summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/ia32/code-stubs-ia32.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/ia32/code-stubs-ia32.cc')
-rw-r--r--src/3rdparty/v8/src/ia32/code-stubs-ia32.cc6549
1 files changed, 6549 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/ia32/code-stubs-ia32.cc b/src/3rdparty/v8/src/ia32/code-stubs-ia32.cc
new file mode 100644
index 0000000..78daf7c
--- /dev/null
+++ b/src/3rdparty/v8/src/ia32/code-stubs-ia32.cc
@@ -0,0 +1,6549 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#if defined(V8_TARGET_ARCH_IA32)
+
+#include "code-stubs.h"
+#include "bootstrapper.h"
+#include "jsregexp.h"
+#include "isolate.h"
+#include "regexp-macro-assembler.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm)
+
+void ToNumberStub::Generate(MacroAssembler* masm) {
+ // The ToNumber stub takes one argument in eax.
+ NearLabel check_heap_number, call_builtin;
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &check_heap_number);
+ __ ret(0);
+
+ __ bind(&check_heap_number);
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(Operand(ebx), Immediate(factory->heap_number_map()));
+ __ j(not_equal, &call_builtin);
+ __ ret(0);
+
+ __ bind(&call_builtin);
+ __ pop(ecx); // Pop return address.
+ __ push(eax);
+ __ push(ecx); // Push return address.
+ __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
+}
+
+
+void FastNewClosureStub::Generate(MacroAssembler* masm) {
+ // Create a new closure from the given function info in new
+ // space. Set the context to the current context in esi.
+ Label gc;
+ __ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT);
+
+ // Get the function info from the stack.
+ __ mov(edx, Operand(esp, 1 * kPointerSize));
+
+ int map_index = strict_mode_ == kStrictMode
+ ? Context::STRICT_MODE_FUNCTION_MAP_INDEX
+ : Context::FUNCTION_MAP_INDEX;
+
+ // Compute the function map in the current global context and set that
+ // as the map of the allocated object.
+ __ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset));
+ __ mov(ecx, Operand(ecx, Context::SlotOffset(map_index)));
+ __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx);
+
+ // Initialize the rest of the function. We don't have to update the
+ // write barrier because the allocated object is in new space.
+ Factory* factory = masm->isolate()->factory();
+ __ mov(ebx, Immediate(factory->empty_fixed_array()));
+ __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ebx);
+ __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx);
+ __ mov(FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset),
+ Immediate(factory->the_hole_value()));
+ __ mov(FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset), edx);
+ __ mov(FieldOperand(eax, JSFunction::kContextOffset), esi);
+ __ mov(FieldOperand(eax, JSFunction::kLiteralsOffset), ebx);
+ __ mov(FieldOperand(eax, JSFunction::kNextFunctionLinkOffset),
+ Immediate(factory->undefined_value()));
+
+ // Initialize the code pointer in the function to be the one
+ // found in the shared function info object.
+ __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset));
+ __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
+ __ mov(FieldOperand(eax, JSFunction::kCodeEntryOffset), edx);
+
+ // Return and remove the on-stack parameter.
+ __ ret(1 * kPointerSize);
+
+ // Create a new closure through the slower runtime call.
+ __ bind(&gc);
+ __ pop(ecx); // Temporarily remove return address.
+ __ pop(edx);
+ __ push(esi);
+ __ push(edx);
+ __ push(Immediate(factory->false_value()));
+ __ push(ecx); // Restore return address.
+ __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
+}
+
+
+void FastNewContextStub::Generate(MacroAssembler* masm) {
+ // Try to allocate the context in new space.
+ Label gc;
+ int length = slots_ + Context::MIN_CONTEXT_SLOTS;
+ __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
+ eax, ebx, ecx, &gc, TAG_OBJECT);
+
+ // Get the function from the stack.
+ __ mov(ecx, Operand(esp, 1 * kPointerSize));
+
+ // Setup the object header.
+ Factory* factory = masm->isolate()->factory();
+ __ mov(FieldOperand(eax, HeapObject::kMapOffset), factory->context_map());
+ __ mov(FieldOperand(eax, Context::kLengthOffset),
+ Immediate(Smi::FromInt(length)));
+
+ // Setup the fixed slots.
+ __ Set(ebx, Immediate(0)); // Set to NULL.
+ __ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx);
+ __ mov(Operand(eax, Context::SlotOffset(Context::FCONTEXT_INDEX)), eax);
+ __ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), ebx);
+ __ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx);
+
+ // Copy the global object from the surrounding context. We go through the
+ // context in the function (ecx) to match the allocation behavior we have
+ // in the runtime system (see Heap::AllocateFunctionContext).
+ __ mov(ebx, FieldOperand(ecx, JSFunction::kContextOffset));
+ __ mov(ebx, Operand(ebx, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ __ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx);
+
+ // Initialize the rest of the slots to undefined.
+ __ mov(ebx, factory->undefined_value());
+ for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
+ __ mov(Operand(eax, Context::SlotOffset(i)), ebx);
+ }
+
+ // Return and remove the on-stack parameter.
+ __ mov(esi, Operand(eax));
+ __ ret(1 * kPointerSize);
+
+ // Need to collect. Call into runtime system.
+ __ bind(&gc);
+ __ TailCallRuntime(Runtime::kNewContext, 1, 1);
+}
+
+
+void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
+ // Stack layout on entry:
+ //
+ // [esp + kPointerSize]: constant elements.
+ // [esp + (2 * kPointerSize)]: literal index.
+ // [esp + (3 * kPointerSize)]: literals array.
+
+ // All sizes here are multiples of kPointerSize.
+ int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
+ int size = JSArray::kSize + elements_size;
+
+ // Load boilerplate object into ecx and check if we need to create a
+ // boilerplate.
+ Label slow_case;
+ __ mov(ecx, Operand(esp, 3 * kPointerSize));
+ __ mov(eax, Operand(esp, 2 * kPointerSize));
+ STATIC_ASSERT(kPointerSize == 4);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ mov(ecx, FieldOperand(ecx, eax, times_half_pointer_size,
+ FixedArray::kHeaderSize));
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(ecx, factory->undefined_value());
+ __ j(equal, &slow_case);
+
+ if (FLAG_debug_code) {
+ const char* message;
+ Handle<Map> expected_map;
+ if (mode_ == CLONE_ELEMENTS) {
+ message = "Expected (writable) fixed array";
+ expected_map = factory->fixed_array_map();
+ } else {
+ ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
+ message = "Expected copy-on-write fixed array";
+ expected_map = factory->fixed_cow_array_map();
+ }
+ __ push(ecx);
+ __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset));
+ __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), expected_map);
+ __ Assert(equal, message);
+ __ pop(ecx);
+ }
+
+ // Allocate both the JS array and the elements array in one big
+ // allocation. This avoids multiple limit checks.
+ __ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT);
+
+ // Copy the JS array part.
+ for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
+ if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
+ __ mov(ebx, FieldOperand(ecx, i));
+ __ mov(FieldOperand(eax, i), ebx);
+ }
+ }
+
+ if (length_ > 0) {
+ // Get hold of the elements array of the boilerplate and setup the
+ // elements pointer in the resulting object.
+ __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset));
+ __ lea(edx, Operand(eax, JSArray::kSize));
+ __ mov(FieldOperand(eax, JSArray::kElementsOffset), edx);
+
+ // Copy the elements array.
+ for (int i = 0; i < elements_size; i += kPointerSize) {
+ __ mov(ebx, FieldOperand(ecx, i));
+ __ mov(FieldOperand(edx, i), ebx);
+ }
+ }
+
+ // Return and remove the on-stack parameters.
+ __ ret(3 * kPointerSize);
+
+ __ bind(&slow_case);
+ __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
+}
+
+
+// NOTE: The stub does not handle the inlined cases (Smis, Booleans, undefined).
+void ToBooleanStub::Generate(MacroAssembler* masm) {
+ NearLabel false_result, true_result, not_string;
+ __ mov(eax, Operand(esp, 1 * kPointerSize));
+
+ // 'null' => false.
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(eax, factory->null_value());
+ __ j(equal, &false_result);
+
+ // Get the map and type of the heap object.
+ __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset));
+
+ // Undetectable => false.
+ __ test_b(FieldOperand(edx, Map::kBitFieldOffset),
+ 1 << Map::kIsUndetectable);
+ __ j(not_zero, &false_result);
+
+ // JavaScript object => true.
+ __ CmpInstanceType(edx, FIRST_JS_OBJECT_TYPE);
+ __ j(above_equal, &true_result);
+
+ // String value => false iff empty.
+ __ CmpInstanceType(edx, FIRST_NONSTRING_TYPE);
+ __ j(above_equal, &not_string);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ cmp(FieldOperand(eax, String::kLengthOffset), Immediate(0));
+ __ j(zero, &false_result);
+ __ jmp(&true_result);
+
+ __ bind(&not_string);
+ // HeapNumber => false iff +0, -0, or NaN.
+ __ cmp(edx, factory->heap_number_map());
+ __ j(not_equal, &true_result);
+ __ fldz();
+ __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ __ FCmp();
+ __ j(zero, &false_result);
+ // Fall through to |true_result|.
+
+ // Return 1/0 for true/false in eax.
+ __ bind(&true_result);
+ __ mov(eax, 1);
+ __ ret(1 * kPointerSize);
+ __ bind(&false_result);
+ __ mov(eax, 0);
+ __ ret(1 * kPointerSize);
+}
+
+
+const char* GenericBinaryOpStub::GetName() {
+ if (name_ != NULL) return name_;
+ const int kMaxNameLength = 100;
+ name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(
+ kMaxNameLength);
+ if (name_ == NULL) return "OOM";
+ const char* op_name = Token::Name(op_);
+ const char* overwrite_name;
+ switch (mode_) {
+ case NO_OVERWRITE: overwrite_name = "Alloc"; break;
+ case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
+ case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
+ default: overwrite_name = "UnknownOverwrite"; break;
+ }
+
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
+ "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s",
+ op_name,
+ overwrite_name,
+ (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "",
+ args_in_registers_ ? "RegArgs" : "StackArgs",
+ args_reversed_ ? "_R" : "",
+ static_operands_type_.ToString(),
+ BinaryOpIC::GetName(runtime_operands_type_));
+ return name_;
+}
+
+
+void GenericBinaryOpStub::GenerateCall(
+ MacroAssembler* masm,
+ Register left,
+ Register right) {
+ if (!ArgsInRegistersSupported()) {
+ // Pass arguments on the stack.
+ __ push(left);
+ __ push(right);
+ } else {
+ // The calling convention with registers is left in edx and right in eax.
+ Register left_arg = edx;
+ Register right_arg = eax;
+ if (!(left.is(left_arg) && right.is(right_arg))) {
+ if (left.is(right_arg) && right.is(left_arg)) {
+ if (IsOperationCommutative()) {
+ SetArgsReversed();
+ } else {
+ __ xchg(left, right);
+ }
+ } else if (left.is(left_arg)) {
+ __ mov(right_arg, right);
+ } else if (right.is(right_arg)) {
+ __ mov(left_arg, left);
+ } else if (left.is(right_arg)) {
+ if (IsOperationCommutative()) {
+ __ mov(left_arg, right);
+ SetArgsReversed();
+ } else {
+ // Order of moves important to avoid destroying left argument.
+ __ mov(left_arg, left);
+ __ mov(right_arg, right);
+ }
+ } else if (right.is(left_arg)) {
+ if (IsOperationCommutative()) {
+ __ mov(right_arg, left);
+ SetArgsReversed();
+ } else {
+ // Order of moves important to avoid destroying right argument.
+ __ mov(right_arg, right);
+ __ mov(left_arg, left);
+ }
+ } else {
+ // Order of moves is not important.
+ __ mov(left_arg, left);
+ __ mov(right_arg, right);
+ }
+ }
+
+ // Update flags to indicate that arguments are in registers.
+ SetArgsInRegisters();
+ __ IncrementCounter(
+ masm->isolate()->counters()->generic_binary_stub_calls_regs(), 1);
+ }
+
+ // Call the stub.
+ __ CallStub(this);
+}
+
+
+void GenericBinaryOpStub::GenerateCall(
+ MacroAssembler* masm,
+ Register left,
+ Smi* right) {
+ if (!ArgsInRegistersSupported()) {
+ // Pass arguments on the stack.
+ __ push(left);
+ __ push(Immediate(right));
+ } else {
+ // The calling convention with registers is left in edx and right in eax.
+ Register left_arg = edx;
+ Register right_arg = eax;
+ if (left.is(left_arg)) {
+ __ mov(right_arg, Immediate(right));
+ } else if (left.is(right_arg) && IsOperationCommutative()) {
+ __ mov(left_arg, Immediate(right));
+ SetArgsReversed();
+ } else {
+ // For non-commutative operations, left and right_arg might be
+ // the same register. Therefore, the order of the moves is
+ // important here in order to not overwrite left before moving
+ // it to left_arg.
+ __ mov(left_arg, left);
+ __ mov(right_arg, Immediate(right));
+ }
+
+ // Update flags to indicate that arguments are in registers.
+ SetArgsInRegisters();
+ __ IncrementCounter(
+ masm->isolate()->counters()->generic_binary_stub_calls_regs(), 1);
+ }
+
+ // Call the stub.
+ __ CallStub(this);
+}
+
+
+void GenericBinaryOpStub::GenerateCall(
+ MacroAssembler* masm,
+ Smi* left,
+ Register right) {
+ if (!ArgsInRegistersSupported()) {
+ // Pass arguments on the stack.
+ __ push(Immediate(left));
+ __ push(right);
+ } else {
+ // The calling convention with registers is left in edx and right in eax.
+ Register left_arg = edx;
+ Register right_arg = eax;
+ if (right.is(right_arg)) {
+ __ mov(left_arg, Immediate(left));
+ } else if (right.is(left_arg) && IsOperationCommutative()) {
+ __ mov(right_arg, Immediate(left));
+ SetArgsReversed();
+ } else {
+ // For non-commutative operations, right and left_arg might be
+ // the same register. Therefore, the order of the moves is
+ // important here in order to not overwrite right before moving
+ // it to right_arg.
+ __ mov(right_arg, right);
+ __ mov(left_arg, Immediate(left));
+ }
+ // Update flags to indicate that arguments are in registers.
+ SetArgsInRegisters();
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->generic_binary_stub_calls_regs(), 1);
+ }
+
+ // Call the stub.
+ __ CallStub(this);
+}
+
+
+class FloatingPointHelper : public AllStatic {
+ public:
+
+ enum ArgLocation {
+ ARGS_ON_STACK,
+ ARGS_IN_REGISTERS
+ };
+
+ // Code pattern for loading a floating point value. Input value must
+ // be either a smi or a heap number object (fp value). Requirements:
+ // operand in register number. Returns operand as floating point number
+ // on FPU stack.
+ static void LoadFloatOperand(MacroAssembler* masm, Register number);
+
+ // Code pattern for loading floating point values. Input values must
+ // be either smi or heap number objects (fp values). Requirements:
+ // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax.
+ // Returns operands as floating point numbers on FPU stack.
+ static void LoadFloatOperands(MacroAssembler* masm,
+ Register scratch,
+ ArgLocation arg_location = ARGS_ON_STACK);
+
+ // Similar to LoadFloatOperand but assumes that both operands are smis.
+ // Expects operands in edx, eax.
+ static void LoadFloatSmis(MacroAssembler* masm, Register scratch);
+
+ // Test if operands are smi or number objects (fp). Requirements:
+ // operand_1 in eax, operand_2 in edx; falls through on float
+ // operands, jumps to the non_float label otherwise.
+ static void CheckFloatOperands(MacroAssembler* masm,
+ Label* non_float,
+ Register scratch);
+
+ // Checks that the two floating point numbers on top of the FPU stack
+ // have int32 values.
+ static void CheckFloatOperandsAreInt32(MacroAssembler* masm,
+ Label* non_int32);
+
+ // Takes the operands in edx and eax and loads them as integers in eax
+ // and ecx.
+ static void LoadAsIntegers(MacroAssembler* masm,
+ TypeInfo type_info,
+ bool use_sse3,
+ Label* operand_conversion_failure);
+ static void LoadNumbersAsIntegers(MacroAssembler* masm,
+ TypeInfo type_info,
+ bool use_sse3,
+ Label* operand_conversion_failure);
+ static void LoadUnknownsAsIntegers(MacroAssembler* masm,
+ bool use_sse3,
+ Label* operand_conversion_failure);
+
+ // Must only be called after LoadUnknownsAsIntegers. Assumes that the
+ // operands are pushed on the stack, and that their conversions to int32
+ // are in eax and ecx. Checks that the original numbers were in the int32
+ // range.
+ static void CheckLoadedIntegersWereInt32(MacroAssembler* masm,
+ bool use_sse3,
+ Label* not_int32);
+
+ // Assumes that operands are smis or heap numbers and loads them
+ // into xmm0 and xmm1. Operands are in edx and eax.
+ // Leaves operands unchanged.
+ static void LoadSSE2Operands(MacroAssembler* masm);
+
+ // Test if operands are numbers (smi or HeapNumber objects), and load
+ // them into xmm0 and xmm1 if they are. Jump to label not_numbers if
+ // either operand is not a number. Operands are in edx and eax.
+ // Leaves operands unchanged.
+ static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
+
+ // Similar to LoadSSE2Operands but assumes that both operands are smis.
+ // Expects operands in edx, eax.
+ static void LoadSSE2Smis(MacroAssembler* masm, Register scratch);
+
+ // Checks that the two floating point numbers loaded into xmm0 and xmm1
+ // have int32 values.
+ static void CheckSSE2OperandsAreInt32(MacroAssembler* masm,
+ Label* non_int32,
+ Register scratch);
+};
+
+
+void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
+ // 1. Move arguments into edx, eax except for DIV and MOD, which need the
+ // dividend in eax and edx free for the division. Use eax, ebx for those.
+ Comment load_comment(masm, "-- Load arguments");
+ Register left = edx;
+ Register right = eax;
+ if (op_ == Token::DIV || op_ == Token::MOD) {
+ left = eax;
+ right = ebx;
+ if (HasArgsInRegisters()) {
+ __ mov(ebx, eax);
+ __ mov(eax, edx);
+ }
+ }
+ if (!HasArgsInRegisters()) {
+ __ mov(right, Operand(esp, 1 * kPointerSize));
+ __ mov(left, Operand(esp, 2 * kPointerSize));
+ }
+
+ if (static_operands_type_.IsSmi()) {
+ if (FLAG_debug_code) {
+ __ AbortIfNotSmi(left);
+ __ AbortIfNotSmi(right);
+ }
+ if (op_ == Token::BIT_OR) {
+ __ or_(right, Operand(left));
+ GenerateReturn(masm);
+ return;
+ } else if (op_ == Token::BIT_AND) {
+ __ and_(right, Operand(left));
+ GenerateReturn(masm);
+ return;
+ } else if (op_ == Token::BIT_XOR) {
+ __ xor_(right, Operand(left));
+ GenerateReturn(masm);
+ return;
+ }
+ }
+
+ // 2. Prepare the smi check of both operands by oring them together.
+ Comment smi_check_comment(masm, "-- Smi check arguments");
+ Label not_smis;
+ Register combined = ecx;
+ ASSERT(!left.is(combined) && !right.is(combined));
+ switch (op_) {
+ case Token::BIT_OR:
+ // Perform the operation into eax and smi check the result. Preserve
+ // eax in case the result is not a smi.
+ ASSERT(!left.is(ecx) && !right.is(ecx));
+ __ mov(ecx, right);
+ __ or_(right, Operand(left)); // Bitwise or is commutative.
+ combined = right;
+ break;
+
+ case Token::BIT_XOR:
+ case Token::BIT_AND:
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ case Token::MOD:
+ __ mov(combined, right);
+ __ or_(combined, Operand(left));
+ break;
+
+ case Token::SHL:
+ case Token::SAR:
+ case Token::SHR:
+ // Move the right operand into ecx for the shift operation, use eax
+ // for the smi check register.
+ ASSERT(!left.is(ecx) && !right.is(ecx));
+ __ mov(ecx, right);
+ __ or_(right, Operand(left));
+ combined = right;
+ break;
+
+ default:
+ break;
+ }
+
+ // 3. Perform the smi check of the operands.
+ STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case.
+ __ test(combined, Immediate(kSmiTagMask));
+ __ j(not_zero, &not_smis, not_taken);
+
+ // 4. Operands are both smis, perform the operation leaving the result in
+ // eax and check the result if necessary.
+ Comment perform_smi(masm, "-- Perform smi operation");
+ Label use_fp_on_smis;
+ switch (op_) {
+ case Token::BIT_OR:
+ // Nothing to do.
+ break;
+
+ case Token::BIT_XOR:
+ ASSERT(right.is(eax));
+ __ xor_(right, Operand(left)); // Bitwise xor is commutative.
+ break;
+
+ case Token::BIT_AND:
+ ASSERT(right.is(eax));
+ __ and_(right, Operand(left)); // Bitwise and is commutative.
+ break;
+
+ case Token::SHL:
+ // Remove tags from operands (but keep sign).
+ __ SmiUntag(left);
+ __ SmiUntag(ecx);
+ // Perform the operation.
+ __ shl_cl(left);
+ // Check that the *signed* result fits in a smi.
+ __ cmp(left, 0xc0000000);
+ __ j(sign, &use_fp_on_smis, not_taken);
+ // Tag the result and store it in register eax.
+ __ SmiTag(left);
+ __ mov(eax, left);
+ break;
+
+ case Token::SAR:
+ // Remove tags from operands (but keep sign).
+ __ SmiUntag(left);
+ __ SmiUntag(ecx);
+ // Perform the operation.
+ __ sar_cl(left);
+ // Tag the result and store it in register eax.
+ __ SmiTag(left);
+ __ mov(eax, left);
+ break;
+
+ case Token::SHR:
+ // Remove tags from operands (but keep sign).
+ __ SmiUntag(left);
+ __ SmiUntag(ecx);
+ // Perform the operation.
+ __ shr_cl(left);
+ // Check that the *unsigned* result fits in a smi.
+ // Neither of the two high-order bits can be set:
+ // - 0x80000000: high bit would be lost when smi tagging.
+ // - 0x40000000: this number would convert to negative when
+ // Smi tagging these two cases can only happen with shifts
+ // by 0 or 1 when handed a valid smi.
+ __ test(left, Immediate(0xc0000000));
+ __ j(not_zero, slow, not_taken);
+ // Tag the result and store it in register eax.
+ __ SmiTag(left);
+ __ mov(eax, left);
+ break;
+
+ case Token::ADD:
+ ASSERT(right.is(eax));
+ __ add(right, Operand(left)); // Addition is commutative.
+ __ j(overflow, &use_fp_on_smis, not_taken);
+ break;
+
+ case Token::SUB:
+ __ sub(left, Operand(right));
+ __ j(overflow, &use_fp_on_smis, not_taken);
+ __ mov(eax, left);
+ break;
+
+ case Token::MUL:
+ // If the smi tag is 0 we can just leave the tag on one operand.
+ STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
+ // We can't revert the multiplication if the result is not a smi
+ // so save the right operand.
+ __ mov(ebx, right);
+ // Remove tag from one of the operands (but keep sign).
+ __ SmiUntag(right);
+ // Do multiplication.
+ __ imul(right, Operand(left)); // Multiplication is commutative.
+ __ j(overflow, &use_fp_on_smis, not_taken);
+ // Check for negative zero result. Use combined = left | right.
+ __ NegativeZeroTest(right, combined, &use_fp_on_smis);
+ break;
+
+ case Token::DIV:
+ // We can't revert the division if the result is not a smi so
+ // save the left operand.
+ __ mov(edi, left);
+ // Check for 0 divisor.
+ __ test(right, Operand(right));
+ __ j(zero, &use_fp_on_smis, not_taken);
+ // Sign extend left into edx:eax.
+ ASSERT(left.is(eax));
+ __ cdq();
+ // Divide edx:eax by right.
+ __ idiv(right);
+ // Check for the corner case of dividing the most negative smi by
+ // -1. We cannot use the overflow flag, since it is not set by idiv
+ // instruction.
+ STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
+ __ cmp(eax, 0x40000000);
+ __ j(equal, &use_fp_on_smis);
+ // Check for negative zero result. Use combined = left | right.
+ __ NegativeZeroTest(eax, combined, &use_fp_on_smis);
+ // Check that the remainder is zero.
+ __ test(edx, Operand(edx));
+ __ j(not_zero, &use_fp_on_smis);
+ // Tag the result and store it in register eax.
+ __ SmiTag(eax);
+ break;
+
+ case Token::MOD:
+ // Check for 0 divisor.
+ __ test(right, Operand(right));
+ __ j(zero, &not_smis, not_taken);
+
+ // Sign extend left into edx:eax.
+ ASSERT(left.is(eax));
+ __ cdq();
+ // Divide edx:eax by right.
+ __ idiv(right);
+ // Check for negative zero result. Use combined = left | right.
+ __ NegativeZeroTest(edx, combined, slow);
+ // Move remainder to register eax.
+ __ mov(eax, edx);
+ break;
+
+ default:
+ UNREACHABLE();
+ }
+
+ // 5. Emit return of result in eax.
+ GenerateReturn(masm);
+
+ // 6. For some operations emit inline code to perform floating point
+ // operations on known smis (e.g., if the result of the operation
+ // overflowed the smi range).
+ switch (op_) {
+ case Token::SHL: {
+ Comment perform_float(masm, "-- Perform float operation on smis");
+ __ bind(&use_fp_on_smis);
+ if (runtime_operands_type_ != BinaryOpIC::UNINIT_OR_SMI) {
+ // Result we want is in left == edx, so we can put the allocated heap
+ // number in eax.
+ __ AllocateHeapNumber(eax, ecx, ebx, slow);
+ // Store the result in the HeapNumber and return.
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ __ cvtsi2sd(xmm0, Operand(left));
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ } else {
+ // It's OK to overwrite the right argument on the stack because we
+ // are about to return.
+ __ mov(Operand(esp, 1 * kPointerSize), left);
+ __ fild_s(Operand(esp, 1 * kPointerSize));
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ }
+ GenerateReturn(masm);
+ } else {
+ ASSERT(runtime_operands_type_ == BinaryOpIC::UNINIT_OR_SMI);
+ __ jmp(slow);
+ }
+ break;
+ }
+
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV: {
+ Comment perform_float(masm, "-- Perform float operation on smis");
+ __ bind(&use_fp_on_smis);
+ // Restore arguments to edx, eax.
