summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/arm/macro-assembler-arm.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/arm/macro-assembler-arm.cc')
-rw-r--r--src/3rdparty/v8/src/arm/macro-assembler-arm.cc2939
1 files changed, 2939 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/arm/macro-assembler-arm.cc b/src/3rdparty/v8/src/arm/macro-assembler-arm.cc
new file mode 100644
index 0000000..2ba98f4
--- /dev/null
+++ b/src/3rdparty/v8/src/arm/macro-assembler-arm.cc
@@ -0,0 +1,2939 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <limits.h> // For LONG_MIN, LONG_MAX.
+
+#include "v8.h"
+
+#if defined(V8_TARGET_ARCH_ARM)
+
+#include "bootstrapper.h"
+#include "codegen-inl.h"
+#include "debug.h"
+#include "runtime.h"
+
+namespace v8 {
+namespace internal {
+
+MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
+ : Assembler(arg_isolate, buffer, size),
+ generating_stub_(false),
+ allow_stub_calls_(true) {
+ if (isolate() != NULL) {
+ code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
+ isolate());
+ }
+}
+
+
+// We always generate arm code, never thumb code, even if V8 is compiled to
+// thumb, so we require inter-working support
+#if defined(__thumb__) && !defined(USE_THUMB_INTERWORK)
+#error "flag -mthumb-interwork missing"
+#endif
+
+
+// We do not support thumb inter-working with an arm architecture not supporting
+// the blx instruction (below v5t). If you know what CPU you are compiling for
+// you can use -march=armv7 or similar.
+#if defined(USE_THUMB_INTERWORK) && !defined(CAN_USE_THUMB_INSTRUCTIONS)
+# error "For thumb inter-working we require an architecture which supports blx"
+#endif
+
+
+// Using bx does not yield better code, so use it only when required
+#if defined(USE_THUMB_INTERWORK)
+#define USE_BX 1
+#endif
+
+
+void MacroAssembler::Jump(Register target, Condition cond) {
+#if USE_BX
+ bx(target, cond);
+#else
+ mov(pc, Operand(target), LeaveCC, cond);
+#endif
+}
+
+
+void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
+ Condition cond) {
+#if USE_BX
+ mov(ip, Operand(target, rmode), LeaveCC, cond);
+ bx(ip, cond);
+#else
+ mov(pc, Operand(target, rmode), LeaveCC, cond);
+#endif
+}
+
+
+void MacroAssembler::Jump(byte* target, RelocInfo::Mode rmode,
+ Condition cond) {
+ ASSERT(!RelocInfo::IsCodeTarget(rmode));
+ Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
+}
+
+
+void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
+ Condition cond) {
+ ASSERT(RelocInfo::IsCodeTarget(rmode));
+ // 'code' is always generated ARM code, never THUMB code
+ Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
+}
+
+
+int MacroAssembler::CallSize(Register target, Condition cond) {
+#if USE_BLX
+ return kInstrSize;
+#else
+ return 2 * kInstrSize;
+#endif
+}
+
+
+void MacroAssembler::Call(Register target, Condition cond) {
+ // Block constant pool for the call instruction sequence.
+ BlockConstPoolScope block_const_pool(this);
+#ifdef DEBUG
+ int pre_position = pc_offset();
+#endif
+
+#if USE_BLX
+ blx(target, cond);
+#else
+ // set lr for return at current pc + 8
+ mov(lr, Operand(pc), LeaveCC, cond);
+ mov(pc, Operand(target), LeaveCC, cond);
+#endif
+
+#ifdef DEBUG
+ int post_position = pc_offset();
+ CHECK_EQ(pre_position + CallSize(target, cond), post_position);
+#endif
+}
+
+
+int MacroAssembler::CallSize(
+ intptr_t target, RelocInfo::Mode rmode, Condition cond) {
+ int size = 2 * kInstrSize;
+ Instr mov_instr = cond | MOV | LeaveCC;
+ if (!Operand(target, rmode).is_single_instruction(mov_instr)) {
+ size += kInstrSize;
+ }
+ return size;
+}
+
+
+void MacroAssembler::Call(
+ intptr_t target, RelocInfo::Mode rmode, Condition cond) {
+ // Block constant pool for the call instruction sequence.
