summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/ia32/assembler-ia32.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/ia32/assembler-ia32.h')
-rw-r--r--src/3rdparty/v8/src/ia32/assembler-ia32.h1159
1 files changed, 1159 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/ia32/assembler-ia32.h b/src/3rdparty/v8/src/ia32/assembler-ia32.h
new file mode 100644
index 0000000..079dca7
--- /dev/null
+++ b/src/3rdparty/v8/src/ia32/assembler-ia32.h
@@ -0,0 +1,1159 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2011 the V8 project authors. All rights reserved.
+
+// A light-weight IA32 Assembler.
+
+#ifndef V8_IA32_ASSEMBLER_IA32_H_
+#define V8_IA32_ASSEMBLER_IA32_H_
+
+#include "isolate.h"
+#include "serialize.h"
+
+namespace v8 {
+namespace internal {
+
+// CPU Registers.
+//
+// 1) We would prefer to use an enum, but enum values are assignment-
+// compatible with int, which has caused code-generation bugs.
+//
+// 2) We would prefer to use a class instead of a struct but we don't like
+// the register initialization to depend on the particular initialization
+// order (which appears to be different on OS X, Linux, and Windows for the
+// installed versions of C++ we tried). Using a struct permits C-style
+// "initialization". Also, the Register objects cannot be const as this
+// forces initialization stubs in MSVC, making us dependent on initialization
+// order.
+//
+// 3) By not using an enum, we are possibly preventing the compiler from
+// doing certain constant folds, which may significantly reduce the
+// code generated for some assembly instructions (because they boil down
+// to a few constants). If this is a problem, we could change the code
+// such that we use an enum in optimized mode, and the struct in debug
+// mode. This way we get the compile-time error checking in debug mode
+// and best performance in optimized code.
+//
+struct Register {
+ static const int kNumAllocatableRegisters = 6;
+ static const int kNumRegisters = 8;
+
+ static inline const char* AllocationIndexToString(int index);
+
+ static inline int ToAllocationIndex(Register reg);
+
+ static inline Register FromAllocationIndex(int index);
+
+ static Register from_code(int code) {
+ Register r = { code };
+ return r;
+ }
+ bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
+ bool is(Register reg) const { return code_ == reg.code_; }
+ // eax, ebx, ecx and edx are byte registers, the rest are not.
+ bool is_byte_register() const { return code_ <= 3; }
+ int code() const {
+ ASSERT(is_valid());
+ return code_;
+ }
+ int bit() const {
+ ASSERT(is_valid());
+ return 1 << code_;
+ }
+
+ // Unfortunately we can't make this private in a struct.
+ int code_;
+};
+
+
+const Register eax = { 0 };
+const Register ecx = { 1 };
+const Register edx = { 2 };
+const Register ebx = { 3 };
+const Register esp = { 4 };
+const Register ebp = { 5 };
+const Register esi = { 6 };
+const Register edi = { 7 };
+const Register no_reg = { -1 };
+
+
+inline const char* Register::AllocationIndexToString(int index) {
+ ASSERT(index >= 0 && index < kNumAllocatableRegisters);
+ // This is the mapping of allocation indices to registers.
+ const char* const kNames[] = { "eax", "ecx", "edx", "ebx", "esi", "edi" };
+ return kNames[index];
+}
+
+
+inline int Register::ToAllocationIndex(Register reg) {
+ ASSERT(reg.is_valid() && !reg.is(esp) && !reg.is(ebp));
+ return (reg.code() >= 6) ? reg.code() - 2 : reg.code();
+}
+
+
+inline Register Register::FromAllocationIndex(int index) {
+ ASSERT(index >= 0 && index < kNumAllocatableRegisters);
+ return (index >= 4) ? from_code(index + 2) : from_code(index);
+}
+
+
+struct XMMRegister {
+ static const int kNumAllocatableRegisters = 7;
+ static const int kNumRegisters = 8;
+
+ static int ToAllocationIndex(XMMRegister reg) {
+ ASSERT(reg.code() != 0);
+ return reg.code() - 1;
+ }
+
+ static XMMRegister FromAllocationIndex(int index) {
+ ASSERT(index >= 0 && index < kNumAllocatableRegisters);
+ return from_code(index + 1);
+ }
+
+ static const char* AllocationIndexToString(int index) {
+ ASSERT(index >= 0 && index < kNumAllocatableRegisters);
+ const char* const names[] = {
+ "xmm1",
+ "xmm2",
+ "xmm3",
+ "xmm4",
+ "xmm5",
+ "xmm6",
+ "xmm7"
+ };
+ return names[index];
+ }
+
+ static XMMRegister from_code(int code) {
+ XMMRegister r = { code };
+ return r;
+ }
+
+ bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
+ bool is(XMMRegister reg) const { return code_ == reg.code_; }
+ int code() const {
+ ASSERT(is_valid());
+ return code_;
+ }
+
+ int code_;
+};
+
+
+const XMMRegister xmm0 = { 0 };
+const XMMRegister xmm1 = { 1 };
+const XMMRegister xmm2 = { 2 };
+const XMMRegister xmm3 = { 3 };
+const XMMRegister xmm4 = { 4 };
+const XMMRegister xmm5 = { 5 };
+const XMMRegister xmm6 = { 6 };
+const XMMRegister xmm7 = { 7 };
+
+
+typedef XMMRegister DoubleRegister;
+
+
+enum Condition {
+ // any value < 0 is considered no_condition
+ no_condition = -1,
+
+ overflow = 0,
+ no_overflow = 1,
+ below = 2,
+ above_equal = 3,
+ equal = 4,
+ not_equal = 5,
+ below_equal = 6,
+ above = 7,
+ negative = 8,
+ positive = 9,
+ parity_even = 10,
+ parity_odd = 11,
+ less = 12,
+ greater_equal = 13,
+ less_equal = 14,
+ greater = 15,
+
+ // aliases
+ carry = below,
+ not_carry = above_equal,
+ zero = equal,
+ not_zero = not_equal,
+ sign = negative,
+ not_sign = positive
+};
+
+
+// Returns the equivalent of !cc.
