegister(instr->result()).is(eax));
+
+ __ mov(ecx, instr->name());
+ RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET :
+ RelocInfo::CODE_TARGET_CONTEXT;
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ CallCode(ic, mode, instr);
+}
+
+
+void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
+ Register value = ToRegister(instr->InputAt(0));
+ Operand cell_operand = Operand::Cell(instr->hydrogen()->cell());
+
+ // If the cell we are storing to contains the hole it could have
+ // been deleted from the property dictionary. In that case, we need
+ // to update the property details in the property dictionary to mark
+ // it as no longer deleted. We deoptimize in that case.
+ if (instr->hydrogen()->check_hole_value()) {
+ __ cmp(cell_operand, factory()->the_hole_value());
+ DeoptimizeIf(equal, instr->environment());
+ }
+
+ // Store the value.
+ __ mov(cell_operand, value);
+}
+
+
+void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ ASSERT(ToRegister(instr->global_object()).is(edx));
+ ASSERT(ToRegister(instr->value()).is(eax));
+
+ __ mov(ecx, instr->name());
+ Handle<Code> ic = isolate()->builtins()->StoreIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
+}
+
+
+void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
+ Register context = ToRegister(instr->context());
+ Register result = ToRegister(instr->result());
+ __ mov(result, ContextOperand(context, instr->slot_index()));
+}
+
+
+void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
+ Register context = ToRegister(instr->context());
+ Register value = ToRegister(instr->value());
+ __ mov(ContextOperand(context, instr->slot_index()), value);
+ if (instr->needs_write_barrier()) {
+ Register temp = ToRegister(instr->TempAt(0));
+ int offset = Context::SlotOffset(instr->slot_index());
+ __ RecordWrite(context, offset, value, temp);
+ }
+}
+
+
+void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
+ Register object = ToRegister(instr->object());
+ Register result = ToRegister(instr->result());
+ if (instr->hydrogen()->is_in_object()) {
+ __ mov(result, FieldOperand(object, instr->hydrogen()->offset()));
+ } else {
+ __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
+ __ mov(result, FieldOperand(result, instr->hydrogen()->offset()));
+ }
+}
+
+
+void LCodeGen::EmitLoadField(Register result,
+ Register object,
+ Handle<Map> type,
+ Handle<String> name) {
+ LookupResult lookup;
+ type->LookupInDescriptors(NULL, *name, &lookup);
+ ASSERT(lookup.IsProperty() && lookup.type() == FIELD);
+ int index = lookup.GetLocalFieldIndexFromMap(*type);
+ int offset = index * kPointerSize;
+ if (index < 0) {
+ // Negative property indices are in-object properties, indexed
+ // from the end of the fixed part of the object.
+ __ mov(result, FieldOperand(object, offset + type->instance_size()));
+ } else {
+ // Non-negative property indices are in the properties array.
+ __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
+ __ mov(result, FieldOperand(result, offset + FixedArray::kHeaderSize));
+ }
+}
+
+
+void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
+ Register object = ToRegister(instr->object());
+ Register result = ToRegister(instr->result());
+
+ int map_count = instr->hydrogen()->types()->length();
+ Handle<String> name = instr->hydrogen()->name();
+ if (map_count == 0) {
+ ASSERT(instr->hydrogen()->need_generic());
+ __ mov(ecx, name);
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr, false);
+ } else {
+ NearLabel done;
+ for (int i = 0; i < map_count - 1; ++i) {
+ Handle<Map> map = instr->hydrogen()->types()->at(i);
+ NearLabel next;
+ __ cmp(FieldOperand(object, HeapObject::kMapOffset), map);
+ __ j(not_equal, &next);
+ EmitLoadField(result, object, map, name);
+ __ jmp(&done);
+ __ bind(&next);
+ }
+ Handle<Map> map = instr->hydrogen()->types()->last();
+ __ cmp(FieldOperand(object, HeapObject::kMapOffset), map);
+ if (instr->hydrogen()->need_generic()) {
+ NearLabel generic;
+ __ j(not_equal, &generic);
+ EmitLoadField(result, object, map, name);
+ __ jmp(&done);
+ __ bind(&generic);
+ __ mov(ecx, name);
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr, false);
+ } else {
+ DeoptimizeIf(not_equal, instr->environment());
+ EmitLoadField(result, object, map, name);
+ }
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ ASSERT(ToRegister(instr->object()).is(eax));
+ ASSERT(ToRegister(instr->result()).is(eax));
+
+ __ mov(ecx, instr->name());
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
+ Register function = ToRegister(instr->function());
+ Register temp = ToRegister(instr->TempAt(0));
+ Register result = ToRegister(instr->result());
+
+ // Check that the function really is a function.
+ __ CmpObjectType(function, JS_FUNCTION_TYPE, result);
+ DeoptimizeIf(not_equal, instr->environment());
+
+ // Check whether the function has an instance prototype.
+ NearLabel non_instance;
+ __ test_b(FieldOperand(result, Map::kBitFieldOffset),
+ 1 << Map::kHasNonInstancePrototype);
+ __ j(not_zero, &non_instance);
+
+ // Get the prototype or initial map from the function.
+ __ mov(result,
+ FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+ // Check that the function has a prototype or an initial map.
+ __ cmp(Operand(result), Immediate(factory()->the_hole_value()));
+ DeoptimizeIf(equal, instr->environment());
+
+ // If the function does not have an initial map, we're done.
+ NearLabel done;
+ __ CmpObjectType(result, MAP_TYPE, temp);
+ __ j(not_equal, &done);
+
+ // Get the prototype from the initial map.
+ __ mov(result, FieldOperand(result, Map::kPrototypeOffset));
+ __ jmp(&done);
+
+ // Non-instance prototype: Fetch prototype from constructor field
+ // in the function's map.
+ __ bind(&non_instance);
+ __ mov(result, FieldOperand(result, Map::kConstructorOffset));
+
+ // All done.
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoLoadElements(LLoadElements* instr) {
+ Register result = ToRegister(instr->result());
+ Register input = ToRegister(instr->InputAt(0));
+ __ mov(result, FieldOperand(input, JSObject::kElementsOffset));
+ if (FLAG_debug_code) {
+ NearLabel done;
+ __ cmp(FieldOperand(result, HeapObject::kMapOffset),
+ Immediate(factory()->fixed_array_map()));
+ __ j(equal, &done);
+ __ cmp(FieldOperand(result, HeapObject::kMapOffset),
+ Immediate(factory()->fixed_cow_array_map()));
+ __ j(equal, &done);
+ Register temp((result.is(eax)) ? ebx : eax);
+ __ push(temp);
+ __ mov(temp, FieldOperand(result, HeapObject::kMapOffset));
+ __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
+ __ sub(Operand(temp), Immediate(FIRST_EXTERNAL_ARRAY_TYPE));
+ __ cmp(Operand(temp), Immediate(kExternalArrayTypeCount));
+ __ pop(temp);
+ __ Check(below, "Check for fast elements or pixel array failed.");
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoLoadExternalArrayPointer(
+ LLoadExternalArrayPointer* instr) {
+ Register result = ToRegister(instr->result());
+ Register input = ToRegister(instr->InputAt(0));
+ __ mov(result, FieldOperand(input,
+ ExternalArray::kExternalPointerOffset));
+}
+
+
+void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
+ Register arguments = ToRegister(instr->arguments());
+ Register length = ToRegister(instr->length());
+ Operand index = ToOperand(instr->index());
+ Register result = ToRegister(instr->result());
+
+ __ sub(length, index);
+ DeoptimizeIf(below_equal, instr->environment());
+
+ // There are two words between the frame pointer and the last argument.
+ // Subtracting from length accounts for one of them add one more.
+ __ mov(result, Operand(arguments, length, times_4, kPointerSize));
+}
+
+
+void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
+ Register elements = ToRegister(instr->elements());
+ Register key = ToRegister(instr->key());
+ Register result = ToRegister(instr->result());
+ ASSERT(result.is(elements));
+
+ // Load the result.
+ __ mov(result, FieldOperand(elements,
+ key,
+ times_pointer_size,
+ FixedArray::kHeaderSize));
+
+ // Check for the hole value.