+ BlockConstPoolScope block_const_pool(this);
+#ifdef DEBUG
+ int pre_position = pc_offset();
+#endif
+
+#if USE_BLX
+ // On ARMv5 and after the recommended call sequence is:
+ // ldr ip, [pc, #...]
+ // blx ip
+
+ // Statement positions are expected to be recorded when the target
+ // address is loaded. The mov method will automatically record
+ // positions when pc is the target, since this is not the case here
+ // we have to do it explicitly.
+ positions_recorder()->WriteRecordedPositions();
+
+ mov(ip, Operand(target, rmode), LeaveCC, cond);
+ blx(ip, cond);
+
+ ASSERT(kCallTargetAddressOffset == 2 * kInstrSize);
+#else
+ // Set lr for return at current pc + 8.
+ mov(lr, Operand(pc), LeaveCC, cond);
+ // Emit a ldr<cond> pc, [pc + offset of target in constant pool].
+ mov(pc, Operand(target, rmode), LeaveCC, cond);
+ ASSERT(kCallTargetAddressOffset == kInstrSize);
+#endif
+
+#ifdef DEBUG
+ int post_position = pc_offset();
+ CHECK_EQ(pre_position + CallSize(target, rmode, cond), post_position);
+#endif
+}
+
+
+int MacroAssembler::CallSize(
+ byte* target, RelocInfo::Mode rmode, Condition cond) {
+ return CallSize(reinterpret_cast<intptr_t>(target), rmode);
+}
+
+
+void MacroAssembler::Call(
+ byte* target, RelocInfo::Mode rmode, Condition cond) {
+#ifdef DEBUG
+ int pre_position = pc_offset();
+#endif
+
+ ASSERT(!RelocInfo::IsCodeTarget(rmode));
+ Call(reinterpret_cast<intptr_t>(target), rmode, cond);
+
+#ifdef DEBUG
+ int post_position = pc_offset();
+ CHECK_EQ(pre_position + CallSize(target, rmode, cond), post_position);
+#endif
+}
+
+
+int MacroAssembler::CallSize(
+ Handle<Code> code, RelocInfo::Mode rmode, Condition cond) {
+ return CallSize(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
+}
+
+
+void MacroAssembler::Call(
+ Handle<Code> code, RelocInfo::Mode rmode, Condition cond) {
+#ifdef DEBUG
+ int pre_position = pc_offset();
+#endif
+
+ ASSERT(RelocInfo::IsCodeTarget(rmode));
+ // 'code' is always generated ARM code, never THUMB code
+ Call(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
+
+#ifdef DEBUG
+ int post_position = pc_offset();
+ CHECK_EQ(pre_position + CallSize(code, rmode, cond), post_position);
+#endif
+}
+
+
+void MacroAssembler::Ret(Condition cond) {
+#if USE_BX
+ bx(lr, cond);
+#else
+ mov(pc, Operand(lr), LeaveCC, cond);
+#endif
+}
+
+
+void MacroAssembler::Drop(int count, Condition cond) {
+ if (count > 0) {
+ add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond);
+ }
+}
+
+
+void MacroAssembler::Ret(int drop, Condition cond) {
+ Drop(drop, cond);
+ Ret(cond);
+}
+
+
+void MacroAssembler::Swap(Register reg1,
+ Register reg2,
+ Register scratch,
+ Condition cond) {
+ if (scratch.is(no_reg)) {
+ eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
+ eor(reg2, reg2, Operand(reg1), LeaveCC, cond);
+ eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
+ } else {
+ mov(scratch, reg1, LeaveCC, cond);
+ mov(reg1, reg2, LeaveCC, cond);
+ mov(reg2, scratch, LeaveCC, cond);
+ }
+}
+
+
+void MacroAssembler::Call(Label* target) {
+ bl(target);
+}
+
+
+void MacroAssembler::Move(Register dst, Handle<Object> value) {
+ mov(dst, Operand(value));
+}
+
+
+void MacroAssembler::Move(Register dst, Register src) {
+ if (!dst.is(src)) {
+ mov(dst, src);
+ }
+}
+
+
+void MacroAssembler::And(Register dst, Register src1, const Operand& src2,
+ Condition cond) {
+ if (!src2.is_reg() &&
+ !src2.must_use_constant_pool() &&
