summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/assembler.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/assembler.cc')
-rw-r--r--src/3rdparty/v8/src/assembler.cc1067
1 files changed, 1067 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/assembler.cc b/src/3rdparty/v8/src/assembler.cc
new file mode 100644
index 0000000..ff48772
--- /dev/null
+++ b/src/3rdparty/v8/src/assembler.cc
@@ -0,0 +1,1067 @@
+// Copyright (c) 1994-2006 Sun Microsystems Inc.
+// All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistribution in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// - Neither the name of Sun Microsystems or the names of contributors may
+// be used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
+// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2006-2009 the V8 project authors. All rights reserved.
+
+#include "v8.h"
+
+#include "arguments.h"
+#include "deoptimizer.h"
+#include "execution.h"
+#include "ic-inl.h"
+#include "factory.h"
+#include "runtime.h"
+#include "runtime-profiler.h"
+#include "serialize.h"
+#include "stub-cache.h"
+#include "regexp-stack.h"
+#include "ast.h"
+#include "regexp-macro-assembler.h"
+#include "platform.h"
+// Include native regexp-macro-assembler.
+#ifndef V8_INTERPRETED_REGEXP
+#if V8_TARGET_ARCH_IA32
+#include "ia32/regexp-macro-assembler-ia32.h"
+#elif V8_TARGET_ARCH_X64
+#include "x64/regexp-macro-assembler-x64.h"
+#elif V8_TARGET_ARCH_ARM
+#include "arm/regexp-macro-assembler-arm.h"
+#elif V8_TARGET_ARCH_MIPS
+#include "mips/regexp-macro-assembler-mips.h"
+#else // Unknown architecture.
+#error "Unknown architecture."
+#endif // Target architecture.
+#endif // V8_INTERPRETED_REGEXP
+
+namespace v8 {
+namespace internal {
+
+
+const double DoubleConstant::min_int = kMinInt;
+const double DoubleConstant::one_half = 0.5;
+const double DoubleConstant::minus_zero = -0.0;
+const double DoubleConstant::nan = OS::nan_value();
+const double DoubleConstant::negative_infinity = -V8_INFINITY;
+const char* RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
+
+// -----------------------------------------------------------------------------
+// Implementation of Label
+
+int Label::pos() const {
+ if (pos_ < 0) return -pos_ - 1;
+ if (pos_ > 0) return pos_ - 1;
+ UNREACHABLE();
+ return 0;
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of RelocInfoWriter and RelocIterator
+//
+// Encoding
+//
+// The most common modes are given single-byte encodings. Also, it is
+// easy to identify the type of reloc info and skip unwanted modes in
+// an iteration.
+//
+// The encoding relies on the fact that there are less than 14
+// different relocation modes.
+//
+// embedded_object: [6 bits pc delta] 00
+//
+// code_taget: [6 bits pc delta] 01
+//
+// position: [6 bits pc delta] 10,
+// [7 bits signed data delta] 0
+//
+// statement_position: [6 bits pc delta] 10,
+// [7 bits signed data delta] 1
+//
+// any nondata mode: 00 [4 bits rmode] 11, // rmode: 0..13 only
+// 00 [6 bits pc delta]
+//
+// pc-jump: 00 1111 11,
+// 00 [6 bits pc delta]
+//
+// pc-jump: 01 1111 11,
+// (variable length) 7 - 26 bit pc delta, written in chunks of 7
+// bits, the lowest 7 bits written first.
+//
+// data-jump + pos: 00 1110 11,
+// signed intptr_t, lowest byte written first
+//
+// data-jump + st.pos: 01 1110 11,
+// signed intptr_t, lowest byte written first
+//
+// data-jump + comm.: 10 1110 11,
+// signed intptr_t, lowest byte written first
+//
+const int kMaxRelocModes = 14;
+
+const int kTagBits = 2;
+const int kTagMask = (1 << kTagBits) - 1;
+const int kExtraTagBits = 4;
+const int kPositionTypeTagBits = 1;
+const int kSmallDataBits = kBitsPerByte - kPositionTypeTagBits;
+
+const int kEmbeddedObjectTag = 0;
+const int kCodeTargetTag = 1;
+const int kPositionTag = 2;
+const int kDefaultTag = 3;
+
+const int kPCJumpTag = (1 << kExtraTagBits) - 1;
+
+const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
+const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
+const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
+
+const int kVariableLengthPCJumpTopTag = 1;
+const int kChunkBits = 7;
+const int kChunkMask = (1 << kChunkBits) - 1;
+const int kLastChunkTagBits = 1;
+const int kLastChunkTagMask = 1;
+const int kLastChunkTag = 1;
+
+
+const int kDataJumpTag = kPCJumpTag - 1;
+
+const int kNonstatementPositionTag = 0;
+const int kStatementPositionTag = 1;
+const int kCommentTag = 2;
+
+
+uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
+ // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
+ // Otherwise write a variable length PC jump for the bits that do
+ // not fit in the kSmallPCDeltaBits bits.
