summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/heap-inl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/heap-inl.h')
-rw-r--r--src/3rdparty/v8/src/heap-inl.h703
1 files changed, 703 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/heap-inl.h b/src/3rdparty/v8/src/heap-inl.h
new file mode 100644
index 0000000..99737ed
--- /dev/null
+++ b/src/3rdparty/v8/src/heap-inl.h
@@ -0,0 +1,703 @@
+// Copyright 2006-2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef V8_HEAP_INL_H_
+#define V8_HEAP_INL_H_
+
+#include "heap.h"
+#include "objects.h"
+#include "isolate.h"
+#include "v8-counters.h"
+
+namespace v8 {
+namespace internal {
+
+void PromotionQueue::insert(HeapObject* target, int size) {
+ *(--rear_) = reinterpret_cast<intptr_t>(target);
+ *(--rear_) = size;
+ // Assert no overflow into live objects.
+ ASSERT(reinterpret_cast<Address>(rear_) >= HEAP->new_space()->top());
+}
+
+
+int Heap::MaxObjectSizeInPagedSpace() {
+ return Page::kMaxHeapObjectSize;
+}
+
+
+MaybeObject* Heap::AllocateStringFromUtf8(Vector<const char> str,
+ PretenureFlag pretenure) {
+ // Check for ASCII first since this is the common case.
+ if (String::IsAscii(str.start(), str.length())) {
+ // If the string is ASCII, we do not need to convert the characters
+ // since UTF8 is backwards compatible with ASCII.
+ return AllocateStringFromAscii(str, pretenure);
+ }
+ // Non-ASCII and we need to decode.
+ return AllocateStringFromUtf8Slow(str, pretenure);
+}
+
+
+MaybeObject* Heap::AllocateSymbol(Vector<const char> str,
+ int chars,
+ uint32_t hash_field) {
+ unibrow::Utf8InputBuffer<> buffer(str.start(),
+ static_cast<unsigned>(str.length()));
+ return AllocateInternalSymbol(&buffer, chars, hash_field);
+}
+
+
+MaybeObject* Heap::AllocateAsciiSymbol(Vector<const char> str,
+ uint32_t hash_field) {
+ if (str.length() > SeqAsciiString::kMaxLength) {
+ return Failure::OutOfMemoryException();
+ }
+ // Compute map and object size.
+ Map* map = ascii_symbol_map();
+ int size = SeqAsciiString::SizeFor(str.length());
+
+ // Allocate string.
+ Object* result;
+ { MaybeObject* maybe_result = (size > MaxObjectSizeInPagedSpace())
+ ? lo_space_->AllocateRaw(size)
+ : old_data_space_->AllocateRaw(size);
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+
+ reinterpret_cast<HeapObject*>(result)->set_map(map);
+ // Set length and hash fields of the allocated string.
+ String* answer = String::cast(result);
+ answer->set_length(str.length());
+ answer->set_hash_field(hash_field);
+
+ ASSERT_EQ(size, answer->Size());
+
+ // Fill in the characters.
+ memcpy(answer->address() + SeqAsciiString::kHeaderSize,
+ str.start(), str.length());
+
+ return answer;
+}
+
+
+MaybeObject* Heap::AllocateTwoByteSymbol(Vector<const uc16> str,
+ uint32_t hash_field) {
+ if (str.length() > SeqTwoByteString::kMaxLength) {
+ return Failure::OutOfMemoryException();
+ }
+ // Compute map and object size.
+ Map* map = symbol_map();
+ int size = SeqTwoByteString::SizeFor(str.length());
+
+ // Allocate string.
+ Object* result;
+ { MaybeObject* maybe_result = (size > MaxObjectSizeInPagedSpace())
+ ? lo_space_->AllocateRaw(size)
+ : old_data_space_->AllocateRaw(size);
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+
+ reinterpret_cast<HeapObject*>(result)->set_map(map);
+ // Set length and hash fields of the allocated string.