+ __ cmp(result, factory()->the_hole_value());
+ DeoptimizeIf(equal, instr->environment());
+}
+
+
+void LCodeGen::DoLoadKeyedSpecializedArrayElement(
+ LLoadKeyedSpecializedArrayElement* instr) {
+ Register external_pointer = ToRegister(instr->external_pointer());
+ Register key = ToRegister(instr->key());
+ ExternalArrayType array_type = instr->array_type();
+ if (array_type == kExternalFloatArray) {
+ XMMRegister result(ToDoubleRegister(instr->result()));
+ __ movss(result, Operand(external_pointer, key, times_4, 0));
+ __ cvtss2sd(result, result);
+ } else {
+ Register result(ToRegister(instr->result()));
+ switch (array_type) {
+ case kExternalByteArray:
+ __ movsx_b(result, Operand(external_pointer, key, times_1, 0));
+ break;
+ case kExternalUnsignedByteArray:
+ case kExternalPixelArray:
+ __ movzx_b(result, Operand(external_pointer, key, times_1, 0));
+ break;
+ case kExternalShortArray:
+ __ movsx_w(result, Operand(external_pointer, key, times_2, 0));
+ break;
+ case kExternalUnsignedShortArray:
+ __ movzx_w(result, Operand(external_pointer, key, times_2, 0));
+ break;
+ case kExternalIntArray:
+ __ mov(result, Operand(external_pointer, key, times_4, 0));
+ break;
+ case kExternalUnsignedIntArray:
+ __ mov(result, Operand(external_pointer, key, times_4, 0));
+ __ test(result, Operand(result));
+ // TODO(danno): we could be more clever here, perhaps having a special
+ // version of the stub that detects if the overflow case actually
+ // happens, and generate code that returns a double rather than int.
+ DeoptimizeIf(negative, instr->environment());
+ break;
+ case kExternalFloatArray:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ ASSERT(ToRegister(instr->object()).is(edx));
+ ASSERT(ToRegister(instr->key()).is(eax));
+
+ Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
+ Register result = ToRegister(instr->result());
+
+ // Check for arguments adapter frame.
+ NearLabel done, adapted;
+ __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+ __ mov(result, Operand(result, StandardFrameConstants::kContextOffset));
+ __ cmp(Operand(result),
+ Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ j(equal, &adapted);
+
+ // No arguments adaptor frame.
+ __ mov(result, Operand(ebp));
+ __ jmp(&done);
+
+ // Arguments adaptor frame present.
+ __ bind(&adapted);
+ __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+
+ // Result is the frame pointer for the frame if not adapted and for the real
+ // frame below the adaptor frame if adapted.
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
+ Operand elem = ToOperand(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+
+ NearLabel done;
+
+ // If no arguments adaptor frame the number of arguments is fixed.
+ __ cmp(ebp, elem);
+ __ mov(result, Immediate(scope()->num_parameters()));
+ __ j(equal, &done);
+
+ // Arguments adaptor frame present. Get argument length from there.
+ __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+ __ mov(result, Operand(result,
+ ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ SmiUntag(result);
+
+ // Argument length is in result register.
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
+ Register receiver = ToRegister(instr->receiver());
+ Register function = ToRegister(instr->function());
+ Register length = ToRegister(instr->length());
+ Register elements = ToRegister(instr->elements());
+ Register scratch = ToRegister(instr->TempAt(0));
+ ASSERT(receiver.is(eax)); // Used for parameter count.
+ ASSERT(function.is(edi)); // Required by InvokeFunction.
+ ASSERT(ToRegister(instr->result()).is(eax));
+
+ // If the receiver is null or undefined, we have to pass the global object
+ // as a receiver.
+ NearLabel global_object, receiver_ok;
+ __ cmp(receiver, factory()->null_value());
+ __ j(equal, &global_object);
+ __ cmp(receiver, factory()->undefined_value());
+ __ j(equal, &global_object);
+
+ // The receiver should be a JS object.
+ __ test(receiver, Immediate(kSmiTagMask));
+ DeoptimizeIf(equal, instr->environment());
+ __ CmpObjectType(receiver, FIRST_JS_OBJECT_TYPE, scratch);
+ DeoptimizeIf(below, instr->environment());
+ __ jmp(&receiver_ok);
+
+ __ bind(&global_object);
+ // TODO(kmillikin): We have a hydrogen value for the global object. See
+ // if it's better to use it than to explicitly fetch it from the context
+ // here.
+ __ mov(receiver, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ mov(receiver, ContextOperand(receiver, Context::GLOBAL_INDEX));
+ __ bind(&receiver_ok);
+
+ // Copy the arguments to this function possibly from the
+ // adaptor frame below it.
+ const uint32_t kArgumentsLimit = 1 * KB;
+ __ cmp(length, kArgumentsLimit);
+ DeoptimizeIf(above, instr->environment());
+
+ __ push(receiver);
+ __ mov(receiver, length);
+
+ // Loop through the arguments pushing them onto the execution
+ // stack.
+ NearLabel invoke, loop;
+ // length is a small non-negative integer, due to the test above.
+ __ test(length, Operand(length));
+ __ j(zero, &invoke);
+ __ bind(&loop);
+ __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
+ __ dec(length);
+ __ j(not_zero, &loop);
+
+ // Invoke the function.
+ __ bind(&invoke);
+ ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
+ LPointerMap* pointers = instr->pointer_map();
+ LEnvironment* env = instr->deoptimization_environment();
+ RecordPosition(pointers->position());
+ RegisterEnvironmentForDeoptimization(env);
+ SafepointGenerator safepoint_generator(this,
+ pointers,
+ env->deoptimization_index());
+ v8::internal::ParameterCount actual(eax);
+ __ InvokeFunction(function, actual, CALL_FUNCTION, &safepoint_generator);
+}
+
+
+void LCodeGen::DoPushArgument(LPushArgument* instr) {
+ LOperand* argument = instr->InputAt(0);
+ if (argument->IsConstantOperand()) {
+ __ push(ToImmediate(argument));
+ } else {
+ __ push(ToOperand(argument));
+ }
+}
+
+
+void LCodeGen::DoContext(LContext* instr) {
+ Register result = ToRegister(instr->result());
+ __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
+}
+
+
+void LCodeGen::DoOuterContext(LOuterContext* instr) {
+ Register context = ToRegister(instr->context());
+ Register result = ToRegister(instr->result());
+ __ mov(result, Operand(context, Context::SlotOffset(Context::CLOSURE_INDEX)));
+ __ mov(result, FieldOperand(result, JSFunction::kContextOffset));
+}
+
+
+void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
+ Register context = ToRegister(instr->context());
+ Register result = ToRegister(instr->result());
+ __ mov(result, Operand(context, Context::SlotOffset(Context::GLOBAL_INDEX)));
+}
+
+
+void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
+ Register global = ToRegister(instr->global());
+ Register result = ToRegister(instr->result());
+ __ mov(result, FieldOperand(global, GlobalObject::kGlobalReceiverOffset));
+}
+
+
+void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
+ int arity,
+ LInstruction* instr) {
+ // Change context if needed.
+ bool change_context =
+ (info()->closure()->context() != function->context()) ||
+ scope()->contains_with() ||
+ (scope()->num_heap_slots() > 0);
+ if (change_context) {
+ __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+ } else {
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ }
+
+ // Set eax to arguments count if adaption is not needed. Assumes that eax
+ // is available to write to at this point.
+ if (!function->NeedsArgumentsAdaption()) {
+ __ mov(eax, arity);
+ }
+
+ LPointerMap* pointers = instr->pointer_map();
+ RecordPosition(pointers->position());
+
+ // Invoke function.
+ if (*function == *info()->closure()) {
+ __ CallSelf();
+ } else {
+ __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
+ }
+
+ // Setup deoptimization.
+ RegisterLazyDeoptimization(instr);
+}
+
+
+void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
+ ASSERT(ToRegister(instr->result()).is(eax));
+ __ mov(edi, instr->function());
+ CallKnownFunction(instr->function(), instr->arity(), instr);
+}
+
+
+void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
+ Register input_reg = ToRegister(instr->InputAt(0));
+ __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
+ factory()->heap_number_map());
+ DeoptimizeIf(not_equal, instr->environment());
+
+ Label done;
+ Register tmp = input_reg.is(eax) ? ecx : eax;
+ Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx;
+
+ // Preserve the value of all registers.
+ __ PushSafepointRegisters();
+
+ Label negative;
+ __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
+ // Check the sign of the argument. If the argument is positive, just
+ // return it. We do not need to patch the stack since |input| and
+ // |result| are the same register and |input| will be restored
+ // unchanged by popping safepoint registers.
+ __ test(tmp, Immediate(HeapNumber::kSignMask));
+ __ j(not_zero, &negative);
+ __ jmp(&done);
+
+ __ bind(&negative);
+
+ Label allocated, slow;
+ __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
+ __ jmp(&allocated);
+
+ // Slow case: Call the runtime system to do the number allocation.