+ if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
+ WriteExtraTag(kPCJumpTag, kVariableLengthPCJumpTopTag);
+ uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
+ ASSERT(pc_jump > 0);
+ // Write kChunkBits size chunks of the pc_jump.
+ for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
+ byte b = pc_jump & kChunkMask;
+ *--pos_ = b << kLastChunkTagBits;
+ }
+ // Tag the last chunk so it can be identified.
+ *pos_ = *pos_ | kLastChunkTag;
+ // Return the remaining kSmallPCDeltaBits of the pc_delta.
+ return pc_delta & kSmallPCDeltaMask;
+}
+
+
+void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
+ // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
+ pc_delta = WriteVariableLengthPCJump(pc_delta);
+ *--pos_ = pc_delta << kTagBits | tag;
+}
+
+
+void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
+ *--pos_ = static_cast<byte>(data_delta << kPositionTypeTagBits | tag);
+}
+
+
+void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
+ *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
+ extra_tag << kTagBits |
+ kDefaultTag);
+}
+
+
+void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
+ // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
+ pc_delta = WriteVariableLengthPCJump(pc_delta);
+ WriteExtraTag(extra_tag, 0);
+ *--pos_ = pc_delta;
+}
+
+
+void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
+ WriteExtraTag(kDataJumpTag, top_tag);
+ for (int i = 0; i < kIntptrSize; i++) {
+ *--pos_ = static_cast<byte>(data_delta);
+ // Signed right shift is arithmetic shift. Tested in test-utils.cc.
+ data_delta = data_delta >> kBitsPerByte;
+ }
+}
+
+
+void RelocInfoWriter::Write(const RelocInfo* rinfo) {
+#ifdef DEBUG
+ byte* begin_pos = pos_;
+#endif
+ ASSERT(rinfo->pc() - last_pc_ >= 0);
+ ASSERT(RelocInfo::NUMBER_OF_MODES <= kMaxRelocModes);
+ // Use unsigned delta-encoding for pc.
+ uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
+ RelocInfo::Mode rmode = rinfo->rmode();
+
+ // The two most common modes are given small tags, and usually fit in a byte.
+ if (rmode == RelocInfo::EMBEDDED_OBJECT) {
+ WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
+ } else if (rmode == RelocInfo::CODE_TARGET) {
+ WriteTaggedPC(pc_delta, kCodeTargetTag);
+ ASSERT(begin_pos - pos_ <= RelocInfo::kMaxCallSize);
+ } else if (RelocInfo::IsPosition(rmode)) {
+ // Use signed delta-encoding for data.
+ intptr_t data_delta = rinfo->data() - last_data_;
+ int pos_type_tag = rmode == RelocInfo::POSITION ? kNonstatementPositionTag
+ : kStatementPositionTag;
+ // Check if data is small enough to fit in a tagged byte.
+ // We cannot use is_intn because data_delta is not an int32_t.
+ if (data_delta >= -(1 << (kSmallDataBits-1)) &&
+ data_delta < 1 << (kSmallDataBits-1)) {
+ WriteTaggedPC(pc_delta, kPositionTag);
+ WriteTaggedData(data_delta, pos_type_tag);
+ last_data_ = rinfo->data();
+ } else {
+ // Otherwise, use costly encoding.
+ WriteExtraTaggedPC(pc_delta, kPCJumpTag);
+ WriteExtraTaggedData(data_delta, pos_type_tag);
+ last_data_ = rinfo->data();
+ }
+ } else if (RelocInfo::IsComment(rmode)) {
+ // Comments are normally not generated, so we use the costly encoding.