+ src2.immediate() == 0) {
+ mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, cond);
+
+ } else if (!src2.is_single_instruction() &&
+ !src2.must_use_constant_pool() &&
+ CpuFeatures::IsSupported(ARMv7) &&
+ IsPowerOf2(src2.immediate() + 1)) {
+ ubfx(dst, src1, 0, WhichPowerOf2(src2.immediate() + 1), cond);
+
+ } else {
+ and_(dst, src1, src2, LeaveCC, cond);
+ }
+}
+
+
+void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width,
+ Condition cond) {
+ ASSERT(lsb < 32);
+ if (!CpuFeatures::IsSupported(ARMv7)) {
+ int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
+ and_(dst, src1, Operand(mask), LeaveCC, cond);
+ if (lsb != 0) {
+ mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond);
+ }
+ } else {
+ ubfx(dst, src1, lsb, width, cond);
+ }
+}
+
+
+void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width,
+ Condition cond) {
+ ASSERT(lsb < 32);
+ if (!CpuFeatures::IsSupported(ARMv7)) {
+ int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
+ and_(dst, src1, Operand(mask), LeaveCC, cond);
+ int shift_up = 32 - lsb - width;
+ int shift_down = lsb + shift_up;
+ if (shift_up != 0) {
+ mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond);
+ }
+ if (shift_down != 0) {
+ mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond);
+ }
+ } else {
+ sbfx(dst, src1, lsb, width, cond);
+ }
+}
+
+
+void MacroAssembler::Bfi(Register dst,
+ Register src,
+ Register scratch,
+ int lsb,
+ int width,
+ Condition cond) {
+ ASSERT(0 <= lsb && lsb < 32);
+ ASSERT(0 <= width && width < 32);
+ ASSERT(lsb + width < 32);
+ ASSERT(!scratch.is(dst));
+ if (width == 0) return;
+ if (!CpuFeatures::IsSupported(ARMv7)) {
+ int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
+ bic(dst, dst, Operand(mask));
+ and_(scratch, src, Operand((1 << width) - 1));
+ mov(scratch, Operand(scratch, LSL, lsb));
+ orr(dst, dst, scratch);
+ } else {
+ bfi(dst, src, lsb, width, cond);
+ }
+}
+
+
+void MacroAssembler::Bfc(Register dst, int lsb, int width, Condition cond) {
+ ASSERT(lsb < 32);
+ if (!CpuFeatures::IsSupported(ARMv7)) {
+ int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
+ bic(dst, dst, Operand(mask));
+ } else {
+ bfc(dst, lsb, width, cond);
+ }
+}
+
+
+void MacroAssembler::Usat(Register dst, int satpos, const Operand& src,
+ Condition cond) {
+ if (!CpuFeatures::IsSupported(ARMv7)) {
+ ASSERT(!dst.is(pc) && !src.rm().is(pc));
+ ASSERT((satpos >= 0) && (satpos <= 31));
+
+ // These asserts are required to ensure compatibility with the ARMv7
+ // implementation.
+ ASSERT((src.shift_op() == ASR) || (src.shift_op() == LSL));
+ ASSERT(src.rs().is(no_reg));
+
+ Label done;
+ int satval = (1 << satpos) - 1;
+
+ if (cond != al) {
+ b(NegateCondition(cond), &done); // Skip saturate if !condition.
+ }
+ if (!(src.is_reg() && dst.is(src.rm()))) {
+ mov(dst, src);
+ }
+ tst(dst, Operand(~satval));
+ b(eq, &done);
+ mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, mi); // 0 if negative.
+ mov(dst, Operand(satval), LeaveCC, pl); // satval if positive.
+ bind(&done);
+ } else {
+ usat(dst, satpos, src, cond);
+ }
+}
+
+
+void MacroAssembler::SmiJumpTable(Register index, Vector<Label*> targets) {
+ // Empty the const pool.
+ CheckConstPool(true, true);
+ add(pc, pc, Operand(index,
+ LSL,
+ Instruction::kInstrSizeLog2 - kSmiTagSize));
+ BlockConstPoolBefore(pc_offset() + (targets.length() + 1) * kInstrSize);
+ nop(); // Jump table alignment.