+ __ bind(&slow);
+
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex);
+ // Set the pointer to the new heap number in tmp.
+ if (!tmp.is(eax)) __ mov(tmp, eax);
+
+ // Restore input_reg after call to runtime.
+ __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
+
+ __ bind(&allocated);
+ __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
+ __ and_(tmp2, ~HeapNumber::kSignMask);
+ __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
+ __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
+ __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
+ __ StoreToSafepointRegisterSlot(input_reg, tmp);
+
+ __ bind(&done);
+ __ PopSafepointRegisters();
+}
+
+
+void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
+ Register input_reg = ToRegister(instr->InputAt(0));
+ __ test(input_reg, Operand(input_reg));
+ Label is_positive;
+ __ j(not_sign, &is_positive);
+ __ neg(input_reg);
+ __ test(input_reg, Operand(input_reg));
+ DeoptimizeIf(negative, instr->environment());
+ __ bind(&is_positive);
+}
+
+
+void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
+ // Class for deferred case.
+ class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
+ public:
+ DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
+ LUnaryMathOperation* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() {
+ codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
+ }
+ private:
+ LUnaryMathOperation* instr_;
+ };
+
+ ASSERT(instr->InputAt(0)->Equals(instr->result()));
+ Representation r = instr->hydrogen()->value()->representation();
+
+ if (r.IsDouble()) {
+ XMMRegister scratch = xmm0;
+ XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
+ __ pxor(scratch, scratch);
+ __ subsd(scratch, input_reg);
+ __ pand(input_reg, scratch);
+ } else if (r.IsInteger32()) {
+ EmitIntegerMathAbs(instr);
+ } else { // Tagged case.
+ DeferredMathAbsTaggedHeapNumber* deferred =
+ new DeferredMathAbsTaggedHeapNumber(this, instr);
+ Register input_reg = ToRegister(instr->InputAt(0));
+ // Smi check.
+ __ test(input_reg, Immediate(kSmiTagMask));
+ __ j(not_zero, deferred->entry());
+ EmitIntegerMathAbs(instr);
+ __ bind(deferred->exit());
+ }
+}
+
+
+void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
+ XMMRegister xmm_scratch = xmm0;
+ Register output_reg = ToRegister(instr->result());
+ XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
+ __ xorpd(xmm_scratch, xmm_scratch); // Zero the register.
+ __ ucomisd(input_reg, xmm_scratch);
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(below_equal, instr->environment());
+ } else {
+ DeoptimizeIf(below, instr->environment());
+ }
+
+ // Use truncating instruction (OK because input is positive).
+ __ cvttsd2si(output_reg, Operand(input_reg));
+
+ // Overflow is signalled with minint.
+ __ cmp(output_reg, 0x80000000u);
+ DeoptimizeIf(equal, instr->environment());
+}
+
+
+void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
+ XMMRegister xmm_scratch = xmm0;
+ Register output_reg = ToRegister(instr->result());
+ XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
+
+ // xmm_scratch = 0.5
+ ExternalReference one_half = ExternalReference::address_of_one_half();
+ __ movdbl(xmm_scratch, Operand::StaticVariable(one_half));
+
+ // input = input + 0.5
+ __ addsd(input_reg, xmm_scratch);
+
+ // We need to return -0 for the input range [-0.5, 0[, otherwise
+ // compute Math.floor(value + 0.5).
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ ucomisd(input_reg, xmm_scratch);
+ DeoptimizeIf(below_equal, instr->environment());
+ } else {
+ // If we don't need to bailout on -0, we check only bailout
+ // on negative inputs.
+ __ xorpd(xmm_scratch, xmm_scratch); // Zero the register.
+ __ ucomisd(input_reg, xmm_scratch);
+ DeoptimizeIf(below, instr->environment());
+ }
+
+ // Compute Math.floor(value + 0.5).
+ // Use truncating instruction (OK because input is positive).
+ __ cvttsd2si(output_reg, Operand(input_reg));
+
+ // Overflow is signalled with minint.
+ __ cmp(output_reg, 0x80000000u);
+ DeoptimizeIf(equal, instr->environment());
+}
+
+
+void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
+ XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
+ ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
+ __ sqrtsd(input_reg, input_reg);
+}
+
+
+void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
+ XMMRegister xmm_scratch = xmm0;
+ XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
+ ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
+ __ xorpd(xmm_scratch, xmm_scratch);
+ __ addsd(input_reg, xmm_scratch); // Convert -0 to +0.
+ __ sqrtsd(input_reg, input_reg);
+}
+
+
+void LCodeGen::DoPower(LPower* instr) {
+ LOperand* left = instr->InputAt(0);
+ LOperand* right = instr->InputAt(1);
+ DoubleRegister result_reg = ToDoubleRegister(instr->result());
+ Representation exponent_type = instr->hydrogen()->right()->representation();
+
+ if (exponent_type.IsDouble()) {
+ // It is safe to use ebx directly since the instruction is marked
+ // as a call.
+ __ PrepareCallCFunction(4, ebx);
+ __ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left));
+ __ movdbl(Operand(esp, 1 * kDoubleSize), ToDoubleRegister(right));
+ __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
+ 4);
+ } else if (exponent_type.IsInteger32()) {
+ // It is safe to use ebx directly since the instruction is marked
+ // as a call.
+ ASSERT(!ToRegister(right).is(ebx));
+ __ PrepareCallCFunction(4, ebx);
+ __ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left));
+ __ mov(Operand(esp, 1 * kDoubleSize), ToRegister(right));
+ __ CallCFunction(ExternalReference::power_double_int_function(isolate()),
+ 4);
+ } else {
+ ASSERT(exponent_type.IsTagged());
+ CpuFeatures::Scope scope(SSE2);
+ Register right_reg = ToRegister(right);
+
+ Label non_smi, call;
+ __ test(right_reg, Immediate(kSmiTagMask));
+ __ j(not_zero, &non_smi);
+ __ SmiUntag(right_reg);
+ __ cvtsi2sd(result_reg, Operand(right_reg));
+ __ jmp(&call);
+
+ __ bind(&non_smi);
+ // It is safe to use ebx directly since the instruction is marked
+ // as a call.
+ ASSERT(!right_reg.is(ebx));
+ __ CmpObjectType(right_reg, HEAP_NUMBER_TYPE , ebx);
+ DeoptimizeIf(not_equal, instr->environment());
+ __ movdbl(result_reg, FieldOperand(right_reg, HeapNumber::kValueOffset));
+
+ __ bind(&call);
+ __ PrepareCallCFunction(4, ebx);
+ __ movdbl(Operand(esp, 0 * kDoubleSize), ToDoubleRegister(left));
+ __ movdbl(Operand(esp, 1 * kDoubleSize), result_reg);
+ __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
+ 4);
+ }
+
+ // Return value is in st(0) on ia32.
+ // Store it into the (fixed) result register.