+ switch (op_) {
+ case Token::ADD:
+ // Revert right = right + left.
+ __ sub(right, Operand(left));
+ break;
+ case Token::SUB:
+ // Revert left = left - right.
+ __ add(left, Operand(right));
+ break;
+ case Token::MUL:
+ // Right was clobbered but a copy is in ebx.
+ __ mov(right, ebx);
+ break;
+ case Token::DIV:
+ // Left was clobbered but a copy is in edi. Right is in ebx for
+ // division.
+ __ mov(edx, edi);
+ __ mov(eax, right);
+ break;
+ default: UNREACHABLE();
+ break;
+ }
+ if (runtime_operands_type_ != BinaryOpIC::UNINIT_OR_SMI) {
+ __ AllocateHeapNumber(ecx, ebx, no_reg, slow);
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ FloatingPointHelper::LoadSSE2Smis(masm, ebx);
+ switch (op_) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0);
+ } else { // SSE2 not available, use FPU.
+ FloatingPointHelper::LoadFloatSmis(masm, ebx);
+ switch (op_) {
+ case Token::ADD: __ faddp(1); break;
+ case Token::SUB: __ fsubp(1); break;
+ case Token::MUL: __ fmulp(1); break;
+ case Token::DIV: __ fdivp(1); break;
+ default: UNREACHABLE();
+ }
+ __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset));
+ }
+ __ mov(eax, ecx);
+ GenerateReturn(masm);
+ } else {
+ ASSERT(runtime_operands_type_ == BinaryOpIC::UNINIT_OR_SMI);
+ __ jmp(slow);
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ // 7. Non-smi operands, fall out to the non-smi code with the operands in
+ // edx and eax.
+ Comment done_comment(masm, "-- Enter non-smi code");
+ __ bind(&not_smis);
+ switch (op_) {
+ case Token::BIT_OR:
+ case Token::SHL:
+ case Token::SAR:
+ case Token::SHR:
+ // Right operand is saved in ecx and eax was destroyed by the smi
+ // check.
+ __ mov(eax, ecx);
+ break;
+
+ case Token::DIV:
+ case Token::MOD:
+ // Operands are in eax, ebx at this point.
+ __ mov(edx, eax);
+ __ mov(eax, ebx);
+ break;
+
+ default:
+ break;
+ }
+}
+
+
+void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
+ Label call_runtime;
+
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->generic_binary_stub_calls(), 1);
+
+ if (runtime_operands_type_ == BinaryOpIC::UNINIT_OR_SMI) {
+ Label slow;
+ if (ShouldGenerateSmiCode()) GenerateSmiCode(masm, &slow);
+ __ bind(&slow);
+ GenerateTypeTransition(masm);
+ }
+
+ // Generate fast case smi code if requested. This flag is set when the fast
+ // case smi code is not generated by the caller. Generating it here will speed
+ // up common operations.
+ if (ShouldGenerateSmiCode()) {
+ GenerateSmiCode(masm, &call_runtime);
+ } else if (op_ != Token::MOD) { // MOD goes straight to runtime.
+ if (!HasArgsInRegisters()) {
+ GenerateLoadArguments(masm);
+ }
+ }
+
+ // Floating point case.
+ if (ShouldGenerateFPCode()) {
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV: {
+ if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
+ HasSmiCodeInStub()) {
+ // Execution reaches this point when the first non-smi argument occurs
+ // (and only if smi code is generated). This is the right moment to
+ // patch to HEAP_NUMBERS state. The transition is attempted only for
+ // the four basic operations. The stub stays in the DEFAULT state
+ // forever for all other operations (also if smi code is skipped).
+ GenerateTypeTransition(masm);
+ break;
+ }
+
+ Label not_floats;
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ if (static_operands_type_.IsNumber()) {
+ if (FLAG_debug_code) {
+ // Assert at runtime that inputs are only numbers.
+ __ AbortIfNotNumber(edx);
+ __ AbortIfNotNumber(eax);
+ }
+ if (static_operands_type_.IsSmi()) {
+ if (FLAG_debug_code) {
+ __ AbortIfNotSmi(edx);
+ __ AbortIfNotSmi(eax);
+ }
+ FloatingPointHelper::LoadSSE2Smis(masm, ecx);
+ } else {
+ FloatingPointHelper::LoadSSE2Operands(masm);
+ }
+ } else {
+ FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
+ }
+
+ switch (op_) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ GenerateHeapResultAllocation(masm, &call_runtime);
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ GenerateReturn(masm);
+ } else { // SSE2 not available, use FPU.
+ if (static_operands_type_.IsNumber()) {
+ if (FLAG_debug_code) {
+ // Assert at runtime that inputs are only numbers.
+ __ AbortIfNotNumber(edx);
+ __ AbortIfNotNumber(eax);
+ }
+ } else {
+ FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
+ }
+ FloatingPointHelper::LoadFloatOperands(
+ masm,
+ ecx,
+ FloatingPointHelper::ARGS_IN_REGISTERS);
+ switch (op_) {
+ case Token::ADD: __ faddp(1); break;
+ case Token::SUB: __ fsubp(1); break;
+ case Token::MUL: __ fmulp(1); break;
+ case Token::DIV: __ fdivp(1); break;
+ default: UNREACHABLE();
+ }
+ Label after_alloc_failure;
+ GenerateHeapResultAllocation(masm, &after_alloc_failure);
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ GenerateReturn(masm);
+ __ bind(&after_alloc_failure);
+ __ ffree();
+ __ jmp(&call_runtime);
+ }
+ __ bind(&not_floats);
+ if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
+ !HasSmiCodeInStub()) {
+ // Execution reaches this point when the first non-number argument
+ // occurs (and only if smi code is skipped from the stub, otherwise
+ // the patching has already been done earlier in this case branch).
+ // Try patching to STRINGS for ADD operation.
+ if (op_ == Token::ADD) {
+ GenerateTypeTransition(masm);
+ }
+ }
+ break;
+ }
+ case Token::MOD: {
+ // For MOD we go directly to runtime in the non-smi case.
+ break;
+ }
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR: {
+ Label non_smi_result;
+ FloatingPointHelper::LoadAsIntegers(masm,
+ static_operands_type_,
+ use_sse3_,
+ &call_runtime);
+ switch (op_) {
+ case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
+ case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
+ case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
+ case Token::SAR: __ sar_cl(eax); break;
+ case Token::SHL: __ shl_cl(eax); break;
+ case Token::SHR: __ shr_cl(eax); break;
+ default: UNREACHABLE();
+ }
+ if (op_ == Token::SHR) {
+ // Check if result is non-negative and fits in a smi.
+ __ test(eax, Immediate(0xc0000000));
+ __ j(not_zero, &call_runtime);
+ } else {
+ // Check if result fits in a smi.
+ __ cmp(eax, 0xc0000000);
+ __ j(negative, &non_smi_result);
+ }
+ // Tag smi result and return.
+ __ SmiTag(eax);
+ GenerateReturn(masm);
+
+ // All ops except SHR return a signed int32 that we load in
+ // a HeapNumber.
+ if (op_ != Token::SHR) {
+ __ bind(&non_smi_result);
+ // Allocate a heap number if needed.
+ __ mov(ebx, Operand(eax)); // ebx: result
+ NearLabel skip_allocation;
+ switch (mode_) {
+ case OVERWRITE_LEFT:
+ case OVERWRITE_RIGHT:
+ // If the operand was an object, we skip the
+ // allocation of a heap number.
+ __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
+ 1 * kPointerSize : 2 * kPointerSize));
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &skip_allocation, not_taken);
+ // Fall through!
+ case NO_OVERWRITE:
+ __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
+ __ bind(&skip_allocation);
+ break;
+ default: UNREACHABLE();
+ }
+ // Store the result in the HeapNumber and return.
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ __ cvtsi2sd(xmm0, Operand(ebx));
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ } else {
+ __ mov(Operand(esp, 1 * kPointerSize), ebx);
+ __ fild_s(Operand(esp, 1 * kPointerSize));
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ }
+ GenerateReturn(masm);
+ }
+ break;
+ }
+ default: UNREACHABLE(); break;
+ }
+ }
+
+ // If all else fails, use the runtime system to get the correct
+ // result. If arguments was passed in registers now place them on the
+ // stack in the correct order below the return address.
+
+ // Avoid hitting the string ADD code below when allocation fails in
+ // the floating point code above.
+ if (op_ != Token::ADD) {
+ __ bind(&call_runtime);
+ }
+
+ if (HasArgsInRegisters()) {
+ GenerateRegisterArgsPush(masm);
+ }
+
+ switch (op_) {
+ case Token::ADD: {
+ // Test for string arguments before calling runtime.
+
+ // If this stub has already generated FP-specific code then the arguments
+ // are already in edx, eax
+ if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) {
+ GenerateLoadArguments(masm);
+ }
+
+ // Registers containing left and right operands respectively.
+ Register lhs, rhs;
+ if (HasArgsReversed()) {
+ lhs = eax;
+ rhs = edx;
+ } else {
+ lhs = edx;
+ rhs = eax;
+ }
+
+ // Test if left operand is a string.
+ NearLabel lhs_not_string;
+ __ test(lhs, Immediate(kSmiTagMask));
+ __ j(zero, &lhs_not_string);
+ __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, ecx);
+ __ j(above_equal, &lhs_not_string);
+
+ StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
+ __ TailCallStub(&string_add_left_stub);
+
+ NearLabel call_runtime_with_args;
+ // Left operand is not a string, test right.
+ __ bind(&lhs_not_string);
+ __ test(rhs, Immediate(kSmiTagMask));
+ __ j(zero, &call_runtime_with_args);
+ __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, ecx);
+ __ j(above_equal, &call_runtime_with_args);
+
+ StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
+ __ TailCallStub(&string_add_right_stub);
+
+ // Neither argument is a string.
+ __ bind(&call_runtime);
+ if (HasArgsInRegisters()) {
+ GenerateRegisterArgsPush(masm);
+ }
+ __ bind(&call_runtime_with_args);
+ __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
+ break;
+ }
+ case Token::SUB:
+ __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
+ break;
+ case Token::MUL:
+ __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
+ break;
+ case Token::DIV:
+ __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
+ break;
+ case Token::MOD:
+ __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
+ break;
+ case Token::BIT_OR:
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
+ break;
+ case Token::BIT_AND:
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
+ break;
+ case Token::BIT_XOR:
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
+ break;
+ case Token::SAR:
+ __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
+ break;
+ case Token::SHL:
+ __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
+ break;
+ case Token::SHR:
+ __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void GenericBinaryOpStub::GenerateHeapResultAllocation(MacroAssembler* masm,
+ Label* alloc_failure) {
+ Label skip_allocation;
+ OverwriteMode mode = mode_;
+ if (HasArgsReversed()) {
+ if (mode == OVERWRITE_RIGHT) {
+ mode = OVERWRITE_LEFT;
+ } else if (mode == OVERWRITE_LEFT) {
+ mode = OVERWRITE_RIGHT;
+ }
+ }
+ switch (mode) {
+ case OVERWRITE_LEFT: {
+ // If the argument in edx is already an object, we skip the
+ // allocation of a heap number.
+ __ test(edx, Immediate(kSmiTagMask));
+ __ j(not_zero, &skip_allocation, not_taken);
+ // Allocate a heap number for the result. Keep eax and edx intact
+ // for the possible runtime call.
+ __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
+ // Now edx can be overwritten losing one of the arguments as we are
+ // now done and will not need it any more.
+ __ mov(edx, Operand(ebx));
+ __ bind(&skip_allocation);
+ // Use object in edx as a result holder
+ __ mov(eax, Operand(edx));
+ break;
+ }
+ case OVERWRITE_RIGHT:
+ // If the argument in eax is already an object, we skip the
+ // allocation of a heap number.
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &skip_allocation, not_taken);
+ // Fall through!
+ case NO_OVERWRITE:
+ // Allocate a heap number for the result. Keep eax and edx intact
+ // for the possible runtime call.
+ __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
+ // Now eax can be overwritten losing one of the arguments as we are
+ // now done and will not need it any more.
+ __ mov(eax, ebx);
+ __ bind(&skip_allocation);
+ break;
+ default: UNREACHABLE();
+ }
+}
+
+
+void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) {
+ // If arguments are not passed in registers read them from the stack.
+ ASSERT(!HasArgsInRegisters());
+ __ mov(eax, Operand(esp, 1 * kPointerSize));
+ __ mov(edx, Operand(esp, 2 * kPointerSize));
+}
+
+
+void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) {
+ // If arguments are not passed in registers remove them from the stack before
+ // returning.
+ if (!HasArgsInRegisters()) {
+ __ ret(2 * kPointerSize); // Remove both operands
+ } else {
+ __ ret(0);
+ }
+}
+
+
+void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
+ ASSERT(HasArgsInRegisters());
+ __ pop(ecx);
+ if (HasArgsReversed()) {
+ __ push(eax);
+ __ push(edx);
+ } else {
+ __ push(edx);
+ __ push(eax);
+ }
+ __ push(ecx);
+}
+
+
+void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
+ // Ensure the operands are on the stack.
+ if (HasArgsInRegisters()) {
+ GenerateRegisterArgsPush(masm);
+ }
+
+ __ pop(ecx); // Save return address.
+
+ // Left and right arguments are now on top.
+ // Push this stub's key. Although the operation and the type info are
+ // encoded into the key, the encoding is opaque, so push them too.
+ __ push(Immediate(Smi::FromInt(MinorKey())));
+ __ push(Immediate(Smi::FromInt(op_)));
+ __ push(Immediate(Smi::FromInt(runtime_operands_type_)));
+
+ __ push(ecx); // Push return address.
+
+ // Patch the caller to an appropriate specialized stub and return the
+ // operation result to the caller of the stub.
+ __ TailCallExternalReference(
+ ExternalReference(IC_Utility(IC::kBinaryOp_Patch), masm->isolate()),
+ 5,
+ 1);
+}
+
+
+Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
+ GenericBinaryOpStub stub(key, type_info);
+ return stub.GetCode();
+}
+
+
+Handle<Code> GetTypeRecordingBinaryOpStub(int key,
+ TRBinaryOpIC::TypeInfo type_info,
+ TRBinaryOpIC::TypeInfo result_type_info) {
+ TypeRecordingBinaryOpStub stub(key, type_info, result_type_info);
+ return stub.GetCode();
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
+ __ pop(ecx); // Save return address.
+ __ push(edx);
+ __ push(eax);
+ // Left and right arguments are now on top.
+ // Push this stub's key. Although the operation and the type info are
+ // encoded into the key, the encoding is opaque, so push them too.
+ __ push(Immediate(Smi::FromInt(MinorKey())));
+ __ push(Immediate(Smi::FromInt(op_)));
+ __ push(Immediate(Smi::FromInt(operands_type_)));
+
+ __ push(ecx); // Push return address.
+
+ // Patch the caller to an appropriate specialized stub and return the
+ // operation result to the caller of the stub.
+ __ TailCallExternalReference(
+ ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch),
+ masm->isolate()),
+ 5,
+ 1);
+}
+
+
+// Prepare for a type transition runtime call when the args are already on
+// the stack, under the return address.
+void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs(
+ MacroAssembler* masm) {
+ __ pop(ecx); // Save return address.
+ // Left and right arguments are already on top of the stack.
+ // Push this stub's key. Although the operation and the type info are
+ // encoded into the key, the encoding is opaque, so push them too.
+ __ push(Immediate(Smi::FromInt(MinorKey())));
+ __ push(Immediate(Smi::FromInt(op_)));
+ __ push(Immediate(Smi::FromInt(operands_type_)));
+
+ __ push(ecx); // Push return address.
+
+ // Patch the caller to an appropriate specialized stub and return the
+ // operation result to the caller of the stub.
+ __ TailCallExternalReference(
+ ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch),
+ masm->isolate()),
+ 5,
+ 1);
+}
+
+
+void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) {
+ switch (operands_type_) {
+ case TRBinaryOpIC::UNINITIALIZED:
+ GenerateTypeTransition(masm);
+ break;
+ case TRBinaryOpIC::SMI:
+ GenerateSmiStub(masm);
+ break;
+ case TRBinaryOpIC::INT32:
+ GenerateInt32Stub(masm);
+ break;
+ case TRBinaryOpIC::HEAP_NUMBER:
+ GenerateHeapNumberStub(masm);
+ break;
+ case TRBinaryOpIC::ODDBALL:
+ GenerateOddballStub(masm);
+ break;
+ case TRBinaryOpIC::STRING:
+ GenerateStringStub(masm);
+ break;
+ case TRBinaryOpIC::GENERIC:
+ GenerateGeneric(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+const char* TypeRecordingBinaryOpStub::GetName() {
+ if (name_ != NULL) return name_;
+ const int kMaxNameLength = 100;
+ name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(
+ kMaxNameLength);
+ if (name_ == NULL) return "OOM";
+ const char* op_name = Token::Name(op_);
+ const char* overwrite_name;
+ switch (mode_) {
+ case NO_OVERWRITE: overwrite_name = "Alloc"; break;
+ case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
+ case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
+ default: overwrite_name = "UnknownOverwrite"; break;
+ }
+
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
+ "TypeRecordingBinaryOpStub_%s_%s_%s",
+ op_name,
+ overwrite_name,
+ TRBinaryOpIC::GetName(operands_type_));
+ return name_;
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm,
+ Label* slow,
+ SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
+ // 1. Move arguments into edx, eax except for DIV and MOD, which need the
+ // dividend in eax and edx free for the division. Use eax, ebx for those.
+ Comment load_comment(masm, "-- Load arguments");
+ Register left = edx;
+ Register right = eax;
+ if (op_ == Token::DIV || op_ == Token::MOD) {
+ left = eax;
+ right = ebx;
+ __ mov(ebx, eax);
+ __ mov(eax, edx);
+ }
+
+
+ // 2. Prepare the smi check of both operands by oring them together.
+ Comment smi_check_comment(masm, "-- Smi check arguments");
+ Label not_smis;
+ Register combined = ecx;
+ ASSERT(!left.is(combined) && !right.is(combined));
+ switch (op_) {
+ case Token::BIT_OR:
+ // Perform the operation into eax and smi check the result. Preserve
+ // eax in case the result is not a smi.
+ ASSERT(!left.is(ecx) && !right.is(ecx));
+ __ mov(ecx, right);
+ __ or_(right, Operand(left)); // Bitwise or is commutative.
+ combined = right;
+ break;
+
+ case Token::BIT_XOR:
+ case Token::BIT_AND:
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ case Token::MOD:
+ __ mov(combined, right);
+ __ or_(combined, Operand(left));
+ break;
+
+ case Token::SHL:
+ case Token::SAR:
+ case Token::SHR:
+ // Move the right operand into ecx for the shift operation, use eax
+ // for the smi check register.
+ ASSERT(!left.is(ecx) && !right.is(ecx));
+ __ mov(ecx, right);
+ __ or_(right, Operand(left));
+ combined = right;
+ break;
+
+ default:
+ break;
+ }
+
+ // 3. Perform the smi check of the operands.
+ STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case.
+ __ test(combined, Immediate(kSmiTagMask));
+ __ j(not_zero, &not_smis, not_taken);
+
+ // 4. Operands are both smis, perform the operation leaving the result in
+ // eax and check the result if necessary.
+ Comment perform_smi(masm, "-- Perform smi operation");
+ Label use_fp_on_smis;
+ switch (op_) {
+ case Token::BIT_OR:
+ // Nothing to do.
+ break;
+
+ case Token::BIT_XOR:
+ ASSERT(right.is(eax));
+ __ xor_(right, Operand(left)); // Bitwise xor is commutative.
+ break;
+
+ case Token::BIT_AND:
+ ASSERT(right.is(eax));
+ __ and_(right, Operand(left)); // Bitwise and is commutative.
+ break;
+
+ case Token::SHL:
+ // Remove tags from operands (but keep sign).
+ __ SmiUntag(left);
+ __ SmiUntag(ecx);
+ // Perform the operation.
+ __ shl_cl(left);
+ // Check that the *signed* result fits in a smi.
+ __ cmp(left, 0xc0000000);
+ __ j(sign, &use_fp_on_smis, not_taken);
+ // Tag the result and store it in register eax.
+ __ SmiTag(left);
+ __ mov(eax, left);
+ break;
+
+ case Token::SAR:
+ // Remove tags from operands (but keep sign).
+ __ SmiUntag(left);
+ __ SmiUntag(ecx);
+ // Perform the operation.
+ __ sar_cl(left);
+ // Tag the result and store it in register eax.
+ __ SmiTag(left);
+ __ mov(eax, left);
+ break;
+
+ case Token::SHR:
+ // Remove tags from operands (but keep sign).
+ __ SmiUntag(left);
+ __ SmiUntag(ecx);
+ // Perform the operation.
+ __ shr_cl(left);
+ // Check that the *unsigned* result fits in a smi.
+ // Neither of the two high-order bits can be set:
+ // - 0x80000000: high bit would be lost when smi tagging.
+ // - 0x40000000: this number would convert to negative when
+ // Smi tagging these two cases can only happen with shifts
+ // by 0 or 1 when handed a valid smi.
+ __ test(left, Immediate(0xc0000000));
+ __ j(not_zero, slow, not_taken);
+ // Tag the result and store it in register eax.
+ __ SmiTag(left);
+ __ mov(eax, left);
+ break;
+
+ case Token::ADD:
+ ASSERT(right.is(eax));
+ __ add(right, Operand(left)); // Addition is commutative.
+ __ j(overflow, &use_fp_on_smis, not_taken);
+ break;
+
+ case Token::SUB:
+ __ sub(left, Operand(right));
+ __ j(overflow, &use_fp_on_smis, not_taken);
+ __ mov(eax, left);
+ break;
+
+ case Token::MUL:
+ // If the smi tag is 0 we can just leave the tag on one operand.
+ STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
+ // We can't revert the multiplication if the result is not a smi
+ // so save the right operand.
+ __ mov(ebx, right);
+ // Remove tag from one of the operands (but keep sign).
+ __ SmiUntag(right);
+ // Do multiplication.
+ __ imul(right, Operand(left)); // Multiplication is commutative.
+ __ j(overflow, &use_fp_on_smis, not_taken);
+ // Check for negative zero result. Use combined = left | right.
+ __ NegativeZeroTest(right, combined, &use_fp_on_smis);
+ break;
+
+ case Token::DIV:
+ // We can't revert the division if the result is not a smi so
+ // save the left operand.
+ __ mov(edi, left);
+ // Check for 0 divisor.
+ __ test(right, Operand(right));
+ __ j(zero, &use_fp_on_smis, not_taken);
+ // Sign extend left into edx:eax.
+ ASSERT(left.is(eax));
+ __ cdq();
+ // Divide edx:eax by right.
+ __ idiv(right);
+ // Check for the corner case of dividing the most negative smi by
+ // -1. We cannot use the overflow flag, since it is not set by idiv
+ // instruction.
+ STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
+ __ cmp(eax, 0x40000000);
+ __ j(equal, &use_fp_on_smis);
+ // Check for negative zero result. Use combined = left | right.
+ __ NegativeZeroTest(eax, combined, &use_fp_on_smis);
+ // Check that the remainder is zero.
+ __ test(edx, Operand(edx));
+ __ j(not_zero, &use_fp_on_smis);
+ // Tag the result and store it in register eax.
+ __ SmiTag(eax);
+ break;
+
+ case Token::MOD:
+ // Check for 0 divisor.
+ __ test(right, Operand(right));
+ __ j(zero, &not_smis, not_taken);
+
+ // Sign extend left into edx:eax.
+ ASSERT(left.is(eax));
+ __ cdq();
+ // Divide edx:eax by right.
+ __ idiv(right);
+ // Check for negative zero result. Use combined = left | right.
+ __ NegativeZeroTest(edx, combined, slow);
+ // Move remainder to register eax.
+ __ mov(eax, edx);
+ break;
+
+ default:
+ UNREACHABLE();
+ }
+
+ // 5. Emit return of result in eax. Some operations have registers pushed.
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ __ ret(0);
+ break;
+ case Token::MOD:
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ __ ret(2 * kPointerSize);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ // 6. For some operations emit inline code to perform floating point
+ // operations on known smis (e.g., if the result of the operation
+ // overflowed the smi range).
+ if (allow_heapnumber_results == NO_HEAPNUMBER_RESULTS) {
+ __ bind(&use_fp_on_smis);
+ switch (op_) {
+ // Undo the effects of some operations, and some register moves.
+ case Token::SHL:
+ // The arguments are saved on the stack, and only used from there.
+ break;
+ case Token::ADD:
+ // Revert right = right + left.
+ __ sub(right, Operand(left));
+ break;
+ case Token::SUB:
+ // Revert left = left - right.
+ __ add(left, Operand(right));
+ break;
+ case Token::MUL:
+ // Right was clobbered but a copy is in ebx.
+ __ mov(right, ebx);
+ break;
+ case Token::DIV:
+ // Left was clobbered but a copy is in edi. Right is in ebx for
+ // division. They should be in eax, ebx for jump to not_smi.
+ __ mov(eax, edi);
+ break;
+ default:
+ // No other operators jump to use_fp_on_smis.
+ break;
+ }
+ __ jmp(&not_smis);
+ } else {
+ ASSERT(allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS);
+ switch (op_) {
+ case Token::SHL: {
+ Comment perform_float(masm, "-- Perform float operation on smis");
+ __ bind(&use_fp_on_smis);
+ // Result we want is in left == edx, so we can put the allocated heap
+ // number in eax.
+ __ AllocateHeapNumber(eax, ecx, ebx, slow);
+ // Store the result in the HeapNumber and return.
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ __ cvtsi2sd(xmm0, Operand(left));
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ } else {
+ // It's OK to overwrite the right argument on the stack because we
+ // are about to return.
+ __ mov(Operand(esp, 1 * kPointerSize), left);
+ __ fild_s(Operand(esp, 1 * kPointerSize));
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ }
+ __ ret(2 * kPointerSize);
+ break;
+ }
+
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV: {
+ Comment perform_float(masm, "-- Perform float operation on smis");
+ __ bind(&use_fp_on_smis);
+ // Restore arguments to edx, eax.
+ switch (op_) {
+ case Token::ADD:
+ // Revert right = right + left.