+ for (int i = 0; i < targets.length(); i++) {
+ b(targets[i]);
+ }
+}
+
+
+void MacroAssembler::LoadRoot(Register destination,
+ Heap::RootListIndex index,
+ Condition cond) {
+ ldr(destination, MemOperand(roots, index << kPointerSizeLog2), cond);
+}
+
+
+void MacroAssembler::StoreRoot(Register source,
+ Heap::RootListIndex index,
+ Condition cond) {
+ str(source, MemOperand(roots, index << kPointerSizeLog2), cond);
+}
+
+
+void MacroAssembler::RecordWriteHelper(Register object,
+ Register address,
+ Register scratch) {
+ if (emit_debug_code()) {
+ // Check that the object is not in new space.
+ Label not_in_new_space;
+ InNewSpace(object, scratch, ne, &not_in_new_space);
+ Abort("new-space object passed to RecordWriteHelper");
+ bind(&not_in_new_space);
+ }
+
+ // Calculate page address.
+ Bfc(object, 0, kPageSizeBits);
+
+ // Calculate region number.
+ Ubfx(address, address, Page::kRegionSizeLog2,
+ kPageSizeBits - Page::kRegionSizeLog2);
+
+ // Mark region dirty.
+ ldr(scratch, MemOperand(object, Page::kDirtyFlagOffset));
+ mov(ip, Operand(1));
+ orr(scratch, scratch, Operand(ip, LSL, address));
+ str(scratch, MemOperand(object, Page::kDirtyFlagOffset));
+}
+
+
+void MacroAssembler::InNewSpace(Register object,
+ Register scratch,
+ Condition cond,
+ Label* branch) {
+ ASSERT(cond == eq || cond == ne);
+ and_(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
+ cmp(scratch, Operand(ExternalReference::new_space_start(isolate())));
+ b(cond, branch);
+}
+
+
+// Will clobber 4 registers: object, offset, scratch, ip. The
+// register 'object' contains a heap object pointer. The heap object
+// tag is shifted away.
+void MacroAssembler::RecordWrite(Register object,
+ Operand offset,
+ Register scratch0,
+ Register scratch1) {
+ // The compiled code assumes that record write doesn't change the
+ // context register, so we check that none of the clobbered
+ // registers are cp.
+ ASSERT(!object.is(cp) && !scratch0.is(cp) && !scratch1.is(cp));
+
+ Label done;
+
+ // First, test that the object is not in the new space. We cannot set
+ // region marks for new space pages.
+ InNewSpace(object, scratch0, eq, &done);
+
+ // Add offset into the object.
+ add(scratch0, object, offset);
+
+ // Record the actual write.
+ RecordWriteHelper(object, scratch0, scratch1);
+
+ bind(&done);
+
+ // Clobber all input registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ mov(object, Operand(BitCast<int32_t>(kZapValue)));
+ mov(scratch0, Operand(BitCast<int32_t>(kZapValue)));
+ mov(scratch1, Operand(BitCast<int32_t>(kZapValue)));
+ }
+}
+
+
+// Will clobber 4 registers: object, address, scratch, ip. The
+// register 'object' contains a heap object pointer. The heap object
+// tag is shifted away.
+void MacroAssembler::RecordWrite(Register object,
+ Register address,
+ Register scratch) {
+ // The compiled code assumes that record write doesn't change the
+ // context register, so we check that none of the clobbered
+ // registers are cp.
+ ASSERT(!object.is(cp) && !address.is(cp) && !scratch.is(cp));
+
+ Label done;
+
+ // First, test that the object is not in the new space. We cannot set
+ // region marks for new space pages.
+ InNewSpace(object, scratch, eq, &done);
+
+ // Record the actual write.
+ RecordWriteHelper(object, address, scratch);
+
+ bind(&done);
+
+ // Clobber all input registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ mov(object, Operand(BitCast<int32_t>(kZapValue)));
+ mov(address, Operand(BitCast<int32_t>(kZapValue)));
+ mov(scratch, Operand(BitCast<int32_t>(kZapValue)));
+ }
+}
+
+
+// Push and pop all registers that can hold pointers.
+void MacroAssembler::PushSafepointRegisters() {
+ // Safepoints expect a block of contiguous register values starting with r0:
+ ASSERT(((1 << kNumSafepointSavedRegisters) - 1) == kSafepointSavedRegisters);
+ // Safepoints expect a block of kNumSafepointRegisters values on the
+ // stack, so adjust the stack for unsaved registers.