+ __ sub(Operand(esp), Immediate(kDoubleSize));
+ __ fstp_d(Operand(esp, 0));
+ __ movdbl(result_reg, Operand(esp, 0));
+ __ add(Operand(esp), Immediate(kDoubleSize));
+}
+
+
+void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
+ ASSERT(instr->InputAt(0)->Equals(instr->result()));
+ XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
+ NearLabel positive, done, zero, negative;
+ __ xorpd(xmm0, xmm0);
+ __ ucomisd(input_reg, xmm0);
+ __ j(above, &positive);
+ __ j(equal, &zero);
+ ExternalReference nan = ExternalReference::address_of_nan();
+ __ movdbl(input_reg, Operand::StaticVariable(nan));
+ __ jmp(&done);
+ __ bind(&zero);
+ __ push(Immediate(0xFFF00000));
+ __ push(Immediate(0));
+ __ movdbl(input_reg, Operand(esp, 0));
+ __ add(Operand(esp), Immediate(kDoubleSize));
+ __ jmp(&done);
+ __ bind(&positive);
+ __ fldln2();
+ __ sub(Operand(esp), Immediate(kDoubleSize));
+ __ movdbl(Operand(esp, 0), input_reg);
+ __ fld_d(Operand(esp, 0));
+ __ fyl2x();
+ __ fstp_d(Operand(esp, 0));
+ __ movdbl(input_reg, Operand(esp, 0));
+ __ add(Operand(esp), Immediate(kDoubleSize));
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
+ ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
+ TranscendentalCacheStub stub(TranscendentalCache::COS,
+ TranscendentalCacheStub::UNTAGGED);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
+}
+
+
+void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
+ ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
+ TranscendentalCacheStub stub(TranscendentalCache::SIN,
+ TranscendentalCacheStub::UNTAGGED);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
+}
+
+
+void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
+ switch (instr->op()) {
+ case kMathAbs:
+ DoMathAbs(instr);
+ break;
+ case kMathFloor:
+ DoMathFloor(instr);
+ break;
+ case kMathRound:
+ DoMathRound(instr);
+ break;
+ case kMathSqrt:
+ DoMathSqrt(instr);
+ break;
+ case kMathPowHalf:
+ DoMathPowHalf(instr);
+ break;
+ case kMathCos:
+ DoMathCos(instr);
+ break;
+ case kMathSin:
+ DoMathSin(instr);
+ break;
+ case kMathLog:
+ DoMathLog(instr);
+ break;
+
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ ASSERT(ToRegister(instr->key()).is(ecx));
+ ASSERT(ToRegister(instr->result()).is(eax));
+
+ int arity = instr->arity();
+ Handle<Code> ic = isolate()->stub_cache()->
+ ComputeKeyedCallInitialize(arity, NOT_IN_LOOP);
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoCallNamed(LCallNamed* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ ASSERT(ToRegister(instr->result()).is(eax));
+
+ int arity = instr->arity();
+ Handle<Code> ic = isolate()->stub_cache()->
+ ComputeCallInitialize(arity, NOT_IN_LOOP);
+ __ mov(ecx, instr->name());
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoCallFunction(LCallFunction* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ ASSERT(ToRegister(instr->result()).is(eax));
+
+ int arity = instr->arity();
+ CallFunctionStub stub(arity, NOT_IN_LOOP, RECEIVER_MIGHT_BE_VALUE);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ __ Drop(1);
+}
+
+
+void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ ASSERT(ToRegister(instr->result()).is(eax));
+
+ int arity = instr->arity();
+ Handle<Code> ic = isolate()->stub_cache()->
+ ComputeCallInitialize(arity, NOT_IN_LOOP);
+ __ mov(ecx, instr->name());
+ CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
+}
+
+
+void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
+ ASSERT(ToRegister(instr->result()).is(eax));
+ __ mov(edi, instr->target());
+ CallKnownFunction(instr->target(), instr->arity(), instr);
+}
+
+
+void LCodeGen::DoCallNew(LCallNew* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ ASSERT(ToRegister(instr->constructor()).is(edi));
+ ASSERT(ToRegister(instr->result()).is(eax));
+
+ Handle<Code> builtin = isolate()->builtins()->JSConstructCall();
+ __ Set(eax, Immediate(instr->arity()));
+ CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr);
+}
+
+
+void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
+ CallRuntime(instr->function(), instr->arity(), instr, false);
+}
+
+
+void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
+ Register object = ToRegister(instr->object());
+ Register value = ToRegister(instr->value());
+ int offset = instr->offset();
+
+ if (!instr->transition().is_null()) {
+ __ mov(FieldOperand(object, HeapObject::kMapOffset), instr->transition());
+ }
+
+ // Do the store.
+ if (instr->is_in_object()) {
+ __ mov(FieldOperand(object, offset), value);
+ if (instr->needs_write_barrier()) {
+ Register temp = ToRegister(instr->TempAt(0));
+ // Update the write barrier for the object for in-object properties.
+ __ RecordWrite(object, offset, value, temp);
+ }
+ } else {
+ Register temp = ToRegister(instr->TempAt(0));
+ __ mov(temp, FieldOperand(object, JSObject::kPropertiesOffset));
+ __ mov(FieldOperand(temp, offset), value);
+ if (instr->needs_write_barrier()) {
+ // Update the write barrier for the properties array.
+ // object is used as a scratch register.
+ __ RecordWrite(temp, offset, value, object);
+ }
+ }
+}
+
+
+void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ ASSERT(ToRegister(instr->object()).is(edx));
+ ASSERT(ToRegister(instr->value()).is(eax));
+
+ __ mov(ecx, instr->name());
+ Handle<Code> ic = info_->is_strict()
+ ? isolate()->builtins()->StoreIC_Initialize_Strict()
+ : isolate()->builtins()->StoreIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
+ __ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
+ DeoptimizeIf(above_equal, instr->environment());
+}
+
+
+void LCodeGen::DoStoreKeyedSpecializedArrayElement(
+ LStoreKeyedSpecializedArrayElement* instr) {
+ Register external_pointer = ToRegister(instr->external_pointer());
+ Register key = ToRegister(instr->key());
+ ExternalArrayType array_type = instr->array_type();
+ if (array_type == kExternalFloatArray) {
+ __ cvtsd2ss(xmm0, ToDoubleRegister(instr->value()));
+ __ movss(Operand(external_pointer, key, times_4, 0), xmm0);
+ } else {
+ Register value = ToRegister(instr->value());
+ switch (array_type) {
+ case kExternalPixelArray: {
+ // Clamp the value to [0..255].
+ Register temp = ToRegister(instr->TempAt(0));
+ // The dec_b below requires that the clamped value is in a byte
+ // register. eax is an arbitrary choice to satisfy this requirement, we
+ // hinted the register allocator to give us eax when building the
+ // instruction.
+ ASSERT(temp.is(eax));
+ __ mov(temp, ToRegister(instr->value()));
+ NearLabel done;
+ __ test(temp, Immediate(0xFFFFFF00));
+ __ j(zero, &done);
+ __ setcc(negative, temp); // 1 if negative, 0 if positive.
+ __ dec_b(temp); // 0 if negative, 255 if positive.
+ __ bind(&done);
+ __ mov_b(Operand(external_pointer, key, times_1, 0), temp);
+ break;
+ }
+ case kExternalByteArray:
+ case kExternalUnsignedByteArray:
+ __ mov_b(Operand(external_pointer, key, times_1, 0), value);
+ break;
+ case kExternalShortArray:
+ case kExternalUnsignedShortArray:
+ __ mov_w(Operand(external_pointer, key, times_2, 0), value);
+ break;
+ case kExternalIntArray:
+ case kExternalUnsignedIntArray:
+ __ mov(Operand(external_pointer, key, times_4, 0), value);
+ break;
+ case kExternalFloatArray:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
+ Register value = ToRegister(instr->value());
+ Register elements = ToRegister(instr->object());
+ Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
+
+ // Do the store.
+ if (instr->key()->IsConstantOperand()) {
+ ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
+ LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
+ int offset =
+ ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
+ __ mov(FieldOperand(elements, offset), value);
+ } else {
+ __ mov(FieldOperand(elements,
+ key,
+ times_pointer_size,
+ FixedArray::kHeaderSize),
+ value);
+ }
+
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ // Compute address of modified element and store it into key register.
+ __ lea(key,
+ FieldOperand(elements,
+ key,
+ times_pointer_size,
+ FixedArray::kHeaderSize));
+ __ RecordWrite(elements, key, value);
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ ASSERT(ToRegister(instr->object()).is(edx));
+ ASSERT(ToRegister(instr->key()).is(ecx));
+ ASSERT(ToRegister(instr->value()).is(eax));
+
+ Handle<Code> ic = info_->is_strict()
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+ : isolate()->builtins()->KeyedStoreIC_Initialize();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
+ class DeferredStringCharCodeAt: public LDeferredCode {
+ public:
+ DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
+ private:
+ LStringCharCodeAt* instr_;
+ };
+
+ Register string = ToRegister(instr->string());
+ Register index = no_reg;
+ int const_index = -1;
+ if (instr->index()->IsConstantOperand()) {
+ const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+ STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
+ if (!Smi::IsValid(const_index)) {
+ // Guaranteed to be out of bounds because of the assert above.
+ // So the bounds check that must dominate this instruction must
+ // have deoptimized already.
+ if (FLAG_debug_code) {
+ __ Abort("StringCharCodeAt: out of bounds index.");
+ }
+ // No code needs to be generated.
+ return;
+ }
+ } else {
+ index = ToRegister(instr->index());
+ }
+ Register result = ToRegister(instr->result());
+
+ DeferredStringCharCodeAt* deferred =
+ new DeferredStringCharCodeAt(this, instr);
+
+ NearLabel flat_string, ascii_string, done;
+
+ // Fetch the instance type of the receiver into result register.
+ __ mov(result, FieldOperand(string, HeapObject::kMapOffset));
+ __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset));
+
+ // We need special handling for non-flat strings.