+ WriteExtraTaggedPC(pc_delta, kPCJumpTag);
+ WriteExtraTaggedData(rinfo->data() - last_data_, kCommentTag);
+ last_data_ = rinfo->data();
+ ASSERT(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize);
+ } else {
+ // For all other modes we simply use the mode as the extra tag.
+ // None of these modes need a data component.
+ ASSERT(rmode < kPCJumpTag && rmode < kDataJumpTag);
+ WriteExtraTaggedPC(pc_delta, rmode);
+ }
+ last_pc_ = rinfo->pc();
+#ifdef DEBUG
+ ASSERT(begin_pos - pos_ <= kMaxSize);
+#endif
+}
+
+
+inline int RelocIterator::AdvanceGetTag() {
+ return *--pos_ & kTagMask;
+}
+
+
+inline int RelocIterator::GetExtraTag() {
+ return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
+}
+
+
+inline int RelocIterator::GetTopTag() {
+ return *pos_ >> (kTagBits + kExtraTagBits);
+}
+
+
+inline void RelocIterator::ReadTaggedPC() {
+ rinfo_.pc_ += *pos_ >> kTagBits;
+}
+
+
+inline void RelocIterator::AdvanceReadPC() {
+ rinfo_.pc_ += *--pos_;
+}
+
+
+void RelocIterator::AdvanceReadData() {
+ intptr_t x = 0;
+ for (int i = 0; i < kIntptrSize; i++) {
+ x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
+ }
+ rinfo_.data_ += x;
+}
+
+
+void RelocIterator::AdvanceReadVariableLengthPCJump() {
+ // Read the 32-kSmallPCDeltaBits most significant bits of the
+ // pc jump in kChunkBits bit chunks and shift them into place.
+ // Stop when the last chunk is encountered.
+ uint32_t pc_jump = 0;
+ for (int i = 0; i < kIntSize; i++) {
+ byte pc_jump_part = *--pos_;
+ pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
+ if ((pc_jump_part & kLastChunkTagMask) == 1) break;
+ }
+ // The least significant kSmallPCDeltaBits bits will be added
+ // later.
+ rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
+}
+
+
+inline int RelocIterator::GetPositionTypeTag() {
+ return *pos_ & ((1 << kPositionTypeTagBits) - 1);
+}
+
+
+inline void RelocIterator::ReadTaggedData() {
+ int8_t signed_b = *pos_;
+ // Signed right shift is arithmetic shift. Tested in test-utils.cc.
+ rinfo_.data_ += signed_b >> kPositionTypeTagBits;
+}
+
+
+inline RelocInfo::Mode RelocIterator::DebugInfoModeFromTag(int tag) {
+ if (tag == kStatementPositionTag) {
+ return RelocInfo::STATEMENT_POSITION;
+ } else if (tag == kNonstatementPositionTag) {
+ return RelocInfo::POSITION;
+ } else {
+ ASSERT(tag == kCommentTag);
+ return RelocInfo::COMMENT;
+ }
+}
+
+
+void RelocIterator::next() {
+ ASSERT(!done());
+ // Basically, do the opposite of RelocInfoWriter::Write.
+ // Reading of data is as far as possible avoided for unwanted modes,
+ // but we must always update the pc.
+ //
+ // We exit this loop by returning when we find a mode we want.
+ while (pos_ > end_) {
+ int tag = AdvanceGetTag();
+ if (tag == kEmbeddedObjectTag) {
+ ReadTaggedPC();
+ if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
+ } else if (tag == kCodeTargetTag) {
+ ReadTaggedPC();
+ if (SetMode(RelocInfo::CODE_TARGET)) return;
+ } else if (tag == kPositionTag) {
+ ReadTaggedPC();
+ Advance();
+ // Check if we want source positions.
+ if (mode_mask_ & RelocInfo::kPositionMask) {
+ ReadTaggedData();
+ if (SetMode(DebugInfoModeFromTag(GetPositionTypeTag()))) return;
+ }
+ } else {
+ ASSERT(tag == kDefaultTag);
+ int extra_tag = GetExtraTag();
+ if (extra_tag == kPCJumpTag) {
+ int top_tag = GetTopTag();
+ if (top_tag == kVariableLengthPCJumpTopTag) {
+ AdvanceReadVariableLengthPCJump();
+ } else {
+ AdvanceReadPC();
+ }
+ } else if (extra_tag == kDataJumpTag) {
+ // Check if we want debug modes (the only ones with data).