+ const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
+ ASSERT(num_unsaved >= 0);
+ sub(sp, sp, Operand(num_unsaved * kPointerSize));
+ stm(db_w, sp, kSafepointSavedRegisters);
+}
+
+
+void MacroAssembler::PopSafepointRegisters() {
+ const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
+ ldm(ia_w, sp, kSafepointSavedRegisters);
+ add(sp, sp, Operand(num_unsaved * kPointerSize));
+}
+
+
+void MacroAssembler::PushSafepointRegistersAndDoubles() {
+ PushSafepointRegisters();
+ sub(sp, sp, Operand(DwVfpRegister::kNumAllocatableRegisters *
+ kDoubleSize));
+ for (int i = 0; i < DwVfpRegister::kNumAllocatableRegisters; i++) {
+ vstr(DwVfpRegister::FromAllocationIndex(i), sp, i * kDoubleSize);
+ }
+}
+
+
+void MacroAssembler::PopSafepointRegistersAndDoubles() {
+ for (int i = 0; i < DwVfpRegister::kNumAllocatableRegisters; i++) {
+ vldr(DwVfpRegister::FromAllocationIndex(i), sp, i * kDoubleSize);
+ }
+ add(sp, sp, Operand(DwVfpRegister::kNumAllocatableRegisters *
+ kDoubleSize));
+ PopSafepointRegisters();
+}
+
+void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src,
+ Register dst) {
+ str(src, SafepointRegistersAndDoublesSlot(dst));
+}
+
+
+void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
+ str(src, SafepointRegisterSlot(dst));
+}
+
+
+void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
+ ldr(dst, SafepointRegisterSlot(src));
+}
+
+
+int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
+ // The registers are pushed starting with the highest encoding,
+ // which means that lowest encodings are closest to the stack pointer.
+ ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
+ return reg_code;
+}
+
+
+MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
+ return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
+}
+
+
+MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
+ // General purpose registers are pushed last on the stack.
+ int doubles_size = DwVfpRegister::kNumAllocatableRegisters * kDoubleSize;
+ int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
+ return MemOperand(sp, doubles_size + register_offset);
+}
+
+
+void MacroAssembler::Ldrd(Register dst1, Register dst2,
+ const MemOperand& src, Condition cond) {
+ ASSERT(src.rm().is(no_reg));
+ ASSERT(!dst1.is(lr)); // r14.
+ ASSERT_EQ(0, dst1.code() % 2);
+ ASSERT_EQ(dst1.code() + 1, dst2.code());
+
+ // Generate two ldr instructions if ldrd is not available.
+ if (CpuFeatures::IsSupported(ARMv7)) {
+ CpuFeatures::Scope scope(ARMv7);
+ ldrd(dst1, dst2, src, cond);
+ } else {
+ MemOperand src2(src);
+ src2.set_offset(src2.offset() + 4);
+ if (dst1.is(src.rn())) {
+ ldr(dst2, src2, cond);
+ ldr(dst1, src, cond);
+ } else {
+ ldr(dst1, src, cond);
+ ldr(dst2, src2, cond);
+ }
+ }
+}
+
+
+void MacroAssembler::Strd(Register src1, Register src2,
+ const MemOperand& dst, Condition cond) {
+ ASSERT(dst.rm().is(no_reg));
+ ASSERT(!src1.is(lr)); // r14.
+ ASSERT_EQ(0, src1.code() % 2);
+ ASSERT_EQ(src1.code() + 1, src2.code());
+
+ // Generate two str instructions if strd is not available.
+ if (CpuFeatures::IsSupported(ARMv7)) {
+ CpuFeatures::Scope scope(ARMv7);
+ strd(src1, src2, dst, cond);
+ } else {
+ MemOperand dst2(dst);
+ dst2.set_offset(dst2.offset() + 4);
+ str(src1, dst, cond);
+ str(src2, dst2, cond);
+ }
+}
+
+
+void MacroAssembler::ClearFPSCRBits(const uint32_t bits_to_clear,
+ const Register scratch,
+ const Condition cond) {
+ vmrs(scratch, cond);
+ bic(scratch, scratch, Operand(bits_to_clear), LeaveCC, cond);
+ vmsr(scratch, cond);
+}
+
+
+void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
+ const DwVfpRegister src2,
+ const Condition cond) {
+ // Compare and move FPSCR flags to the normal condition flags.
+ VFPCompareAndLoadFlags(src1, src2, pc, cond);
+}
+
+void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
+ const double src2,
+ const Condition cond) {
+ // Compare and move FPSCR flags to the normal condition flags.