+ __ sub(right, Operand(left));
+ break;
+ case Token::SUB:
+ // Revert left = left - right.
+ __ add(left, Operand(right));
+ break;
+ case Token::MUL:
+ // Right was clobbered but a copy is in ebx.
+ __ mov(right, ebx);
+ break;
+ case Token::DIV:
+ // Left was clobbered but a copy is in edi. Right is in ebx for
+ // division.
+ __ mov(edx, edi);
+ __ mov(eax, right);
+ break;
+ default: UNREACHABLE();
+ break;
+ }
+ __ AllocateHeapNumber(ecx, ebx, no_reg, slow);
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ FloatingPointHelper::LoadSSE2Smis(masm, ebx);
+ switch (op_) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0);
+ } else { // SSE2 not available, use FPU.
+ FloatingPointHelper::LoadFloatSmis(masm, ebx);
+ switch (op_) {
+ case Token::ADD: __ faddp(1); break;
+ case Token::SUB: __ fsubp(1); break;
+ case Token::MUL: __ fmulp(1); break;
+ case Token::DIV: __ fdivp(1); break;
+ default: UNREACHABLE();
+ }
+ __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset));
+ }
+ __ mov(eax, ecx);
+ __ ret(0);
+ break;
+ }
+
+ default:
+ break;
+ }
+ }
+
+ // 7. Non-smi operands, fall out to the non-smi code with the operands in
+ // edx and eax.
+ Comment done_comment(masm, "-- Enter non-smi code");
+ __ bind(&not_smis);
+ switch (op_) {
+ case Token::BIT_OR:
+ case Token::SHL:
+ case Token::SAR:
+ case Token::SHR:
+ // Right operand is saved in ecx and eax was destroyed by the smi
+ // check.
+ __ mov(eax, ecx);
+ break;
+
+ case Token::DIV:
+ case Token::MOD:
+ // Operands are in eax, ebx at this point.
+ __ mov(edx, eax);
+ __ mov(eax, ebx);
+ break;
+
+ default:
+ break;
+ }
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
+ Label call_runtime;
+
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ break;
+ case Token::MOD:
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ GenerateRegisterArgsPush(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ if (result_type_ == TRBinaryOpIC::UNINITIALIZED ||
+ result_type_ == TRBinaryOpIC::SMI) {
+ GenerateSmiCode(masm, &call_runtime, NO_HEAPNUMBER_RESULTS);
+ } else {
+ GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
+ }
+ __ bind(&call_runtime);
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ GenerateTypeTransition(masm);
+ break;
+ case Token::MOD:
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ GenerateTypeTransitionWithSavedArgs(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
+ ASSERT(operands_type_ == TRBinaryOpIC::STRING);
+ ASSERT(op_ == Token::ADD);
+ // Try to add arguments as strings, otherwise, transition to the generic
+ // TRBinaryOpIC type.
+ GenerateAddStrings(masm);
+ GenerateTypeTransition(masm);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
+ Label call_runtime;
+ ASSERT(operands_type_ == TRBinaryOpIC::INT32);
+
+ // Floating point case.
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV: {
+ Label not_floats;
+ Label not_int32;
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
+ FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, &not_int32, ecx);
+ switch (op_) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ // Check result type if it is currently Int32.
+ if (result_type_ <= TRBinaryOpIC::INT32) {
+ __ cvttsd2si(ecx, Operand(xmm0));
+ __ cvtsi2sd(xmm2, Operand(ecx));
+ __ ucomisd(xmm0, xmm2);
+ __ j(not_zero, &not_int32);
+ __ j(carry, &not_int32);
+ }
+ GenerateHeapResultAllocation(masm, &call_runtime);
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ __ ret(0);
+ } else { // SSE2 not available, use FPU.
+ FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
+ FloatingPointHelper::LoadFloatOperands(
+ masm,
+ ecx,
+ FloatingPointHelper::ARGS_IN_REGISTERS);
+ FloatingPointHelper::CheckFloatOperandsAreInt32(masm, &not_int32);
+ switch (op_) {
+ case Token::ADD: __ faddp(1); break;
+ case Token::SUB: __ fsubp(1); break;
+ case Token::MUL: __ fmulp(1); break;
+ case Token::DIV: __ fdivp(1); break;
+ default: UNREACHABLE();
+ }
+ Label after_alloc_failure;
+ GenerateHeapResultAllocation(masm, &after_alloc_failure);
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ __ ret(0);
+ __ bind(&after_alloc_failure);
+ __ ffree();
+ __ jmp(&call_runtime);
+ }
+
+ __ bind(&not_floats);
+ __ bind(&not_int32);
+ GenerateTypeTransition(masm);
+ break;
+ }
+
+ case Token::MOD: {
+ // For MOD we go directly to runtime in the non-smi case.
+ break;
+ }
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR: {
+ GenerateRegisterArgsPush(masm);
+ Label not_floats;
+ Label not_int32;
+ Label non_smi_result;
+ /* {
+ CpuFeatures::Scope use_sse2(SSE2);
+ FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
+ FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, &not_int32, ecx);
+ }*/
+ FloatingPointHelper::LoadUnknownsAsIntegers(masm,
+ use_sse3_,
+ &not_floats);
+ FloatingPointHelper::CheckLoadedIntegersWereInt32(masm, use_sse3_,
+ &not_int32);
+ switch (op_) {
+ case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
+ case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
+ case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
+ case Token::SAR: __ sar_cl(eax); break;
+ case Token::SHL: __ shl_cl(eax); break;
+ case Token::SHR: __ shr_cl(eax); break;
+ default: UNREACHABLE();
+ }
+ if (op_ == Token::SHR) {
+ // Check if result is non-negative and fits in a smi.
+ __ test(eax, Immediate(0xc0000000));
+ __ j(not_zero, &call_runtime);
+ } else {
+ // Check if result fits in a smi.
+ __ cmp(eax, 0xc0000000);
+ __ j(negative, &non_smi_result);
+ }
+ // Tag smi result and return.
+ __ SmiTag(eax);
+ __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
+
+ // All ops except SHR return a signed int32 that we load in
+ // a HeapNumber.
+ if (op_ != Token::SHR) {
+ __ bind(&non_smi_result);
+ // Allocate a heap number if needed.
+ __ mov(ebx, Operand(eax)); // ebx: result
+ NearLabel skip_allocation;
+ switch (mode_) {
+ case OVERWRITE_LEFT:
+ case OVERWRITE_RIGHT:
+ // If the operand was an object, we skip the
+ // allocation of a heap number.
+ __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
+ 1 * kPointerSize : 2 * kPointerSize));
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &skip_allocation, not_taken);
+ // Fall through!
+ case NO_OVERWRITE:
+ __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
+ __ bind(&skip_allocation);
+ break;
+ default: UNREACHABLE();
+ }
+ // Store the result in the HeapNumber and return.
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ __ cvtsi2sd(xmm0, Operand(ebx));
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ } else {
+ __ mov(Operand(esp, 1 * kPointerSize), ebx);
+ __ fild_s(Operand(esp, 1 * kPointerSize));
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ }
+ __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
+ }
+
+ __ bind(&not_floats);
+ __ bind(&not_int32);
+ GenerateTypeTransitionWithSavedArgs(masm);
+ break;
+ }
+ default: UNREACHABLE(); break;
+ }
+
+ // If an allocation fails, or SHR or MOD hit a hard case,
+ // use the runtime system to get the correct result.
+ __ bind(&call_runtime);
+
+ switch (op_) {
+ case Token::ADD:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
+ break;
+ case Token::SUB:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
+ break;
+ case Token::MUL:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
+ break;
+ case Token::DIV:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
+ break;
+ case Token::MOD:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
+ break;
+ case Token::BIT_OR:
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
+ break;
+ case Token::BIT_AND:
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
+ break;
+ case Token::BIT_XOR:
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
+ break;
+ case Token::SAR:
+ __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
+ break;
+ case Token::SHL:
+ __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
+ break;
+ case Token::SHR:
+ __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
+ Label call_runtime;
+
+ if (op_ == Token::ADD) {
+ // Handle string addition here, because it is the only operation
+ // that does not do a ToNumber conversion on the operands.
+ GenerateAddStrings(masm);
+ }
+
+ // Convert odd ball arguments to numbers.
+ NearLabel check, done;
+ __ cmp(edx, FACTORY->undefined_value());
+ __ j(not_equal, &check);
+ if (Token::IsBitOp(op_)) {
+ __ xor_(edx, Operand(edx));
+ } else {
+ __ mov(edx, Immediate(FACTORY->nan_value()));
+ }
+ __ jmp(&done);
+ __ bind(&check);
+ __ cmp(eax, FACTORY->undefined_value());
+ __ j(not_equal, &done);
+ if (Token::IsBitOp(op_)) {
+ __ xor_(eax, Operand(eax));
+ } else {
+ __ mov(eax, Immediate(FACTORY->nan_value()));
+ }
+ __ bind(&done);
+
+ GenerateHeapNumberStub(masm);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
+ Label call_runtime;
+
+ // Floating point case.
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV: {
+ Label not_floats;
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
+
+ switch (op_) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ GenerateHeapResultAllocation(masm, &call_runtime);
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ __ ret(0);
+ } else { // SSE2 not available, use FPU.
+ FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
+ FloatingPointHelper::LoadFloatOperands(
+ masm,
+ ecx,
+ FloatingPointHelper::ARGS_IN_REGISTERS);
+ switch (op_) {
+ case Token::ADD: __ faddp(1); break;
+ case Token::SUB: __ fsubp(1); break;
+ case Token::MUL: __ fmulp(1); break;
+ case Token::DIV: __ fdivp(1); break;
+ default: UNREACHABLE();
+ }
+ Label after_alloc_failure;
+ GenerateHeapResultAllocation(masm, &after_alloc_failure);
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ __ ret(0);
+ __ bind(&after_alloc_failure);
+ __ ffree();
+ __ jmp(&call_runtime);
+ }
+
+ __ bind(&not_floats);
+ GenerateTypeTransition(masm);
+ break;
+ }
+
+ case Token::MOD: {
+ // For MOD we go directly to runtime in the non-smi case.
+ break;
+ }
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR: {
+ GenerateRegisterArgsPush(masm);
+ Label not_floats;
+ Label non_smi_result;
+ FloatingPointHelper::LoadUnknownsAsIntegers(masm,
+ use_sse3_,
+ &not_floats);
+ switch (op_) {
+ case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
+ case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
+ case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
+ case Token::SAR: __ sar_cl(eax); break;
+ case Token::SHL: __ shl_cl(eax); break;
+ case Token::SHR: __ shr_cl(eax); break;
+ default: UNREACHABLE();
+ }
+ if (op_ == Token::SHR) {
+ // Check if result is non-negative and fits in a smi.
+ __ test(eax, Immediate(0xc0000000));
+ __ j(not_zero, &call_runtime);
+ } else {
+ // Check if result fits in a smi.
+ __ cmp(eax, 0xc0000000);
+ __ j(negative, &non_smi_result);
+ }
+ // Tag smi result and return.
+ __ SmiTag(eax);
+ __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
+
+ // All ops except SHR return a signed int32 that we load in
+ // a HeapNumber.
+ if (op_ != Token::SHR) {
+ __ bind(&non_smi_result);
+ // Allocate a heap number if needed.
+ __ mov(ebx, Operand(eax)); // ebx: result
+ NearLabel skip_allocation;
+ switch (mode_) {
+ case OVERWRITE_LEFT:
+ case OVERWRITE_RIGHT:
+ // If the operand was an object, we skip the
+ // allocation of a heap number.
+ __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
+ 1 * kPointerSize : 2 * kPointerSize));
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &skip_allocation, not_taken);
+ // Fall through!
+ case NO_OVERWRITE:
+ __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
+ __ bind(&skip_allocation);
+ break;
+ default: UNREACHABLE();
+ }
+ // Store the result in the HeapNumber and return.
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ __ cvtsi2sd(xmm0, Operand(ebx));
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ } else {
+ __ mov(Operand(esp, 1 * kPointerSize), ebx);
+ __ fild_s(Operand(esp, 1 * kPointerSize));
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ }
+ __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
+ }
+
+ __ bind(&not_floats);
+ GenerateTypeTransitionWithSavedArgs(masm);
+ break;
+ }
+ default: UNREACHABLE(); break;
+ }
+
+ // If an allocation fails, or SHR or MOD hit a hard case,
+ // use the runtime system to get the correct result.
+ __ bind(&call_runtime);
+
+ switch (op_) {
+ case Token::ADD:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
+ break;
+ case Token::SUB:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
+ break;
+ case Token::MUL:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
+ break;
+ case Token::DIV:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
+ break;
+ case Token::MOD:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
+ break;
+ case Token::BIT_OR:
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
+ break;
+ case Token::BIT_AND:
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
+ break;
+ case Token::BIT_XOR:
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
+ break;
+ case Token::SAR:
+ __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
+ break;
+ case Token::SHL:
+ __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
+ break;
+ case Token::SHR:
+ __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
+ Label call_runtime;
+
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->generic_binary_stub_calls(), 1);
+
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ break;
+ case Token::MOD:
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR:
+ GenerateRegisterArgsPush(masm);
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
+
+ // Floating point case.
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV: {
+ Label not_floats;
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
+
+ switch (op_) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ GenerateHeapResultAllocation(masm, &call_runtime);
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ __ ret(0);
+ } else { // SSE2 not available, use FPU.
+ FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
+ FloatingPointHelper::LoadFloatOperands(
+ masm,
+ ecx,
+ FloatingPointHelper::ARGS_IN_REGISTERS);
+ switch (op_) {
+ case Token::ADD: __ faddp(1); break;
+ case Token::SUB: __ fsubp(1); break;
+ case Token::MUL: __ fmulp(1); break;
+ case Token::DIV: __ fdivp(1); break;
+ default: UNREACHABLE();
+ }
+ Label after_alloc_failure;
+ GenerateHeapResultAllocation(masm, &after_alloc_failure);
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ __ ret(0);
+ __ bind(&after_alloc_failure);
+ __ ffree();
+ __ jmp(&call_runtime);
+ }
+ __ bind(&not_floats);
+ break;
+ }
+ case Token::MOD: {
+ // For MOD we go directly to runtime in the non-smi case.
+ break;
+ }
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR: {
+ Label non_smi_result;
+ FloatingPointHelper::LoadUnknownsAsIntegers(masm,
+ use_sse3_,
+ &call_runtime);
+ switch (op_) {
+ case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
+ case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
+ case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
+ case Token::SAR: __ sar_cl(eax); break;
+ case Token::SHL: __ shl_cl(eax); break;
+ case Token::SHR: __ shr_cl(eax); break;
+ default: UNREACHABLE();
+ }
+ if (op_ == Token::SHR) {
+ // Check if result is non-negative and fits in a smi.
+ __ test(eax, Immediate(0xc0000000));
+ __ j(not_zero, &call_runtime);
+ } else {
+ // Check if result fits in a smi.
+ __ cmp(eax, 0xc0000000);
+ __ j(negative, &non_smi_result);
+ }
+ // Tag smi result and return.
+ __ SmiTag(eax);
+ __ ret(2 * kPointerSize); // Drop the arguments from the stack.
+
+ // All ops except SHR return a signed int32 that we load in
+ // a HeapNumber.
+ if (op_ != Token::SHR) {
+ __ bind(&non_smi_result);
+ // Allocate a heap number if needed.
+ __ mov(ebx, Operand(eax)); // ebx: result
+ NearLabel skip_allocation;
+ switch (mode_) {
+ case OVERWRITE_LEFT:
+ case OVERWRITE_RIGHT:
+ // If the operand was an object, we skip the
+ // allocation of a heap number.
+ __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
+ 1 * kPointerSize : 2 * kPointerSize));
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &skip_allocation, not_taken);
+ // Fall through!
+ case NO_OVERWRITE:
+ __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
+ __ bind(&skip_allocation);
+ break;
+ default: UNREACHABLE();
+ }
+ // Store the result in the HeapNumber and return.
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ __ cvtsi2sd(xmm0, Operand(ebx));
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ } else {
+ __ mov(Operand(esp, 1 * kPointerSize), ebx);
+ __ fild_s(Operand(esp, 1 * kPointerSize));
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ }
+ __ ret(2 * kPointerSize);
+ }
+ break;
+ }
+ default: UNREACHABLE(); break;
+ }
+
+ // If all else fails, use the runtime system to get the correct
+ // result.
+ __ bind(&call_runtime);
+ switch (op_) {
+ case Token::ADD: {
+ GenerateAddStrings(masm);
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
+ break;
+ }
+ case Token::SUB:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
+ break;
+ case Token::MUL:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
+ break;
+ case Token::DIV:
+ GenerateRegisterArgsPush(masm);
+ __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
+ break;
+ case Token::MOD:
+ __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
+ break;
+ case Token::BIT_OR:
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
+ break;
+ case Token::BIT_AND:
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
+ break;
+ case Token::BIT_XOR:
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
+ break;
+ case Token::SAR:
+ __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
+ break;
+ case Token::SHL:
+ __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
+ break;
+ case Token::SHR:
+ __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
+ ASSERT(op_ == Token::ADD);
+ NearLabel left_not_string, call_runtime;
+
+ // Registers containing left and right operands respectively.
+ Register left = edx;
+ Register right = eax;
+
+ // Test if left operand is a string.
+ __ test(left, Immediate(kSmiTagMask));
+ __ j(zero, &left_not_string);
+ __ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx);
+ __ j(above_equal, &left_not_string);
+
+ StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
+ GenerateRegisterArgsPush(masm);
+ __ TailCallStub(&string_add_left_stub);
+
+ // Left operand is not a string, test right.
+ __ bind(&left_not_string);
+ __ test(right, Immediate(kSmiTagMask));
+ __ j(zero, &call_runtime);
+ __ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx);
+ __ j(above_equal, &call_runtime);
+
+ StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
+ GenerateRegisterArgsPush(masm);
+ __ TailCallStub(&string_add_right_stub);
+
+ // Neither argument is a string.
+ __ bind(&call_runtime);
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation(
+ MacroAssembler* masm,
+ Label* alloc_failure) {
+ Label skip_allocation;
+ OverwriteMode mode = mode_;
+ switch (mode) {
+ case OVERWRITE_LEFT: {
+ // If the argument in edx is already an object, we skip the
+ // allocation of a heap number.
+ __ test(edx, Immediate(kSmiTagMask));
+ __ j(not_zero, &skip_allocation, not_taken);
+ // Allocate a heap number for the result. Keep eax and edx intact
+ // for the possible runtime call.
+ __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
+ // Now edx can be overwritten losing one of the arguments as we are
+ // now done and will not need it any more.
+ __ mov(edx, Operand(ebx));
+ __ bind(&skip_allocation);
+ // Use object in edx as a result holder
+ __ mov(eax, Operand(edx));
+ break;
+ }
+ case OVERWRITE_RIGHT:
+ // If the argument in eax is already an object, we skip the
+ // allocation of a heap number.
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &skip_allocation, not_taken);
+ // Fall through!
+ case NO_OVERWRITE:
+ // Allocate a heap number for the result. Keep eax and edx intact
+ // for the possible runtime call.
+ __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
+ // Now eax can be overwritten losing one of the arguments as we are
+ // now done and will not need it any more.
+ __ mov(eax, ebx);
+ __ bind(&skip_allocation);
+ break;
+ default: UNREACHABLE();
+ }
+}
+
+
+void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
+ __ pop(ecx);
+ __ push(edx);
+ __ push(eax);
+ __ push(ecx);
+}
+
+
+void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
+ // TAGGED case:
+ // Input:
+ // esp[4]: tagged number input argument (should be number).
+ // esp[0]: return address.
+ // Output:
+ // eax: tagged double result.
+ // UNTAGGED case:
+ // Input::
+ // esp[0]: return address.
+ // xmm1: untagged double input argument
+ // Output:
+ // xmm1: untagged double result.
+
+ Label runtime_call;
+ Label runtime_call_clear_stack;
+ Label skip_cache;
+ const bool tagged = (argument_type_ == TAGGED);
+ if (tagged) {
+ // Test that eax is a number.
+ NearLabel input_not_smi;
+ NearLabel loaded;
+ __ mov(eax, Operand(esp, kPointerSize));
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &input_not_smi);
+ // Input is a smi. Untag and load it onto the FPU stack.
+ // Then load the low and high words of the double into ebx, edx.
+ STATIC_ASSERT(kSmiTagSize == 1);
+ __ sar(eax, 1);
+ __ sub(Operand(esp), Immediate(2 * kPointerSize));
+ __ mov(Operand(esp, 0), eax);
+ __ fild_s(Operand(esp, 0));
+ __ fst_d(Operand(esp, 0));
+ __ pop(edx);
+ __ pop(ebx);
+ __ jmp(&loaded);
+ __ bind(&input_not_smi);
+ // Check if input is a HeapNumber.
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(Operand(ebx), Immediate(factory->heap_number_map()));
+ __ j(not_equal, &runtime_call);
+ // Input is a HeapNumber. Push it on the FPU stack and load its
+ // low and high words into ebx, edx.
+ __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset));
+ __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset));
+
+ __ bind(&loaded);
+ } else { // UNTAGGED.
+ if (CpuFeatures::IsSupported(SSE4_1)) {
+ CpuFeatures::Scope sse4_scope(SSE4_1);
+ __ pextrd(Operand(edx), xmm1, 0x1); // copy xmm1[63..32] to edx.
+ } else {
+ __ pshufd(xmm0, xmm1, 0x1);
+ __ movd(Operand(edx), xmm0);
+ }
+ __ movd(Operand(ebx), xmm1);
+ }
+
+ // ST[0] or xmm1 == double value
+ // ebx = low 32 bits of double value
+ // edx = high 32 bits of double value
+ // Compute hash (the shifts are arithmetic):
+ // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
+ __ mov(ecx, ebx);
+ __ xor_(ecx, Operand(edx));
+ __ mov(eax, ecx);
+ __ sar(eax, 16);
+ __ xor_(ecx, Operand(eax));
+ __ mov(eax, ecx);
+ __ sar(eax, 8);
+ __ xor_(ecx, Operand(eax));
+ ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
+ __ and_(Operand(ecx),
+ Immediate(TranscendentalCache::SubCache::kCacheSize - 1));
+
+ // ST[0] or xmm1 == double value.
+ // ebx = low 32 bits of double value.
+ // edx = high 32 bits of double value.
+ // ecx = TranscendentalCache::hash(double value).
+ ExternalReference cache_array =
+ ExternalReference::transcendental_cache_array_address(masm->isolate());
+ __ mov(eax, Immediate(cache_array));
+ int cache_array_index =
+ type_ * sizeof(masm->isolate()->transcendental_cache()->caches_[0]);
+ __ mov(eax, Operand(eax, cache_array_index));
+ // Eax points to the cache for the type type_.
+ // If NULL, the cache hasn't been initialized yet, so go through runtime.
+ __ test(eax, Operand(eax));
+ __ j(zero, &runtime_call_clear_stack);
+#ifdef DEBUG
+ // Check that the layout of cache elements match expectations.
+ { TranscendentalCache::SubCache::Element test_elem[2];
+ char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
+ char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
+ char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
+ char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
+ char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
+ CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
+ CHECK_EQ(0, elem_in0 - elem_start);
+ CHECK_EQ(kIntSize, elem_in1 - elem_start);
+ CHECK_EQ(2 * kIntSize, elem_out - elem_start);
+ }
+#endif
+ // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12].
+ __ lea(ecx, Operand(ecx, ecx, times_2, 0));
+ __ lea(ecx, Operand(eax, ecx, times_4, 0));
+ // Check if cache matches: Double value is stored in uint32_t[2] array.
+ NearLabel cache_miss;
+ __ cmp(ebx, Operand(ecx, 0));
+ __ j(not_equal, &cache_miss);
+ __ cmp(edx, Operand(ecx, kIntSize));
+ __ j(not_equal, &cache_miss);
+ // Cache hit!
+ __ mov(eax, Operand(ecx, 2 * kIntSize));
+ if (tagged) {
+ __ fstp(0);
+ __ ret(kPointerSize);
+ } else { // UNTAGGED.
+ __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
+ __ Ret();
+ }
+
+ __ bind(&cache_miss);
+ // Update cache with new value.
+ // We are short on registers, so use no_reg as scratch.
+ // This gives slightly larger code.
+ if (tagged) {
+ __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack);
+ } else { // UNTAGGED.
+ __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache);
+ __ sub(Operand(esp), Immediate(kDoubleSize));
+ __ movdbl(Operand(esp, 0), xmm1);
+ __ fld_d(Operand(esp, 0));
+ __ add(Operand(esp), Immediate(kDoubleSize));
+ }
+ GenerateOperation(masm);
+ __ mov(Operand(ecx, 0), ebx);
+ __ mov(Operand(ecx, kIntSize), edx);
+ __ mov(Operand(ecx, 2 * kIntSize), eax);
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ if (tagged) {
+ __ ret(kPointerSize);
+ } else { // UNTAGGED.
+ __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
+ __ Ret();
+
+ // Skip cache and return answer directly, only in untagged case.
+ __ bind(&skip_cache);
+ __ sub(Operand(esp), Immediate(kDoubleSize));
+ __ movdbl(Operand(esp, 0), xmm1);
+ __ fld_d(Operand(esp, 0));
+ GenerateOperation(masm);
+ __ fstp_d(Operand(esp, 0));
+ __ movdbl(xmm1, Operand(esp, 0));
+ __ add(Operand(esp), Immediate(kDoubleSize));
+ // We return the value in xmm1 without adding it to the cache, but
+ // we cause a scavenging GC so that future allocations will succeed.
+ __ EnterInternalFrame();
+ // Allocate an unused object bigger than a HeapNumber.
+ __ push(Immediate(Smi::FromInt(2 * kDoubleSize)));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
+ __ LeaveInternalFrame();
+ __ Ret();
+ }
+
+ // Call runtime, doing whatever allocation and cleanup is necessary.
+ if (tagged) {
+ __ bind(&runtime_call_clear_stack);
+ __ fstp(0);
+ __ bind(&runtime_call);
+ ExternalReference runtime =
+ ExternalReference(RuntimeFunction(), masm->isolate());
+ __ TailCallExternalReference(runtime, 1, 1);
+ } else { // UNTAGGED.