+// Negation of the default no_condition (-1) results in a non-default
+// no_condition value (-2). As long as tests for no_condition check
+// for condition < 0, this will work as expected.
+inline Condition NegateCondition(Condition cc) {
+ return static_cast<Condition>(cc ^ 1);
+}
+
+
+// Corresponds to transposing the operands of a comparison.
+inline Condition ReverseCondition(Condition cc) {
+ switch (cc) {
+ case below:
+ return above;
+ case above:
+ return below;
+ case above_equal:
+ return below_equal;
+ case below_equal:
+ return above_equal;
+ case less:
+ return greater;
+ case greater:
+ return less;
+ case greater_equal:
+ return less_equal;
+ case less_equal:
+ return greater_equal;
+ default:
+ return cc;
+ };
+}
+
+
+enum Hint {
+ no_hint = 0,
+ not_taken = 0x2e,
+ taken = 0x3e
+};
+
+
+// The result of negating a hint is as if the corresponding condition
+// were negated by NegateCondition. That is, no_hint is mapped to
+// itself and not_taken and taken are mapped to each other.
+inline Hint NegateHint(Hint hint) {
+ return (hint == no_hint)
+ ? no_hint
+ : ((hint == not_taken) ? taken : not_taken);
+}
+
+
+// -----------------------------------------------------------------------------
+// Machine instruction Immediates
+
+class Immediate BASE_EMBEDDED {
+ public:
+ inline explicit Immediate(int x);
+ inline explicit Immediate(const ExternalReference& ext);
+ inline explicit Immediate(Handle<Object> handle);
+ inline explicit Immediate(Smi* value);
+ inline explicit Immediate(Address addr);
+
+ static Immediate CodeRelativeOffset(Label* label) {
+ return Immediate(label);
+ }
+
+ bool is_zero() const { return x_ == 0 && rmode_ == RelocInfo::NONE; }
+ bool is_int8() const {
+ return -128 <= x_ && x_ < 128 && rmode_ == RelocInfo::NONE;
+ }
+ bool is_int16() const {
+ return -32768 <= x_ && x_ < 32768 && rmode_ == RelocInfo::NONE;
+ }
+
+ private:
+ inline explicit Immediate(Label* value);
+
+ int x_;
+ RelocInfo::Mode rmode_;
+
+ friend class Assembler;
+};
+
+
+// -----------------------------------------------------------------------------
+// Machine instruction Operands
+
+enum ScaleFactor {
+ times_1 = 0,
+ times_2 = 1,
+ times_4 = 2,
+ times_8 = 3,
+ times_int_size = times_4,
+ times_half_pointer_size = times_2,
+ times_pointer_size = times_4,
+ times_twice_pointer_size = times_8
+};
+
+
+class Operand BASE_EMBEDDED {
+ public:
+ // reg
+ INLINE(explicit Operand(Register reg));
+
+ // XMM reg
+ INLINE(explicit Operand(XMMRegister xmm_reg));
+
+ // [disp/r]
+ INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
+ // disp only must always be relocated
+
+ // [base + disp/r]
+ explicit Operand(Register base, int32_t disp,
+ RelocInfo::Mode rmode = RelocInfo::NONE);
+
+ // [base + index*scale + disp/r]
+ explicit Operand(Register base,
+ Register index,
+ ScaleFactor scale,
+ int32_t disp,
+ RelocInfo::Mode rmode = RelocInfo::NONE);
+
+ // [index*scale + disp/r]
+ explicit Operand(Register index,
+ ScaleFactor scale,
+ int32_t disp,
+ RelocInfo::Mode rmode = RelocInfo::NONE);
+
+ static Operand StaticVariable(const ExternalReference& ext) {
+ return Operand(reinterpret_cast<int32_t>(ext.address()),
+ RelocInfo::EXTERNAL_REFERENCE);
+ }
+
+ static Operand StaticArray(Register index,
+ ScaleFactor scale,
+ const ExternalReference& arr) {
+ return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
+ RelocInfo::EXTERNAL_REFERENCE);
+ }
+
+ static Operand Cell(Handle<JSGlobalPropertyCell> cell) {
+ return Operand(reinterpret_cast<int32_t>(cell.location()),
+ RelocInfo::GLOBAL_PROPERTY_CELL);
+ }
+
+ // Returns true if this Operand is a wrapper for the specified register.