+ VFPCompareAndLoadFlags(src1, src2, pc, cond);
+}
+
+
+void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
+ const DwVfpRegister src2,
+ const Register fpscr_flags,
+ const Condition cond) {
+ // Compare and load FPSCR.
+ vcmp(src1, src2, cond);
+ vmrs(fpscr_flags, cond);
+}
+
+void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
+ const double src2,
+ const Register fpscr_flags,
+ const Condition cond) {
+ // Compare and load FPSCR.
+ vcmp(src1, src2, cond);
+ vmrs(fpscr_flags, cond);
+}
+
+
+void MacroAssembler::EnterFrame(StackFrame::Type type) {
+ // r0-r3: preserved
+ stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
+ mov(ip, Operand(Smi::FromInt(type)));
+ push(ip);
+ mov(ip, Operand(CodeObject()));
+ push(ip);
+ add(fp, sp, Operand(3 * kPointerSize)); // Adjust FP to point to saved FP.
+}
+
+
+void MacroAssembler::LeaveFrame(StackFrame::Type type) {
+ // r0: preserved
+ // r1: preserved
+ // r2: preserved
+
+ // Drop the execution stack down to the frame pointer and restore
+ // the caller frame pointer and return address.
+ mov(sp, fp);
+ ldm(ia_w, sp, fp.bit() | lr.bit());
+}
+
+
+void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) {
+ // Setup the frame structure on the stack.
+ ASSERT_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
+ ASSERT_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
+ ASSERT_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
+ Push(lr, fp);
+ mov(fp, Operand(sp)); // Setup new frame pointer.
+ // Reserve room for saved entry sp and code object.
+ sub(sp, sp, Operand(2 * kPointerSize));
+ if (emit_debug_code()) {
+ mov(ip, Operand(0));
+ str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
+ }
+ mov(ip, Operand(CodeObject()));
+ str(ip, MemOperand(fp, ExitFrameConstants::kCodeOffset));
+
+ // Save the frame pointer and the context in top.
+ mov(ip, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate())));
+ str(fp, MemOperand(ip));
+ mov(ip, Operand(ExternalReference(Isolate::k_context_address, isolate())));
+ str(cp, MemOperand(ip));
+
+ // Optionally save all double registers.
+ if (save_doubles) {
+ sub(sp, sp, Operand(DwVfpRegister::kNumRegisters * kDoubleSize));
+ const int offset = -2 * kPointerSize;
+ for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
+ DwVfpRegister reg = DwVfpRegister::from_code(i);
+ vstr(reg, fp, offset - ((i + 1) * kDoubleSize));
+ }
+ // Note that d0 will be accessible at
+ // fp - 2 * kPointerSize - DwVfpRegister::kNumRegisters * kDoubleSize,
+ // since the sp slot and code slot were pushed after the fp.
+ }
+
+ // Reserve place for the return address and stack space and align the frame
+ // preparing for calling the runtime function.
+ const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
+ sub(sp, sp, Operand((stack_space + 1) * kPointerSize));
+ if (frame_alignment > 0) {
+ ASSERT(IsPowerOf2(frame_alignment));
+ and_(sp, sp, Operand(-frame_alignment));
+ }
+
+ // Set the exit frame sp value to point just before the return address
+ // location.
+ add(ip, sp, Operand(kPointerSize));
+ str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
+}
+
+
+void MacroAssembler::InitializeNewString(Register string,
+ Register length,
+ Heap::RootListIndex map_index,
+ Register scratch1,
+ Register scratch2) {
+ mov(scratch1, Operand(length, LSL, kSmiTagSize));
+ LoadRoot(scratch2, map_index);
+ str(scratch1, FieldMemOperand(string, String::kLengthOffset));
+ mov(scratch1, Operand(String::kEmptyHashField));
+ str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
+ str(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
+}
+
+
+int MacroAssembler::ActivationFrameAlignment() {
+#if defined(V8_HOST_ARCH_ARM)
+ // Running on the real platform. Use the alignment as mandated by the local
+ // environment.
+ // Note: This will break if we ever start generating snapshots on one ARM
+ // platform for another ARM platform with a different alignment.