+ __ bind(&runtime_call_clear_stack);
+ __ bind(&runtime_call);
+ __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache);
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm1);
+ __ EnterInternalFrame();
+ __ push(eax);
+ __ CallRuntime(RuntimeFunction(), 1);
+ __ LeaveInternalFrame();
+ __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
+ __ Ret();
+ }
+}
+
+
+Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
+ switch (type_) {
+ case TranscendentalCache::SIN: return Runtime::kMath_sin;
+ case TranscendentalCache::COS: return Runtime::kMath_cos;
+ case TranscendentalCache::LOG: return Runtime::kMath_log;
+ default:
+ UNIMPLEMENTED();
+ return Runtime::kAbort;
+ }
+}
+
+
+void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) {
+ // Only free register is edi.
+ // Input value is on FP stack, and also in ebx/edx.
+ // Input value is possibly in xmm1.
+ // Address of result (a newly allocated HeapNumber) may be in eax.
+ if (type_ == TranscendentalCache::SIN || type_ == TranscendentalCache::COS) {
+ // Both fsin and fcos require arguments in the range +/-2^63 and
+ // return NaN for infinities and NaN. They can share all code except
+ // the actual fsin/fcos operation.
+ NearLabel in_range, done;
+ // If argument is outside the range -2^63..2^63, fsin/cos doesn't
+ // work. We must reduce it to the appropriate range.
+ __ mov(edi, edx);
+ __ and_(Operand(edi), Immediate(0x7ff00000)); // Exponent only.
+ int supported_exponent_limit =
+ (63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift;
+ __ cmp(Operand(edi), Immediate(supported_exponent_limit));
+ __ j(below, &in_range, taken);
+ // Check for infinity and NaN. Both return NaN for sin.
+ __ cmp(Operand(edi), Immediate(0x7ff00000));
+ NearLabel non_nan_result;
+ __ j(not_equal, &non_nan_result, taken);
+ // Input is +/-Infinity or NaN. Result is NaN.
+ __ fstp(0);
+ // NaN is represented by 0x7ff8000000000000.
+ __ push(Immediate(0x7ff80000));
+ __ push(Immediate(0));
+ __ fld_d(Operand(esp, 0));
+ __ add(Operand(esp), Immediate(2 * kPointerSize));
+ __ jmp(&done);
+
+ __ bind(&non_nan_result);
+
+ // Use fpmod to restrict argument to the range +/-2*PI.
+ __ mov(edi, eax); // Save eax before using fnstsw_ax.
+ __ fldpi();
+ __ fadd(0);
+ __ fld(1);
+ // FPU Stack: input, 2*pi, input.
+ {
+ NearLabel no_exceptions;
+ __ fwait();
+ __ fnstsw_ax();
+ // Clear if Illegal Operand or Zero Division exceptions are set.
+ __ test(Operand(eax), Immediate(5));
+ __ j(zero, &no_exceptions);
+ __ fnclex();
+ __ bind(&no_exceptions);
+ }
+
+ // Compute st(0) % st(1)
+ {
+ NearLabel partial_remainder_loop;
+ __ bind(&partial_remainder_loop);
+ __ fprem1();
+ __ fwait();
+ __ fnstsw_ax();
+ __ test(Operand(eax), Immediate(0x400 /* C2 */));
+ // If C2 is set, computation only has partial result. Loop to
+ // continue computation.
+ __ j(not_zero, &partial_remainder_loop);
+ }
+ // FPU Stack: input, 2*pi, input % 2*pi
+ __ fstp(2);
+ __ fstp(0);
+ __ mov(eax, edi); // Restore eax (allocated HeapNumber pointer).
+
+ // FPU Stack: input % 2*pi
+ __ bind(&in_range);
+ switch (type_) {
+ case TranscendentalCache::SIN:
+ __ fsin();
+ break;
+ case TranscendentalCache::COS:
+ __ fcos();
+ break;
+ default:
+ UNREACHABLE();
+ }
+ __ bind(&done);
+ } else {
+ ASSERT(type_ == TranscendentalCache::LOG);
+ __ fldln2();
+ __ fxch();
+ __ fyl2x();
+ }
+}
+
+
+// Get the integer part of a heap number. Surprisingly, all this bit twiddling
+// is faster than using the built-in instructions on floating point registers.
+// Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the
+// trashed registers.
+void IntegerConvert(MacroAssembler* masm,
+ Register source,
+ TypeInfo type_info,
+ bool use_sse3,
+ Label* conversion_failure) {
+ ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx));
+ Label done, right_exponent, normal_exponent;
+ Register scratch = ebx;
+ Register scratch2 = edi;
+ if (type_info.IsInteger32() && CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope scope(SSE2);
+ __ cvttsd2si(ecx, FieldOperand(source, HeapNumber::kValueOffset));
+ return;
+ }
+ if (!type_info.IsInteger32() || !use_sse3) {
+ // Get exponent word.
+ __ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset));
+ // Get exponent alone in scratch2.
+ __ mov(scratch2, scratch);
+ __ and_(scratch2, HeapNumber::kExponentMask);
+ }
+ if (use_sse3) {
+ CpuFeatures::Scope scope(SSE3);
+ if (!type_info.IsInteger32()) {
+ // Check whether the exponent is too big for a 64 bit signed integer.
+ static const uint32_t kTooBigExponent =
+ (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
+ __ cmp(Operand(scratch2), Immediate(kTooBigExponent));
+ __ j(greater_equal, conversion_failure);
+ }
+ // Load x87 register with heap number.
+ __ fld_d(FieldOperand(source, HeapNumber::kValueOffset));
+ // Reserve space for 64 bit answer.
+ __ sub(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint.
+ // Do conversion, which cannot fail because we checked the exponent.
+ __ fisttp_d(Operand(esp, 0));
+ __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx.
+ __ add(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint.
+ } else {
+ // Load ecx with zero. We use this either for the final shift or
+ // for the answer.
+ __ xor_(ecx, Operand(ecx));
+ // Check whether the exponent matches a 32 bit signed int that cannot be
+ // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the
+ // exponent is 30 (biased). This is the exponent that we are fastest at and
+ // also the highest exponent we can handle here.
+ const uint32_t non_smi_exponent =
+ (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
+ __ cmp(Operand(scratch2), Immediate(non_smi_exponent));
+ // If we have a match of the int32-but-not-Smi exponent then skip some
+ // logic.
+ __ j(equal, &right_exponent);
+ // If the exponent is higher than that then go to slow case. This catches
+ // numbers that don't fit in a signed int32, infinities and NaNs.
+ __ j(less, &normal_exponent);
+
+ {
+ // Handle a big exponent. The only reason we have this code is that the
+ // >>> operator has a tendency to generate numbers with an exponent of 31.
+ const uint32_t big_non_smi_exponent =
+ (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift;
+ __ cmp(Operand(scratch2), Immediate(big_non_smi_exponent));
+ __ j(not_equal, conversion_failure);
+ // We have the big exponent, typically from >>>. This means the number is
+ // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa.
+ __ mov(scratch2, scratch);
+ __ and_(scratch2, HeapNumber::kMantissaMask);
+ // Put back the implicit 1.
+ __ or_(scratch2, 1 << HeapNumber::kExponentShift);
+ // Shift up the mantissa bits to take up the space the exponent used to
+ // take. We just orred in the implicit bit so that took care of one and
+ // we want to use the full unsigned range so we subtract 1 bit from the
+ // shift distance.
+ const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1;
+ __ shl(scratch2, big_shift_distance);
+ // Get the second half of the double.
+ __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset));
+ // Shift down 21 bits to get the most significant 11 bits or the low
+ // mantissa word.
+ __ shr(ecx, 32 - big_shift_distance);
+ __ or_(ecx, Operand(scratch2));
+ // We have the answer in ecx, but we may need to negate it.
+ __ test(scratch, Operand(scratch));
+ __ j(positive, &done);
+ __ neg(ecx);
+ __ jmp(&done);
+ }
+
+ __ bind(&normal_exponent);
+ // Exponent word in scratch, exponent part of exponent word in scratch2.
+ // Zero in ecx.
+ // We know the exponent is smaller than 30 (biased). If it is less than
+ // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
+ // it rounds to zero.
+ const uint32_t zero_exponent =
+ (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
+ __ sub(Operand(scratch2), Immediate(zero_exponent));
+ // ecx already has a Smi zero.
+ __ j(less, &done);
+
+ // We have a shifted exponent between 0 and 30 in scratch2.
+ __ shr(scratch2, HeapNumber::kExponentShift);
+ __ mov(ecx, Immediate(30));
+ __ sub(ecx, Operand(scratch2));
+
+ __ bind(&right_exponent);
+ // Here ecx is the shift, scratch is the exponent word.
+ // Get the top bits of the mantissa.
+ __ and_(scratch, HeapNumber::kMantissaMask);
+ // Put back the implicit 1.
+ __ or_(scratch, 1 << HeapNumber::kExponentShift);
+ // Shift up the mantissa bits to take up the space the exponent used to
+ // take. We have kExponentShift + 1 significant bits int he low end of the
+ // word. Shift them to the top bits.
+ const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
+ __ shl(scratch, shift_distance);
+ // Get the second half of the double. For some exponents we don't
+ // actually need this because the bits get shifted out again, but
+ // it's probably slower to test than just to do it.
+ __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset));
+ // Shift down 22 bits to get the most significant 10 bits or the low
+ // mantissa word.
+ __ shr(scratch2, 32 - shift_distance);
+ __ or_(scratch2, Operand(scratch));
+ // Move down according to the exponent.
+ __ shr_cl(scratch2);
+ // Now the unsigned answer is in scratch2. We need to move it to ecx and
+ // we may need to fix the sign.
+ NearLabel negative;
+ __ xor_(ecx, Operand(ecx));
+ __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset));
+ __ j(greater, &negative);
+ __ mov(ecx, scratch2);
+ __ jmp(&done);
+ __ bind(&negative);
+ __ sub(ecx, Operand(scratch2));
+ __ bind(&done);
+ }
+}
+
+
+// Input: edx, eax are the left and right objects of a bit op.
+// Output: eax, ecx are left and right integers for a bit op.
+void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm,
+ TypeInfo type_info,
+ bool use_sse3,
+ Label* conversion_failure) {
+ // Check float operands.
+ Label arg1_is_object, check_undefined_arg1;
+ Label arg2_is_object, check_undefined_arg2;
+ Label load_arg2, done;
+
+ if (!type_info.IsDouble()) {
+ if (!type_info.IsSmi()) {
+ __ test(edx, Immediate(kSmiTagMask));
+ __ j(not_zero, &arg1_is_object);
+ } else {
+ if (FLAG_debug_code) __ AbortIfNotSmi(edx);
+ }
+ __ SmiUntag(edx);
+ __ jmp(&load_arg2);
+ }
+
+ __ bind(&arg1_is_object);
+
+ // Get the untagged integer version of the edx heap number in ecx.
+ IntegerConvert(masm, edx, type_info, use_sse3, conversion_failure);
+ __ mov(edx, ecx);
+
+ // Here edx has the untagged integer, eax has a Smi or a heap number.
+ __ bind(&load_arg2);
+ if (!type_info.IsDouble()) {
+ // Test if arg2 is a Smi.
+ if (!type_info.IsSmi()) {
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &arg2_is_object);
+ } else {
+ if (FLAG_debug_code) __ AbortIfNotSmi(eax);
+ }
+ __ SmiUntag(eax);
+ __ mov(ecx, eax);
+ __ jmp(&done);
+ }
+
+ __ bind(&arg2_is_object);
+
+ // Get the untagged integer version of the eax heap number in ecx.
+ IntegerConvert(masm, eax, type_info, use_sse3, conversion_failure);
+ __ bind(&done);
+ __ mov(eax, edx);
+}
+
+
+// Input: edx, eax are the left and right objects of a bit op.
+// Output: eax, ecx are left and right integers for a bit op.
+void FloatingPointHelper::LoadUnknownsAsIntegers(MacroAssembler* masm,
+ bool use_sse3,
+ Label* conversion_failure) {
+ // Check float operands.
+ Label arg1_is_object, check_undefined_arg1;
+ Label arg2_is_object, check_undefined_arg2;
+ Label load_arg2, done;
+
+ // Test if arg1 is a Smi.
+ __ test(edx, Immediate(kSmiTagMask));
+ __ j(not_zero, &arg1_is_object);
+
+ __ SmiUntag(edx);
+ __ jmp(&load_arg2);
+
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
+ __ bind(&check_undefined_arg1);
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(edx, factory->undefined_value());
+ __ j(not_equal, conversion_failure);
+ __ mov(edx, Immediate(0));
+ __ jmp(&load_arg2);
+
+ __ bind(&arg1_is_object);
+ __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
+ __ cmp(ebx, factory->heap_number_map());
+ __ j(not_equal, &check_undefined_arg1);
+
+ // Get the untagged integer version of the edx heap number in ecx.
+ IntegerConvert(masm,
+ edx,
+ TypeInfo::Unknown(),
+ use_sse3,
+ conversion_failure);
+ __ mov(edx, ecx);
+
+ // Here edx has the untagged integer, eax has a Smi or a heap number.
+ __ bind(&load_arg2);
+
+ // Test if arg2 is a Smi.
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &arg2_is_object);
+
+ __ SmiUntag(eax);
+ __ mov(ecx, eax);
+ __ jmp(&done);
+
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
+ __ bind(&check_undefined_arg2);
+ __ cmp(eax, factory->undefined_value());
+ __ j(not_equal, conversion_failure);
+ __ mov(ecx, Immediate(0));
+ __ jmp(&done);
+
+ __ bind(&arg2_is_object);
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ cmp(ebx, factory->heap_number_map());
+ __ j(not_equal, &check_undefined_arg2);
+
+ // Get the untagged integer version of the eax heap number in ecx.
+ IntegerConvert(masm,
+ eax,
+ TypeInfo::Unknown(),
+ use_sse3,
+ conversion_failure);
+ __ bind(&done);
+ __ mov(eax, edx);
+}
+
+
+void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
+ TypeInfo type_info,
+ bool use_sse3,
+ Label* conversion_failure) {
+ if (type_info.IsNumber()) {
+ LoadNumbersAsIntegers(masm, type_info, use_sse3, conversion_failure);
+ } else {
+ LoadUnknownsAsIntegers(masm, use_sse3, conversion_failure);
+ }
+}
+
+
+void FloatingPointHelper::CheckLoadedIntegersWereInt32(MacroAssembler* masm,
+ bool use_sse3,
+ Label* not_int32) {
+ return;
+}
+
+
+void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
+ Register number) {
+ NearLabel load_smi, done;
+
+ __ test(number, Immediate(kSmiTagMask));
+ __ j(zero, &load_smi, not_taken);
+ __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
+ __ jmp(&done);
+
+ __ bind(&load_smi);
+ __ SmiUntag(number);
+ __ push(number);
+ __ fild_s(Operand(esp, 0));
+ __ pop(number);
+
+ __ bind(&done);
+}
+
+
+void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) {
+ NearLabel load_smi_edx, load_eax, load_smi_eax, done;
+ // Load operand in edx into xmm0.
+ __ test(edx, Immediate(kSmiTagMask));
+ __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi.
+ __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
+
+ __ bind(&load_eax);
+ // Load operand in eax into xmm1.
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi.
+ __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
+ __ jmp(&done);
+
+ __ bind(&load_smi_edx);
+ __ SmiUntag(edx); // Untag smi before converting to float.
+ __ cvtsi2sd(xmm0, Operand(edx));
+ __ SmiTag(edx); // Retag smi for heap number overwriting test.
+ __ jmp(&load_eax);
+
+ __ bind(&load_smi_eax);
+ __ SmiUntag(eax); // Untag smi before converting to float.
+ __ cvtsi2sd(xmm1, Operand(eax));
+ __ SmiTag(eax); // Retag smi for heap number overwriting test.
+
+ __ bind(&done);
+}
+
+
+void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
+ Label* not_numbers) {
+ NearLabel load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
+ // Load operand in edx into xmm0, or branch to not_numbers.
+ __ test(edx, Immediate(kSmiTagMask));
+ __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi.
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
+ __ j(not_equal, not_numbers); // Argument in edx is not a number.
+ __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
+ __ bind(&load_eax);
+ // Load operand in eax into xmm1, or branch to not_numbers.
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi.
+ __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
+ __ j(equal, &load_float_eax);
+ __ jmp(not_numbers); // Argument in eax is not a number.
+ __ bind(&load_smi_edx);
+ __ SmiUntag(edx); // Untag smi before converting to float.
+ __ cvtsi2sd(xmm0, Operand(edx));
+ __ SmiTag(edx); // Retag smi for heap number overwriting test.
+ __ jmp(&load_eax);
+ __ bind(&load_smi_eax);
+ __ SmiUntag(eax); // Untag smi before converting to float.
+ __ cvtsi2sd(xmm1, Operand(eax));
+ __ SmiTag(eax); // Retag smi for heap number overwriting test.
+ __ jmp(&done);
+ __ bind(&load_float_eax);
+ __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
+ __ bind(&done);
+}
+
+
+void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm,
+ Register scratch) {
+ const Register left = edx;
+ const Register right = eax;
+ __ mov(scratch, left);
+ ASSERT(!scratch.is(right)); // We're about to clobber scratch.
+ __ SmiUntag(scratch);
+ __ cvtsi2sd(xmm0, Operand(scratch));
+
+ __ mov(scratch, right);
+ __ SmiUntag(scratch);
+ __ cvtsi2sd(xmm1, Operand(scratch));
+}
+
+
+void FloatingPointHelper::CheckSSE2OperandsAreInt32(MacroAssembler* masm,
+ Label* non_int32,
+ Register scratch) {
+ __ cvttsd2si(scratch, Operand(xmm0));
+ __ cvtsi2sd(xmm2, Operand(scratch));
+ __ ucomisd(xmm0, xmm2);
+ __ j(not_zero, non_int32);
+ __ j(carry, non_int32);
+ __ cvttsd2si(scratch, Operand(xmm1));
+ __ cvtsi2sd(xmm2, Operand(scratch));
+ __ ucomisd(xmm1, xmm2);
+ __ j(not_zero, non_int32);
+ __ j(carry, non_int32);
+}
+
+
+void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
+ Register scratch,
+ ArgLocation arg_location) {
+ NearLabel load_smi_1, load_smi_2, done_load_1, done;
+ if (arg_location == ARGS_IN_REGISTERS) {
+ __ mov(scratch, edx);
+ } else {
+ __ mov(scratch, Operand(esp, 2 * kPointerSize));
+ }
+ __ test(scratch, Immediate(kSmiTagMask));
+ __ j(zero, &load_smi_1, not_taken);
+ __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
+ __ bind(&done_load_1);
+
+ if (arg_location == ARGS_IN_REGISTERS) {
+ __ mov(scratch, eax);
+ } else {
+ __ mov(scratch, Operand(esp, 1 * kPointerSize));
+ }
+ __ test(scratch, Immediate(kSmiTagMask));
+ __ j(zero, &load_smi_2, not_taken);
+ __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
+ __ jmp(&done);
+
+ __ bind(&load_smi_1);
+ __ SmiUntag(scratch);
+ __ push(scratch);
+ __ fild_s(Operand(esp, 0));
+ __ pop(scratch);
+ __ jmp(&done_load_1);
+
+ __ bind(&load_smi_2);
+ __ SmiUntag(scratch);
+ __ push(scratch);
+ __ fild_s(Operand(esp, 0));
+ __ pop(scratch);
+
+ __ bind(&done);
+}
+
+
+void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm,
+ Register scratch) {
+ const Register left = edx;
+ const Register right = eax;
+ __ mov(scratch, left);
+ ASSERT(!scratch.is(right)); // We're about to clobber scratch.
+ __ SmiUntag(scratch);
+ __ push(scratch);
+ __ fild_s(Operand(esp, 0));
+
+ __ mov(scratch, right);
+ __ SmiUntag(scratch);
+ __ mov(Operand(esp, 0), scratch);
+ __ fild_s(Operand(esp, 0));
+ __ pop(scratch);
+}
+
+
+void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
+ Label* non_float,
+ Register scratch) {
+ NearLabel test_other, done;
+ // Test if both operands are floats or smi -> scratch=k_is_float;
+ // Otherwise scratch = k_not_float.
+ __ test(edx, Immediate(kSmiTagMask));
+ __ j(zero, &test_other, not_taken); // argument in edx is OK
+ __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(scratch, factory->heap_number_map());
+ __ j(not_equal, non_float); // argument in edx is not a number -> NaN
+
+ __ bind(&test_other);
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(zero, &done); // argument in eax is OK
+ __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
+ __ cmp(scratch, factory->heap_number_map());
+ __ j(not_equal, non_float); // argument in eax is not a number -> NaN
+
+ // Fall-through: Both operands are numbers.
+ __ bind(&done);
+}
+
+
+void FloatingPointHelper::CheckFloatOperandsAreInt32(MacroAssembler* masm,
+ Label* non_int32) {
+ return;
+}
+
+
+void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
+ Label slow, done, undo;
+
+ if (op_ == Token::SUB) {
+ if (include_smi_code_) {
+ // Check whether the value is a smi.
+ NearLabel try_float;
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &try_float, not_taken);
+
+ if (negative_zero_ == kStrictNegativeZero) {
+ // Go slow case if the value of the expression is zero
+ // to make sure that we switch between 0 and -0.
+ __ test(eax, Operand(eax));
+ __ j(zero, &slow, not_taken);
+ }
+
+ // The value of the expression is a smi that is not zero. Try
+ // optimistic subtraction '0 - value'.
+ __ mov(edx, Operand(eax));
+ __ Set(eax, Immediate(0));
+ __ sub(eax, Operand(edx));
+ __ j(overflow, &undo, not_taken);
+ __ StubReturn(1);
+
+ // Try floating point case.
+ __ bind(&try_float);
+ } else if (FLAG_debug_code) {
+ __ AbortIfSmi(eax);
+ }
+
+ __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ cmp(edx, masm->isolate()->factory()->heap_number_map());
+ __ j(not_equal, &slow);
+ if (overwrite_ == UNARY_OVERWRITE) {
+ __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset));
+ __ xor_(edx, HeapNumber::kSignMask); // Flip sign.
+ __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), edx);
+ } else {
+ __ mov(edx, Operand(eax));
+ // edx: operand
+ __ AllocateHeapNumber(eax, ebx, ecx, &undo);
+ // eax: allocated 'empty' number
+ __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset));
+ __ xor_(ecx, HeapNumber::kSignMask); // Flip sign.
+ __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx);
+ __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset));
+ __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx);
+ }
+ } else if (op_ == Token::BIT_NOT) {
+ if (include_smi_code_) {
+ Label non_smi;
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &non_smi);
+ __ not_(eax);
+ __ and_(eax, ~kSmiTagMask); // Remove inverted smi-tag.
+ __ ret(0);
+ __ bind(&non_smi);
+ } else if (FLAG_debug_code) {
+ __ AbortIfSmi(eax);
+ }
+
+ // Check if the operand is a heap number.
+ __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ cmp(edx, masm->isolate()->factory()->heap_number_map());
+ __ j(not_equal, &slow, not_taken);
+
+ // Convert the heap number in eax to an untagged integer in ecx.
+ IntegerConvert(masm,
+ eax,
+ TypeInfo::Unknown(),
+ CpuFeatures::IsSupported(SSE3),
+ &slow);
+
+ // Do the bitwise operation and check if the result fits in a smi.
+ NearLabel try_float;
+ __ not_(ecx);
+ __ cmp(ecx, 0xc0000000);
+ __ j(sign, &try_float, not_taken);
+
+ // Tag the result as a smi and we're done.
+ STATIC_ASSERT(kSmiTagSize == 1);
+ __ lea(eax, Operand(ecx, times_2, kSmiTag));
+ __ jmp(&done);
+
+ // Try to store the result in a heap number.
+ __ bind(&try_float);
+ if (overwrite_ == UNARY_NO_OVERWRITE) {
+ // Allocate a fresh heap number, but don't overwrite eax until
+ // we're sure we can do it without going through the slow case
+ // that needs the value in eax.
+ __ AllocateHeapNumber(ebx, edx, edi, &slow);
+ __ mov(eax, Operand(ebx));
+ }
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ __ cvtsi2sd(xmm0, Operand(ecx));
+ __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
+ } else {
+ __ push(ecx);
+ __ fild_s(Operand(esp, 0));
+ __ pop(ecx);
+ __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+
+ // Return from the stub.
+ __ bind(&done);
+ __ StubReturn(1);
+
+ // Restore eax and go slow case.
+ __ bind(&undo);
+ __ mov(eax, Operand(edx));
+
+ // Handle the slow case by jumping to the JavaScript builtin.
+ __ bind(&slow);
+ __ pop(ecx); // pop return address.
+ __ push(eax);
+ __ push(ecx); // push return address
+ switch (op_) {
+ case Token::SUB:
+ __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
+ break;
+ case Token::BIT_NOT:
+ __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void MathPowStub::Generate(MacroAssembler* masm) {
+ // Registers are used as follows:
+ // edx = base
+ // eax = exponent
+ // ecx = temporary, result
+
+ CpuFeatures::Scope use_sse2(SSE2);
+ Label allocate_return, call_runtime;
+
+ // Load input parameters.
+ __ mov(edx, Operand(esp, 2 * kPointerSize));
+ __ mov(eax, Operand(esp, 1 * kPointerSize));
+
+ // Save 1 in xmm3 - we need this several times later on.
+ __ mov(ecx, Immediate(1));
+ __ cvtsi2sd(xmm3, Operand(ecx));
+
+ Label exponent_nonsmi;
+ Label base_nonsmi;
+ // If the exponent is a heap number go to that specific case.
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &exponent_nonsmi);
+ __ test(edx, Immediate(kSmiTagMask));
+ __ j(not_zero, &base_nonsmi);
+
+ // Optimized version when both exponent and base are smis.
+ Label powi;
+ __ SmiUntag(edx);
+ __ cvtsi2sd(xmm0, Operand(edx));
+ __ jmp(&powi);
+ // exponent is smi and base is a heapnumber.
+ __ bind(&base_nonsmi);
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
+ factory->heap_number_map());
+ __ j(not_equal, &call_runtime);
+
+ __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
+
+ // Optimized version of pow if exponent is a smi.
+ // xmm0 contains the base.
+ __ bind(&powi);
+ __ SmiUntag(eax);
+
+ // Save exponent in base as we need to check if exponent is negative later.
+ // We know that base and exponent are in different registers.
+ __ mov(edx, eax);
+
+ // Get absolute value of exponent.