+ bool is_reg(Register reg) const;
+
+ private:
+ byte buf_[6];
+ // The number of bytes in buf_.
+ unsigned int len_;
+ // Only valid if len_ > 4.
+ RelocInfo::Mode rmode_;
+
+ // Set the ModRM byte without an encoded 'reg' register. The
+ // register is encoded later as part of the emit_operand operation.
+ inline void set_modrm(int mod, Register rm);
+
+ inline void set_sib(ScaleFactor scale, Register index, Register base);
+ inline void set_disp8(int8_t disp);
+ inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
+
+ friend class Assembler;
+};
+
+
+// -----------------------------------------------------------------------------
+// A Displacement describes the 32bit immediate field of an instruction which
+// may be used together with a Label in order to refer to a yet unknown code
+// position. Displacements stored in the instruction stream are used to describe
+// the instruction and to chain a list of instructions using the same Label.
+// A Displacement contains 2 different fields:
+//
+// next field: position of next displacement in the chain (0 = end of list)
+// type field: instruction type
+//
+// A next value of null (0) indicates the end of a chain (note that there can
+// be no displacement at position zero, because there is always at least one
+// instruction byte before the displacement).
+//
+// Displacement _data field layout
+//
+// |31.....2|1......0|
+// [ next | type |
+
+class Displacement BASE_EMBEDDED {
+ public:
+ enum Type {
+ UNCONDITIONAL_JUMP,
+ CODE_RELATIVE,
+ OTHER
+ };
+
+ int data() const { return data_; }
+ Type type() const { return TypeField::decode(data_); }
+ void next(Label* L) const {
+ int n = NextField::decode(data_);
+ n > 0 ? L->link_to(n) : L->Unuse();
+ }
+ void link_to(Label* L) { init(L, type()); }
+
+ explicit Displacement(int data) { data_ = data; }
+
+ Displacement(Label* L, Type type) { init(L, type); }
+
+ void print() {
+ PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
+ NextField::decode(data_));
+ }
+
+ private:
+ int data_;
+
+ class TypeField: public BitField<Type, 0, 2> {};
+ class NextField: public BitField<int, 2, 32-2> {};
+
+ void init(Label* L, Type type);
+};
+
+
+
+// CpuFeatures keeps track of which features are supported by the target CPU.
+// Supported features must be enabled by a Scope before use.
+// Example:
+// if (CpuFeatures::IsSupported(SSE2)) {
+// CpuFeatures::Scope fscope(SSE2);
+// // Generate SSE2 floating point code.
+// } else {
+// // Generate standard x87 floating point code.
+// }
+class CpuFeatures : public AllStatic {
+ public:
+ // Detect features of the target CPU. Set safe defaults if the serializer
+ // is enabled (snapshots must be portable).
+ static void Probe();
+
+ // Check whether a feature is supported by the target CPU.
+ static bool IsSupported(CpuFeature f) {
+ ASSERT(initialized_);
+ if (f == SSE2 && !FLAG_enable_sse2) return false;
+ if (f == SSE3 && !FLAG_enable_sse3) return false;
+ if (f == SSE4_1 && !FLAG_enable_sse4_1) return false;
+ if (f == CMOV && !FLAG_enable_cmov) return false;
+ if (f == RDTSC && !FLAG_enable_rdtsc) return false;
+ return (supported_ & (static_cast<uint64_t>(1) << f)) != 0;
+ }
+
+#ifdef DEBUG
+ // Check whether a feature is currently enabled.
+ static bool IsEnabled(CpuFeature f) {
+ ASSERT(initialized_);
+ Isolate* isolate = Isolate::UncheckedCurrent();
+ if (isolate == NULL) {
+ // When no isolate is available, work as if we're running in
+ // release mode.
+ return IsSupported(f);
+ }
+ uint64_t enabled = isolate->enabled_cpu_features();
+ return (enabled & (static_cast<uint64_t>(1) << f)) != 0;
+ }
+#endif
+
+ // Enable a specified feature within a scope.