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ test(result, Immediate(kStringRepresentationMask));
+ __ j(zero, &flat_string);
+
+ // Handle non-flat strings.
+ __ test(result, Immediate(kIsConsStringMask));
+ __ j(zero, deferred->entry());
+
+ // ConsString.
+ // Check whether the right hand side is the empty string (i.e. if
+ // this is really a flat string in a cons string). If that is not
+ // the case we would rather go to the runtime system now to flatten
+ // the string.
+ __ cmp(FieldOperand(string, ConsString::kSecondOffset),
+ Immediate(factory()->empty_string()));
+ __ j(not_equal, deferred->entry());
+ // Get the first of the two strings and load its instance type.
+ __ mov(string, FieldOperand(string, ConsString::kFirstOffset));
+ __ mov(result, FieldOperand(string, HeapObject::kMapOffset));
+ __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset));
+ // If the first cons component is also non-flat, then go to runtime.
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ test(result, Immediate(kStringRepresentationMask));
+ __ j(not_zero, deferred->entry());
+
+ // Check for ASCII or two-byte string.
+ __ bind(&flat_string);
+ STATIC_ASSERT(kAsciiStringTag != 0);
+ __ test(result, Immediate(kStringEncodingMask));
+ __ j(not_zero, &ascii_string);
+
+ // Two-byte string.
+ // Load the two-byte character code into the result register.
+ STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
+ if (instr->index()->IsConstantOperand()) {
+ __ movzx_w(result,
+ FieldOperand(string,
+ SeqTwoByteString::kHeaderSize +
+ (kUC16Size * const_index)));
+ } else {
+ __ movzx_w(result, FieldOperand(string,
+ index,
+ times_2,
+ SeqTwoByteString::kHeaderSize));
+ }
+ __ jmp(&done);
+
+ // ASCII string.
+ // Load the byte into the result register.
+ __ bind(&ascii_string);
+ if (instr->index()->IsConstantOperand()) {
+ __ movzx_b(result, FieldOperand(string,
+ SeqAsciiString::kHeaderSize + const_index));
+ } else {
+ __ movzx_b(result, FieldOperand(string,
+ index,
+ times_1,
+ SeqAsciiString::kHeaderSize));
+ }
+ __ bind(&done);
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
+ Register string = ToRegister(instr->string());
+ Register result = ToRegister(instr->result());
+
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ Set(result, Immediate(0));
+
+ __ PushSafepointRegisters();
+ __ push(string);
+ // Push the index as a smi. This is safe because of the checks in
+ // DoStringCharCodeAt above.
+ STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
+ if (instr->index()->IsConstantOperand()) {
+ int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+ __ push(Immediate(Smi::FromInt(const_index)));
+ } else {
+ Register index = ToRegister(instr->index());
+ __ SmiTag(index);
+ __ push(index);
+ }
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kStringCharCodeAt);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 2, Safepoint::kNoDeoptimizationIndex);
+ if (FLAG_debug_code) {
+ __ AbortIfNotSmi(eax);
+ }
+ __ SmiUntag(eax);
+ __ StoreToSafepointRegisterSlot(result, eax);
+ __ PopSafepointRegisters();
+}
+
+
+void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
+ class DeferredStringCharFromCode: public LDeferredCode {
+ public:
+ DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
+ private:
+ LStringCharFromCode* instr_;
+ };
+
+ DeferredStringCharFromCode* deferred =
+ new DeferredStringCharFromCode(this, instr);
+
+ ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
+ Register char_code = ToRegister(instr->char_code());
+ Register result = ToRegister(instr->result());
+ ASSERT(!char_code.is(result));
+
+ __ cmp(char_code, String::kMaxAsciiCharCode);
+ __ j(above, deferred->entry());
+ __ Set(result, Immediate(factory()->single_character_string_cache()));
+ __ mov(result, FieldOperand(result,
+ char_code, times_pointer_size,
+ FixedArray::kHeaderSize));
+ __ cmp(result, factory()->undefined_value());
+ __ j(equal, deferred->entry());
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
+ Register char_code = ToRegister(instr->char_code());
+ Register result = ToRegister(instr->result());
+
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ Set(result, Immediate(0));
+
+ __ PushSafepointRegisters();
+ __ SmiTag(char_code);
+ __ push(char_code);
+ __ CallRuntimeSaveDoubles(Runtime::kCharFromCode);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 1, Safepoint::kNoDeoptimizationIndex);
+ __ StoreToSafepointRegisterSlot(result, eax);
+ __ PopSafepointRegisters();
+}
+
+
+void LCodeGen::DoStringLength(LStringLength* instr) {
+ Register string = ToRegister(instr->string());
+ Register result = ToRegister(instr->result());
+ __ mov(result, FieldOperand(string, String::kLengthOffset));
+}
+
+
+void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister() || input->IsStackSlot());
+ LOperand* output = instr->result();
+ ASSERT(output->IsDoubleRegister());
+ __ cvtsi2sd(ToDoubleRegister(output), ToOperand(input));
+}
+
+
+void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
+ class DeferredNumberTagI: public LDeferredCode {
+ public:
+ DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); }
+ private:
+ LNumberTagI* instr_;
+ };
+
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister() && input->Equals(instr->result()));
+ Register reg = ToRegister(input);
+
+ DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr);
+ __ SmiTag(reg);
+ __ j(overflow, deferred->entry());
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) {
+ Label slow;
+ Register reg = ToRegister(instr->InputAt(0));
+ Register tmp = reg.is(eax) ? ecx : eax;
+
+ // Preserve the value of all registers.
+ __ PushSafepointRegisters();
+
+ // There was overflow, so bits 30 and 31 of the original integer
+ // disagree. Try to allocate a heap number in new space and store
+ // the value in there. If that fails, call the runtime system.
+ NearLabel done;
+ __ SmiUntag(reg);
+ __ xor_(reg, 0x80000000);
+ __ cvtsi2sd(xmm0, Operand(reg));
+ if (FLAG_inline_new) {
+ __ AllocateHeapNumber(reg, tmp, no_reg, &slow);
+ __ jmp(&done);
+ }
+
+ // Slow case: Call the runtime system to do the number allocation.
+ __ bind(&slow);
+
+ // TODO(3095996): Put a valid pointer value in the stack slot where the result
+ // register is stored, as this register is in the pointer map, but contains an
+ // integer value.
+ __ StoreToSafepointRegisterSlot(reg, Immediate(0));
+
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex);
+ if (!reg.is(eax)) __ mov(reg, eax);
+
+ // Done. Put the value in xmm0 into the value of the allocated heap
+ // number.
+ __ bind(&done);
+ __ movdbl(FieldOperand(reg, HeapNumber::kValueOffset), xmm0);
+ __ StoreToSafepointRegisterSlot(reg, reg);
+ __ PopSafepointRegisters();
+}
+
+
+void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
+ class DeferredNumberTagD: public LDeferredCode {
+ public:
+ DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
+ private:
+ LNumberTagD* instr_;
+ };
+
+ XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
+ Register reg = ToRegister(instr->result());
+ Register tmp = ToRegister(instr->TempAt(0));
+
+ DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
+ if (FLAG_inline_new) {
+ __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
+ } else {
+ __ jmp(deferred->entry());
+ }
+ __ bind(deferred->exit());
+ __ movdbl(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
+}
+
+
+void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ Register reg = ToRegister(instr->result());
+ __ Set(reg, Immediate(0));
+
+ __ PushSafepointRegisters();
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex);
+ __ StoreToSafepointRegisterSlot(reg, eax);
+ __ PopSafepointRegisters();
+}
+
+
+void LCodeGen::DoSmiTag(LSmiTag* instr) {
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister() && input->Equals(instr->result()));
+ ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
+ __ SmiTag(ToRegister(input));
+}
+
+
+void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister() && input->Equals(instr->result()));
+ if (instr->needs_check()) {
+ __ test(ToRegister(input), Immediate(kSmiTagMask));
+ DeoptimizeIf(not_zero, instr->environment());
+ }
+ __ SmiUntag(ToRegister(input));
+}
+
+
+void LCodeGen::EmitNumberUntagD(Register input_reg,
+ XMMRegister result_reg,
+ LEnvironment* env) {
+ NearLabel load_smi, heap_number, done;
+
+ // Smi check.
+ __ test(input_reg, Immediate(kSmiTagMask));
+ __ j(zero, &load_smi, not_taken);
+
+ // Heap number map check.