+ NearLabel no_neg;
+ __ cmp(eax, 0);
+ __ j(greater_equal, &no_neg);
+ __ neg(eax);
+ __ bind(&no_neg);
+
+ // Load xmm1 with 1.
+ __ movsd(xmm1, xmm3);
+ NearLabel while_true;
+ NearLabel no_multiply;
+
+ __ bind(&while_true);
+ __ shr(eax, 1);
+ __ j(not_carry, &no_multiply);
+ __ mulsd(xmm1, xmm0);
+ __ bind(&no_multiply);
+ __ mulsd(xmm0, xmm0);
+ __ j(not_zero, &while_true);
+
+ // base has the original value of the exponent - if the exponent is
+ // negative return 1/result.
+ __ test(edx, Operand(edx));
+ __ j(positive, &allocate_return);
+ // Special case if xmm1 has reached infinity.
+ __ mov(ecx, Immediate(0x7FB00000));
+ __ movd(xmm0, Operand(ecx));
+ __ cvtss2sd(xmm0, xmm0);
+ __ ucomisd(xmm0, xmm1);
+ __ j(equal, &call_runtime);
+ __ divsd(xmm3, xmm1);
+ __ movsd(xmm1, xmm3);
+ __ jmp(&allocate_return);
+
+ // exponent (or both) is a heapnumber - no matter what we should now work
+ // on doubles.
+ __ bind(&exponent_nonsmi);
+ __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
+ factory->heap_number_map());
+ __ j(not_equal, &call_runtime);
+ __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
+ // Test if exponent is nan.
+ __ ucomisd(xmm1, xmm1);
+ __ j(parity_even, &call_runtime);
+
+ NearLabel base_not_smi;
+ NearLabel handle_special_cases;
+ __ test(edx, Immediate(kSmiTagMask));
+ __ j(not_zero, &base_not_smi);
+ __ SmiUntag(edx);
+ __ cvtsi2sd(xmm0, Operand(edx));
+ __ jmp(&handle_special_cases);
+
+ __ bind(&base_not_smi);
+ __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
+ factory->heap_number_map());
+ __ j(not_equal, &call_runtime);
+ __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset));
+ __ and_(ecx, HeapNumber::kExponentMask);
+ __ cmp(Operand(ecx), Immediate(HeapNumber::kExponentMask));
+ // base is NaN or +/-Infinity
+ __ j(greater_equal, &call_runtime);
+ __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
+
+ // base is in xmm0 and exponent is in xmm1.
+ __ bind(&handle_special_cases);
+ NearLabel not_minus_half;
+ // Test for -0.5.
+ // Load xmm2 with -0.5.
+ __ mov(ecx, Immediate(0xBF000000));
+ __ movd(xmm2, Operand(ecx));
+ __ cvtss2sd(xmm2, xmm2);
+ // xmm2 now has -0.5.
+ __ ucomisd(xmm2, xmm1);
+ __ j(not_equal, &not_minus_half);
+
+ // Calculates reciprocal of square root.
+ // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
+ __ xorpd(xmm1, xmm1);
+ __ addsd(xmm1, xmm0);
+ __ sqrtsd(xmm1, xmm1);
+ __ divsd(xmm3, xmm1);
+ __ movsd(xmm1, xmm3);
+ __ jmp(&allocate_return);
+
+ // Test for 0.5.
+ __ bind(&not_minus_half);
+ // Load xmm2 with 0.5.
+ // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
+ __ addsd(xmm2, xmm3);
+ // xmm2 now has 0.5.
+ __ ucomisd(xmm2, xmm1);
+ __ j(not_equal, &call_runtime);
+ // Calculates square root.
+ // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
+ __ xorpd(xmm1, xmm1);
+ __ addsd(xmm1, xmm0);
+ __ sqrtsd(xmm1, xmm1);
+
+ __ bind(&allocate_return);
+ __ AllocateHeapNumber(ecx, eax, edx, &call_runtime);
+ __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm1);
+ __ mov(eax, ecx);
+ __ ret(2 * kPointerSize);
+
+ __ bind(&call_runtime);
+ __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
+ // The key is in edx and the parameter count is in eax.
+
+ // The displacement is used for skipping the frame pointer on the
+ // stack. It is the offset of the last parameter (if any) relative
+ // to the frame pointer.
+ static const int kDisplacement = 1 * kPointerSize;
+
+ // Check that the key is a smi.
+ Label slow;
+ __ test(edx, Immediate(kSmiTagMask));
+ __ j(not_zero, &slow, not_taken);
+
+ // Check if the calling frame is an arguments adaptor frame.
+ NearLabel adaptor;
+ __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+ __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
+ __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ j(equal, &adaptor);
+
+ // Check index against formal parameters count limit passed in
+ // through register eax. Use unsigned comparison to get negative
+ // check for free.
+ __ cmp(edx, Operand(eax));
+ __ j(above_equal, &slow, not_taken);
+
+ // Read the argument from the stack and return it.
+ STATIC_ASSERT(kSmiTagSize == 1);
+ STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
+ __ lea(ebx, Operand(ebp, eax, times_2, 0));
+ __ neg(edx);
+ __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
+ __ ret(0);
+
+ // Arguments adaptor case: Check index against actual arguments
+ // limit found in the arguments adaptor frame. Use unsigned
+ // comparison to get negative check for free.
+ __ bind(&adaptor);
+ __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ cmp(edx, Operand(ecx));
+ __ j(above_equal, &slow, not_taken);
+
+ // Read the argument from the stack and return it.
+ STATIC_ASSERT(kSmiTagSize == 1);
+ STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
+ __ lea(ebx, Operand(ebx, ecx, times_2, 0));
+ __ neg(edx);
+ __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
+ __ ret(0);
+
+ // Slow-case: Handle non-smi or out-of-bounds access to arguments
+ // by calling the runtime system.
+ __ bind(&slow);
+ __ pop(ebx); // Return address.
+ __ push(edx);
+ __ push(ebx);
+ __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
+ // esp[0] : return address
+ // esp[4] : number of parameters
+ // esp[8] : receiver displacement
+ // esp[16] : function
+
+ // The displacement is used for skipping the return address and the
+ // frame pointer on the stack. It is the offset of the last
+ // parameter (if any) relative to the frame pointer.
+ static const int kDisplacement = 2 * kPointerSize;
+
+ // Check if the calling frame is an arguments adaptor frame.
+ Label adaptor_frame, try_allocate, runtime;
+ __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+ __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
+ __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ j(equal, &adaptor_frame);
+
+ // Get the length from the frame.
+ __ mov(ecx, Operand(esp, 1 * kPointerSize));
+ __ jmp(&try_allocate);
+
+ // Patch the arguments.length and the parameters pointer.
+ __ bind(&adaptor_frame);
+ __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ mov(Operand(esp, 1 * kPointerSize), ecx);
+ __ lea(edx, Operand(edx, ecx, times_2, kDisplacement));
+ __ mov(Operand(esp, 2 * kPointerSize), edx);
+
+ // Try the new space allocation. Start out with computing the size of
+ // the arguments object and the elements array.
+ NearLabel add_arguments_object;
+ __ bind(&try_allocate);
+ __ test(ecx, Operand(ecx));
+ __ j(zero, &add_arguments_object);
+ __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
+ __ bind(&add_arguments_object);
+ __ add(Operand(ecx), Immediate(GetArgumentsObjectSize()));
+
+ // Do the allocation of both objects in one go.
+ __ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
+
+ // Get the arguments boilerplate from the current (global) context.
+ __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset));
+ __ mov(edi, Operand(edi,
+ Context::SlotOffset(GetArgumentsBoilerplateIndex())));
+
+ // Copy the JS object part.
+ for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
+ __ mov(ebx, FieldOperand(edi, i));
+ __ mov(FieldOperand(eax, i), ebx);
+ }
+
+ if (type_ == NEW_NON_STRICT) {
+ // Setup the callee in-object property.
+ STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
+ __ mov(ebx, Operand(esp, 3 * kPointerSize));
+ __ mov(FieldOperand(eax, JSObject::kHeaderSize +
+ Heap::kArgumentsCalleeIndex * kPointerSize),
+ ebx);
+ }
+
+ // Get the length (smi tagged) and set that as an in-object property too.
+ STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
+ __ mov(ecx, Operand(esp, 1 * kPointerSize));
+ __ mov(FieldOperand(eax, JSObject::kHeaderSize +
+ Heap::kArgumentsLengthIndex * kPointerSize),
+ ecx);
+
+ // If there are no actual arguments, we're done.
+ Label done;
+ __ test(ecx, Operand(ecx));
+ __ j(zero, &done);
+
+ // Get the parameters pointer from the stack.
+ __ mov(edx, Operand(esp, 2 * kPointerSize));
+
+ // Setup the elements pointer in the allocated arguments object and
+ // initialize the header in the elements fixed array.
+ __ lea(edi, Operand(eax, GetArgumentsObjectSize()));
+ __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
+ __ mov(FieldOperand(edi, FixedArray::kMapOffset),
+ Immediate(masm->isolate()->factory()->fixed_array_map()));
+
+ __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
+ // Untag the length for the loop below.
+ __ SmiUntag(ecx);
+
+ // Copy the fixed array slots.
+ NearLabel loop;
+ __ bind(&loop);
+ __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
+ __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
+ __ add(Operand(edi), Immediate(kPointerSize));
+ __ sub(Operand(edx), Immediate(kPointerSize));
+ __ dec(ecx);
+ __ j(not_zero, &loop);
+
+ // Return and remove the on-stack parameters.
+ __ bind(&done);
+ __ ret(3 * kPointerSize);
+
+ // Do the runtime call to allocate the arguments object.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
+}
+
+
+void RegExpExecStub::Generate(MacroAssembler* masm) {
+ // Just jump directly to runtime if native RegExp is not selected at compile
+ // time or if regexp entry in generated code is turned off runtime switch or
+ // at compilation.
+#ifdef V8_INTERPRETED_REGEXP
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
+#else // V8_INTERPRETED_REGEXP
+ if (!FLAG_regexp_entry_native) {
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
+ return;
+ }
+
+ // Stack frame on entry.
+ // esp[0]: return address
+ // esp[4]: last_match_info (expected JSArray)
+ // esp[8]: previous index
+ // esp[12]: subject string
+ // esp[16]: JSRegExp object
+
+ static const int kLastMatchInfoOffset = 1 * kPointerSize;
+ static const int kPreviousIndexOffset = 2 * kPointerSize;
+ static const int kSubjectOffset = 3 * kPointerSize;
+ static const int kJSRegExpOffset = 4 * kPointerSize;
+
+ Label runtime, invoke_regexp;
+
+ // Ensure that a RegExp stack is allocated.
+ ExternalReference address_of_regexp_stack_memory_address =
+ ExternalReference::address_of_regexp_stack_memory_address(
+ masm->isolate());
+ ExternalReference address_of_regexp_stack_memory_size =
+ ExternalReference::address_of_regexp_stack_memory_size(masm->isolate());
+ __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
+ __ test(ebx, Operand(ebx));
+ __ j(zero, &runtime, not_taken);
+
+ // Check that the first argument is a JSRegExp object.
+ __ mov(eax, Operand(esp, kJSRegExpOffset));
+ STATIC_ASSERT(kSmiTag == 0);
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(zero, &runtime);
+ __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
+ __ j(not_equal, &runtime);
+ // Check that the RegExp has been compiled (data contains a fixed array).
+ __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
+ if (FLAG_debug_code) {
+ __ test(ecx, Immediate(kSmiTagMask));
+ __ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected");
+ __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
+ __ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
+ }
+
+ // ecx: RegExp data (FixedArray)
+ // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
+ __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
+ __ cmp(Operand(ebx), Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
+ __ j(not_equal, &runtime);
+
+ // ecx: RegExp data (FixedArray)
+ // Check that the number of captures fit in the static offsets vector buffer.
+ __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
+ // Calculate number of capture registers (number_of_captures + 1) * 2. This
+ // uses the asumption that smis are 2 * their untagged value.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+ __ add(Operand(edx), Immediate(2)); // edx was a smi.
+ // Check that the static offsets vector buffer is large enough.
+ __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize);
+ __ j(above, &runtime);
+
+ // ecx: RegExp data (FixedArray)
+ // edx: Number of capture registers
+ // Check that the second argument is a string.
+ __ mov(eax, Operand(esp, kSubjectOffset));
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(zero, &runtime);
+ Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
+ __ j(NegateCondition(is_string), &runtime);
+ // Get the length of the string to ebx.
+ __ mov(ebx, FieldOperand(eax, String::kLengthOffset));
+
+ // ebx: Length of subject string as a smi
+ // ecx: RegExp data (FixedArray)
+ // edx: Number of capture registers
+ // Check that the third argument is a positive smi less than the subject
+ // string length. A negative value will be greater (unsigned comparison).
+ __ mov(eax, Operand(esp, kPreviousIndexOffset));
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(not_zero, &runtime);
+ __ cmp(eax, Operand(ebx));
+ __ j(above_equal, &runtime);
+
+ // ecx: RegExp data (FixedArray)
+ // edx: Number of capture registers
+ // Check that the fourth object is a JSArray object.
+ __ mov(eax, Operand(esp, kLastMatchInfoOffset));
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(zero, &runtime);
+ __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
+ __ j(not_equal, &runtime);
+ // Check that the JSArray is in fast case.
+ __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
+ __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(eax, factory->fixed_array_map());
+ __ j(not_equal, &runtime);
+ // Check that the last match info has space for the capture registers and the
+ // additional information.
+ __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
+ __ SmiUntag(eax);
+ __ add(Operand(edx), Immediate(RegExpImpl::kLastMatchOverhead));
+ __ cmp(edx, Operand(eax));
+ __ j(greater, &runtime);
+
+ // ecx: RegExp data (FixedArray)
+ // Check the representation and encoding of the subject string.
+ Label seq_ascii_string, seq_two_byte_string, check_code;
+ __ mov(eax, Operand(esp, kSubjectOffset));
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
+ // First check for flat two byte string.
+ __ and_(ebx,
+ kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
+ STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
+ __ j(zero, &seq_two_byte_string);
+ // Any other flat string must be a flat ascii string.
+ __ test(Operand(ebx),
+ Immediate(kIsNotStringMask | kStringRepresentationMask));
+ __ j(zero, &seq_ascii_string);
+
+ // Check for flat cons string.
+ // A flat cons string is a cons string where the second part is the empty
+ // string. In that case the subject string is just the first part of the cons
+ // string. Also in this case the first part of the cons string is known to be
+ // a sequential string or an external string.
+ STATIC_ASSERT(kExternalStringTag != 0);
+ STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
+ __ test(Operand(ebx),
+ Immediate(kIsNotStringMask | kExternalStringTag));
+ __ j(not_zero, &runtime);
+ // String is a cons string.
+ __ mov(edx, FieldOperand(eax, ConsString::kSecondOffset));
+ __ cmp(Operand(edx), factory->empty_string());
+ __ j(not_equal, &runtime);
+ __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
+ // String is a cons string with empty second part.
+ // eax: first part of cons string.
+ // ebx: map of first part of cons string.
+ // Is first part a flat two byte string?
+ __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
+ kStringRepresentationMask | kStringEncodingMask);
+ STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
+ __ j(zero, &seq_two_byte_string);
+ // Any other flat string must be ascii.
+ __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
+ kStringRepresentationMask);
+ __ j(not_zero, &runtime);
+
+ __ bind(&seq_ascii_string);
+ // eax: subject string (flat ascii)
+ // ecx: RegExp data (FixedArray)
+ __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset));
+ __ Set(edi, Immediate(1)); // Type is ascii.
+ __ jmp(&check_code);
+
+ __ bind(&seq_two_byte_string);
+ // eax: subject string (flat two byte)
+ // ecx: RegExp data (FixedArray)
+ __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
+ __ Set(edi, Immediate(0)); // Type is two byte.
+
+ __ bind(&check_code);
+ // Check that the irregexp code has been generated for the actual string
+ // encoding. If it has, the field contains a code object otherwise it contains
+ // the hole.
+ __ CmpObjectType(edx, CODE_TYPE, ebx);
+ __ j(not_equal, &runtime);
+
+ // eax: subject string
+ // edx: code
+ // edi: encoding of subject string (1 if ascii, 0 if two_byte);
+ // Load used arguments before starting to push arguments for call to native
+ // RegExp code to avoid handling changing stack height.
+ __ mov(ebx, Operand(esp, kPreviousIndexOffset));
+ __ SmiUntag(ebx); // Previous index from smi.
+
+ // eax: subject string
+ // ebx: previous index
+ // edx: code
+ // edi: encoding of subject string (1 if ascii 0 if two_byte);
+ // All checks done. Now push arguments for native regexp code.
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->regexp_entry_native(), 1);
+
+ // Isolates: note we add an additional parameter here (isolate pointer).
+ static const int kRegExpExecuteArguments = 8;
+ __ EnterApiExitFrame(kRegExpExecuteArguments);
+
+ // Argument 8: Pass current isolate address.
+ __ mov(Operand(esp, 7 * kPointerSize),
+ Immediate(ExternalReference::isolate_address()));
+
+ // Argument 7: Indicate that this is a direct call from JavaScript.
+ __ mov(Operand(esp, 6 * kPointerSize), Immediate(1));
+
+ // Argument 6: Start (high end) of backtracking stack memory area.
+ __ mov(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_address));
+ __ add(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
+ __ mov(Operand(esp, 5 * kPointerSize), ecx);
+
+ // Argument 5: static offsets vector buffer.
+ __ mov(Operand(esp, 4 * kPointerSize),
+ Immediate(ExternalReference::address_of_static_offsets_vector(
+ masm->isolate())));
+
+ // Argument 4: End of string data
+ // Argument 3: Start of string data
+ NearLabel setup_two_byte, setup_rest;
+ __ test(edi, Operand(edi));
+ __ mov(edi, FieldOperand(eax, String::kLengthOffset));
+ __ j(zero, &setup_two_byte);
+ __ SmiUntag(edi);
+ __ lea(ecx, FieldOperand(eax, edi, times_1, SeqAsciiString::kHeaderSize));
+ __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
+ __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize));
+ __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
+ __ jmp(&setup_rest);
+
+ __ bind(&setup_two_byte);
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize == 1); // edi is smi (powered by 2).
+ __ lea(ecx, FieldOperand(eax, edi, times_1, SeqTwoByteString::kHeaderSize));
+ __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
+ __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
+ __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
+
+ __ bind(&setup_rest);
+
+ // Argument 2: Previous index.
+ __ mov(Operand(esp, 1 * kPointerSize), ebx);
+
+ // Argument 1: Subject string.
+ __ mov(Operand(esp, 0 * kPointerSize), eax);
+
+ // Locate the code entry and call it.
+ __ add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag));
+ __ call(Operand(edx));
+
+ // Drop arguments and come back to JS mode.
+ __ LeaveApiExitFrame();
+
+ // Check the result.
+ Label success;
+ __ cmp(eax, NativeRegExpMacroAssembler::SUCCESS);
+ __ j(equal, &success, taken);
+ Label failure;
+ __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
+ __ j(equal, &failure, taken);
+ __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
+ // If not exception it can only be retry. Handle that in the runtime system.
+ __ j(not_equal, &runtime);
+ // Result must now be exception. If there is no pending exception already a
+ // stack overflow (on the backtrack stack) was detected in RegExp code but
+ // haven't created the exception yet. Handle that in the runtime system.
+ // TODO(592): Rerunning the RegExp to get the stack overflow exception.
+ ExternalReference pending_exception(Isolate::k_pending_exception_address,
+ masm->isolate());
+ __ mov(edx,
+ Operand::StaticVariable(ExternalReference::the_hole_value_location(
+ masm->isolate())));
+ __ mov(eax, Operand::StaticVariable(pending_exception));
+ __ cmp(edx, Operand(eax));
+ __ j(equal, &runtime);
+ // For exception, throw the exception again.
+
+ // Clear the pending exception variable.
+ __ mov(Operand::StaticVariable(pending_exception), edx);
+
+ // Special handling of termination exceptions which are uncatchable
+ // by javascript code.
+ __ cmp(eax, factory->termination_exception());
+ Label throw_termination_exception;
+ __ j(equal, &throw_termination_exception);
+
+ // Handle normal exception by following handler chain.
+ __ Throw(eax);
+
+ __ bind(&throw_termination_exception);
+ __ ThrowUncatchable(TERMINATION, eax);
+
+ __ bind(&failure);
+ // For failure to match, return null.
+ __ mov(Operand(eax), factory->null_value());
+ __ ret(4 * kPointerSize);
+
+ // Load RegExp data.
+ __ bind(&success);
+ __ mov(eax, Operand(esp, kJSRegExpOffset));
+ __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
+ __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
+ // Calculate number of capture registers (number_of_captures + 1) * 2.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+ __ add(Operand(edx), Immediate(2)); // edx was a smi.
+
+ // edx: Number of capture registers
+ // Load last_match_info which is still known to be a fast case JSArray.
+ __ mov(eax, Operand(esp, kLastMatchInfoOffset));
+ __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
+
+ // ebx: last_match_info backing store (FixedArray)
+ // edx: number of capture registers
+ // Store the capture count.
+ __ SmiTag(edx); // Number of capture registers to smi.
+ __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
+ __ SmiUntag(edx); // Number of capture registers back from smi.
+ // Store last subject and last input.
+ __ mov(eax, Operand(esp, kSubjectOffset));
+ __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
+ __ mov(ecx, ebx);
+ __ RecordWrite(ecx, RegExpImpl::kLastSubjectOffset, eax, edi);
+ __ mov(eax, Operand(esp, kSubjectOffset));
+ __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
+ __ mov(ecx, ebx);
+ __ RecordWrite(ecx, RegExpImpl::kLastInputOffset, eax, edi);
+
+ // Get the static offsets vector filled by the native regexp code.
+ ExternalReference address_of_static_offsets_vector =
+ ExternalReference::address_of_static_offsets_vector(masm->isolate());
+ __ mov(ecx, Immediate(address_of_static_offsets_vector));
+
+ // ebx: last_match_info backing store (FixedArray)
+ // ecx: offsets vector
+ // edx: number of capture registers
+ NearLabel next_capture, done;
+ // Capture register counter starts from number of capture registers and
+ // counts down until wraping after zero.
+ __ bind(&next_capture);
+ __ sub(Operand(edx), Immediate(1));
+ __ j(negative, &done);
+ // Read the value from the static offsets vector buffer.
+ __ mov(edi, Operand(ecx, edx, times_int_size, 0));
+ __ SmiTag(edi);
+ // Store the smi value in the last match info.
+ __ mov(FieldOperand(ebx,
+ edx,
+ times_pointer_size,
+ RegExpImpl::kFirstCaptureOffset),
+ edi);
+ __ jmp(&next_capture);
+ __ bind(&done);
+
+ // Return last match info.
+ __ mov(eax, Operand(esp, kLastMatchInfoOffset));
+ __ ret(4 * kPointerSize);
+
+ // Do the runtime call to execute the regexp.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
+#endif // V8_INTERPRETED_REGEXP
+}
+
+
+void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
+ const int kMaxInlineLength = 100;
+ Label slowcase;
+ NearLabel done;
+ __ mov(ebx, Operand(esp, kPointerSize * 3));
+ __ test(ebx, Immediate(kSmiTagMask));
+ __ j(not_zero, &slowcase);
+ __ cmp(Operand(ebx), Immediate(Smi::FromInt(kMaxInlineLength)));
+ __ j(above, &slowcase);
+ // Smi-tagging is equivalent to multiplying by 2.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ // Allocate RegExpResult followed by FixedArray with size in ebx.
+ // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
+ // Elements: [Map][Length][..elements..]
+ __ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize,
+ times_half_pointer_size,
+ ebx, // In: Number of elements (times 2, being a smi)
+ eax, // Out: Start of allocation (tagged).
+ ecx, // Out: End of allocation.
+ edx, // Scratch register
+ &slowcase,
+ TAG_OBJECT);
+ // eax: Start of allocated area, object-tagged.
+
+ // Set JSArray map to global.regexp_result_map().
+ // Set empty properties FixedArray.
+ // Set elements to point to FixedArray allocated right after the JSArray.
+ // Interleave operations for better latency.
+ __ mov(edx, ContextOperand(esi, Context::GLOBAL_INDEX));
+ Factory* factory = masm->isolate()->factory();
+ __ mov(ecx, Immediate(factory->empty_fixed_array()));
+ __ lea(ebx, Operand(eax, JSRegExpResult::kSize));
+ __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalContextOffset));
+ __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx);
+ __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
+ __ mov(edx, ContextOperand(edx, Context::REGEXP_RESULT_MAP_INDEX));
+ __ mov(FieldOperand(eax, HeapObject::kMapOffset), edx);
+
+ // Set input, index and length fields from arguments.
+ __ mov(ecx, Operand(esp, kPointerSize * 1));
+ __ mov(FieldOperand(eax, JSRegExpResult::kInputOffset), ecx);
+ __ mov(ecx, Operand(esp, kPointerSize * 2));
+ __ mov(FieldOperand(eax, JSRegExpResult::kIndexOffset), ecx);
+ __ mov(ecx, Operand(esp, kPointerSize * 3));
+ __ mov(FieldOperand(eax, JSArray::kLengthOffset), ecx);
+
+ // Fill out the elements FixedArray.
+ // eax: JSArray.
+ // ebx: FixedArray.
+ // ecx: Number of elements in array, as smi.
+
+ // Set map.
+ __ mov(FieldOperand(ebx, HeapObject::kMapOffset),
+ Immediate(factory->fixed_array_map()));
+ // Set length.
+ __ mov(FieldOperand(ebx, FixedArray::kLengthOffset), ecx);
+ // Fill contents of fixed-array with the-hole.
+ __ SmiUntag(ecx);
+ __ mov(edx, Immediate(factory->the_hole_value()));
+ __ lea(ebx, FieldOperand(ebx, FixedArray::kHeaderSize));
+ // Fill fixed array elements with hole.
+ // eax: JSArray.
+ // ecx: Number of elements to fill.
+ // ebx: Start of elements in FixedArray.
+ // edx: the hole.
+ Label loop;
+ __ test(ecx, Operand(ecx));
+ __ bind(&loop);
+ __ j(less_equal, &done); // Jump if ecx is negative or zero.