+ if (mode_mask_ & RelocInfo::kDebugMask) {
+ int top_tag = GetTopTag();
+ AdvanceReadData();
+ if (SetMode(DebugInfoModeFromTag(top_tag))) return;
+ } else {
+ // Otherwise, just skip over the data.
+ Advance(kIntptrSize);
+ }
+ } else {
+ AdvanceReadPC();
+ if (SetMode(static_cast<RelocInfo::Mode>(extra_tag))) return;
+ }
+ }
+ }
+ done_ = true;
+}
+
+
+RelocIterator::RelocIterator(Code* code, int mode_mask) {
+ rinfo_.pc_ = code->instruction_start();
+ rinfo_.data_ = 0;
+ // Relocation info is read backwards.
+ pos_ = code->relocation_start() + code->relocation_size();
+ end_ = code->relocation_start();
+ done_ = false;
+ mode_mask_ = mode_mask;
+ if (mode_mask_ == 0) pos_ = end_;
+ next();
+}
+
+
+RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
+ rinfo_.pc_ = desc.buffer;
+ rinfo_.data_ = 0;
+ // Relocation info is read backwards.
+ pos_ = desc.buffer + desc.buffer_size;
+ end_ = pos_ - desc.reloc_size;
+ done_ = false;
+ mode_mask_ = mode_mask;
+ if (mode_mask_ == 0) pos_ = end_;
+ next();
+}
+
+
+// -----------------------------------------------------------------------------
+// Implementation of RelocInfo
+
+
+#ifdef ENABLE_DISASSEMBLER
+const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
+ switch (rmode) {
+ case RelocInfo::NONE:
+ return "no reloc";
+ case RelocInfo::EMBEDDED_OBJECT:
+ return "embedded object";
+ case RelocInfo::CONSTRUCT_CALL:
+ return "code target (js construct call)";
+ case RelocInfo::CODE_TARGET_CONTEXT:
+ return "code target (context)";
+ case RelocInfo::DEBUG_BREAK:
+#ifndef ENABLE_DEBUGGER_SUPPORT
+ UNREACHABLE();
+#endif
+ return "debug break";
+ case RelocInfo::CODE_TARGET:
+ return "code target";
+ case RelocInfo::GLOBAL_PROPERTY_CELL:
+ return "global property cell";
+ case RelocInfo::RUNTIME_ENTRY:
+ return "runtime entry";
+ case RelocInfo::JS_RETURN:
+ return "js return";
+ case RelocInfo::COMMENT:
+ return "comment";
+ case RelocInfo::POSITION:
+ return "position";
+ case RelocInfo::STATEMENT_POSITION:
+ return "statement position";
+ case RelocInfo::EXTERNAL_REFERENCE:
+ return "external reference";
+ case RelocInfo::INTERNAL_REFERENCE:
+ return "internal reference";
+ case RelocInfo::DEBUG_BREAK_SLOT:
+#ifndef ENABLE_DEBUGGER_SUPPORT
+ UNREACHABLE();
+#endif
+ return "debug break slot";
+ case RelocInfo::NUMBER_OF_MODES:
+ UNREACHABLE();
+ return "number_of_modes";
+ }
+ return "unknown relocation type";
+}
+
+
+void RelocInfo::Print(FILE* out) {
+ PrintF(out, "%p %s", pc_, RelocModeName(rmode_));
+ if (IsComment(rmode_)) {
+ PrintF(out, " (%s)", reinterpret_cast<char*>(data_));
+ } else if (rmode_ == EMBEDDED_OBJECT) {
+ PrintF(out, " (");
+ target_object()->ShortPrint(out);
+ PrintF(out, ")");
+ } else if (rmode_ == EXTERNAL_REFERENCE) {
+ ExternalReferenceEncoder ref_encoder;
+ PrintF(out, " (%s) (%p)",
+ ref_encoder.NameOfAddress(*target_reference_address()),
+ *target_reference_address());
+ } else if (IsCodeTarget(rmode_)) {
+ Code* code = Code::GetCodeFromTargetAddress(target_address());
+ PrintF(out, " (%s) (%p)", Code::Kind2String(code->kind()),
+ target_address());
+ } else if (IsPosition(rmode_)) {
+ PrintF(out, " (%" V8_PTR_PREFIX "d)", data());
+ } else if (rmode_ == RelocInfo::RUNTIME_ENTRY) {
+ // Depotimization bailouts are stored as runtime entries.