+ String* answer = String::cast(result);
+ answer->set_length(str.length());
+ answer->set_hash_field(hash_field);
+
+ ASSERT_EQ(size, answer->Size());
+
+ // Fill in the characters.
+ memcpy(answer->address() + SeqTwoByteString::kHeaderSize,
+ str.start(), str.length() * kUC16Size);
+
+ return answer;
+}
+
+MaybeObject* Heap::CopyFixedArray(FixedArray* src) {
+ return CopyFixedArrayWithMap(src, src->map());
+}
+
+
+MaybeObject* Heap::AllocateRaw(int size_in_bytes,
+ AllocationSpace space,
+ AllocationSpace retry_space) {
+ ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
+ ASSERT(space != NEW_SPACE ||
+ retry_space == OLD_POINTER_SPACE ||
+ retry_space == OLD_DATA_SPACE ||
+ retry_space == LO_SPACE);
+#ifdef DEBUG
+ if (FLAG_gc_interval >= 0 &&
+ !disallow_allocation_failure_ &&
+ Heap::allocation_timeout_-- <= 0) {
+ return Failure::RetryAfterGC(space);
+ }
+ isolate_->counters()->objs_since_last_full()->Increment();
+ isolate_->counters()->objs_since_last_young()->Increment();
+#endif
+ MaybeObject* result;
+ if (NEW_SPACE == space) {
+ result = new_space_.AllocateRaw(size_in_bytes);
+ if (always_allocate() && result->IsFailure()) {
+ space = retry_space;
+ } else {
+ return result;
+ }
+ }
+
+ if (OLD_POINTER_SPACE == space) {
+ result = old_pointer_space_->AllocateRaw(size_in_bytes);
+ } else if (OLD_DATA_SPACE == space) {
+ result = old_data_space_->AllocateRaw(size_in_bytes);
+ } else if (CODE_SPACE == space) {
+ result = code_space_->AllocateRaw(size_in_bytes);
+ } else if (LO_SPACE == space) {
+ result = lo_space_->AllocateRaw(size_in_bytes);
+ } else if (CELL_SPACE == space) {
+ result = cell_space_->AllocateRaw(size_in_bytes);
+ } else {
+ ASSERT(MAP_SPACE == space);
+ result = map_space_->AllocateRaw(size_in_bytes);
+ }
+ if (result->IsFailure()) old_gen_exhausted_ = true;
+ return result;
+}
+
+
+MaybeObject* Heap::NumberFromInt32(int32_t value) {
+ if (Smi::IsValid(value)) return Smi::FromInt(value);
+ // Bypass NumberFromDouble to avoid various redundant checks.
+ return AllocateHeapNumber(FastI2D(value));
+}
+
+
+MaybeObject* Heap::NumberFromUint32(uint32_t value) {
+ if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) {
+ return Smi::FromInt((int32_t)value);
+ }
+ // Bypass NumberFromDouble to avoid various redundant checks.
+ return AllocateHeapNumber(FastUI2D(value));
+}
+
+
+void Heap::FinalizeExternalString(String* string) {
+ ASSERT(string->IsExternalString());
+ v8::String::ExternalStringResourceBase** resource_addr =
+ reinterpret_cast<v8::String::ExternalStringResourceBase**>(
+ reinterpret_cast<byte*>(string) +
+ ExternalString::kResourceOffset -
+ kHeapObjectTag);
+
+ // Dispose of the C++ object if it has not already been disposed.
+ if (*resource_addr != NULL) {
+ (*resource_addr)->Dispose();
+ }
+
+ // Clear the resource pointer in the string.
+ *resource_addr = NULL;
+}
+
+
+MaybeObject* Heap::AllocateRawMap() {
+#ifdef DEBUG
+ isolate_->counters()->objs_since_last_full()->Increment();
+ isolate_->counters()->objs_since_last_young()->Increment();
+#endif
+ MaybeObject* result = map_space_->AllocateRaw(Map::kSize);
+ if (result->IsFailure()) old_gen_exhausted_ = true;
+#ifdef DEBUG
+ if (!result->IsFailure()) {
+ // Maps have their own alignment.