+ return OS::ActivationFrameAlignment();
+#else // defined(V8_HOST_ARCH_ARM)
+ // If we are using the simulator then we should always align to the expected
+ // alignment. As the simulator is used to generate snapshots we do not know
+ // if the target platform will need alignment, so this is controlled from a
+ // flag.
+ return FLAG_sim_stack_alignment;
+#endif // defined(V8_HOST_ARCH_ARM)
+}
+
+
+void MacroAssembler::LeaveExitFrame(bool save_doubles,
+ Register argument_count) {
+ // Optionally restore all double registers.
+ if (save_doubles) {
+ for (int i = 0; i < DwVfpRegister::kNumRegisters; i++) {
+ DwVfpRegister reg = DwVfpRegister::from_code(i);
+ const int offset = -2 * kPointerSize;
+ vldr(reg, fp, offset - ((i + 1) * kDoubleSize));
+ }
+ }
+
+ // Clear top frame.
+ mov(r3, Operand(0, RelocInfo::NONE));
+ mov(ip, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate())));
+ str(r3, MemOperand(ip));
+
+ // Restore current context from top and clear it in debug mode.
+ mov(ip, Operand(ExternalReference(Isolate::k_context_address, isolate())));
+ ldr(cp, MemOperand(ip));
+#ifdef DEBUG
+ str(r3, MemOperand(ip));
+#endif
+
+ // Tear down the exit frame, pop the arguments, and return.
+ mov(sp, Operand(fp));
+ ldm(ia_w, sp, fp.bit() | lr.bit());
+ if (argument_count.is_valid()) {
+ add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2));
+ }
+}
+
+void MacroAssembler::GetCFunctionDoubleResult(const DoubleRegister dst) {
+#if !defined(USE_ARM_EABI)
+ UNREACHABLE();
+#else
+ vmov(dst, r0, r1);
+#endif
+}
+
+
+void MacroAssembler::InvokePrologue(const ParameterCount& expected,
+ const ParameterCount& actual,
+ Handle<Code> code_constant,
+ Register code_reg,
+ Label* done,
+ InvokeFlag flag,
+ CallWrapper* call_wrapper) {
+ bool definitely_matches = false;
+ Label regular_invoke;
+
+ // Check whether the expected and actual arguments count match. If not,
+ // setup registers according to contract with ArgumentsAdaptorTrampoline:
+ // r0: actual arguments count
+ // r1: function (passed through to callee)
+ // r2: expected arguments count
+ // r3: callee code entry
+
+ // The code below is made a lot easier because the calling code already sets
+ // up actual and expected registers according to the contract if values are
+ // passed in registers.
+ ASSERT(actual.is_immediate() || actual.reg().is(r0));
+ ASSERT(expected.is_immediate() || expected.reg().is(r2));
+ ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3));
+
+ if (expected.is_immediate()) {
+ ASSERT(actual.is_immediate());
+ if (expected.immediate() == actual.immediate()) {
+ definitely_matches = true;
+ } else {
+ mov(r0, Operand(actual.immediate()));
+ const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+ if (expected.immediate() == sentinel) {
+ // Don't worry about adapting arguments for builtins that
+ // don't want that done. Skip adaption code by making it look
+ // like we have a match between expected and actual number of
+ // arguments.
+ definitely_matches = true;
+ } else {
+ mov(r2, Operand(expected.immediate()));
+ }
+ }
+ } else {
+ if (actual.is_immediate()) {
+ cmp(expected.reg(), Operand(actual.immediate()));
+ b(eq, &regular_invoke);
+ mov(r0, Operand(actual.immediate()));
+ } else {
+ cmp(expected.reg(), Operand(actual.reg()));
+ b(eq, &regular_invoke);
+ }
+ }
+
+ if (!definitely_matches) {
+ if (!code_constant.is_null()) {
+ mov(r3, Operand(code_constant));
+ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
+ }
+
+ Handle<Code> adaptor =
+ isolate()->builtins()->ArgumentsAdaptorTrampoline();
+ if (flag == CALL_FUNCTION) {
+ if (call_wrapper != NULL) {
+ call_wrapper->BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
+ }
+ Call(adaptor, RelocInfo::CODE_TARGET);
+ if (call_wrapper != NULL) call_wrapper->AfterCall();
+ b(done);
+ } else {
+ Jump(adaptor, RelocInfo::CODE_TARGET);
+ }
+ bind(&regular_invoke);
+ }
+}
+
+
+void MacroAssembler::InvokeCode(Register code,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ CallWrapper* call_wrapper) {
+ Label done;
+
+ InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
+ call_wrapper);
+ if (flag == CALL_FUNCTION) {
+ if (call_wrapper != NULL) call_wrapper->BeforeCall(CallSize(code));
+ Call(code);
+ if (call_wrapper != NULL) call_wrapper->AfterCall();
+ } else {
+ ASSERT(flag == JUMP_FUNCTION);
+ Jump(code);
+ }
+
+ // Continue here if InvokePrologue does handle the invocation due to
+ // mismatched parameter counts.