+ int id = Deoptimizer::GetDeoptimizationId(
+ target_address(), Deoptimizer::EAGER);
+ if (id != Deoptimizer::kNotDeoptimizationEntry) {
+ PrintF(out, " (deoptimization bailout %d)", id);
+ }
+ }
+
+ PrintF(out, "\n");
+}
+#endif // ENABLE_DISASSEMBLER
+
+
+#ifdef DEBUG
+void RelocInfo::Verify() {
+ switch (rmode_) {
+ case EMBEDDED_OBJECT:
+ Object::VerifyPointer(target_object());
+ break;
+ case GLOBAL_PROPERTY_CELL:
+ Object::VerifyPointer(target_cell());
+ break;
+ case DEBUG_BREAK:
+#ifndef ENABLE_DEBUGGER_SUPPORT
+ UNREACHABLE();
+ break;
+#endif
+ case CONSTRUCT_CALL:
+ case CODE_TARGET_CONTEXT:
+ case CODE_TARGET: {
+ // convert inline target address to code object
+ Address addr = target_address();
+ ASSERT(addr != NULL);
+ // Check that we can find the right code object.
+ Code* code = Code::GetCodeFromTargetAddress(addr);
+ Object* found = HEAP->FindCodeObject(addr);
+ ASSERT(found->IsCode());
+ ASSERT(code->address() == HeapObject::cast(found)->address());
+ break;
+ }
+ case RUNTIME_ENTRY:
+ case JS_RETURN:
+ case COMMENT:
+ case POSITION:
+ case STATEMENT_POSITION:
+ case EXTERNAL_REFERENCE:
+ case INTERNAL_REFERENCE:
+ case DEBUG_BREAK_SLOT:
+ case NONE:
+ break;
+ case NUMBER_OF_MODES:
+ UNREACHABLE();
+ break;
+ }
+}
+#endif // DEBUG
+
+
+// -----------------------------------------------------------------------------
+// Implementation of ExternalReference
+
+ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate)
+ : address_(Redirect(isolate, Builtins::c_function_address(id))) {}
+
+
+ExternalReference::ExternalReference(
+ ApiFunction* fun,
+ Type type = ExternalReference::BUILTIN_CALL,
+ Isolate* isolate = NULL)
+ : address_(Redirect(isolate, fun->address(), type)) {}
+
+
+ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate)
+ : address_(isolate->builtins()->builtin_address(name)) {}
+
+
+ExternalReference::ExternalReference(Runtime::FunctionId id,
+ Isolate* isolate)
+ : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {}
+
+
+ExternalReference::ExternalReference(const Runtime::Function* f,
+ Isolate* isolate)
+ : address_(Redirect(isolate, f->entry)) {}
+
+
+ExternalReference ExternalReference::isolate_address() {
+ return ExternalReference(Isolate::Current());
+}
+
+
+ExternalReference::ExternalReference(const IC_Utility& ic_utility,
+ Isolate* isolate)
+ : address_(Redirect(isolate, ic_utility.address())) {}
+
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ExternalReference::ExternalReference(const Debug_Address& debug_address,
+ Isolate* isolate)
+ : address_(debug_address.address(isolate)) {}
+#endif
+
+ExternalReference::ExternalReference(StatsCounter* counter)
+ : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
+
+
+ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate)
+ : address_(isolate->get_address_from_id(id)) {}
+
+
+ExternalReference::ExternalReference(const SCTableReference& table_ref)
+ : address_(table_ref.address()) {}
+
+
+ExternalReference ExternalReference::perform_gc_function(Isolate* isolate) {
+ return ExternalReference(Redirect(isolate,
+ FUNCTION_ADDR(Runtime::PerformGC)));
+}
+
+
+ExternalReference ExternalReference::fill_heap_number_with_random_function(
+ Isolate* isolate) {
+ return ExternalReference(Redirect(
+ isolate,
+ FUNCTION_ADDR(V8::FillHeapNumberWithRandom)));
+}
+
+
+ExternalReference ExternalReference::delete_handle_scope_extensions(
+ Isolate* isolate) {
+ return ExternalReference(Redirect(
+ isolate,
+ FUNCTION_ADDR(HandleScope::DeleteExtensions)));
+}
+
+
+ExternalReference ExternalReference::random_uint32_function(
+ Isolate* isolate) {
+ return ExternalReference(Redirect(isolate, FUNCTION_ADDR(V8::Random)));
+}
+
+
+ExternalReference ExternalReference::transcendental_cache_array_address(
+ Isolate* isolate) {
+ return ExternalReference(
+ isolate->transcendental_cache()->cache_array_address());