+ CHECK((reinterpret_cast<intptr_t>(result) & kMapAlignmentMask) ==
+ static_cast<intptr_t>(kHeapObjectTag));
+ }
+#endif
+ return result;
+}
+
+
+MaybeObject* Heap::AllocateRawCell() {
+#ifdef DEBUG
+ isolate_->counters()->objs_since_last_full()->Increment();
+ isolate_->counters()->objs_since_last_young()->Increment();
+#endif
+ MaybeObject* result = cell_space_->AllocateRaw(JSGlobalPropertyCell::kSize);
+ if (result->IsFailure()) old_gen_exhausted_ = true;
+ return result;
+}
+
+
+bool Heap::InNewSpace(Object* object) {
+ bool result = new_space_.Contains(object);
+ ASSERT(!result || // Either not in new space
+ gc_state_ != NOT_IN_GC || // ... or in the middle of GC
+ InToSpace(object)); // ... or in to-space (where we allocate).
+ return result;
+}
+
+
+bool Heap::InFromSpace(Object* object) {
+ return new_space_.FromSpaceContains(object);
+}
+
+
+bool Heap::InToSpace(Object* object) {
+ return new_space_.ToSpaceContains(object);
+}
+
+
+bool Heap::ShouldBePromoted(Address old_address, int object_size) {
+ // An object should be promoted if:
+ // - the object has survived a scavenge operation or
+ // - to space is already 25% full.
+ return old_address < new_space_.age_mark()
+ || (new_space_.Size() + object_size) >= (new_space_.Capacity() >> 2);
+}
+
+
+void Heap::RecordWrite(Address address, int offset) {
+ if (new_space_.Contains(address)) return;
+ ASSERT(!new_space_.FromSpaceContains(address));
+ SLOW_ASSERT(Contains(address + offset));
+ Page::FromAddress(address)->MarkRegionDirty(address + offset);
+}
+
+
+void Heap::RecordWrites(Address address, int start, int len) {
+ if (new_space_.Contains(address)) return;
+ ASSERT(!new_space_.FromSpaceContains(address));
+ Page* page = Page::FromAddress(address);
+ page->SetRegionMarks(page->GetRegionMarks() |
+ page->GetRegionMaskForSpan(address + start, len * kPointerSize));
+}
+
+
+OldSpace* Heap::TargetSpace(HeapObject* object) {
+ InstanceType type = object->map()->instance_type();
+ AllocationSpace space = TargetSpaceId(type);
+ return (space == OLD_POINTER_SPACE)
+ ? old_pointer_space_
+ : old_data_space_;
+}
+
+
+AllocationSpace Heap::TargetSpaceId(InstanceType type) {
+ // Heap numbers and sequential strings are promoted to old data space, all
+ // other object types are promoted to old pointer space. We do not use
+ // object->IsHeapNumber() and object->IsSeqString() because we already
+ // know that object has the heap object tag.
+
+ // These objects are never allocated in new space.
+ ASSERT(type != MAP_TYPE);
+ ASSERT(type != CODE_TYPE);
+ ASSERT(type != ODDBALL_TYPE);
+ ASSERT(type != JS_GLOBAL_PROPERTY_CELL_TYPE);
+
+ if (type < FIRST_NONSTRING_TYPE) {
+ // There are three string representations: sequential strings, cons
+ // strings, and external strings. Only cons strings contain
+ // non-map-word pointers to heap objects.