+ __ sub(Operand(ecx), Immediate(1));
+ __ mov(Operand(ebx, ecx, times_pointer_size, 0), edx);
+ __ jmp(&loop);
+
+ __ bind(&done);
+ __ ret(3 * kPointerSize);
+
+ __ bind(&slowcase);
+ __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
+}
+
+
+void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
+ Register object,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ bool object_is_smi,
+ Label* not_found) {
+ // Use of registers. Register result is used as a temporary.
+ Register number_string_cache = result;
+ Register mask = scratch1;
+ Register scratch = scratch2;
+
+ // Load the number string cache.
+ ExternalReference roots_address =
+ ExternalReference::roots_address(masm->isolate());
+ __ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex));
+ __ mov(number_string_cache,
+ Operand::StaticArray(scratch, times_pointer_size, roots_address));
+ // Make the hash mask from the length of the number string cache. It
+ // contains two elements (number and string) for each cache entry.
+ __ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
+ __ shr(mask, kSmiTagSize + 1); // Untag length and divide it by two.
+ __ sub(Operand(mask), Immediate(1)); // Make mask.
+
+ // Calculate the entry in the number string cache. The hash value in the
+ // number string cache for smis is just the smi value, and the hash for
+ // doubles is the xor of the upper and lower words. See
+ // Heap::GetNumberStringCache.
+ NearLabel smi_hash_calculated;
+ NearLabel load_result_from_cache;
+ if (object_is_smi) {
+ __ mov(scratch, object);
+ __ SmiUntag(scratch);
+ } else {
+ NearLabel not_smi, hash_calculated;
+ STATIC_ASSERT(kSmiTag == 0);
+ __ test(object, Immediate(kSmiTagMask));
+ __ j(not_zero, &not_smi);
+ __ mov(scratch, object);
+ __ SmiUntag(scratch);
+ __ jmp(&smi_hash_calculated);
+ __ bind(&not_smi);
+ __ cmp(FieldOperand(object, HeapObject::kMapOffset),
+ masm->isolate()->factory()->heap_number_map());
+ __ j(not_equal, not_found);
+ STATIC_ASSERT(8 == kDoubleSize);
+ __ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
+ __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
+ // Object is heap number and hash is now in scratch. Calculate cache index.
+ __ and_(scratch, Operand(mask));
+ Register index = scratch;
+ Register probe = mask;
+ __ mov(probe,
+ FieldOperand(number_string_cache,
+ index,
+ times_twice_pointer_size,
+ FixedArray::kHeaderSize));
+ __ test(probe, Immediate(kSmiTagMask));
+ __ j(zero, not_found);
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope fscope(SSE2);
+ __ movdbl(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
+ __ movdbl(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
+ __ ucomisd(xmm0, xmm1);
+ } else {
+ __ fld_d(FieldOperand(object, HeapNumber::kValueOffset));
+ __ fld_d(FieldOperand(probe, HeapNumber::kValueOffset));
+ __ FCmp();
+ }
+ __ j(parity_even, not_found); // Bail out if NaN is involved.
+ __ j(not_equal, not_found); // The cache did not contain this value.
+ __ jmp(&load_result_from_cache);
+ }
+
+ __ bind(&smi_hash_calculated);
+ // Object is smi and hash is now in scratch. Calculate cache index.
+ __ and_(scratch, Operand(mask));
+ Register index = scratch;
+ // Check if the entry is the smi we are looking for.
+ __ cmp(object,
+ FieldOperand(number_string_cache,
+ index,
+ times_twice_pointer_size,
+ FixedArray::kHeaderSize));
+ __ j(not_equal, not_found);
+
+ // Get the result from the cache.
+ __ bind(&load_result_from_cache);
+ __ mov(result,
+ FieldOperand(number_string_cache,
+ index,
+ times_twice_pointer_size,
+ FixedArray::kHeaderSize + kPointerSize));
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->number_to_string_native(), 1);
+}
+
+
+void NumberToStringStub::Generate(MacroAssembler* masm) {
+ Label runtime;
+
+ __ mov(ebx, Operand(esp, kPointerSize));
+
+ // Generate code to lookup number in the number string cache.
+ GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime);
+ __ ret(1 * kPointerSize);
+
+ __ bind(&runtime);
+ // Handle number to string in the runtime system if not found in the cache.
+ __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
+}
+
+
+static int NegativeComparisonResult(Condition cc) {
+ ASSERT(cc != equal);
+ ASSERT((cc == less) || (cc == less_equal)
+ || (cc == greater) || (cc == greater_equal));
+ return (cc == greater || cc == greater_equal) ? LESS : GREATER;
+}
+
+void CompareStub::Generate(MacroAssembler* masm) {
+ ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
+
+ Label check_unequal_objects, done;
+
+ // Compare two smis if required.
+ if (include_smi_compare_) {
+ Label non_smi, smi_done;
+ __ mov(ecx, Operand(edx));
+ __ or_(ecx, Operand(eax));
+ __ test(ecx, Immediate(kSmiTagMask));
+ __ j(not_zero, &non_smi, not_taken);
+ __ sub(edx, Operand(eax)); // Return on the result of the subtraction.
+ __ j(no_overflow, &smi_done);
+ __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
+ __ bind(&smi_done);
+ __ mov(eax, edx);
+ __ ret(0);
+ __ bind(&non_smi);
+ } else if (FLAG_debug_code) {
+ __ mov(ecx, Operand(edx));
+ __ or_(ecx, Operand(eax));
+ __ test(ecx, Immediate(kSmiTagMask));
+ __ Assert(not_zero, "Unexpected smi operands.");
+ }
+
+ // NOTICE! This code is only reached after a smi-fast-case check, so
+ // it is certain that at least one operand isn't a smi.
+
+ // Identical objects can be compared fast, but there are some tricky cases
+ // for NaN and undefined.
+ {
+ Label not_identical;
+ __ cmp(eax, Operand(edx));
+ __ j(not_equal, &not_identical);
+
+ if (cc_ != equal) {
+ // Check for undefined. undefined OP undefined is false even though
+ // undefined == undefined.
+ NearLabel check_for_nan;
+ __ cmp(edx, masm->isolate()->factory()->undefined_value());
+ __ j(not_equal, &check_for_nan);
+ __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
+ __ ret(0);
+ __ bind(&check_for_nan);
+ }
+
+ // Test for NaN. Sadly, we can't just compare to factory->nan_value(),
+ // so we do the second best thing - test it ourselves.
+ // Note: if cc_ != equal, never_nan_nan_ is not used.
+ if (never_nan_nan_ && (cc_ == equal)) {
+ __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
+ __ ret(0);
+ } else {
+ NearLabel heap_number;
+ __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
+ Immediate(masm->isolate()->factory()->heap_number_map()));
+ __ j(equal, &heap_number);
+ if (cc_ != equal) {
+ // Call runtime on identical JSObjects. Otherwise return equal.
+ __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
+ __ j(above_equal, &not_identical);
+ }
+ __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
+ __ ret(0);
+
+ __ bind(&heap_number);
+ // It is a heap number, so return non-equal if it's NaN and equal if
+ // it's not NaN.
+ // The representation of NaN values has all exponent bits (52..62) set,
+ // and not all mantissa bits (0..51) clear.
+ // We only accept QNaNs, which have bit 51 set.
+ // Read top bits of double representation (second word of value).
+
+ // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e.,
+ // all bits in the mask are set. We only need to check the word
+ // that contains the exponent and high bit of the mantissa.
+ STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0);
+ __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset));
+ __ Set(eax, Immediate(0));
+ // Shift value and mask so kQuietNaNHighBitsMask applies to topmost
+ // bits.
+ __ add(edx, Operand(edx));
+ __ cmp(edx, kQuietNaNHighBitsMask << 1);
+ if (cc_ == equal) {
+ STATIC_ASSERT(EQUAL != 1);
+ __ setcc(above_equal, eax);
+ __ ret(0);
+ } else {
+ NearLabel nan;
+ __ j(above_equal, &nan);
+ __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
+ __ ret(0);
+ __ bind(&nan);
+ __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
+ __ ret(0);
+ }
+ }
+
+ __ bind(&not_identical);
+ }
+
+ // Strict equality can quickly decide whether objects are equal.
+ // Non-strict object equality is slower, so it is handled later in the stub.
+ if (cc_ == equal && strict_) {
+ Label slow; // Fallthrough label.
+ NearLabel not_smis;
+ // If we're doing a strict equality comparison, we don't have to do
+ // type conversion, so we generate code to do fast comparison for objects
+ // and oddballs. Non-smi numbers and strings still go through the usual
+ // slow-case code.
+ // If either is a Smi (we know that not both are), then they can only
+ // be equal if the other is a HeapNumber. If so, use the slow case.
+ STATIC_ASSERT(kSmiTag == 0);
+ ASSERT_EQ(0, Smi::FromInt(0));
+ __ mov(ecx, Immediate(kSmiTagMask));
+ __ and_(ecx, Operand(eax));
+ __ test(ecx, Operand(edx));
+ __ j(not_zero, &not_smis);
+ // One operand is a smi.
+
+ // Check whether the non-smi is a heap number.
+ STATIC_ASSERT(kSmiTagMask == 1);
+ // ecx still holds eax & kSmiTag, which is either zero or one.
+ __ sub(Operand(ecx), Immediate(0x01));
+ __ mov(ebx, edx);
+ __ xor_(ebx, Operand(eax));
+ __ and_(ebx, Operand(ecx)); // ebx holds either 0 or eax ^ edx.
+ __ xor_(ebx, Operand(eax));
+ // if eax was smi, ebx is now edx, else eax.
+
+ // Check if the non-smi operand is a heap number.
+ __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
+ Immediate(masm->isolate()->factory()->heap_number_map()));
+ // If heap number, handle it in the slow case.
+ __ j(equal, &slow);
+ // Return non-equal (ebx is not zero)
+ __ mov(eax, ebx);
+ __ ret(0);
+
+ __ bind(&not_smis);
+ // If either operand is a JSObject or an oddball value, then they are not
+ // equal since their pointers are different
+ // There is no test for undetectability in strict equality.
+
+ // Get the type of the first operand.
+ // If the first object is a JS object, we have done pointer comparison.
+ NearLabel first_non_object;
+ STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
+ __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
+ __ j(below, &first_non_object);
+
+ // Return non-zero (eax is not zero)
+ NearLabel return_not_equal;
+ STATIC_ASSERT(kHeapObjectTag != 0);
+ __ bind(&return_not_equal);
+ __ ret(0);
+
+ __ bind(&first_non_object);
+ // Check for oddballs: true, false, null, undefined.
+ __ CmpInstanceType(ecx, ODDBALL_TYPE);
+ __ j(equal, &return_not_equal);
+
+ __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ecx);
+ __ j(above_equal, &return_not_equal);
+
+ // Check for oddballs: true, false, null, undefined.
+ __ CmpInstanceType(ecx, ODDBALL_TYPE);
+ __ j(equal, &return_not_equal);
+
+ // Fall through to the general case.
+ __ bind(&slow);
+ }
+
+ // Generate the number comparison code.
+ if (include_number_compare_) {
+ Label non_number_comparison;
+ Label unordered;
+ if (CpuFeatures::IsSupported(SSE2)) {
+ CpuFeatures::Scope use_sse2(SSE2);
+ CpuFeatures::Scope use_cmov(CMOV);
+
+ FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
+ __ ucomisd(xmm0, xmm1);
+
+ // Don't base result on EFLAGS when a NaN is involved.
+ __ j(parity_even, &unordered, not_taken);
+ // Return a result of -1, 0, or 1, based on EFLAGS.
+ __ mov(eax, 0); // equal
+ __ mov(ecx, Immediate(Smi::FromInt(1)));
+ __ cmov(above, eax, Operand(ecx));
+ __ mov(ecx, Immediate(Smi::FromInt(-1)));
+ __ cmov(below, eax, Operand(ecx));
+ __ ret(0);
+ } else {
+ FloatingPointHelper::CheckFloatOperands(
+ masm, &non_number_comparison, ebx);
+ FloatingPointHelper::LoadFloatOperand(masm, eax);
+ FloatingPointHelper::LoadFloatOperand(masm, edx);
+ __ FCmp();
+
+ // Don't base result on EFLAGS when a NaN is involved.
+ __ j(parity_even, &unordered, not_taken);
+
+ NearLabel below_label, above_label;
+ // Return a result of -1, 0, or 1, based on EFLAGS.
+ __ j(below, &below_label, not_taken);
+ __ j(above, &above_label, not_taken);
+
+ __ Set(eax, Immediate(0));
+ __ ret(0);
+
+ __ bind(&below_label);
+ __ mov(eax, Immediate(Smi::FromInt(-1)));
+ __ ret(0);
+
+ __ bind(&above_label);
+ __ mov(eax, Immediate(Smi::FromInt(1)));
+ __ ret(0);
+ }
+
+ // If one of the numbers was NaN, then the result is always false.
+ // The cc is never not-equal.
+ __ bind(&unordered);
+ ASSERT(cc_ != not_equal);
+ if (cc_ == less || cc_ == less_equal) {
+ __ mov(eax, Immediate(Smi::FromInt(1)));
+ } else {
+ __ mov(eax, Immediate(Smi::FromInt(-1)));
+ }
+ __ ret(0);
+
+ // The number comparison code did not provide a valid result.
+ __ bind(&non_number_comparison);
+ }
+
+ // Fast negative check for symbol-to-symbol equality.
+ Label check_for_strings;
+ if (cc_ == equal) {
+ BranchIfNonSymbol(masm, &check_for_strings, eax, ecx);
+ BranchIfNonSymbol(masm, &check_for_strings, edx, ecx);
+
+ // We've already checked for object identity, so if both operands
+ // are symbols they aren't equal. Register eax already holds a
+ // non-zero value, which indicates not equal, so just return.
+ __ ret(0);
+ }
+
+ __ bind(&check_for_strings);
+
+ __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx,
+ &check_unequal_objects);
+
+ // Inline comparison of ascii strings.
+ StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
+ edx,
+ eax,
+ ecx,
+ ebx,
+ edi);
+#ifdef DEBUG
+ __ Abort("Unexpected fall-through from string comparison");
+#endif
+
+ __ bind(&check_unequal_objects);
+ if (cc_ == equal && !strict_) {
+ // Non-strict equality. Objects are unequal if
+ // they are both JSObjects and not undetectable,
+ // and their pointers are different.
+ NearLabel not_both_objects;
+ NearLabel return_unequal;
+ // At most one is a smi, so we can test for smi by adding the two.
+ // A smi plus a heap object has the low bit set, a heap object plus
+ // a heap object has the low bit clear.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagMask == 1);
+ __ lea(ecx, Operand(eax, edx, times_1, 0));
+ __ test(ecx, Immediate(kSmiTagMask));
+ __ j(not_zero, &not_both_objects);
+ __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
+ __ j(below, &not_both_objects);
+ __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ebx);
+ __ j(below, &not_both_objects);
+ // We do not bail out after this point. Both are JSObjects, and
+ // they are equal if and only if both are undetectable.
+ // The and of the undetectable flags is 1 if and only if they are equal.
+ __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
+ 1 << Map::kIsUndetectable);
+ __ j(zero, &return_unequal);
+ __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
+ 1 << Map::kIsUndetectable);
+ __ j(zero, &return_unequal);
+ // The objects are both undetectable, so they both compare as the value
+ // undefined, and are equal.
+ __ Set(eax, Immediate(EQUAL));
+ __ bind(&return_unequal);
+ // Return non-equal by returning the non-zero object pointer in eax,
+ // or return equal if we fell through to here.
+ __ ret(0); // rax, rdx were pushed
+ __ bind(&not_both_objects);
+ }
+
+ // Push arguments below the return address.
+ __ pop(ecx);
+ __ push(edx);
+ __ push(eax);
+
+ // Figure out which native to call and setup the arguments.
+ Builtins::JavaScript builtin;
+ if (cc_ == equal) {
+ builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
+ } else {
+ builtin = Builtins::COMPARE;
+ __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
+ }
+
+ // Restore return address on the stack.
+ __ push(ecx);
+
+ // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
+ // tagged as a small integer.
+ __ InvokeBuiltin(builtin, JUMP_FUNCTION);
+}
+
+
+void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
+ Label* label,
+ Register object,
+ Register scratch) {
+ __ test(object, Immediate(kSmiTagMask));
+ __ j(zero, label);
+ __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
+ __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
+ __ and_(scratch, kIsSymbolMask | kIsNotStringMask);
+ __ cmp(scratch, kSymbolTag | kStringTag);
+ __ j(not_equal, label);
+}
+
+
+void StackCheckStub::Generate(MacroAssembler* masm) {
+ __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
+}
+
+
+void CallFunctionStub::Generate(MacroAssembler* masm) {
+ Label slow;
+
+ // If the receiver might be a value (string, number or boolean) check for this
+ // and box it if it is.
+ if (ReceiverMightBeValue()) {
+ // Get the receiver from the stack.
+ // +1 ~ return address
+ Label receiver_is_value, receiver_is_js_object;
+ __ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize));
+
+ // Check if receiver is a smi (which is a number value).
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(zero, &receiver_is_value, not_taken);
+
+ // Check if the receiver is a valid JS object.
+ __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, edi);
+ __ j(above_equal, &receiver_is_js_object);
+
+ // Call the runtime to box the value.
+ __ bind(&receiver_is_value);
+ __ EnterInternalFrame();
+ __ push(eax);
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
+ __ LeaveInternalFrame();
+ __ mov(Operand(esp, (argc_ + 1) * kPointerSize), eax);
+
+ __ bind(&receiver_is_js_object);
+ }
+
+ // Get the function to call from the stack.
+ // +2 ~ receiver, return address
+ __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize));
+
+ // Check that the function really is a JavaScript function.
+ __ test(edi, Immediate(kSmiTagMask));
+ __ j(zero, &slow, not_taken);
+ // Goto slow case if we do not have a function.
+ __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
+ __ j(not_equal, &slow, not_taken);
+
+ // Fast-case: Just invoke the function.
+ ParameterCount actual(argc_);
+ __ InvokeFunction(edi, actual, JUMP_FUNCTION);
+
+ // Slow-case: Non-function called.
+ __ bind(&slow);
+ // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
+ // of the original receiver from the call site).
+ __ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi);
+ __ Set(eax, Immediate(argc_));
+ __ Set(ebx, Immediate(0));
+ __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
+ Handle<Code> adaptor =
+ masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
+ __ jmp(adaptor, RelocInfo::CODE_TARGET);
+}
+
+
+bool CEntryStub::NeedsImmovableCode() {
+ return false;
+}
+
+
+void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
+ __ Throw(eax);
+}
+
+
+void CEntryStub::GenerateCore(MacroAssembler* masm,
+ Label* throw_normal_exception,
+ Label* throw_termination_exception,
+ Label* throw_out_of_memory_exception,
+ bool do_gc,
+ bool always_allocate_scope) {
+ // eax: result parameter for PerformGC, if any
+ // ebx: pointer to C function (C callee-saved)
+ // ebp: frame pointer (restored after C call)
+ // esp: stack pointer (restored after C call)
+ // edi: number of arguments including receiver (C callee-saved)
+ // esi: pointer to the first argument (C callee-saved)
+
+ // Result returned in eax, or eax+edx if result_size_ is 2.
+
+ // Check stack alignment.
+ if (FLAG_debug_code) {
+ __ CheckStackAlignment();
+ }
+
+ if (do_gc) {
+ // Pass failure code returned from last attempt as first argument to
+ // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
+ // stack alignment is known to be correct. This function takes one argument
+ // which is passed on the stack, and we know that the stack has been
+ // prepared to pass at least one argument.
+ __ mov(Operand(esp, 0 * kPointerSize), eax); // Result.
+ __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY);
+ }
+
+ ExternalReference scope_depth =
+ ExternalReference::heap_always_allocate_scope_depth(masm->isolate());
+ if (always_allocate_scope) {
+ __ inc(Operand::StaticVariable(scope_depth));
+ }
+
+ // Call C function.
+ __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
+ __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
+ __ mov(Operand(esp, 2 * kPointerSize),
+ Immediate(ExternalReference::isolate_address()));
+ __ call(Operand(ebx));
+ // Result is in eax or edx:eax - do not destroy these registers!
+
+ if (always_allocate_scope) {
+ __ dec(Operand::StaticVariable(scope_depth));
+ }
+
+ // Make sure we're not trying to return 'the hole' from the runtime
+ // call as this may lead to crashes in the IC code later.
+ if (FLAG_debug_code) {
+ NearLabel okay;
+ __ cmp(eax, masm->isolate()->factory()->the_hole_value());
+ __ j(not_equal, &okay);
+ __ int3();
+ __ bind(&okay);
+ }
+
+ // Check for failure result.
+ Label failure_returned;
+ STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
+ __ lea(ecx, Operand(eax, 1));
+ // Lower 2 bits of ecx are 0 iff eax has failure tag.
+ __ test(ecx, Immediate(kFailureTagMask));
+ __ j(zero, &failure_returned, not_taken);
+
+ ExternalReference pending_exception_address(
+ Isolate::k_pending_exception_address, masm->isolate());
+
+ // Check that there is no pending exception, otherwise we
+ // should have returned some failure value.
+ if (FLAG_debug_code) {
+ __ push(edx);
+ __ mov(edx, Operand::StaticVariable(
+ ExternalReference::the_hole_value_location(masm->isolate())));
+ NearLabel okay;
+ __ cmp(edx, Operand::StaticVariable(pending_exception_address));
+ // Cannot use check here as it attempts to generate call into runtime.
+ __ j(equal, &okay);
+ __ int3();
+ __ bind(&okay);
+ __ pop(edx);
+ }
+
+ // Exit the JavaScript to C++ exit frame.
+ __ LeaveExitFrame(save_doubles_);
+ __ ret(0);
+
+ // Handling of failure.
+ __ bind(&failure_returned);
+
+ Label retry;
+ // If the returned exception is RETRY_AFTER_GC continue at retry label
+ STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
+ __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
+ __ j(zero, &retry, taken);
+
+ // Special handling of out of memory exceptions.
+ __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException()));
+ __ j(equal, throw_out_of_memory_exception);
+
+ // Retrieve the pending exception and clear the variable.
+ ExternalReference the_hole_location =
+ ExternalReference::the_hole_value_location(masm->isolate());
+ __ mov(eax, Operand::StaticVariable(pending_exception_address));
+ __ mov(edx, Operand::StaticVariable(the_hole_location));
+ __ mov(Operand::StaticVariable(pending_exception_address), edx);
+
+ // Special handling of termination exceptions which are uncatchable
+ // by javascript code.
+ __ cmp(eax, masm->isolate()->factory()->termination_exception());
+ __ j(equal, throw_termination_exception);
+
+ // Handle normal exception.
+ __ jmp(throw_normal_exception);
+
+ // Retry.
+ __ bind(&retry);
+}
+
+
+void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
+ UncatchableExceptionType type) {
+ __ ThrowUncatchable(type, eax);
+}
+
+
+void CEntryStub::Generate(MacroAssembler* masm) {
+ // eax: number of arguments including receiver
+ // ebx: pointer to C function (C callee-saved)
+ // ebp: frame pointer (restored after C call)
+ // esp: stack pointer (restored after C call)
+ // esi: current context (C callee-saved)
+ // edi: JS function of the caller (C callee-saved)
+
+ // NOTE: Invocations of builtins may return failure objects instead
+ // of a proper result. The builtin entry handles this by performing
+ // a garbage collection and retrying the builtin (twice).
+
+ // Enter the exit frame that transitions from JavaScript to C++.
+ __ EnterExitFrame(save_doubles_);
+
+ // eax: result parameter for PerformGC, if any (setup below)
+ // ebx: pointer to builtin function (C callee-saved)
+ // ebp: frame pointer (restored after C call)
+ // esp: stack pointer (restored after C call)
+ // edi: number of arguments including receiver (C callee-saved)
+ // esi: argv pointer (C callee-saved)
+
+ Label throw_normal_exception;
+ Label throw_termination_exception;
+ Label throw_out_of_memory_exception;
+
+ // Call into the runtime system.
+ GenerateCore(masm,
+ &throw_normal_exception,
+ &throw_termination_exception,
+ &throw_out_of_memory_exception,
+ false,
+ false);
+
+ // Do space-specific GC and retry runtime call.
+ GenerateCore(masm,
+ &throw_normal_exception,
+ &throw_termination_exception,
+ &throw_out_of_memory_exception,
+ true,
+ false);
+
+ // Do full GC and retry runtime call one final time.
+ Failure* failure = Failure::InternalError();
+ __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure)));
+ GenerateCore(masm,
+ &throw_normal_exception,
+ &throw_termination_exception,
+ &throw_out_of_memory_exception,
+ true,
+ true);
+
+ __ bind(&throw_out_of_memory_exception);
+ GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
+
+ __ bind(&throw_termination_exception);
+ GenerateThrowUncatchable(masm, TERMINATION);
+
+ __ bind(&throw_normal_exception);
+ GenerateThrowTOS(masm);
+}
+
+
+void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
+ Label invoke, exit;
+#ifdef ENABLE_LOGGING_AND_PROFILING
+ Label not_outermost_js, not_outermost_js_2;
+#endif
+
+ // Setup frame.
+ __ push(ebp);
+ __ mov(ebp, Operand(esp));
+
+ // Push marker in two places.
+ int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
+ __ push(Immediate(Smi::FromInt(marker))); // context slot
+ __ push(Immediate(Smi::FromInt(marker))); // function slot
+ // Save callee-saved registers (C calling conventions).
+ __ push(edi);
+ __ push(esi);
+ __ push(ebx);
+
+ // Save copies of the top frame descriptor on the stack.
+ ExternalReference c_entry_fp(Isolate::k_c_entry_fp_address, masm->isolate());
+ __ push(Operand::StaticVariable(c_entry_fp));
+
+#ifdef ENABLE_LOGGING_AND_PROFILING
+ // If this is the outermost JS call, set js_entry_sp value.
+ ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address,
+ masm->isolate());
+ __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
+ __ j(not_equal, &not_outermost_js);
+ __ mov(Operand::StaticVariable(js_entry_sp), ebp);
+ __ bind(&not_outermost_js);
+#endif
+
+ // Call a faked try-block that does the invoke.
+ __ call(&invoke);
+
+ // Caught exception: Store result (exception) in the pending
+ // exception field in the JSEnv and return a failure sentinel.