+ class Scope BASE_EMBEDDED {
+#ifdef DEBUG
+ public:
+ explicit Scope(CpuFeature f) {
+ uint64_t mask = static_cast<uint64_t>(1) << f;
+ ASSERT(CpuFeatures::IsSupported(f));
+ ASSERT(!Serializer::enabled() ||
+ (CpuFeatures::found_by_runtime_probing_ & mask) == 0);
+ isolate_ = Isolate::UncheckedCurrent();
+ old_enabled_ = 0;
+ if (isolate_ != NULL) {
+ old_enabled_ = isolate_->enabled_cpu_features();
+ isolate_->set_enabled_cpu_features(old_enabled_ | mask);
+ }
+ }
+ ~Scope() {
+ ASSERT_EQ(Isolate::UncheckedCurrent(), isolate_);
+ if (isolate_ != NULL) {
+ isolate_->set_enabled_cpu_features(old_enabled_);
+ }
+ }
+ private:
+ Isolate* isolate_;
+ uint64_t old_enabled_;
+#else
+ public:
+ explicit Scope(CpuFeature f) {}
+#endif
+ };
+
+ class TryForceFeatureScope BASE_EMBEDDED {
+ public:
+ explicit TryForceFeatureScope(CpuFeature f)
+ : old_supported_(CpuFeatures::supported_) {
+ if (CanForce()) {
+ CpuFeatures::supported_ |= (static_cast<uint64_t>(1) << f);
+ }
+ }
+
+ ~TryForceFeatureScope() {
+ if (CanForce()) {
+ CpuFeatures::supported_ = old_supported_;
+ }
+ }
+
+ private:
+ static bool CanForce() {
+ // It's only safe to temporarily force support of CPU features
+ // when there's only a single isolate, which is guaranteed when
+ // the serializer is enabled.
+ return Serializer::enabled();
+ }
+
+ const uint64_t old_supported_;
+ };
+
+ private:
+#ifdef DEBUG
+ static bool initialized_;
+#endif
+ static uint64_t supported_;
+ static uint64_t found_by_runtime_probing_;
+
+ DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
+};
+
+
+class Assembler : public AssemblerBase {
+ private:
+ // We check before assembling an instruction that there is sufficient
+ // space to write an instruction and its relocation information.
+ // The relocation writer's position must be kGap bytes above the end of
+ // the generated instructions. This leaves enough space for the
+ // longest possible ia32 instruction, 15 bytes, and the longest possible
+ // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
+ // (There is a 15 byte limit on ia32 instruction length that rules out some
+ // otherwise valid instructions.)
+ // This allows for a single, fast space check per instruction.
+ static const int kGap = 32;
+
+ public:
+ // Create an assembler. Instructions and relocation information are emitted
+ // into a buffer, with the instructions starting from the beginning and the
+ // relocation information starting from the end of the buffer. See CodeDesc
+ // for a detailed comment on the layout (globals.h).
+ //
+ // If the provided buffer is NULL, the assembler allocates and grows its own
+ // buffer, and buffer_size determines the initial buffer size. The buffer is
+ // owned by the assembler and deallocated upon destruction of the assembler.
+ //
+ // If the provided buffer is not NULL, the assembler uses the provided buffer
+ // for code generation and assumes its size to be buffer_size. If the buffer
+ // is too small, a fatal error occurs. No deallocation of the buffer is done
+ // upon destruction of the assembler.
+ // TODO(vitalyr): the assembler does not need an isolate.
+ Assembler(Isolate* isolate, void* buffer, int buffer_size);
+ ~Assembler();
+
+ // Overrides the default provided by FLAG_debug_code.
+ void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
+
+ // GetCode emits any pending (non-emitted) code and fills the descriptor
+ // desc. GetCode() is idempotent; it returns the same result if no other
+ // Assembler functions are invoked in between GetCode() calls.
+ void GetCode(CodeDesc* desc);
+
+ // Read/Modify the code target in the branch/call instruction at pc.
+ inline static Address target_address_at(Address pc);
+ inline static void set_target_address_at(Address pc, Address target);
+
+ // This sets the branch destination (which is in the instruction on x86).
+ // This is for calls and branches within generated code.
+ inline static void set_target_at(Address instruction_payload,
+ Address target) {
+ set_target_address_at(instruction_payload, target);
+ }
+
+ // This sets the branch destination (which is in the instruction on x86).
+ // This is for calls and branches to runtime code.
+ inline static void set_external_target_at(Address instruction_payload,
+ Address target) {
+ set_target_address_at(instruction_payload, target);
+ }
+
+ static const int kCallTargetSize = kPointerSize;
+ static const int kExternalTargetSize = kPointerSize;
+
+ // Distance between the address of the code target in the call instruction
+ // and the return address
+ static const int kCallTargetAddressOffset = kPointerSize;
+ // Distance between start of patched return sequence and the emitted address
+ // to jump to.