+}
+
+
+ExternalReference ExternalReference::new_deoptimizer_function(
+ Isolate* isolate) {
+ return ExternalReference(
+ Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New)));
+}
+
+
+ExternalReference ExternalReference::compute_output_frames_function(
+ Isolate* isolate) {
+ return ExternalReference(
+ Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames)));
+}
+
+
+ExternalReference ExternalReference::global_contexts_list(Isolate* isolate) {
+ return ExternalReference(isolate->heap()->global_contexts_list_address());
+}
+
+
+ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) {
+ return ExternalReference(isolate->keyed_lookup_cache()->keys_address());
+}
+
+
+ExternalReference ExternalReference::keyed_lookup_cache_field_offsets(
+ Isolate* isolate) {
+ return ExternalReference(
+ isolate->keyed_lookup_cache()->field_offsets_address());
+}
+
+
+ExternalReference ExternalReference::the_hole_value_location(Isolate* isolate) {
+ return ExternalReference(isolate->factory()->the_hole_value().location());
+}
+
+
+ExternalReference ExternalReference::arguments_marker_location(
+ Isolate* isolate) {
+ return ExternalReference(isolate->factory()->arguments_marker().location());
+}
+
+
+ExternalReference ExternalReference::roots_address(Isolate* isolate) {
+ return ExternalReference(isolate->heap()->roots_address());
+}
+
+
+ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) {
+ return ExternalReference(isolate->stack_guard()->address_of_jslimit());
+}
+
+
+ExternalReference ExternalReference::address_of_real_stack_limit(
+ Isolate* isolate) {
+ return ExternalReference(isolate->stack_guard()->address_of_real_jslimit());
+}
+
+
+ExternalReference ExternalReference::address_of_regexp_stack_limit(
+ Isolate* isolate) {
+ return ExternalReference(isolate->regexp_stack()->limit_address());
+}
+
+
+ExternalReference ExternalReference::new_space_start(Isolate* isolate) {
+ return ExternalReference(isolate->heap()->NewSpaceStart());
+}
+
+
+ExternalReference ExternalReference::new_space_mask(Isolate* isolate) {
+ Address mask = reinterpret_cast<Address>(isolate->heap()->NewSpaceMask());
+ return ExternalReference(mask);
+}
+
+
+ExternalReference ExternalReference::new_space_allocation_top_address(
+ Isolate* isolate) {
+ return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress());
+}
+
+
+ExternalReference ExternalReference::heap_always_allocate_scope_depth(
+ Isolate* isolate) {
+ Heap* heap = isolate->heap();
+ return ExternalReference(heap->always_allocate_scope_depth_address());
+}
+
+
+ExternalReference ExternalReference::new_space_allocation_limit_address(
+ Isolate* isolate) {
+ return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress());
+}
+
+
+ExternalReference ExternalReference::handle_scope_level_address() {
+ return ExternalReference(HandleScope::current_level_address());
+}
+
+
+ExternalReference ExternalReference::handle_scope_next_address() {
+ return ExternalReference(HandleScope::current_next_address());
+}
+
+
+ExternalReference ExternalReference::handle_scope_limit_address() {
+ return ExternalReference(HandleScope::current_limit_address());
+}
+
+
+ExternalReference ExternalReference::scheduled_exception_address(
+ Isolate* isolate) {
+ return ExternalReference(isolate->scheduled_exception_address());
+}
+
+
+ExternalReference ExternalReference::address_of_min_int() {
+ return ExternalReference(reinterpret_cast<void*>(
+ const_cast<double*>(&DoubleConstant::min_int)));
+}
+
+
+ExternalReference ExternalReference::address_of_one_half() {
+ return ExternalReference(reinterpret_cast<void*>(
+ const_cast<double*>(&DoubleConstant::one_half)));
+}
+
+
+ExternalReference ExternalReference::address_of_minus_zero() {
+ return ExternalReference(reinterpret_cast<void*>(
+ const_cast<double*>(&DoubleConstant::minus_zero)));
+}
+
+