+ ExternalReference pending_exception(Isolate::k_pending_exception_address,
+ masm->isolate());
+ __ mov(Operand::StaticVariable(pending_exception), eax);
+ __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception()));
+ __ jmp(&exit);
+
+ // Invoke: Link this frame into the handler chain.
+ __ bind(&invoke);
+ __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
+
+ // Clear any pending exceptions.
+ ExternalReference the_hole_location =
+ ExternalReference::the_hole_value_location(masm->isolate());
+ __ mov(edx, Operand::StaticVariable(the_hole_location));
+ __ mov(Operand::StaticVariable(pending_exception), edx);
+
+ // Fake a receiver (NULL).
+ __ push(Immediate(0)); // receiver
+
+ // Invoke the function by calling through JS entry trampoline
+ // builtin and pop the faked function when we return. Notice that we
+ // cannot store a reference to the trampoline code directly in this
+ // stub, because the builtin stubs may not have been generated yet.
+ if (is_construct) {
+ ExternalReference construct_entry(
+ Builtins::kJSConstructEntryTrampoline,
+ masm->isolate());
+ __ mov(edx, Immediate(construct_entry));
+ } else {
+ ExternalReference entry(Builtins::kJSEntryTrampoline,
+ masm->isolate());
+ __ mov(edx, Immediate(entry));
+ }
+ __ mov(edx, Operand(edx, 0)); // deref address
+ __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
+ __ call(Operand(edx));
+
+ // Unlink this frame from the handler chain.
+ __ pop(Operand::StaticVariable(ExternalReference(
+ Isolate::k_handler_address,
+ masm->isolate())));
+ // Pop next_sp.
+ __ add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize));
+
+#ifdef ENABLE_LOGGING_AND_PROFILING
+ // If current EBP value is the same as js_entry_sp value, it means that
+ // the current function is the outermost.
+ __ cmp(ebp, Operand::StaticVariable(js_entry_sp));
+ __ j(not_equal, &not_outermost_js_2);
+ __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
+ __ bind(&not_outermost_js_2);
+#endif
+
+ // Restore the top frame descriptor from the stack.
+ __ bind(&exit);
+ __ pop(Operand::StaticVariable(ExternalReference(
+ Isolate::k_c_entry_fp_address,
+ masm->isolate())));
+
+ // Restore callee-saved registers (C calling conventions).
+ __ pop(ebx);
+ __ pop(esi);
+ __ pop(edi);
+ __ add(Operand(esp), Immediate(2 * kPointerSize)); // remove markers
+
+ // Restore frame pointer and return.
+ __ pop(ebp);
+ __ ret(0);
+}
+
+
+// Generate stub code for instanceof.
+// This code can patch a call site inlined cache of the instance of check,
+// which looks like this.
+//
+// 81 ff XX XX XX XX cmp edi, <the hole, patched to a map>
+// 75 0a jne <some near label>
+// b8 XX XX XX XX mov eax, <the hole, patched to either true or false>
+//
+// If call site patching is requested the stack will have the delta from the
+// return address to the cmp instruction just below the return address. This
+// also means that call site patching can only take place with arguments in
+// registers. TOS looks like this when call site patching is requested
+//
+// esp[0] : return address
+// esp[4] : delta from return address to cmp instruction
+//
+void InstanceofStub::Generate(MacroAssembler* masm) {
+ // Call site inlining and patching implies arguments in registers.
+ ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
+
+ // Fixed register usage throughout the stub.
+ Register object = eax; // Object (lhs).
+ Register map = ebx; // Map of the object.
+ Register function = edx; // Function (rhs).
+ Register prototype = edi; // Prototype of the function.
+ Register scratch = ecx;
+
+ // Constants describing the call site code to patch.
+ static const int kDeltaToCmpImmediate = 2;
+ static const int kDeltaToMov = 8;
+ static const int kDeltaToMovImmediate = 9;
+ static const int8_t kCmpEdiImmediateByte1 = BitCast<int8_t, uint8_t>(0x81);
+ static const int8_t kCmpEdiImmediateByte2 = BitCast<int8_t, uint8_t>(0xff);
+ static const int8_t kMovEaxImmediateByte = BitCast<int8_t, uint8_t>(0xb8);
+
+ ExternalReference roots_address =
+ ExternalReference::roots_address(masm->isolate());
+
+ ASSERT_EQ(object.code(), InstanceofStub::left().code());
+ ASSERT_EQ(function.code(), InstanceofStub::right().code());
+
+ // Get the object and function - they are always both needed.
+ Label slow, not_js_object;
+ if (!HasArgsInRegisters()) {
+ __ mov(object, Operand(esp, 2 * kPointerSize));
+ __ mov(function, Operand(esp, 1 * kPointerSize));
+ }
+
+ // Check that the left hand is a JS object.
+ __ test(object, Immediate(kSmiTagMask));
+ __ j(zero, &not_js_object, not_taken);
+ __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
+
+ // If there is a call site cache don't look in the global cache, but do the
+ // real lookup and update the call site cache.
+ if (!HasCallSiteInlineCheck()) {
+ // Look up the function and the map in the instanceof cache.
+ NearLabel miss;
+ __ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex));
+ __ cmp(function,
+ Operand::StaticArray(scratch, times_pointer_size, roots_address));
+ __ j(not_equal, &miss);
+ __ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex));
+ __ cmp(map, Operand::StaticArray(
+ scratch, times_pointer_size, roots_address));
+ __ j(not_equal, &miss);
+ __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
+ __ mov(eax, Operand::StaticArray(
+ scratch, times_pointer_size, roots_address));
+ __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+ __ bind(&miss);
+ }
+
+ // Get the prototype of the function.
+ __ TryGetFunctionPrototype(function, prototype, scratch, &slow);
+
+ // Check that the function prototype is a JS object.
+ __ test(prototype, Immediate(kSmiTagMask));
+ __ j(zero, &slow, not_taken);
+ __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
+
+ // Update the global instanceof or call site inlined cache with the current
+ // map and function. The cached answer will be set when it is known below.
+ if (!HasCallSiteInlineCheck()) {
+ __ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex));
+ __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_address), map);
+ __ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex));
+ __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_address),
+ function);
+ } else {
+ // The constants for the code patching are based on no push instructions
+ // at the call site.
+ ASSERT(HasArgsInRegisters());
+ // Get return address and delta to inlined map check.
+ __ mov(scratch, Operand(esp, 0 * kPointerSize));
+ __ sub(scratch, Operand(esp, 1 * kPointerSize));
+ if (FLAG_debug_code) {
+ __ cmpb(Operand(scratch, 0), kCmpEdiImmediateByte1);
+ __ Assert(equal, "InstanceofStub unexpected call site cache (cmp 1)");
+ __ cmpb(Operand(scratch, 1), kCmpEdiImmediateByte2);
+ __ Assert(equal, "InstanceofStub unexpected call site cache (cmp 2)");
+ }
+ __ mov(Operand(scratch, kDeltaToCmpImmediate), map);
+ }
+
+ // Loop through the prototype chain of the object looking for the function
+ // prototype.
+ __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
+ NearLabel loop, is_instance, is_not_instance;
+ __ bind(&loop);
+ __ cmp(scratch, Operand(prototype));
+ __ j(equal, &is_instance);
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(Operand(scratch), Immediate(factory->null_value()));
+ __ j(equal, &is_not_instance);
+ __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
+ __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
+ __ jmp(&loop);
+
+ __ bind(&is_instance);
+ if (!HasCallSiteInlineCheck()) {
+ __ Set(eax, Immediate(0));
+ __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
+ __ mov(Operand::StaticArray(scratch,
+ times_pointer_size, roots_address), eax);
+ } else {
+ // Get return address and delta to inlined map check.
+ __ mov(eax, factory->true_value());
+ __ mov(scratch, Operand(esp, 0 * kPointerSize));
+ __ sub(scratch, Operand(esp, 1 * kPointerSize));
+ if (FLAG_debug_code) {
+ __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
+ __ Assert(equal, "InstanceofStub unexpected call site cache (mov)");
+ }
+ __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
+ if (!ReturnTrueFalseObject()) {
+ __ Set(eax, Immediate(0));
+ }
+ }
+ __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+
+ __ bind(&is_not_instance);
+ if (!HasCallSiteInlineCheck()) {
+ __ Set(eax, Immediate(Smi::FromInt(1)));
+ __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
+ __ mov(Operand::StaticArray(
+ scratch, times_pointer_size, roots_address), eax);
+ } else {
+ // Get return address and delta to inlined map check.
+ __ mov(eax, factory->false_value());
+ __ mov(scratch, Operand(esp, 0 * kPointerSize));
+ __ sub(scratch, Operand(esp, 1 * kPointerSize));
+ if (FLAG_debug_code) {
+ __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
+ __ Assert(equal, "InstanceofStub unexpected call site cache (mov)");
+ }
+ __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
+ if (!ReturnTrueFalseObject()) {
+ __ Set(eax, Immediate(Smi::FromInt(1)));
+ }
+ }
+ __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+
+ Label object_not_null, object_not_null_or_smi;
+ __ bind(&not_js_object);
+ // Before null, smi and string value checks, check that the rhs is a function
+ // as for a non-function rhs an exception needs to be thrown.
+ __ test(function, Immediate(kSmiTagMask));
+ __ j(zero, &slow, not_taken);
+ __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
+ __ j(not_equal, &slow, not_taken);
+
+ // Null is not instance of anything.
+ __ cmp(object, factory->null_value());
+ __ j(not_equal, &object_not_null);
+ __ Set(eax, Immediate(Smi::FromInt(1)));
+ __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+
+ __ bind(&object_not_null);
+ // Smi values is not instance of anything.
+ __ test(object, Immediate(kSmiTagMask));
+ __ j(not_zero, &object_not_null_or_smi, not_taken);
+ __ Set(eax, Immediate(Smi::FromInt(1)));
+ __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+
+ __ bind(&object_not_null_or_smi);
+ // String values is not instance of anything.
+ Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
+ __ j(NegateCondition(is_string), &slow);
+ __ Set(eax, Immediate(Smi::FromInt(1)));
+ __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+
+ // Slow-case: Go through the JavaScript implementation.
+ __ bind(&slow);
+ if (!ReturnTrueFalseObject()) {
+ // Tail call the builtin which returns 0 or 1.
+ if (HasArgsInRegisters()) {
+ // Push arguments below return address.
+ __ pop(scratch);
+ __ push(object);
+ __ push(function);
+ __ push(scratch);
+ }
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
+ } else {
+ // Call the builtin and convert 0/1 to true/false.
+ __ EnterInternalFrame();
+ __ push(object);
+ __ push(function);
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
+ __ LeaveInternalFrame();
+ NearLabel true_value, done;
+ __ test(eax, Operand(eax));
+ __ j(zero, &true_value);
+ __ mov(eax, factory->false_value());
+ __ jmp(&done);
+ __ bind(&true_value);
+ __ mov(eax, factory->true_value());
+ __ bind(&done);
+ __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
+ }
+}
+
+
+Register InstanceofStub::left() { return eax; }
+
+
+Register InstanceofStub::right() { return edx; }
+
+
+int CompareStub::MinorKey() {
+ // Encode the three parameters in a unique 16 bit value. To avoid duplicate
+ // stubs the never NaN NaN condition is only taken into account if the
+ // condition is equals.
+ ASSERT(static_cast<unsigned>(cc_) < (1 << 12));
+ ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
+ return ConditionField::encode(static_cast<unsigned>(cc_))
+ | RegisterField::encode(false) // lhs_ and rhs_ are not used
+ | StrictField::encode(strict_)
+ | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
+ | IncludeNumberCompareField::encode(include_number_compare_)
+ | IncludeSmiCompareField::encode(include_smi_compare_);
+}
+
+
+// Unfortunately you have to run without snapshots to see most of these
+// names in the profile since most compare stubs end up in the snapshot.
+const char* CompareStub::GetName() {
+ ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
+
+ if (name_ != NULL) return name_;
+ const int kMaxNameLength = 100;
+ name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(
+ kMaxNameLength);
+ if (name_ == NULL) return "OOM";
+
+ const char* cc_name;
+ switch (cc_) {
+ case less: cc_name = "LT"; break;
+ case greater: cc_name = "GT"; break;
+ case less_equal: cc_name = "LE"; break;
+ case greater_equal: cc_name = "GE"; break;
+ case equal: cc_name = "EQ"; break;
+ case not_equal: cc_name = "NE"; break;
+ default: cc_name = "UnknownCondition"; break;
+ }
+
+ const char* strict_name = "";
+ if (strict_ && (cc_ == equal || cc_ == not_equal)) {
+ strict_name = "_STRICT";
+ }
+
+ const char* never_nan_nan_name = "";
+ if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) {
+ never_nan_nan_name = "_NO_NAN";
+ }
+
+ const char* include_number_compare_name = "";
+ if (!include_number_compare_) {
+ include_number_compare_name = "_NO_NUMBER";
+ }
+
+ const char* include_smi_compare_name = "";
+ if (!include_smi_compare_) {
+ include_smi_compare_name = "_NO_SMI";
+ }
+
+ OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
+ "CompareStub_%s%s%s%s%s",
+ cc_name,
+ strict_name,
+ never_nan_nan_name,
+ include_number_compare_name,
+ include_smi_compare_name);
+ return name_;
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharCodeAtGenerator
+
+void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
+ Label flat_string;
+ Label ascii_string;
+ Label got_char_code;
+
+ // If the receiver is a smi trigger the non-string case.
+ STATIC_ASSERT(kSmiTag == 0);
+ __ test(object_, Immediate(kSmiTagMask));
+ __ j(zero, receiver_not_string_);
+
+ // Fetch the instance type of the receiver into result register.
+ __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
+ __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
+ // If the receiver is not a string trigger the non-string case.
+ __ test(result_, Immediate(kIsNotStringMask));
+ __ j(not_zero, receiver_not_string_);
+
+ // If the index is non-smi trigger the non-smi case.
+ STATIC_ASSERT(kSmiTag == 0);
+ __ test(index_, Immediate(kSmiTagMask));
+ __ j(not_zero, &index_not_smi_);
+
+ // Put smi-tagged index into scratch register.
+ __ mov(scratch_, index_);
+ __ bind(&got_smi_index_);
+
+ // Check for index out of range.
+ __ cmp(scratch_, FieldOperand(object_, String::kLengthOffset));
+ __ j(above_equal, index_out_of_range_);
+
+ // We need special handling for non-flat strings.
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ test(result_, Immediate(kStringRepresentationMask));
+ __ j(zero, &flat_string);
+
+ // Handle non-flat strings.
+ __ test(result_, Immediate(kIsConsStringMask));
+ __ j(zero, &call_runtime_);
+
+ // ConsString.
+ // Check whether the right hand side is the empty string (i.e. if
+ // this is really a flat string in a cons string). If that is not
+ // the case we would rather go to the runtime system now to flatten
+ // the string.
+ __ cmp(FieldOperand(object_, ConsString::kSecondOffset),
+ Immediate(masm->isolate()->factory()->empty_string()));
+ __ j(not_equal, &call_runtime_);
+ // Get the first of the two strings and load its instance type.
+ __ mov(object_, FieldOperand(object_, ConsString::kFirstOffset));
+ __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
+ __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
+ // If the first cons component is also non-flat, then go to runtime.
+ STATIC_ASSERT(kSeqStringTag == 0);
+ __ test(result_, Immediate(kStringRepresentationMask));
+ __ j(not_zero, &call_runtime_);
+
+ // Check for 1-byte or 2-byte string.
+ __ bind(&flat_string);
+ STATIC_ASSERT(kAsciiStringTag != 0);
+ __ test(result_, Immediate(kStringEncodingMask));
+ __ j(not_zero, &ascii_string);
+
+ // 2-byte string.
+ // Load the 2-byte character code into the result register.
+ STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
+ __ movzx_w(result_, FieldOperand(object_,
+ scratch_, times_1, // Scratch is smi-tagged.
+ SeqTwoByteString::kHeaderSize));
+ __ jmp(&got_char_code);
+
+ // ASCII string.
+ // Load the byte into the result register.
+ __ bind(&ascii_string);
+ __ SmiUntag(scratch_);
+ __ movzx_b(result_, FieldOperand(object_,
+ scratch_, times_1,
+ SeqAsciiString::kHeaderSize));
+ __ bind(&got_char_code);
+ __ SmiTag(result_);
+ __ bind(&exit_);
+}
+
+
+void StringCharCodeAtGenerator::GenerateSlow(
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
+ __ Abort("Unexpected fallthrough to CharCodeAt slow case");
+
+ // Index is not a smi.
+ __ bind(&index_not_smi_);
+ // If index is a heap number, try converting it to an integer.
+ __ CheckMap(index_,
+ masm->isolate()->factory()->heap_number_map(),
+ index_not_number_,
+ true);
+ call_helper.BeforeCall(masm);
+ __ push(object_);
+ __ push(index_);
+ __ push(index_); // Consumed by runtime conversion function.
+ if (index_flags_ == STRING_INDEX_IS_NUMBER) {
+ __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
+ } else {
+ ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
+ // NumberToSmi discards numbers that are not exact integers.
+ __ CallRuntime(Runtime::kNumberToSmi, 1);
+ }
+ if (!scratch_.is(eax)) {
+ // Save the conversion result before the pop instructions below
+ // have a chance to overwrite it.
+ __ mov(scratch_, eax);
+ }
+ __ pop(index_);
+ __ pop(object_);
+ // Reload the instance type.
+ __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
+ __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
+ call_helper.AfterCall(masm);
+ // If index is still not a smi, it must be out of range.
+ STATIC_ASSERT(kSmiTag == 0);
+ __ test(scratch_, Immediate(kSmiTagMask));
+ __ j(not_zero, index_out_of_range_);
+ // Otherwise, return to the fast path.
+ __ jmp(&got_smi_index_);
+
+ // Call runtime. We get here when the receiver is a string and the
+ // index is a number, but the code of getting the actual character
+ // is too complex (e.g., when the string needs to be flattened).
+ __ bind(&call_runtime_);
+ call_helper.BeforeCall(masm);
+ __ push(object_);
+ __ push(index_);
+ __ CallRuntime(Runtime::kStringCharCodeAt, 2);
+ if (!result_.is(eax)) {
+ __ mov(result_, eax);
+ }
+ call_helper.AfterCall(masm);
+ __ jmp(&exit_);
+
+ __ Abort("Unexpected fallthrough from CharCodeAt slow case");
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharFromCodeGenerator
+
+void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
+ // Fast case of Heap::LookupSingleCharacterStringFromCode.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiShiftSize == 0);
+ ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
+ __ test(code_,
+ Immediate(kSmiTagMask |
+ ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
+ __ j(not_zero, &slow_case_, not_taken);
+
+ Factory* factory = masm->isolate()->factory();
+ __ Set(result_, Immediate(factory->single_character_string_cache()));
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ STATIC_ASSERT(kSmiShiftSize == 0);
+ // At this point code register contains smi tagged ascii char code.
+ __ mov(result_, FieldOperand(result_,
+ code_, times_half_pointer_size,
+ FixedArray::kHeaderSize));
+ __ cmp(result_, factory->undefined_value());
+ __ j(equal, &slow_case_, not_taken);
+ __ bind(&exit_);
+}
+
+
+void StringCharFromCodeGenerator::GenerateSlow(
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
+ __ Abort("Unexpected fallthrough to CharFromCode slow case");
+
+ __ bind(&slow_case_);
+ call_helper.BeforeCall(masm);
+ __ push(code_);
+ __ CallRuntime(Runtime::kCharFromCode, 1);
+ if (!result_.is(eax)) {
+ __ mov(result_, eax);
+ }
+ call_helper.AfterCall(masm);
+ __ jmp(&exit_);
+
+ __ Abort("Unexpected fallthrough from CharFromCode slow case");
+}
+
+
+// -------------------------------------------------------------------------
+// StringCharAtGenerator
+
+void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
+ char_code_at_generator_.GenerateFast(masm);
+ char_from_code_generator_.GenerateFast(masm);
+}
+
+
+void StringCharAtGenerator::GenerateSlow(
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
+ char_code_at_generator_.GenerateSlow(masm, call_helper);
+ char_from_code_generator_.GenerateSlow(masm, call_helper);
+}
+
+
+void StringAddStub::Generate(MacroAssembler* masm) {
+ Label string_add_runtime, call_builtin;
+ Builtins::JavaScript builtin_id = Builtins::ADD;
+
+ // Load the two arguments.
+ __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument.
+ __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument.
+
+ // Make sure that both arguments are strings if not known in advance.
+ if (flags_ == NO_STRING_ADD_FLAGS) {
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(zero, &string_add_runtime);
+ __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx);
+ __ j(above_equal, &string_add_runtime);
+
+ // First argument is a a string, test second.
+ __ test(edx, Immediate(kSmiTagMask));
+ __ j(zero, &string_add_runtime);
+ __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx);
+ __ j(above_equal, &string_add_runtime);
+ } else {
+ // Here at least one of the arguments is definitely a string.
+ // We convert the one that is not known to be a string.
+ if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
+ ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
+ GenerateConvertArgument(masm, 2 * kPointerSize, eax, ebx, ecx, edi,
+ &call_builtin);
+ builtin_id = Builtins::STRING_ADD_RIGHT;
+ } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
+ ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
+ GenerateConvertArgument(masm, 1 * kPointerSize, edx, ebx, ecx, edi,
+ &call_builtin);
+ builtin_id = Builtins::STRING_ADD_LEFT;
+ }
+ }
+
+ // Both arguments are strings.
+ // eax: first string
+ // edx: second string
+ // Check if either of the strings are empty. In that case return the other.
+ NearLabel second_not_zero_length, both_not_zero_length;
+ __ mov(ecx, FieldOperand(edx, String::kLengthOffset));
+ STATIC_ASSERT(kSmiTag == 0);
+ __ test(ecx, Operand(ecx));
+ __ j(not_zero, &second_not_zero_length);
+ // Second string is empty, result is first string which is already in eax.
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->string_add_native(), 1);
+ __ ret(2 * kPointerSize);
+ __ bind(&second_not_zero_length);
+ __ mov(ebx, FieldOperand(eax, String::kLengthOffset));
+ STATIC_ASSERT(kSmiTag == 0);
+ __ test(ebx, Operand(ebx));
+ __ j(not_zero, &both_not_zero_length);
+ // First string is empty, result is second string which is in edx.
+ __ mov(eax, edx);
+ __ IncrementCounter(counters->string_add_native(), 1);
+ __ ret(2 * kPointerSize);
+
+ // Both strings are non-empty.
+ // eax: first string
+ // ebx: length of first string as a smi
+ // ecx: length of second string as a smi
+ // edx: second string
+ // Look at the length of the result of adding the two strings.
+ Label string_add_flat_result, longer_than_two;
+ __ bind(&both_not_zero_length);
+ __ add(ebx, Operand(ecx));
+ STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength);
+ // Handle exceptionally long strings in the runtime system.
+ __ j(overflow, &string_add_runtime);
+ // Use the symbol table when adding two one character strings, as it
+ // helps later optimizations to return a symbol here.
+ __ cmp(Operand(ebx), Immediate(Smi::FromInt(2)));
+ __ j(not_equal, &longer_than_two);
+
+ // Check that both strings are non-external ascii strings.
+ __ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx,
+ &string_add_runtime);
+
+ // Get the two characters forming the new string.
+ __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize));
+ __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize));
+
+ // Try to lookup two character string in symbol table. If it is not found
+ // just allocate a new one.
+ Label make_two_character_string, make_two_character_string_no_reload;
+ StringHelper::GenerateTwoCharacterSymbolTableProbe(
+ masm, ebx, ecx, eax, edx, edi,
+ &make_two_character_string_no_reload, &make_two_character_string);
+ __ IncrementCounter(counters->string_add_native(), 1);
+ __ ret(2 * kPointerSize);
+
+ // Allocate a two character string.
+ __ bind(&make_two_character_string);
+ // Reload the arguments.
+ __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument.
+ __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument.
+ // Get the two characters forming the new string.
+ __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize));
+ __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize));
+ __ bind(&make_two_character_string_no_reload);
+ __ IncrementCounter(counters->string_add_make_two_char(), 1);
+ __ AllocateAsciiString(eax, // Result.
+ 2, // Length.
+ edi, // Scratch 1.
+ edx, // Scratch 2.
+ &string_add_runtime);
+ // Pack both characters in ebx.
+ __ shl(ecx, kBitsPerByte);
+ __ or_(ebx, Operand(ecx));
+ // Set the characters in the new string.
+ __ mov_w(FieldOperand(eax, SeqAsciiString::kHeaderSize), ebx);
+ __ IncrementCounter(counters->string_add_native(), 1);
+ __ ret(2 * kPointerSize);
+
+ __ bind(&longer_than_two);
+ // Check if resulting string will be flat.
+ __ cmp(Operand(ebx), Immediate(Smi::FromInt(String::kMinNonFlatLength)));
+ __ j(below, &string_add_flat_result);
+
+ // If result is not supposed to be flat allocate a cons string object. If both
+ // strings are ascii the result is an ascii cons string.
+ Label non_ascii, allocated, ascii_data;
+ __ mov(edi, FieldOperand(eax, HeapObject::kMapOffset));
+ __ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset));
+ __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
+ __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset));
+ __ and_(ecx, Operand(edi));
+ STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
+ __ test(ecx, Immediate(kAsciiStringTag));
+ __ j(zero, &non_ascii);
+ __ bind(&ascii_data);
+ // Allocate an acsii cons string.
+ __ AllocateAsciiConsString(ecx, edi, no_reg, &string_add_runtime);
+ __ bind(&allocated);
+ // Fill the fields of the cons string.
+ if (FLAG_debug_code) __ AbortIfNotSmi(ebx);
+ __ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx);
+ __ mov(FieldOperand(ecx, ConsString::kHashFieldOffset),
+ Immediate(String::kEmptyHashField));
+ __ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax);
+ __ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx);
+ __ mov(eax, ecx);
+ __ IncrementCounter(counters->string_add_native(), 1);
+ __ ret(2 * kPointerSize);
+ __ bind(&non_ascii);
+ // At least one of the strings is two-byte. Check whether it happens
+ // to contain only ascii characters.
+ // ecx: first instance type AND second instance type.
+ // edi: second instance type.