+ static const int kPatchReturnSequenceAddressOffset = 1; // JMP imm32.
+
+ // Distance between start of patched debug break slot and the emitted address
+ // to jump to.
+ static const int kPatchDebugBreakSlotAddressOffset = 1; // JMP imm32.
+
+ static const int kCallInstructionLength = 5;
+ static const int kJSReturnSequenceLength = 6;
+
+ // The debug break slot must be able to contain a call instruction.
+ static const int kDebugBreakSlotLength = kCallInstructionLength;
+
+ // One byte opcode for test eax,0xXXXXXXXX.
+ static const byte kTestEaxByte = 0xA9;
+ // One byte opcode for test al, 0xXX.
+ static const byte kTestAlByte = 0xA8;
+ // One byte opcode for nop.
+ static const byte kNopByte = 0x90;
+
+ // One byte opcode for a short unconditional jump.
+ static const byte kJmpShortOpcode = 0xEB;
+ // One byte prefix for a short conditional jump.
+ static const byte kJccShortPrefix = 0x70;
+ static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
+ static const byte kJcShortOpcode = kJccShortPrefix | carry;
+
+ // ---------------------------------------------------------------------------
+ // Code generation
+ //
+ // - function names correspond one-to-one to ia32 instruction mnemonics
+ // - unless specified otherwise, instructions operate on 32bit operands
+ // - instructions on 8bit (byte) operands/registers have a trailing '_b'
+ // - instructions on 16bit (word) operands/registers have a trailing '_w'
+ // - naming conflicts with C++ keywords are resolved via a trailing '_'
+
+ // NOTE ON INTERFACE: Currently, the interface is not very consistent
+ // in the sense that some operations (e.g. mov()) can be called in more
+ // the one way to generate the same instruction: The Register argument
+ // can in some cases be replaced with an Operand(Register) argument.
+ // This should be cleaned up and made more orthogonal. The questions
+ // is: should we always use Operands instead of Registers where an
+ // Operand is possible, or should we have a Register (overloaded) form
+ // instead? We must be careful to make sure that the selected instruction
+ // is obvious from the parameters to avoid hard-to-find code generation
+ // bugs.
+
+ // Insert the smallest number of nop instructions
+ // possible to align the pc offset to a multiple
+ // of m. m must be a power of 2.
+ void Align(int m);
+ // Aligns code to something that's optimal for a jump target for the platform.
+ void CodeTargetAlign();
+
+ // Stack
+ void pushad();
+ void popad();
+
+ void pushfd();
+ void popfd();
+
+ void push(const Immediate& x);
+ void push_imm32(int32_t imm32);
+ void push(Register src);
+ void push(const Operand& src);
+
+ void pop(Register dst);
+ void pop(const Operand& dst);
+
+ void enter(const Immediate& size);
+ void leave();
+
+ // Moves
+ void mov_b(Register dst, const Operand& src);
+ void mov_b(const Operand& dst, int8_t imm8);
+ void mov_b(const Operand& dst, Register src);
+
+ void mov_w(Register dst, const Operand& src);
+ void mov_w(const Operand& dst, Register src);
+
+ void mov(Register dst, int32_t imm32);
+ void mov(Register dst, const Immediate& x);
+ void mov(Register dst, Handle<Object> handle);
+ void mov(Register dst, const Operand& src);
+ void mov(Register dst, Register src);
+ void mov(const Operand& dst, const Immediate& x);
+ void mov(const Operand& dst, Handle<Object> handle);
+ void mov(const Operand& dst, Register src);
+
+ void movsx_b(Register dst, const Operand& src);
+
+ void movsx_w(Register dst, const Operand& src);
+
+ void movzx_b(Register dst, const Operand& src);
+
+ void movzx_w(Register dst, const Operand& src);
+
+ // Conditional moves
+ void cmov(Condition cc, Register dst, int32_t imm32);
+ void cmov(Condition cc, Register dst, Handle<Object> handle);
+ void cmov(Condition cc, Register dst, const Operand& src);
+
+ // Flag management.
+ void cld();
+
+ // Repetitive string instructions.