+ return ((type & kStringRepresentationMask) == kConsStringTag)
+ ? OLD_POINTER_SPACE
+ : OLD_DATA_SPACE;
+ } else {
+ return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
+ }
+}
+
+
+void Heap::CopyBlock(Address dst, Address src, int byte_size) {
+ ASSERT(IsAligned(byte_size, kPointerSize));
+ CopyWords(reinterpret_cast<Object**>(dst),
+ reinterpret_cast<Object**>(src),
+ byte_size / kPointerSize);
+}
+
+
+void Heap::CopyBlockToOldSpaceAndUpdateRegionMarks(Address dst,
+ Address src,
+ int byte_size) {
+ ASSERT(IsAligned(byte_size, kPointerSize));
+
+ Page* page = Page::FromAddress(dst);
+ uint32_t marks = page->GetRegionMarks();
+
+ for (int remaining = byte_size / kPointerSize;
+ remaining > 0;
+ remaining--) {
+ Memory::Object_at(dst) = Memory::Object_at(src);
+
+ if (InNewSpace(Memory::Object_at(dst))) {
+ marks |= page->GetRegionMaskForAddress(dst);
+ }
+
+ dst += kPointerSize;
+ src += kPointerSize;
+ }
+
+ page->SetRegionMarks(marks);
+}
+
+
+void Heap::MoveBlock(Address dst, Address src, int byte_size) {
+ ASSERT(IsAligned(byte_size, kPointerSize));
+
+ int size_in_words = byte_size / kPointerSize;
+
+ if ((dst < src) || (dst >= (src + size_in_words))) {
+ ASSERT((dst >= (src + size_in_words)) ||
+ ((OffsetFrom(reinterpret_cast<Address>(src)) -
+ OffsetFrom(reinterpret_cast<Address>(dst))) >= kPointerSize));
+
+ Object** src_slot = reinterpret_cast<Object**>(src);
+ Object** dst_slot = reinterpret_cast<Object**>(dst);
+ Object** end_slot = src_slot + size_in_words;
+
+ while (src_slot != end_slot) {
+ *dst_slot++ = *src_slot++;
+ }
+ } else {
+ memmove(dst, src, byte_size);
+ }
+}
+
+
+void Heap::MoveBlockToOldSpaceAndUpdateRegionMarks(Address dst,
+ Address src,
+ int byte_size) {
+ ASSERT(IsAligned(byte_size, kPointerSize));
+ ASSERT((dst >= (src + byte_size)) ||
+ ((OffsetFrom(src) - OffsetFrom(dst)) >= kPointerSize));
+
+ CopyBlockToOldSpaceAndUpdateRegionMarks(dst, src, byte_size);
+}
+
+
+void Heap::ScavengePointer(HeapObject** p) {
+ ScavengeObject(p, *p);
+}
+
+
+void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
+ ASSERT(HEAP->InFromSpace(object));
+
+ // We use the first word (where the map pointer usually is) of a heap
+ // object to record the forwarding pointer. A forwarding pointer can
+ // point to an old space, the code space, or the to space of the new
+ // generation.
+ MapWord first_word = object->map_word();
+
+ // If the first word is a forwarding address, the object has already been
+ // copied.
+ if (first_word.IsForwardingAddress()) {
+ *p = first_word.ToForwardingAddress();
+ return;
+ }
+
+ // Call the slow part of scavenge object.
+ return ScavengeObjectSlow(p, object);
+}
+
+
+bool Heap::CollectGarbage(AllocationSpace space) {
+ return CollectGarbage(space, SelectGarbageCollector(space));
+}
+
+
+MaybeObject* Heap::PrepareForCompare(String* str) {
+ // Always flatten small strings and force flattening of long strings
+ // after we have accumulated a certain amount we failed to flatten.
+ static const int kMaxAlwaysFlattenLength = 32;
+ static const int kFlattenLongThreshold = 16*KB;
+
+ const int length = str->length();
+ MaybeObject* obj = str->TryFlatten();
+ if (length <= kMaxAlwaysFlattenLength ||
+ unflattened_strings_length_ >= kFlattenLongThreshold) {
+ return obj;
+ }
+ if (obj->IsFailure()) {
+ unflattened_strings_length_ += length;
+ }
+ return str;
+}
+
+
+int Heap::AdjustAmountOfExternalAllocatedMemory(int change_in_bytes) {
+ ASSERT(HasBeenSetup());
+ int amount = amount_of_external_allocated_memory_ + change_in_bytes;
+ if (change_in_bytes >= 0) {
+ // Avoid overflow.