+ __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
+ factory()->heap_number_map());
+ __ j(equal, &heap_number);
+
+ __ cmp(input_reg, factory()->undefined_value());
+ DeoptimizeIf(not_equal, env);
+
+ // Convert undefined to NaN.
+ ExternalReference nan = ExternalReference::address_of_nan();
+ __ movdbl(result_reg, Operand::StaticVariable(nan));
+ __ jmp(&done);
+
+ // Heap number to XMM conversion.
+ __ bind(&heap_number);
+ __ movdbl(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
+ __ jmp(&done);
+
+ // Smi to XMM conversion
+ __ bind(&load_smi);
+ __ SmiUntag(input_reg); // Untag smi before converting to float.
+ __ cvtsi2sd(result_reg, Operand(input_reg));
+ __ SmiTag(input_reg); // Retag smi.
+ __ bind(&done);
+}
+
+
+class DeferredTaggedToI: public LDeferredCode {
+ public:
+ DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
+ : LDeferredCode(codegen), instr_(instr) { }
+ virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
+ private:
+ LTaggedToI* instr_;
+};
+
+
+void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
+ NearLabel done, heap_number;
+ Register input_reg = ToRegister(instr->InputAt(0));
+
+ // Heap number map check.
+ __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
+ factory()->heap_number_map());
+
+ if (instr->truncating()) {
+ __ j(equal, &heap_number);
+ // Check for undefined. Undefined is converted to zero for truncating
+ // conversions.
+ __ cmp(input_reg, factory()->undefined_value());
+ DeoptimizeIf(not_equal, instr->environment());
+ __ mov(input_reg, 0);
+ __ jmp(&done);
+
+ __ bind(&heap_number);
+ if (CpuFeatures::IsSupported(SSE3)) {
+ CpuFeatures::Scope scope(SSE3);
+ NearLabel convert;
+ // Use more powerful conversion when sse3 is available.
+ // Load x87 register with heap number.
+ __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
+ // Get exponent alone and check for too-big exponent.
+ __ mov(input_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
+ __ and_(input_reg, HeapNumber::kExponentMask);
+ const uint32_t kTooBigExponent =
+ (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
+ __ cmp(Operand(input_reg), Immediate(kTooBigExponent));
+ __ j(less, &convert);
+ // Pop FPU stack before deoptimizing.
+ __ ffree(0);
+ __ fincstp();
+ DeoptimizeIf(no_condition, instr->environment());
+
+ // Reserve space for 64 bit answer.
+ __ bind(&convert);
+ __ sub(Operand(esp), Immediate(kDoubleSize));
+ // Do conversion, which cannot fail because we checked the exponent.
+ __ fisttp_d(Operand(esp, 0));
+ __ mov(input_reg, Operand(esp, 0)); // Low word of answer is the result.
+ __ add(Operand(esp), Immediate(kDoubleSize));
+ } else {
+ NearLabel deopt;
+ XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0));
+ __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
+ __ cvttsd2si(input_reg, Operand(xmm0));
+ __ cmp(input_reg, 0x80000000u);
+ __ j(not_equal, &done);
+ // Check if the input was 0x8000000 (kMinInt).
+ // If no, then we got an overflow and we deoptimize.
+ ExternalReference min_int = ExternalReference::address_of_min_int();
+ __ movdbl(xmm_temp, Operand::StaticVariable(min_int));
+ __ ucomisd(xmm_temp, xmm0);
+ DeoptimizeIf(not_equal, instr->environment());
+ DeoptimizeIf(parity_even, instr->environment()); // NaN.
+ }
+ } else {
+ // Deoptimize if we don't have a heap number.
+ DeoptimizeIf(not_equal, instr->environment());
+
+ XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0));
+ __ movdbl(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
+ __ cvttsd2si(input_reg, Operand(xmm0));
+ __ cvtsi2sd(xmm_temp, Operand(input_reg));
+ __ ucomisd(xmm0, xmm_temp);
+ DeoptimizeIf(not_equal, instr->environment());
+ DeoptimizeIf(parity_even, instr->environment()); // NaN.
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ test(input_reg, Operand(input_reg));
+ __ j(not_zero, &done);
+ __ movmskpd(input_reg, xmm0);
+ __ and_(input_reg, 1);
+ DeoptimizeIf(not_zero, instr->environment());
+ }
+ }
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister());
+ ASSERT(input->Equals(instr->result()));
+
+ Register input_reg = ToRegister(input);
+
+ DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
+
+ // Smi check.
+ __ test(input_reg, Immediate(kSmiTagMask));
+ __ j(not_zero, deferred->entry());
+
+ // Smi to int32 conversion
+ __ SmiUntag(input_reg); // Untag smi.
+
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister());
+ LOperand* result = instr->result();
+ ASSERT(result->IsDoubleRegister());
+
+ Register input_reg = ToRegister(input);
+ XMMRegister result_reg = ToDoubleRegister(result);
+
+ EmitNumberUntagD(input_reg, result_reg, instr->environment());
+}
+
+
+void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsDoubleRegister());
+ LOperand* result = instr->result();
+ ASSERT(result->IsRegister());
+
+ XMMRegister input_reg = ToDoubleRegister(input);
+ Register result_reg = ToRegister(result);
+
+ if (instr->truncating()) {
+ // Performs a truncating conversion of a floating point number as used by
+ // the JS bitwise operations.
+ __ cvttsd2si(result_reg, Operand(input_reg));
+ __ cmp(result_reg, 0x80000000u);
+ if (CpuFeatures::IsSupported(SSE3)) {
+ // This will deoptimize if the exponent of the input in out of range.
+ CpuFeatures::Scope scope(SSE3);
+ NearLabel convert, done;
+ __ j(not_equal, &done);
+ __ sub(Operand(esp), Immediate(kDoubleSize));
+ __ movdbl(Operand(esp, 0), input_reg);
+ // Get exponent alone and check for too-big exponent.
+ __ mov(result_reg, Operand(esp, sizeof(int32_t)));
+ __ and_(result_reg, HeapNumber::kExponentMask);
+ const uint32_t kTooBigExponent =
+ (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
+ __ cmp(Operand(result_reg), Immediate(kTooBigExponent));
+ __ j(less, &convert);
+ __ add(Operand(esp), Immediate(kDoubleSize));
+ DeoptimizeIf(no_condition, instr->environment());
+ __ bind(&convert);
+ // Do conversion, which cannot fail because we checked the exponent.
+ __ fld_d(Operand(esp, 0));
+ __ fisttp_d(Operand(esp, 0));
+ __ mov(result_reg, Operand(esp, 0)); // Low word of answer is the result.
+ __ add(Operand(esp), Immediate(kDoubleSize));
+ __ bind(&done);
+ } else {
+ NearLabel done;
+ Register temp_reg = ToRegister(instr->TempAt(0));
+ XMMRegister xmm_scratch = xmm0;
+
+ // If cvttsd2si succeeded, we're done. Otherwise, we attempt
+ // manual conversion.
+ __ j(not_equal, &done);
+
+ // Get high 32 bits of the input in result_reg and temp_reg.
+ __ pshufd(xmm_scratch, input_reg, 1);
+ __ movd(Operand(temp_reg), xmm_scratch);
+ __ mov(result_reg, temp_reg);
+
+ // Prepare negation mask in temp_reg.
+ __ sar(temp_reg, kBitsPerInt - 1);
+
+ // Extract the exponent from result_reg and subtract adjusted
+ // bias from it. The adjustment is selected in a way such that
+ // when the difference is zero, the answer is in the low 32 bits
+ // of the input, otherwise a shift has to be performed.
+ __ shr(result_reg, HeapNumber::kExponentShift);
+ __ and_(result_reg,
+ HeapNumber::kExponentMask >> HeapNumber::kExponentShift);
+ __ sub(Operand(result_reg),
+ Immediate(HeapNumber::kExponentBias +
+ HeapNumber::kExponentBits +
+ HeapNumber::kMantissaBits));
+ // Don't handle big (> kMantissaBits + kExponentBits == 63) or
+ // special exponents.
+ DeoptimizeIf(greater, instr->environment());
+
+ // Zero out the sign and the exponent in the input (by shifting
+ // it to the left) and restore the implicit mantissa bit,
+ // i.e. convert the input to unsigned int64 shifted left by
+ // kExponentBits.
+ ExternalReference minus_zero = ExternalReference::address_of_minus_zero();
+ // Minus zero has the most significant bit set and the other
+ // bits cleared.