+ void rep_movs();
+ void rep_stos();
+ void stos();
+
+ // Exchange two registers
+ void xchg(Register dst, Register src);
+
+ // Arithmetics
+ void adc(Register dst, int32_t imm32);
+ void adc(Register dst, const Operand& src);
+
+ void add(Register dst, const Operand& src);
+ void add(const Operand& dst, const Immediate& x);
+
+ void and_(Register dst, int32_t imm32);
+ void and_(Register dst, const Immediate& x);
+ void and_(Register dst, const Operand& src);
+ void and_(const Operand& src, Register dst);
+ void and_(const Operand& dst, const Immediate& x);
+
+ void cmpb(const Operand& op, int8_t imm8);
+ void cmpb(Register src, const Operand& dst);
+ void cmpb(const Operand& dst, Register src);
+ void cmpb_al(const Operand& op);
+ void cmpw_ax(const Operand& op);
+ void cmpw(const Operand& op, Immediate imm16);
+ void cmp(Register reg, int32_t imm32);
+ void cmp(Register reg, Handle<Object> handle);
+ void cmp(Register reg, const Operand& op);
+ void cmp(const Operand& op, const Immediate& imm);
+ void cmp(const Operand& op, Handle<Object> handle);
+
+ void dec_b(Register dst);
+ void dec_b(const Operand& dst);
+
+ void dec(Register dst);
+ void dec(const Operand& dst);
+
+ void cdq();
+
+ void idiv(Register src);
+
+ // Signed multiply instructions.
+ void imul(Register src); // edx:eax = eax * src.
+ void imul(Register dst, const Operand& src); // dst = dst * src.
+ void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
+
+ void inc(Register dst);
+ void inc(const Operand& dst);
+
+ void lea(Register dst, const Operand& src);
+
+ // Unsigned multiply instruction.
+ void mul(Register src); // edx:eax = eax * reg.
+
+ void neg(Register dst);
+
+ void not_(Register dst);
+
+ void or_(Register dst, int32_t imm32);
+ void or_(Register dst, const Operand& src);
+ void or_(const Operand& dst, Register src);
+ void or_(const Operand& dst, const Immediate& x);
+
+ void rcl(Register dst, uint8_t imm8);
+ void rcr(Register dst, uint8_t imm8);
+
+ void sar(Register dst, uint8_t imm8);
+ void sar_cl(Register dst);
+
+ void sbb(Register dst, const Operand& src);
+
+ void shld(Register dst, const Operand& src);
+
+ void shl(Register dst, uint8_t imm8);
+ void shl_cl(Register dst);
+
+ void shrd(Register dst, const Operand& src);
+
+ void shr(Register dst, uint8_t imm8);
+ void shr_cl(Register dst);
+
+ void subb(const Operand& dst, int8_t imm8);
+ void subb(Register dst, const Operand& src);
+ void sub(const Operand& dst, const Immediate& x);
+ void sub(Register dst, const Operand& src);
+ void sub(const Operand& dst, Register src);
+
+ void test(Register reg, const Immediate& imm);
+ void test(Register reg, const Operand& op);
+ void test_b(Register reg, const Operand& op);
+ void test(const Operand& op, const Immediate& imm);
+ void test_b(const Operand& op, uint8_t imm8);
+
+ void xor_(Register dst, int32_t imm32);
+ void xor_(Register dst, const Operand& src);
+ void xor_(const Operand& src, Register dst);
+ void xor_(const Operand& dst, const Immediate& x);
+
+ // Bit operations.
+ void bt(const Operand& dst, Register src);
+ void bts(const Operand& dst, Register src);
+
+ // Miscellaneous
+ void hlt();
+ void int3();
+ void nop();
+ void rdtsc();
+ void ret(int imm16);
+
+ // Label operations & relative jumps (PPUM Appendix D)
+ //
+ // Takes a branch opcode (cc) and a label (L) and generates
+ // either a backward branch or a forward branch and links it
+ // to the label fixup chain. Usage:
+ //
+ // Label L; // unbound label
+ // j(cc, &L); // forward branch to unbound label
+ // bind(&L); // bind label to the current pc
+ // j(cc, &L); // backward branch to bound label
+ // bind(&L); // illegal: a label may be bound only once
+ //
+ // Note: The same Label can be used for forward and backward branches
+ // but it may be bound only once.
+
+ void bind(Label* L); // binds an unbound label L to the current code position
+ void bind(NearLabel* L);
+
+ // Calls
+ void call(Label* L);
+ void call(byte* entry, RelocInfo::Mode rmode);
+ void call(const Operand& adr);
+ void call(Handle<Code> code, RelocInfo::Mode rmode);
+
+ // Jumps
+ void jmp(Label* L); // unconditional jump to L
+ void jmp(byte* entry, RelocInfo::Mode rmode);
+ void jmp(const Operand& adr);
+ void jmp(Handle<Code> code, RelocInfo::Mode rmode);
+
+ // Short jump
+ void jmp(NearLabel* L);
+
+ // Conditional jumps
+ void j(Condition cc, Label* L, Hint hint = no_hint);
+ void j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint = no_hint);
+ void j(Condition cc, Handle<Code> code, Hint hint = no_hint);
+
+ // Conditional short jump
+ void j(Condition cc, NearLabel* L, Hint hint = no_hint);
+
+ // Floating-point operations
+ void fld(int i);
+ void fstp(int i);
+
+ void fld1();
+ void fldz();
+ void fldpi();
+ void fldln2();
+
+ void fld_s(const Operand& adr);
+ void fld_d(const Operand& adr);
+
+ void fstp_s(const Operand& adr);
+ void fstp_d(const Operand& adr);
+ void fst_d(const Operand& adr);
+
+ void fild_s(const Operand& adr);
+ void fild_d(const Operand& adr);
+
+ void fist_s(const Operand& adr);
+
+ void fistp_s(const Operand& adr);
+ void fistp_d(const Operand& adr);
+
+ // The fisttp instructions require SSE3.