+ExternalReference ExternalReference::address_of_negative_infinity() {
+ return ExternalReference(reinterpret_cast<void*>(
+ const_cast<double*>(&DoubleConstant::negative_infinity)));
+}
+
+
+ExternalReference ExternalReference::address_of_nan() {
+ return ExternalReference(reinterpret_cast<void*>(
+ const_cast<double*>(&DoubleConstant::nan)));
+}
+
+
+#ifndef V8_INTERPRETED_REGEXP
+
+ExternalReference ExternalReference::re_check_stack_guard_state(
+ Isolate* isolate) {
+ Address function;
+#ifdef V8_TARGET_ARCH_X64
+ function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
+#elif V8_TARGET_ARCH_IA32
+ function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
+#elif V8_TARGET_ARCH_ARM
+ function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
+#elif V8_TARGET_ARCH_MIPS
+ function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
+#else
+ UNREACHABLE();
+#endif
+ return ExternalReference(Redirect(isolate, function));
+}
+
+ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) {
+ return ExternalReference(
+ Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
+}
+
+ExternalReference ExternalReference::re_case_insensitive_compare_uc16(
+ Isolate* isolate) {
+ return ExternalReference(Redirect(
+ isolate,
+ FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
+}
+
+ExternalReference ExternalReference::re_word_character_map() {
+ return ExternalReference(
+ NativeRegExpMacroAssembler::word_character_map_address());
+}
+
+ExternalReference ExternalReference::address_of_static_offsets_vector(
+ Isolate* isolate) {
+ return ExternalReference(
+ OffsetsVector::static_offsets_vector_address(isolate));
+}
+
+ExternalReference ExternalReference::address_of_regexp_stack_memory_address(
+ Isolate* isolate) {
+ return ExternalReference(
+ isolate->regexp_stack()->memory_address());
+}
+
+ExternalReference ExternalReference::address_of_regexp_stack_memory_size(
+ Isolate* isolate) {
+ return ExternalReference(isolate->regexp_stack()->memory_size_address());
+}
+
+#endif // V8_INTERPRETED_REGEXP
+
+
+static double add_two_doubles(double x, double y) {
+ return x + y;
+}
+
+
+static double sub_two_doubles(double x, double y) {
+ return x - y;
+}
+
+
+static double mul_two_doubles(double x, double y) {
+ return x * y;
+}
+
+
+static double div_two_doubles(double x, double y) {
+ return x / y;
+}
+
+
+static double mod_two_doubles(double x, double y) {
+ return modulo(x, y);
+}
+
+
+static double math_sin_double(double x) {
+ return sin(x);
+}
+
+
+static double math_cos_double(double x) {
+ return cos(x);
+}
+
+
+static double math_log_double(double x) {
+ return log(x);
+}
+
+
+ExternalReference ExternalReference::math_sin_double_function(
+ Isolate* isolate) {
+ return ExternalReference(Redirect(isolate,
+ FUNCTION_ADDR(math_sin_double),
+ FP_RETURN_CALL));
+}
+
+
+ExternalReference ExternalReference::math_cos_double_function(
+ Isolate* isolate) {
+ return ExternalReference(Redirect(isolate,
+ FUNCTION_ADDR(math_cos_double),
+ FP_RETURN_CALL));
+}
+
+
+ExternalReference ExternalReference::math_log_double_function(
+ Isolate* isolate) {
+ return ExternalReference(Redirect(isolate,
+ FUNCTION_ADDR(math_log_double),
+ FP_RETURN_CALL));
+}
+
+
+// Helper function to compute x^y, where y is known to be an
+// integer. Uses binary decomposition to limit the number of
+// multiplications; see the discussion in "Hacker's Delight" by Henry
+// S. Warren, Jr., figure 11-6, page 213.
+double power_double_int(double x, int y) {
+ double m = (y < 0) ? 1 / x : x;
+ unsigned n = (y < 0) ? -y : y;
+ double p = 1;
+ while (n != 0) {
+ if ((n & 1) != 0) p *= m;
+ m *= m;
+ if ((n & 2) != 0) p *= m;
+ m *= m;
+ n >>= 2;
+ }
+ return p;
+}
+
+
+double power_double_double(double x, double y) {
+ int y_int = static_cast<int>(y);
+ if (y == y_int) {
+ return power_double_int(x, y_int); // Returns 1.0 for exponent 0.