+ if (amount > amount_of_external_allocated_memory_) {
+ amount_of_external_allocated_memory_ = amount;
+ }
+ int amount_since_last_global_gc =
+ amount_of_external_allocated_memory_ -
+ amount_of_external_allocated_memory_at_last_global_gc_;
+ if (amount_since_last_global_gc > external_allocation_limit_) {
+ CollectAllGarbage(false);
+ }
+ } else {
+ // Avoid underflow.
+ if (amount >= 0) {
+ amount_of_external_allocated_memory_ = amount;
+ }
+ }
+ ASSERT(amount_of_external_allocated_memory_ >= 0);
+ return amount_of_external_allocated_memory_;
+}
+
+
+void Heap::SetLastScriptId(Object* last_script_id) {
+ roots_[kLastScriptIdRootIndex] = last_script_id;
+}
+
+Isolate* Heap::isolate() {
+ return reinterpret_cast<Isolate*>(reinterpret_cast<intptr_t>(this) -
+ reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
+}
+
+
+#ifdef DEBUG
+#define GC_GREEDY_CHECK() \
+ if (FLAG_gc_greedy) HEAP->GarbageCollectionGreedyCheck()
+#else
+#define GC_GREEDY_CHECK() { }
+#endif
+
+
+// Calls the FUNCTION_CALL function and retries it up to three times
+// to guarantee that any allocations performed during the call will
+// succeed if there's enough memory.
+
+// Warning: Do not use the identifiers __object__, __maybe_object__ or
+// __scope__ in a call to this macro.
+
+#define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)\
+ do { \
+ GC_GREEDY_CHECK(); \
+ MaybeObject* __maybe_object__ = FUNCTION_CALL; \
+ Object* __object__ = NULL; \
+ if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE; \
+ if (__maybe_object__->IsOutOfMemory()) { \
+ v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_0", true);\
+ } \
+ if (!__maybe_object__->IsRetryAfterGC()) RETURN_EMPTY; \
+ ISOLATE->heap()->CollectGarbage(Failure::cast(__maybe_object__)-> \
+ allocation_space()); \
+ __maybe_object__ = FUNCTION_CALL; \
+ if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE; \
+ if (__maybe_object__->IsOutOfMemory()) { \
+ v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1", true);\
+ } \
+ if (!__maybe_object__->IsRetryAfterGC()) RETURN_EMPTY; \
+ ISOLATE->counters()->gc_last_resort_from_handles()->Increment(); \
+ ISOLATE->heap()->CollectAllAvailableGarbage(); \
+ { \
+ AlwaysAllocateScope __scope__; \
+ __maybe_object__ = FUNCTION_CALL; \
+ } \
+ if (__maybe_object__->ToObject(&__object__)) RETURN_VALUE; \
+ if (__maybe_object__->IsOutOfMemory() || \
+ __maybe_object__->IsRetryAfterGC()) { \
+ /* TODO(1181417): Fix this. */ \
+ v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2", true);\
+ } \
+ RETURN_EMPTY; \
+ } while (false)
+
+
+// TODO(isolates): cache isolate: either accept as a parameter or
+// set to some known symbol (__CUR_ISOLATE__?)
+#define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \
+ CALL_AND_RETRY(ISOLATE, \
+ FUNCTION_CALL, \
+ return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
+ return Handle<TYPE>())
+
+
+#define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
+ CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, return, return)
+
+
+#ifdef DEBUG
+
+inline bool Heap::allow_allocation(bool new_state) {
+ bool old = allocation_allowed_;
+ allocation_allowed_ = new_state;
+ return old;
+}
+
+#endif
+
+
+void ExternalStringTable::AddString(String* string) {
+ ASSERT(string->IsExternalString());
+ if (heap_->InNewSpace(string)) {
+ new_space_strings_.Add(string);
+ } else {
+ old_space_strings_.Add(string);
+ }
+}
+
+
+void ExternalStringTable::Iterate(ObjectVisitor* v) {
+ if (!new_space_strings_.is_empty()) {
+ Object** start = &new_space_strings_[0];
+ v->VisitPointers(start, start + new_space_strings_.length());
+ }
+ if (!old_space_strings_.is_empty()) {
+ Object** start = &old_space_strings_[0];
+ v->VisitPointers(start, start + old_space_strings_.length());
+ }
+}
+
+
+// Verify() is inline to avoid ifdef-s around its calls in release
+// mode.