+ void fisttp_s(const Operand& adr);
+ void fisttp_d(const Operand& adr);
+
+ void fabs();
+ void fchs();
+ void fcos();
+ void fsin();
+ void fyl2x();
+
+ void fadd(int i);
+ void fsub(int i);
+ void fmul(int i);
+ void fdiv(int i);
+
+ void fisub_s(const Operand& adr);
+
+ void faddp(int i = 1);
+ void fsubp(int i = 1);
+ void fsubrp(int i = 1);
+ void fmulp(int i = 1);
+ void fdivp(int i = 1);
+ void fprem();
+ void fprem1();
+
+ void fxch(int i = 1);
+ void fincstp();
+ void ffree(int i = 0);
+
+ void ftst();
+ void fucomp(int i);
+ void fucompp();
+ void fucomi(int i);
+ void fucomip();
+ void fcompp();
+ void fnstsw_ax();
+ void fwait();
+ void fnclex();
+
+ void frndint();
+
+ void sahf();
+ void setcc(Condition cc, Register reg);
+
+ void cpuid();
+
+ // SSE2 instructions
+ void cvttss2si(Register dst, const Operand& src);
+ void cvttsd2si(Register dst, const Operand& src);
+
+ void cvtsi2sd(XMMRegister dst, const Operand& src);
+ void cvtss2sd(XMMRegister dst, XMMRegister src);
+ void cvtsd2ss(XMMRegister dst, XMMRegister src);
+
+ void addsd(XMMRegister dst, XMMRegister src);
+ void subsd(XMMRegister dst, XMMRegister src);
+ void mulsd(XMMRegister dst, XMMRegister src);
+ void divsd(XMMRegister dst, XMMRegister src);
+ void xorpd(XMMRegister dst, XMMRegister src);
+ void sqrtsd(XMMRegister dst, XMMRegister src);
+
+ void andpd(XMMRegister dst, XMMRegister src);
+
+ void ucomisd(XMMRegister dst, XMMRegister src);
+ void movmskpd(Register dst, XMMRegister src);
+
+ void cmpltsd(XMMRegister dst, XMMRegister src);
+
+ void movaps(XMMRegister dst, XMMRegister src);
+
+ void movdqa(XMMRegister dst, const Operand& src);
+ void movdqa(const Operand& dst, XMMRegister src);
+ void movdqu(XMMRegister dst, const Operand& src);
+ void movdqu(const Operand& dst, XMMRegister src);
+
+ // Use either movsd or movlpd.
+ void movdbl(XMMRegister dst, const Operand& src);
+ void movdbl(const Operand& dst, XMMRegister src);
+
+ void movd(XMMRegister dst, const Operand& src);
+ void movd(const Operand& src, XMMRegister dst);
+ void movsd(XMMRegister dst, XMMRegister src);
+
+ void movss(XMMRegister dst, const Operand& src);
+ void movss(const Operand& src, XMMRegister dst);
+ void movss(XMMRegister dst, XMMRegister src);
+
+ void pand(XMMRegister dst, XMMRegister src);
+ void pxor(XMMRegister dst, XMMRegister src);
+ void por(XMMRegister dst, XMMRegister src);
+ void ptest(XMMRegister dst, XMMRegister src);
+
+ void psllq(XMMRegister reg, int8_t shift);
+ void psllq(XMMRegister dst, XMMRegister src);
+ void psrlq(XMMRegister reg, int8_t shift);
+ void psrlq(XMMRegister dst, XMMRegister src);
+ void pshufd(XMMRegister dst, XMMRegister src, int8_t shuffle);
+ void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
+ void pinsrd(XMMRegister dst, const Operand& src, int8_t offset);
+
+ // Parallel XMM operations.
+ void movntdqa(XMMRegister src, const Operand& dst);
+ void movntdq(const Operand& dst, XMMRegister src);
+ // Prefetch src position into cache level.
+ // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
+ // non-temporal
+ void prefetch(const Operand& src, int level);
+ // TODO(lrn): Need SFENCE for movnt?
+
+ // Debugging
+ void Print();
+
+ // Check the code size generated from label to here.
+ int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
+
+ // Mark address of the ExitJSFrame code.
+ void RecordJSReturn();
+
+ // Mark address of a debug break slot.