+ __ movdbl(xmm_scratch, Operand::StaticVariable(minus_zero));
+ __ psllq(input_reg, HeapNumber::kExponentBits);
+ __ por(input_reg, xmm_scratch);
+
+ // Get the amount to shift the input right in xmm_scratch.
+ __ neg(result_reg);
+ __ movd(xmm_scratch, Operand(result_reg));
+
+ // Shift the input right and extract low 32 bits.
+ __ psrlq(input_reg, xmm_scratch);
+ __ movd(Operand(result_reg), input_reg);
+
+ // Use the prepared mask in temp_reg to negate the result if necessary.
+ __ xor_(result_reg, Operand(temp_reg));
+ __ sub(result_reg, Operand(temp_reg));
+ __ bind(&done);
+ }
+ } else {
+ NearLabel done;
+ __ cvttsd2si(result_reg, Operand(input_reg));
+ __ cvtsi2sd(xmm0, Operand(result_reg));
+ __ ucomisd(xmm0, input_reg);
+ DeoptimizeIf(not_equal, instr->environment());
+ DeoptimizeIf(parity_even, instr->environment()); // NaN.
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // The integer converted back is equal to the original. We
+ // only have to test if we got -0 as an input.
+ __ test(result_reg, Operand(result_reg));
+ __ j(not_zero, &done);
+ __ movmskpd(result_reg, input_reg);
+ // Bit 0 contains the sign of the double in input_reg.
+ // If input was positive, we are ok and return 0, otherwise
+ // deoptimize.
+ __ and_(result_reg, 1);
+ DeoptimizeIf(not_zero, instr->environment());
+ }
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
+ LOperand* input = instr->InputAt(0);
+ __ test(ToRegister(input), Immediate(kSmiTagMask));
+ DeoptimizeIf(not_zero, instr->environment());
+}
+
+
+void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
+ LOperand* input = instr->InputAt(0);
+ __ test(ToRegister(input), Immediate(kSmiTagMask));
+ DeoptimizeIf(zero, instr->environment());
+}
+
+
+void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register temp = ToRegister(instr->TempAt(0));
+ InstanceType first = instr->hydrogen()->first();
+ InstanceType last = instr->hydrogen()->last();
+
+ __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
+
+ // If there is only one type in the interval check for equality.
+ if (first == last) {
+ __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
+ static_cast<int8_t>(first));
+ DeoptimizeIf(not_equal, instr->environment());
+ } else if (first == FIRST_STRING_TYPE && last == LAST_STRING_TYPE) {
+ // String has a dedicated bit in instance type.
+ __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), kIsNotStringMask);
+ DeoptimizeIf(not_zero, instr->environment());
+ } else {
+ __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
+ static_cast<int8_t>(first));
+ DeoptimizeIf(below, instr->environment());
+ // Omit check for the last type.
+ if (last != LAST_TYPE) {
+ __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
+ static_cast<int8_t>(last));
+ DeoptimizeIf(above, instr->environment());
+ }
+ }
+}
+
+
+void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
+ ASSERT(instr->InputAt(0)->IsRegister());
+ Register reg = ToRegister(instr->InputAt(0));
+ __ cmp(reg, instr->hydrogen()->target());
+ DeoptimizeIf(not_equal, instr->environment());
+}
+
+
+void LCodeGen::DoCheckMap(LCheckMap* instr) {
+ LOperand* input = instr->InputAt(0);
+ ASSERT(input->IsRegister());
+ Register reg = ToRegister(input);
+ __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
+ instr->hydrogen()->map());
+ DeoptimizeIf(not_equal, instr->environment());
+}
+
+
+void LCodeGen::LoadHeapObject(Register result, Handle<HeapObject> object) {
+ if (isolate()->heap()->InNewSpace(*object)) {
+ Handle<JSGlobalPropertyCell> cell =
+ isolate()->factory()->NewJSGlobalPropertyCell(object);
+ __ mov(result, Operand::Cell(cell));
+ } else {
+ __ mov(result, object);
+ }
+}
+
+
+void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
+ Register reg = ToRegister(instr->TempAt(0));
+
+ Handle<JSObject> holder = instr->holder();
+ Handle<JSObject> current_prototype = instr->prototype();
+
+ // Load prototype object.
+ LoadHeapObject(reg, current_prototype);
+
+ // Check prototype maps up to the holder.
+ while (!current_prototype.is_identical_to(holder)) {
+ __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
+ Handle<Map>(current_prototype->map()));
+ DeoptimizeIf(not_equal, instr->environment());
+ current_prototype =
+ Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
+ // Load next prototype object.
+ LoadHeapObject(reg, current_prototype);
+ }
+
+ // Check the holder map.
+ __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
+ Handle<Map>(current_prototype->map()));
+ DeoptimizeIf(not_equal, instr->environment());
+}
+
+
+void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
+ // Setup the parameters to the stub/runtime call.
+ __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ __ push(FieldOperand(eax, JSFunction::kLiteralsOffset));
+ __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
+ __ push(Immediate(instr->hydrogen()->constant_elements()));
+
+ // Pick the right runtime function or stub to call.
+ int length = instr->hydrogen()->length();
+ if (instr->hydrogen()->IsCopyOnWrite()) {
+ ASSERT(instr->hydrogen()->depth() == 1);
+ FastCloneShallowArrayStub::Mode mode =
+ FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
+ FastCloneShallowArrayStub stub(mode, length);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
+ } else if (instr->hydrogen()->depth() > 1) {
+ CallRuntime(Runtime::kCreateArrayLiteral, 3, instr, false);
+ } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
+ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr, false);
+ } else {
+ FastCloneShallowArrayStub::Mode mode =
+ FastCloneShallowArrayStub::CLONE_ELEMENTS;
+ FastCloneShallowArrayStub stub(mode, length);
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
+ }
+}
+
+
+void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
+ ASSERT(ToRegister(instr->context()).is(esi));
+ // Setup the parameters to the stub/runtime call.
+ __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ __ push(FieldOperand(eax, JSFunction::kLiteralsOffset));
+ __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
+ __ push(Immediate(instr->hydrogen()->constant_properties()));
+ int flags = instr->hydrogen()->fast_elements()
+ ? ObjectLiteral::kFastElements
+ : ObjectLiteral::kNoFlags;
+ flags |= instr->hydrogen()->has_function()
+ ? ObjectLiteral::kHasFunction
+ : ObjectLiteral::kNoFlags;
+ __ push(Immediate(Smi::FromInt(flags)));
+
+ // Pick the right runtime function to call.
+ if (instr->hydrogen()->depth() > 1) {
+ CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
+ } else {
+ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
+ }
+}
+
+
+void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
+ ASSERT(ToRegister(instr->InputAt(0)).is(eax));
+ __ push(eax);
+ CallRuntime(Runtime::kToFastProperties, 1, instr);
+}
+
+
+void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
+ NearLabel materialized;
+ // Registers will be used as follows:
+ // edi = JS function.
+ // ecx = literals array.
+ // ebx = regexp literal.
+ // eax = regexp literal clone.
+ __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+ __ mov(ecx, FieldOperand(edi, JSFunction::kLiteralsOffset));
+ int literal_offset = FixedArray::kHeaderSize +
+ instr->hydrogen()->literal_index() * kPointerSize;
+ __ mov(ebx, FieldOperand(ecx, literal_offset));
+ __ cmp(ebx, factory()->undefined_value());
+ __ j(not_equal, &materialized);
+
+ // Create regexp literal using runtime function
+ // Result will be in eax.
+ __ push(ecx);
+ __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
+ __ push(Immediate(instr->hydrogen()->pattern()));
+ __ push(Immediate(instr->hydrogen()->flags()));
+ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr, false);
+ __ mov(ebx, eax);
+
+ __ bind(&materialized);
+ int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
+ Label allocated, runtime_allocate;
+ __ AllocateInNewSpace(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
+ __ jmp(&allocated);
+
+ __ bind(&runtime_allocate);
+ __ push(ebx);
+ __ push(Immediate(Smi::FromInt(size)));
+ CallRuntime(Runtime::kAllocateInNewSpace, 1, instr, false);
+ __ pop(ebx);
+
+ __ bind(&allocated);
+ // Copy the content into the newly allocated memory.
+ // (Unroll copy loop once for better throughput).