+ __ test(ecx, Immediate(kAsciiDataHintMask));
+ __ j(not_zero, &ascii_data);
+ __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
+ __ xor_(edi, Operand(ecx));
+ STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
+ __ and_(edi, kAsciiStringTag | kAsciiDataHintTag);
+ __ cmp(edi, kAsciiStringTag | kAsciiDataHintTag);
+ __ j(equal, &ascii_data);
+ // Allocate a two byte cons string.
+ __ AllocateConsString(ecx, edi, no_reg, &string_add_runtime);
+ __ jmp(&allocated);
+
+ // Handle creating a flat result. First check that both strings are not
+ // external strings.
+ // eax: first string
+ // ebx: length of resulting flat string as a smi
+ // edx: second string
+ __ bind(&string_add_flat_result);
+ __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
+ __ and_(ecx, kStringRepresentationMask);
+ __ cmp(ecx, kExternalStringTag);
+ __ j(equal, &string_add_runtime);
+ __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
+ __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
+ __ and_(ecx, kStringRepresentationMask);
+ __ cmp(ecx, kExternalStringTag);
+ __ j(equal, &string_add_runtime);
+ // Now check if both strings are ascii strings.
+ // eax: first string
+ // ebx: length of resulting flat string as a smi
+ // edx: second string
+ Label non_ascii_string_add_flat_result;
+ STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
+ __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
+ __ j(zero, &non_ascii_string_add_flat_result);
+ __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
+ __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
+ __ j(zero, &string_add_runtime);
+
+ // Both strings are ascii strings. As they are short they are both flat.
+ // ebx: length of resulting flat string as a smi
+ __ SmiUntag(ebx);
+ __ AllocateAsciiString(eax, ebx, ecx, edx, edi, &string_add_runtime);
+ // eax: result string
+ __ mov(ecx, eax);
+ // Locate first character of result.
+ __ add(Operand(ecx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // Load first argument and locate first character.
+ __ mov(edx, Operand(esp, 2 * kPointerSize));
+ __ mov(edi, FieldOperand(edx, String::kLengthOffset));
+ __ SmiUntag(edi);
+ __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // eax: result string
+ // ecx: first character of result
+ // edx: first char of first argument
+ // edi: length of first argument
+ StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true);
+ // Load second argument and locate first character.
+ __ mov(edx, Operand(esp, 1 * kPointerSize));
+ __ mov(edi, FieldOperand(edx, String::kLengthOffset));
+ __ SmiUntag(edi);
+ __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // eax: result string
+ // ecx: next character of result
+ // edx: first char of second argument
+ // edi: length of second argument
+ StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true);
+ __ IncrementCounter(counters->string_add_native(), 1);
+ __ ret(2 * kPointerSize);
+
+ // Handle creating a flat two byte result.
+ // eax: first string - known to be two byte
+ // ebx: length of resulting flat string as a smi
+ // edx: second string
+ __ bind(&non_ascii_string_add_flat_result);
+ __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
+ __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
+ __ j(not_zero, &string_add_runtime);
+ // Both strings are two byte strings. As they are short they are both
+ // flat.
+ __ SmiUntag(ebx);
+ __ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &string_add_runtime);
+ // eax: result string
+ __ mov(ecx, eax);
+ // Locate first character of result.
+ __ add(Operand(ecx),
+ Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ // Load first argument and locate first character.
+ __ mov(edx, Operand(esp, 2 * kPointerSize));
+ __ mov(edi, FieldOperand(edx, String::kLengthOffset));
+ __ SmiUntag(edi);
+ __ add(Operand(edx),
+ Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ // eax: result string
+ // ecx: first character of result
+ // edx: first char of first argument
+ // edi: length of first argument
+ StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false);
+ // Load second argument and locate first character.
+ __ mov(edx, Operand(esp, 1 * kPointerSize));
+ __ mov(edi, FieldOperand(edx, String::kLengthOffset));
+ __ SmiUntag(edi);
+ __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // eax: result string
+ // ecx: next character of result
+ // edx: first char of second argument
+ // edi: length of second argument
+ StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false);
+ __ IncrementCounter(counters->string_add_native(), 1);
+ __ ret(2 * kPointerSize);
+
+ // Just jump to runtime to add the two strings.
+ __ bind(&string_add_runtime);
+ __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
+
+ if (call_builtin.is_linked()) {
+ __ bind(&call_builtin);
+ __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
+ }
+}
+
+
+void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
+ int stack_offset,
+ Register arg,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* slow) {
+ // First check if the argument is already a string.
+ Label not_string, done;
+ __ test(arg, Immediate(kSmiTagMask));
+ __ j(zero, &not_string);
+ __ CmpObjectType(arg, FIRST_NONSTRING_TYPE, scratch1);
+ __ j(below, &done);
+
+ // Check the number to string cache.
+ Label not_cached;
+ __ bind(&not_string);
+ // Puts the cached result into scratch1.
+ NumberToStringStub::GenerateLookupNumberStringCache(masm,
+ arg,
+ scratch1,
+ scratch2,
+ scratch3,
+ false,
+ &not_cached);
+ __ mov(arg, scratch1);
+ __ mov(Operand(esp, stack_offset), arg);
+ __ jmp(&done);
+
+ // Check if the argument is a safe string wrapper.
+ __ bind(&not_cached);
+ __ test(arg, Immediate(kSmiTagMask));
+ __ j(zero, slow);
+ __ CmpObjectType(arg, JS_VALUE_TYPE, scratch1); // map -> scratch1.
+ __ j(not_equal, slow);
+ __ test_b(FieldOperand(scratch1, Map::kBitField2Offset),
+ 1 << Map::kStringWrapperSafeForDefaultValueOf);
+ __ j(zero, slow);
+ __ mov(arg, FieldOperand(arg, JSValue::kValueOffset));
+ __ mov(Operand(esp, stack_offset), arg);
+
+ __ bind(&done);
+}
+
+
+void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
+ Register dest,
+ Register src,
+ Register count,
+ Register scratch,
+ bool ascii) {
+ NearLabel loop;
+ __ bind(&loop);
+ // This loop just copies one character at a time, as it is only used for very
+ // short strings.
+ if (ascii) {
+ __ mov_b(scratch, Operand(src, 0));
+ __ mov_b(Operand(dest, 0), scratch);
+ __ add(Operand(src), Immediate(1));
+ __ add(Operand(dest), Immediate(1));
+ } else {
+ __ mov_w(scratch, Operand(src, 0));
+ __ mov_w(Operand(dest, 0), scratch);
+ __ add(Operand(src), Immediate(2));
+ __ add(Operand(dest), Immediate(2));
+ }
+ __ sub(Operand(count), Immediate(1));
+ __ j(not_zero, &loop);
+}
+
+
+void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
+ Register dest,
+ Register src,
+ Register count,
+ Register scratch,
+ bool ascii) {
+ // Copy characters using rep movs of doublewords.
+ // The destination is aligned on a 4 byte boundary because we are
+ // copying to the beginning of a newly allocated string.
+ ASSERT(dest.is(edi)); // rep movs destination
+ ASSERT(src.is(esi)); // rep movs source
+ ASSERT(count.is(ecx)); // rep movs count
+ ASSERT(!scratch.is(dest));
+ ASSERT(!scratch.is(src));
+ ASSERT(!scratch.is(count));
+
+ // Nothing to do for zero characters.
+ Label done;
+ __ test(count, Operand(count));
+ __ j(zero, &done);
+
+ // Make count the number of bytes to copy.
+ if (!ascii) {
+ __ shl(count, 1);
+ }
+
+ // Don't enter the rep movs if there are less than 4 bytes to copy.
+ NearLabel last_bytes;
+ __ test(count, Immediate(~3));
+ __ j(zero, &last_bytes);
+
+ // Copy from edi to esi using rep movs instruction.
+ __ mov(scratch, count);
+ __ sar(count, 2); // Number of doublewords to copy.
+ __ cld();
+ __ rep_movs();
+
+ // Find number of bytes left.
+ __ mov(count, scratch);
+ __ and_(count, 3);
+
+ // Check if there are more bytes to copy.
+ __ bind(&last_bytes);
+ __ test(count, Operand(count));
+ __ j(zero, &done);
+
+ // Copy remaining characters.
+ NearLabel loop;
+ __ bind(&loop);
+ __ mov_b(scratch, Operand(src, 0));
+ __ mov_b(Operand(dest, 0), scratch);
+ __ add(Operand(src), Immediate(1));
+ __ add(Operand(dest), Immediate(1));
+ __ sub(Operand(count), Immediate(1));
+ __ j(not_zero, &loop);
+
+ __ bind(&done);
+}
+
+
+void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
+ Register c1,
+ Register c2,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* not_probed,
+ Label* not_found) {
+ // Register scratch3 is the general scratch register in this function.
+ Register scratch = scratch3;
+
+ // Make sure that both characters are not digits as such strings has a
+ // different hash algorithm. Don't try to look for these in the symbol table.
+ NearLabel not_array_index;
+ __ mov(scratch, c1);
+ __ sub(Operand(scratch), Immediate(static_cast<int>('0')));
+ __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0')));
+ __ j(above, &not_array_index);
+ __ mov(scratch, c2);
+ __ sub(Operand(scratch), Immediate(static_cast<int>('0')));
+ __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0')));
+ __ j(below_equal, not_probed);
+
+ __ bind(&not_array_index);
+ // Calculate the two character string hash.
+ Register hash = scratch1;
+ GenerateHashInit(masm, hash, c1, scratch);
+ GenerateHashAddCharacter(masm, hash, c2, scratch);
+ GenerateHashGetHash(masm, hash, scratch);
+
+ // Collect the two characters in a register.
+ Register chars = c1;
+ __ shl(c2, kBitsPerByte);
+ __ or_(chars, Operand(c2));
+
+ // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
+ // hash: hash of two character string.
+
+ // Load the symbol table.
+ Register symbol_table = c2;
+ ExternalReference roots_address =
+ ExternalReference::roots_address(masm->isolate());
+ __ mov(scratch, Immediate(Heap::kSymbolTableRootIndex));
+ __ mov(symbol_table,
+ Operand::StaticArray(scratch, times_pointer_size, roots_address));
+
+ // Calculate capacity mask from the symbol table capacity.
+ Register mask = scratch2;
+ __ mov(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
+ __ SmiUntag(mask);
+ __ sub(Operand(mask), Immediate(1));
+
+ // Registers
+ // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
+ // hash: hash of two character string
+ // symbol_table: symbol table
+ // mask: capacity mask
+ // scratch: -
+
+ // Perform a number of probes in the symbol table.
+ static const int kProbes = 4;
+ Label found_in_symbol_table;
+ Label next_probe[kProbes], next_probe_pop_mask[kProbes];
+ for (int i = 0; i < kProbes; i++) {
+ // Calculate entry in symbol table.
+ __ mov(scratch, hash);
+ if (i > 0) {
+ __ add(Operand(scratch), Immediate(SymbolTable::GetProbeOffset(i)));
+ }
+ __ and_(scratch, Operand(mask));
+
+ // Load the entry from the symbol table.
+ Register candidate = scratch; // Scratch register contains candidate.
+ STATIC_ASSERT(SymbolTable::kEntrySize == 1);
+ __ mov(candidate,
+ FieldOperand(symbol_table,
+ scratch,
+ times_pointer_size,
+ SymbolTable::kElementsStartOffset));
+
+ // If entry is undefined no string with this hash can be found.
+ Factory* factory = masm->isolate()->factory();
+ __ cmp(candidate, factory->undefined_value());
+ __ j(equal, not_found);
+ __ cmp(candidate, factory->null_value());
+ __ j(equal, &next_probe[i]);
+
+ // If length is not 2 the string is not a candidate.
+ __ cmp(FieldOperand(candidate, String::kLengthOffset),
+ Immediate(Smi::FromInt(2)));
+ __ j(not_equal, &next_probe[i]);
+
+ // As we are out of registers save the mask on the stack and use that
+ // register as a temporary.
+ __ push(mask);
+ Register temp = mask;
+
+ // Check that the candidate is a non-external ascii string.
+ __ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset));
+ __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
+ __ JumpIfInstanceTypeIsNotSequentialAscii(
+ temp, temp, &next_probe_pop_mask[i]);
+
+ // Check if the two characters match.
+ __ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
+ __ and_(temp, 0x0000ffff);
+ __ cmp(chars, Operand(temp));
+ __ j(equal, &found_in_symbol_table);
+ __ bind(&next_probe_pop_mask[i]);
+ __ pop(mask);
+ __ bind(&next_probe[i]);
+ }
+
+ // No matching 2 character string found by probing.
+ __ jmp(not_found);
+
+ // Scratch register contains result when we fall through to here.
+ Register result = scratch;
+ __ bind(&found_in_symbol_table);
+ __ pop(mask); // Pop saved mask from the stack.
+ if (!result.is(eax)) {
+ __ mov(eax, result);
+ }
+}
+
+
+void StringHelper::GenerateHashInit(MacroAssembler* masm,
+ Register hash,
+ Register character,
+ Register scratch) {
+ // hash = character + (character << 10);
+ __ mov(hash, character);
+ __ shl(hash, 10);
+ __ add(hash, Operand(character));
+ // hash ^= hash >> 6;
+ __ mov(scratch, hash);
+ __ sar(scratch, 6);
+ __ xor_(hash, Operand(scratch));
+}
+
+
+void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
+ Register hash,
+ Register character,
+ Register scratch) {
+ // hash += character;
+ __ add(hash, Operand(character));
+ // hash += hash << 10;
+ __ mov(scratch, hash);
+ __ shl(scratch, 10);
+ __ add(hash, Operand(scratch));
+ // hash ^= hash >> 6;
+ __ mov(scratch, hash);
+ __ sar(scratch, 6);
+ __ xor_(hash, Operand(scratch));
+}
+
+
+void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
+ Register hash,
+ Register scratch) {
+ // hash += hash << 3;
+ __ mov(scratch, hash);
+ __ shl(scratch, 3);
+ __ add(hash, Operand(scratch));
+ // hash ^= hash >> 11;
+ __ mov(scratch, hash);
+ __ sar(scratch, 11);
+ __ xor_(hash, Operand(scratch));
+ // hash += hash << 15;
+ __ mov(scratch, hash);
+ __ shl(scratch, 15);
+ __ add(hash, Operand(scratch));
+
+ // if (hash == 0) hash = 27;
+ NearLabel hash_not_zero;
+ __ test(hash, Operand(hash));
+ __ j(not_zero, &hash_not_zero);
+ __ mov(hash, Immediate(27));
+ __ bind(&hash_not_zero);
+}
+
+
+void SubStringStub::Generate(MacroAssembler* masm) {
+ Label runtime;
+
+ // Stack frame on entry.
+ // esp[0]: return address
+ // esp[4]: to
+ // esp[8]: from
+ // esp[12]: string
+
+ // Make sure first argument is a string.
+ __ mov(eax, Operand(esp, 3 * kPointerSize));
+ STATIC_ASSERT(kSmiTag == 0);
+ __ test(eax, Immediate(kSmiTagMask));
+ __ j(zero, &runtime);
+ Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
+ __ j(NegateCondition(is_string), &runtime);
+
+ // eax: string
+ // ebx: instance type
+
+ // Calculate length of sub string using the smi values.
+ Label result_longer_than_two;
+ __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
+ __ test(ecx, Immediate(kSmiTagMask));
+ __ j(not_zero, &runtime);
+ __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
+ __ test(edx, Immediate(kSmiTagMask));
+ __ j(not_zero, &runtime);
+ __ sub(ecx, Operand(edx));
+ __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
+ Label return_eax;
+ __ j(equal, &return_eax);
+ // Special handling of sub-strings of length 1 and 2. One character strings
+ // are handled in the runtime system (looked up in the single character
+ // cache). Two character strings are looked for in the symbol cache.
+ __ SmiUntag(ecx); // Result length is no longer smi.
+ __ cmp(ecx, 2);
+ __ j(greater, &result_longer_than_two);
+ __ j(less, &runtime);
+
+ // Sub string of length 2 requested.
+ // eax: string
+ // ebx: instance type
+ // ecx: sub string length (value is 2)
+ // edx: from index (smi)
+ __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &runtime);
+
+ // Get the two characters forming the sub string.
+ __ SmiUntag(edx); // From index is no longer smi.
+ __ movzx_b(ebx, FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize));
+ __ movzx_b(ecx,
+ FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize + 1));
+
+ // Try to lookup two character string in symbol table.
+ Label make_two_character_string;
+ StringHelper::GenerateTwoCharacterSymbolTableProbe(
+ masm, ebx, ecx, eax, edx, edi,
+ &make_two_character_string, &make_two_character_string);
+ __ ret(3 * kPointerSize);
+
+ __ bind(&make_two_character_string);
+ // Setup registers for allocating the two character string.
+ __ mov(eax, Operand(esp, 3 * kPointerSize));
+ __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
+ __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
+ __ Set(ecx, Immediate(2));
+
+ __ bind(&result_longer_than_two);
+ // eax: string
+ // ebx: instance type
+ // ecx: result string length
+ // Check for flat ascii string
+ Label non_ascii_flat;
+ __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &non_ascii_flat);
+
+ // Allocate the result.
+ __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime);
+
+ // eax: result string
+ // ecx: result string length
+ __ mov(edx, esi); // esi used by following code.
+ // Locate first character of result.
+ __ mov(edi, eax);
+ __ add(Operand(edi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ // Load string argument and locate character of sub string start.
+ __ mov(esi, Operand(esp, 3 * kPointerSize));
+ __ add(Operand(esi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from
+ __ SmiUntag(ebx);
+ __ add(esi, Operand(ebx));
+
+ // eax: result string
+ // ecx: result length
+ // edx: original value of esi
+ // edi: first character of result
+ // esi: character of sub string start
+ StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true);
+ __ mov(esi, edx); // Restore esi.
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->sub_string_native(), 1);
+ __ ret(3 * kPointerSize);
+
+ __ bind(&non_ascii_flat);
+ // eax: string
+ // ebx: instance type & kStringRepresentationMask | kStringEncodingMask
+ // ecx: result string length
+ // Check for flat two byte string
+ __ cmp(ebx, kSeqStringTag | kTwoByteStringTag);
+ __ j(not_equal, &runtime);
+
+ // Allocate the result.
+ __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime);
+
+ // eax: result string
+ // ecx: result string length
+ __ mov(edx, esi); // esi used by following code.
+ // Locate first character of result.
+ __ mov(edi, eax);
+ __ add(Operand(edi),
+ Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ // Load string argument and locate character of sub string start.
+ __ mov(esi, Operand(esp, 3 * kPointerSize));
+ __ add(Operand(esi),
+ Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from
+ // As from is a smi it is 2 times the value which matches the size of a two
+ // byte character.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+ __ add(esi, Operand(ebx));
+
+ // eax: result string
+ // ecx: result length
+ // edx: original value of esi
+ // edi: first character of result
+ // esi: character of sub string start
+ StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false);
+ __ mov(esi, edx); // Restore esi.
+
+ __ bind(&return_eax);
+ __ IncrementCounter(counters->sub_string_native(), 1);
+ __ ret(3 * kPointerSize);
+
+ // Just jump to runtime to create the sub string.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kSubString, 3, 1);
+}
+
+
+void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
+ Register left,
+ Register right,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3) {
+ Label result_not_equal;
+ Label result_greater;
+ Label compare_lengths;
+
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->string_compare_native(), 1);
+
+ // Find minimum length.
+ NearLabel left_shorter;
+ __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
+ __ mov(scratch3, scratch1);
+ __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
+
+ Register length_delta = scratch3;
+
+ __ j(less_equal, &left_shorter);
+ // Right string is shorter. Change scratch1 to be length of right string.
+ __ sub(scratch1, Operand(length_delta));
+ __ bind(&left_shorter);
+
+ Register min_length = scratch1;
+
+ // If either length is zero, just compare lengths.
+ __ test(min_length, Operand(min_length));
+ __ j(zero, &compare_lengths);
+
+ // Change index to run from -min_length to -1 by adding min_length
+ // to string start. This means that loop ends when index reaches zero,
+ // which doesn't need an additional compare.
+ __ SmiUntag(min_length);
+ __ lea(left,
+ FieldOperand(left,
+ min_length, times_1,
+ SeqAsciiString::kHeaderSize));
+ __ lea(right,
+ FieldOperand(right,
+ min_length, times_1,
+ SeqAsciiString::kHeaderSize));
+ __ neg(min_length);
+
+ Register index = min_length; // index = -min_length;
+
+ {
+ // Compare loop.
+ NearLabel loop;
+ __ bind(&loop);
+ // Compare characters.
+ __ mov_b(scratch2, Operand(left, index, times_1, 0));
+ __ cmpb(scratch2, Operand(right, index, times_1, 0));
+ __ j(not_equal, &result_not_equal);
+ __ add(Operand(index), Immediate(1));
+ __ j(not_zero, &loop);
+ }
+
+ // Compare lengths - strings up to min-length are equal.
+ __ bind(&compare_lengths);
+ __ test(length_delta, Operand(length_delta));
+ __ j(not_zero, &result_not_equal);
+
+ // Result is EQUAL.
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
+ __ ret(0);
+
+ __ bind(&result_not_equal);
+ __ j(greater, &result_greater);
+
+ // Result is LESS.
+ __ Set(eax, Immediate(Smi::FromInt(LESS)));
+ __ ret(0);
+
+ // Result is GREATER.
+ __ bind(&result_greater);
+ __ Set(eax, Immediate(Smi::FromInt(GREATER)));
+ __ ret(0);
+}
+
+
+void StringCompareStub::Generate(MacroAssembler* masm) {
+ Label runtime;
+
+ // Stack frame on entry.
+ // esp[0]: return address
+ // esp[4]: right string
+ // esp[8]: left string
+
+ __ mov(edx, Operand(esp, 2 * kPointerSize)); // left
+ __ mov(eax, Operand(esp, 1 * kPointerSize)); // right
+
+ NearLabel not_same;
+ __ cmp(edx, Operand(eax));
+ __ j(not_equal, &not_same);
+ STATIC_ASSERT(EQUAL == 0);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
+ __ IncrementCounter(masm->isolate()->counters()->string_compare_native(), 1);
+ __ ret(2 * kPointerSize);
+
+ __ bind(&not_same);
+
+ // Check that both objects are sequential ascii strings.
+ __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime);
+
+ // Compare flat ascii strings.
+ // Drop arguments from the stack.
+ __ pop(ecx);
+ __ add(Operand(esp), Immediate(2 * kPointerSize));
+ __ push(ecx);
+ GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi);
+
+ // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
+ // tagged as a small integer.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
+}
+
+
+void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
+ ASSERT(state_ == CompareIC::SMIS);
+ NearLabel miss;
+ __ mov(ecx, Operand(edx));
+ __ or_(ecx, Operand(eax));
+ __ test(ecx, Immediate(kSmiTagMask));
+ __ j(not_zero, &miss, not_taken);
+
+ if (GetCondition() == equal) {
+ // For equality we do not care about the sign of the result.
+ __ sub(eax, Operand(edx));
+ } else {
+ NearLabel done;
+ __ sub(edx, Operand(eax));
+ __ j(no_overflow, &done);
+ // Correct sign of result in case of overflow.
+ __ not_(edx);
+ __ bind(&done);
+ __ mov(eax, edx);
+ }
+ __ ret(0);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
+ ASSERT(state_ == CompareIC::HEAP_NUMBERS);
+
+ NearLabel generic_stub;
+ NearLabel unordered;
+ NearLabel miss;
+ __ mov(ecx, Operand(edx));
+ __ and_(ecx, Operand(eax));
+ __ test(ecx, Immediate(kSmiTagMask));
+ __ j(zero, &generic_stub, not_taken);
+
+ __ CmpObjectType(eax, HEAP_NUMBER_TYPE, ecx);
+ __ j(not_equal, &miss, not_taken);
+ __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
+ __ j(not_equal, &miss, not_taken);
+
+ // Inlining the double comparison and falling back to the general compare
+ // stub if NaN is involved or SS2 or CMOV is unsupported.
+ if (CpuFeatures::IsSupported(SSE2) && CpuFeatures::IsSupported(CMOV)) {
+ CpuFeatures::Scope scope1(SSE2);
+ CpuFeatures::Scope scope2(CMOV);
+
+ // Load left and right operand
+ __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
+ __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
+
+ // Compare operands
+ __ ucomisd(xmm0, xmm1);
+
+ // Don't base result on EFLAGS when a NaN is involved.
+ __ j(parity_even, &unordered, not_taken);
+
+ // Return a result of -1, 0, or 1, based on EFLAGS.
+ // Performing mov, because xor would destroy the flag register.
+ __ mov(eax, 0); // equal
+ __ mov(ecx, Immediate(Smi::FromInt(1)));
+ __ cmov(above, eax, Operand(ecx));
+ __ mov(ecx, Immediate(Smi::FromInt(-1)));
+ __ cmov(below, eax, Operand(ecx));
+ __ ret(0);
+
+ __ bind(&unordered);
+ }
+
+ CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS);
+ __ bind(&generic_stub);
+ __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
+ ASSERT(state_ == CompareIC::OBJECTS);
+ NearLabel miss;
+ __ mov(ecx, Operand(edx));
+ __ and_(ecx, Operand(eax));
+ __ test(ecx, Immediate(kSmiTagMask));
+ __ j(zero, &miss, not_taken);
+
+ __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
+ __ j(not_equal, &miss, not_taken);
+ __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
+ __ j(not_equal, &miss, not_taken);
+
+ ASSERT(GetCondition() == equal);
+ __ sub(eax, Operand(edx));
+ __ ret(0);
+
+ __ bind(&miss);
+ GenerateMiss(masm);
+}
+
+
+void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
+ // Save the registers.
+ __ pop(ecx);
+ __ push(edx);
+ __ push(eax);
+ __ push(ecx);
+
+ // Call the runtime system in a fresh internal frame.
+ ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
+ masm->isolate());
+ __ EnterInternalFrame();
+ __ push(edx);
+ __ push(eax);
+ __ push(Immediate(Smi::FromInt(op_)));
+ __ CallExternalReference(miss, 3);
+ __ LeaveInternalFrame();
+
+ // Compute the entry point of the rewritten stub.
+ __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
+
+ // Restore registers.
+ __ pop(ecx);
+ __ pop(eax);
+ __ pop(edx);
+ __ push(ecx);
+
+ // Do a tail call to the rewritten stub.
+ __ jmp(Operand(edi));
+}
+
+
+#undef __
+
+} } // namespace v8::internal
+
+#endif // V8_TARGET_ARCH_IA32