+void ExternalStringTable::Verify() {
+#ifdef DEBUG
+ for (int i = 0; i < new_space_strings_.length(); ++i) {
+ ASSERT(heap_->InNewSpace(new_space_strings_[i]));
+ ASSERT(new_space_strings_[i] != HEAP->raw_unchecked_null_value());
+ }
+ for (int i = 0; i < old_space_strings_.length(); ++i) {
+ ASSERT(!heap_->InNewSpace(old_space_strings_[i]));
+ ASSERT(old_space_strings_[i] != HEAP->raw_unchecked_null_value());
+ }
+#endif
+}
+
+
+void ExternalStringTable::AddOldString(String* string) {
+ ASSERT(string->IsExternalString());
+ ASSERT(!heap_->InNewSpace(string));
+ old_space_strings_.Add(string);
+}
+
+
+void ExternalStringTable::ShrinkNewStrings(int position) {
+ new_space_strings_.Rewind(position);
+ Verify();
+}
+
+
+void Heap::ClearInstanceofCache() {
+ set_instanceof_cache_function(the_hole_value());
+}
+
+
+Object* Heap::ToBoolean(bool condition) {
+ return condition ? true_value() : false_value();
+}
+
+
+void Heap::CompletelyClearInstanceofCache() {
+ set_instanceof_cache_map(the_hole_value());
+ set_instanceof_cache_function(the_hole_value());
+}
+
+
+MaybeObject* TranscendentalCache::Get(Type type, double input) {
+ SubCache* cache = caches_[type];
+ if (cache == NULL) {
+ caches_[type] = cache = new SubCache(type);
+ }
+ return cache->Get(input);
+}
+
+
+Address TranscendentalCache::cache_array_address() {
+ return reinterpret_cast<Address>(caches_);
+}
+
+
+double TranscendentalCache::SubCache::Calculate(double input) {
+ switch (type_) {
+ case ACOS:
+ return acos(input);
+ case ASIN:
+ return asin(input);
+ case ATAN:
+ return atan(input);
+ case COS:
+ return cos(input);
+ case EXP:
+ return exp(input);
+ case LOG:
+ return log(input);
+ case SIN:
+ return sin(input);
+ case TAN:
+ return tan(input);
+ default:
+ return 0.0; // Never happens.
+ }
+}
+
+
+MaybeObject* TranscendentalCache::SubCache::Get(double input) {
+ Converter c;
+ c.dbl = input;
+ int hash = Hash(c);
+ Element e = elements_[hash];
+ if (e.in[0] == c.integers[0] &&
+ e.in[1] == c.integers[1]) {
+ ASSERT(e.output != NULL);
+ isolate_->counters()->transcendental_cache_hit()->Increment();
+ return e.output;
+ }
+ double answer = Calculate(input);
+ isolate_->counters()->transcendental_cache_miss()->Increment();
+ Object* heap_number;
+ { MaybeObject* maybe_heap_number =
+ isolate_->heap()->AllocateHeapNumber(answer);
+ if (!maybe_heap_number->ToObject(&heap_number)) return maybe_heap_number;
+ }
+ elements_[hash].in[0] = c.integers[0];
+ elements_[hash].in[1] = c.integers[1];
+ elements_[hash].output = heap_number;
+ return heap_number;
+}
+
+
+Heap* _inline_get_heap_() {
+ return HEAP;
+}
+
+
+void MarkCompactCollector::SetMark(HeapObject* obj) {
+ tracer_->increment_marked_count();
+#ifdef DEBUG
+ UpdateLiveObjectCount(obj);
+#endif
+ obj->SetMark();
+}
+
+
+} } // namespace v8::internal
+
+#endif // V8_HEAP_INL_H_