+ void RecordDebugBreakSlot();
+
+ // Record a comment relocation entry that can be used by a disassembler.
+ // Use --code-comments to enable, or provide "force = true" flag to always
+ // write a comment.
+ void RecordComment(const char* msg, bool force = false);
+
+ // Writes a single byte or word of data in the code stream. Used for
+ // inline tables, e.g., jump-tables.
+ void db(uint8_t data);
+ void dd(uint32_t data);
+
+ int pc_offset() const { return pc_ - buffer_; }
+
+ // Check if there is less than kGap bytes available in the buffer.
+ // If this is the case, we need to grow the buffer before emitting
+ // an instruction or relocation information.
+ inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
+
+ // Get the number of bytes available in the buffer.
+ inline int available_space() const { return reloc_info_writer.pos() - pc_; }
+
+ static bool IsNop(Address addr) { return *addr == 0x90; }
+
+ PositionsRecorder* positions_recorder() { return &positions_recorder_; }
+
+ int relocation_writer_size() {
+ return (buffer_ + buffer_size_) - reloc_info_writer.pos();
+ }
+
+ // Avoid overflows for displacements etc.
+ static const int kMaximalBufferSize = 512*MB;
+ static const int kMinimalBufferSize = 4*KB;
+
+ protected:
+ bool emit_debug_code() const { return emit_debug_code_; }
+
+ void movsd(XMMRegister dst, const Operand& src);
+ void movsd(const Operand& dst, XMMRegister src);
+
+ void emit_sse_operand(XMMRegister reg, const Operand& adr);
+ void emit_sse_operand(XMMRegister dst, XMMRegister src);
+ void emit_sse_operand(Register dst, XMMRegister src);
+
+ byte* addr_at(int pos) { return buffer_ + pos; }
+
+ private:
+ byte byte_at(int pos) { return buffer_[pos]; }
+ void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
+ uint32_t long_at(int pos) {
+ return *reinterpret_cast<uint32_t*>(addr_at(pos));
+ }
+ void long_at_put(int pos, uint32_t x) {
+ *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
+ }
+
+ // code emission
+ void GrowBuffer();
+ inline void emit(uint32_t x);
+ inline void emit(Handle<Object> handle);
+ inline void emit(uint32_t x, RelocInfo::Mode rmode);
+ inline void emit(const Immediate& x);
+ inline void emit_w(const Immediate& x);
+
+ // Emit the code-object-relative offset of the label's position
+ inline void emit_code_relative_offset(Label* label);
+
+ // instruction generation
+ void emit_arith_b(int op1, int op2, Register dst, int imm8);
+
+ // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
+ // with a given destination expression and an immediate operand. It attempts
+ // to use the shortest encoding possible.
+ // sel specifies the /n in the modrm byte (see the Intel PRM).
+ void emit_arith(int sel, Operand dst, const Immediate& x);
+
+ void emit_operand(Register reg, const Operand& adr);
+
+ void emit_farith(int b1, int b2, int i);
+
+ // labels
+ void print(Label* L);
+ void bind_to(Label* L, int pos);
+
+ // displacements
+ inline Displacement disp_at(Label* L);
+ inline void disp_at_put(Label* L, Displacement disp);
+ inline void emit_disp(Label* L, Displacement::Type type);
+
+ // record reloc info for current pc_
+ void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
+
+ friend class CodePatcher;
+ friend class EnsureSpace;
+
+ // Code buffer:
+ // The buffer into which code and relocation info are generated.
+ byte* buffer_;
+ int buffer_size_;
+ // True if the assembler owns the buffer, false if buffer is external.
+ bool own_buffer_;
+
+ // code generation
+ byte* pc_; // the program counter; moves forward
+ RelocInfoWriter reloc_info_writer;
+
+ // push-pop elimination
+ byte* last_pc_;
+
+ PositionsRecorder positions_recorder_;
+
+ bool emit_debug_code_;
+
+ friend class PositionsRecorder;
+};
+
+
+// Helper class that ensures that there is enough space for generating
+// instructions and relocation information. The constructor makes
+// sure that there is enough space and (in debug mode) the destructor
+// checks that we did not generate too much.
+class EnsureSpace BASE_EMBEDDED {
+ public:
+ explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
+ if (assembler_->overflow()) assembler_->GrowBuffer();
+#ifdef DEBUG
+ space_before_ = assembler_->available_space();
+#endif
+ }
+
+#ifdef DEBUG
+ ~EnsureSpace() {
+ int bytes_generated = space_before_ - assembler_->available_space();
+ ASSERT(bytes_generated < assembler_->kGap);
+ }
+#endif
+
+ private:
+ Assembler* assembler_;
+#ifdef DEBUG
+ int space_before_;
+#endif
+};
+
+} } // namespace v8::internal
+
+#endif // V8_IA32_ASSEMBLER_IA32_H_