+ }
+ if (!isinf(x)) {
+ if (y == 0.5) return sqrt(x + 0.0); // -0 must be converted to +0.
+ if (y == -0.5) return 1.0 / sqrt(x + 0.0);
+ }
+ if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) {
+ return OS::nan_value();
+ }
+ return pow(x, y);
+}
+
+
+ExternalReference ExternalReference::power_double_double_function(
+ Isolate* isolate) {
+ return ExternalReference(Redirect(isolate,
+ FUNCTION_ADDR(power_double_double),
+ FP_RETURN_CALL));
+}
+
+
+ExternalReference ExternalReference::power_double_int_function(
+ Isolate* isolate) {
+ return ExternalReference(Redirect(isolate,
+ FUNCTION_ADDR(power_double_int),
+ FP_RETURN_CALL));
+}
+
+
+static int native_compare_doubles(double y, double x) {
+ if (x == y) return EQUAL;
+ return x < y ? LESS : GREATER;
+}
+
+
+ExternalReference ExternalReference::double_fp_operation(
+ Token::Value operation, Isolate* isolate) {
+ typedef double BinaryFPOperation(double x, double y);
+ BinaryFPOperation* function = NULL;
+ switch (operation) {
+ case Token::ADD:
+ function = &add_two_doubles;
+ break;
+ case Token::SUB:
+ function = &sub_two_doubles;
+ break;
+ case Token::MUL:
+ function = &mul_two_doubles;
+ break;
+ case Token::DIV:
+ function = &div_two_doubles;
+ break;
+ case Token::MOD:
+ function = &mod_two_doubles;
+ break;
+ default:
+ UNREACHABLE();
+ }
+ // Passing true as 2nd parameter indicates that they return an fp value.
+ return ExternalReference(Redirect(isolate,
+ FUNCTION_ADDR(function),
+ FP_RETURN_CALL));
+}
+
+
+ExternalReference ExternalReference::compare_doubles(Isolate* isolate) {
+ return ExternalReference(Redirect(isolate,
+ FUNCTION_ADDR(native_compare_doubles),
+ BUILTIN_CALL));
+}
+
+
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ExternalReference ExternalReference::debug_break(Isolate* isolate) {
+ return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break)));
+}
+
+
+ExternalReference ExternalReference::debug_step_in_fp_address(
+ Isolate* isolate) {
+ return ExternalReference(isolate->debug()->step_in_fp_addr());
+}
+#endif
+
+
+void PositionsRecorder::RecordPosition(int pos) {
+ ASSERT(pos != RelocInfo::kNoPosition);
+ ASSERT(pos >= 0);
+ state_.current_position = pos;
+#ifdef ENABLE_GDB_JIT_INTERFACE
+ if (gdbjit_lineinfo_ != NULL) {
+ gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, false);
+ }
+#endif
+}
+
+
+void PositionsRecorder::RecordStatementPosition(int pos) {
+ ASSERT(pos != RelocInfo::kNoPosition);
+ ASSERT(pos >= 0);
+ state_.current_statement_position = pos;
+#ifdef ENABLE_GDB_JIT_INTERFACE
+ if (gdbjit_lineinfo_ != NULL) {
+ gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, true);
+ }
+#endif
+}
+
+
+bool PositionsRecorder::WriteRecordedPositions() {
+ bool written = false;
+
+ // Write the statement position if it is different from what was written last
+ // time.
+ if (state_.current_statement_position != state_.written_statement_position) {
+ EnsureSpace ensure_space(assembler_);
+ assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION,
+ state_.current_statement_position);
+ state_.written_statement_position = state_.current_statement_position;
+ written = true;
+ }
+
+ // Write the position if it is different from what was written last time and
+ // also different from the written statement position.
+ if (state_.current_position != state_.written_position &&
+ state_.current_position != state_.written_statement_position) {
+ EnsureSpace ensure_space(assembler_);
+ assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position);
+ state_.written_position = state_.current_position;
+ written = true;
+ }
+
+ // Return whether something was written.
+ return written;
+}
+
+} } // namespace v8::internal