+ for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
+ __ mov(edx, FieldOperand(ebx, i));
+ __ mov(ecx, FieldOperand(ebx, i + kPointerSize));
+ __ mov(FieldOperand(eax, i), edx);
+ __ mov(FieldOperand(eax, i + kPointerSize), ecx);
+ }
+ if ((size % (2 * kPointerSize)) != 0) {
+ __ mov(edx, FieldOperand(ebx, size - kPointerSize));
+ __ mov(FieldOperand(eax, size - kPointerSize), edx);
+ }
+}
+
+
+void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
+ // Use the fast case closure allocation code that allocates in new
+ // space for nested functions that don't need literals cloning.
+ Handle<SharedFunctionInfo> shared_info = instr->shared_info();
+ bool pretenure = instr->hydrogen()->pretenure();
+ if (!pretenure && shared_info->num_literals() == 0) {
+ FastNewClosureStub stub(
+ shared_info->strict_mode() ? kStrictMode : kNonStrictMode);
+ __ push(Immediate(shared_info));
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
+ } else {
+ __ push(Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ push(Immediate(shared_info));
+ __ push(Immediate(pretenure
+ ? factory()->true_value()
+ : factory()->false_value()));
+ CallRuntime(Runtime::kNewClosure, 3, instr, false);
+ }
+}
+
+
+void LCodeGen::DoTypeof(LTypeof* instr) {
+ LOperand* input = instr->InputAt(0);
+ if (input->IsConstantOperand()) {
+ __ push(ToImmediate(input));
+ } else {
+ __ push(ToOperand(input));
+ }
+ CallRuntime(Runtime::kTypeof, 1, instr, false);
+}
+
+
+void LCodeGen::DoTypeofIs(LTypeofIs* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ Register result = ToRegister(instr->result());
+ Label true_label;
+ Label false_label;
+ NearLabel done;
+
+ Condition final_branch_condition = EmitTypeofIs(&true_label,
+ &false_label,
+ input,
+ instr->type_literal());
+ __ j(final_branch_condition, &true_label);
+ __ bind(&false_label);
+ __ mov(result, factory()->false_value());
+ __ jmp(&done);
+
+ __ bind(&true_label);
+ __ mov(result, factory()->true_value());
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
+ Register input = ToRegister(instr->InputAt(0));
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+ Label* true_label = chunk_->GetAssemblyLabel(true_block);
+ Label* false_label = chunk_->GetAssemblyLabel(false_block);
+
+ Condition final_branch_condition = EmitTypeofIs(true_label,
+ false_label,
+ input,
+ instr->type_literal());
+
+ EmitBranch(true_block, false_block, final_branch_condition);
+}
+
+
+Condition LCodeGen::EmitTypeofIs(Label* true_label,
+ Label* false_label,
+ Register input,
+ Handle<String> type_name) {
+ Condition final_branch_condition = no_condition;
+ if (type_name->Equals(heap()->number_symbol())) {
+ __ JumpIfSmi(input, true_label);
+ __ cmp(FieldOperand(input, HeapObject::kMapOffset),
+ factory()->heap_number_map());
+ final_branch_condition = equal;
+
+ } else if (type_name->Equals(heap()->string_symbol())) {
+ __ JumpIfSmi(input, false_label);
+ __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
+ __ j(above_equal, false_label);
+ __ test_b(FieldOperand(input, Map::kBitFieldOffset),
+ 1 << Map::kIsUndetectable);
+ final_branch_condition = zero;
+
+ } else if (type_name->Equals(heap()->boolean_symbol())) {
+ __ cmp(input, factory()->true_value());
+ __ j(equal, true_label);
+ __ cmp(input, factory()->false_value());
+ final_branch_condition = equal;
+
+ } else if (type_name->Equals(heap()->undefined_symbol())) {
+ __ cmp(input, factory()->undefined_value());
+ __ j(equal, true_label);
+ __ JumpIfSmi(input, false_label);
+ // Check for undetectable objects => true.
+ __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
+ __ test_b(FieldOperand(input, Map::kBitFieldOffset),
+ 1 << Map::kIsUndetectable);
+ final_branch_condition = not_zero;
+
+ } else if (type_name->Equals(heap()->function_symbol())) {
+ __ JumpIfSmi(input, false_label);
+ __ CmpObjectType(input, JS_FUNCTION_TYPE, input);
+ __ j(equal, true_label);
+ // Regular expressions => 'function' (they are callable).
+ __ CmpInstanceType(input, JS_REGEXP_TYPE);
+ final_branch_condition = equal;
+
+ } else if (type_name->Equals(heap()->object_symbol())) {
+ __ JumpIfSmi(input, false_label);
+ __ cmp(input, factory()->null_value());
+ __ j(equal, true_label);
+ // Regular expressions => 'function', not 'object'.
+ __ CmpObjectType(input, FIRST_JS_OBJECT_TYPE, input);
+ __ j(below, false_label);
+ __ CmpInstanceType(input, FIRST_FUNCTION_CLASS_TYPE);
+ __ j(above_equal, false_label);
+ // Check for undetectable objects => false.
+ __ test_b(FieldOperand(input, Map::kBitFieldOffset),
+ 1 << Map::kIsUndetectable);
+ final_branch_condition = zero;
+
+ } else {
+ final_branch_condition = not_equal;
+ __ jmp(false_label);
+ // A dead branch instruction will be generated after this point.
+ }
+
+ return final_branch_condition;
+}
+
+
+void LCodeGen::DoIsConstructCall(LIsConstructCall* instr) {
+ Register result = ToRegister(instr->result());
+ NearLabel true_label;
+ NearLabel false_label;
+ NearLabel done;
+
+ EmitIsConstructCall(result);
+ __ j(equal, &true_label);
+
+ __ mov(result, factory()->false_value());
+ __ jmp(&done);
+
+ __ bind(&true_label);
+ __ mov(result, factory()->true_value());
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
+ Register temp = ToRegister(instr->TempAt(0));
+ int true_block = chunk_->LookupDestination(instr->true_block_id());
+ int false_block = chunk_->LookupDestination(instr->false_block_id());
+
+ EmitIsConstructCall(temp);
+ EmitBranch(true_block, false_block, equal);
+}
+
+
+void LCodeGen::EmitIsConstructCall(Register temp) {
+ // Get the frame pointer for the calling frame.
+ __ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+
+ // Skip the arguments adaptor frame if it exists.
+ NearLabel check_frame_marker;
+ __ cmp(Operand(temp, StandardFrameConstants::kContextOffset),
+ Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ j(not_equal, &check_frame_marker);
+ __ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset));
+
+ // Check the marker in the calling frame.
+ __ bind(&check_frame_marker);
+ __ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
+ Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
+}
+
+
+void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
+ // No code for lazy bailout instruction. Used to capture environment after a
+ // call for populating the safepoint data with deoptimization data.
+}
+
+
+void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
+ DeoptimizeIf(no_condition, instr->environment());
+}
+
+
+void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
+ LOperand* obj = instr->object();
+ LOperand* key = instr->key();
+ __ push(ToOperand(obj));
+ if (key->IsConstantOperand()) {
+ __ push(ToImmediate(key));
+ } else {
+ __ push(ToOperand(key));
+ }
+ ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
+ LPointerMap* pointers = instr->pointer_map();
+ LEnvironment* env = instr->deoptimization_environment();
+ RecordPosition(pointers->position());
+ RegisterEnvironmentForDeoptimization(env);
+ // Create safepoint generator that will also ensure enough space in the
+ // reloc info for patching in deoptimization (since this is invoking a
+ // builtin)
+ SafepointGenerator safepoint_generator(this,
+ pointers,
+ env->deoptimization_index());
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ push(Immediate(Smi::FromInt(strict_mode_flag())));
+ __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, &safepoint_generator);
+}
+
+
+void LCodeGen::DoStackCheck(LStackCheck* instr) {
+ // Perform stack overflow check.
+ NearLabel done;
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ cmp(esp, Operand::StaticVariable(stack_limit));
+ __ j(above_equal, &done);
+
+ StackCheckStub stub;
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr, false);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
+ // This is a pseudo-instruction that ensures that the environment here is
+ // properly registered for deoptimization and records the assembler's PC
+ // offset.
+ LEnvironment* environment = instr->environment();
+ environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
+ instr->SpilledDoubleRegisterArray());
+
+ // If the environment were already registered, we would have no way of
+ // backpatching it with the spill slot operands.
+ ASSERT(!environment->HasBeenRegistered());
+ RegisterEnvironmentForDeoptimization(environment);
+ ASSERT(osr_pc_offset_ == -1);
+ osr_pc_offset_ = masm()->pc_offset();
+}
+
+
+#undef __
+
+} } // namespace v8::internal
+
+#endif // V8_TARGET_ARCH_IA32