+ bind(&done);
+}
+
+
+void MacroAssembler::InvokeCode(Handle<Code> code,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ RelocInfo::Mode rmode,
+ InvokeFlag flag) {
+ Label done;
+
+ InvokePrologue(expected, actual, code, no_reg, &done, flag);
+ if (flag == CALL_FUNCTION) {
+ Call(code, rmode);
+ } else {
+ Jump(code, rmode);
+ }
+
+ // Continue here if InvokePrologue does handle the invocation due to
+ // mismatched parameter counts.
+ bind(&done);
+}
+
+
+void MacroAssembler::InvokeFunction(Register fun,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ CallWrapper* call_wrapper) {
+ // Contract with called JS functions requires that function is passed in r1.
+ ASSERT(fun.is(r1));
+
+ Register expected_reg = r2;
+ Register code_reg = r3;
+
+ ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
+ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
+ ldr(expected_reg,
+ FieldMemOperand(code_reg,
+ SharedFunctionInfo::kFormalParameterCountOffset));
+ mov(expected_reg, Operand(expected_reg, ASR, kSmiTagSize));
+ ldr(code_reg,
+ FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
+
+ ParameterCount expected(expected_reg);
+ InvokeCode(code_reg, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(JSFunction* function,
+ const ParameterCount& actual,
+ InvokeFlag flag) {
+ ASSERT(function->is_compiled());
+
+ // Get the function and setup the context.
+ mov(r1, Operand(Handle<JSFunction>(function)));
+ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
+
+ // Invoke the cached code.
+ Handle<Code> code(function->code());
+ ParameterCount expected(function->shared()->formal_parameter_count());
+ if (V8::UseCrankshaft()) {
+ // TODO(kasperl): For now, we always call indirectly through the
+ // code field in the function to allow recompilation to take effect
+ // without changing any of the call sites.
+ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
+ InvokeCode(r3, expected, actual, flag);
+ } else {
+ InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag);
+ }
+}
+
+
+void MacroAssembler::IsObjectJSObjectType(Register heap_object,
+ Register map,
+ Register scratch,
+ Label* fail) {
+ ldr(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
+ IsInstanceJSObjectType(map, scratch, fail);
+}
+
+
+void MacroAssembler::IsInstanceJSObjectType(Register map,
+ Register scratch,
+ Label* fail) {
+ ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ cmp(scratch, Operand(FIRST_JS_OBJECT_TYPE));
+ b(lt, fail);
+ cmp(scratch, Operand(LAST_JS_OBJECT_TYPE));
+ b(gt, fail);
+}
+
+
+void MacroAssembler::IsObjectJSStringType(Register object,
+ Register scratch,
+ Label* fail) {
+ ASSERT(kNotStringTag != 0);
+
+ ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+ tst(scratch, Operand(kIsNotStringMask));
+ b(ne, fail);
+}
+
+
+#ifdef ENABLE_DEBUGGER_SUPPORT
+void MacroAssembler::DebugBreak() {
+ ASSERT(allow_stub_calls());
+ mov(r0, Operand(0, RelocInfo::NONE));
+ mov(r1, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
+ CEntryStub ces(1);
+ Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
+}
+#endif
+
+
+void MacroAssembler::PushTryHandler(CodeLocation try_location,
+ HandlerType type) {
+ // Adjust this code if not the case.
+ ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
+ // The pc (return address) is passed in register lr.
+ if (try_location == IN_JAVASCRIPT) {
+ if (type == TRY_CATCH_HANDLER) {
+ mov(r3, Operand(StackHandler::TRY_CATCH));
+ } else {
+ mov(r3, Operand(StackHandler::TRY_FINALLY));
+ }
+ ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
+ && StackHandlerConstants::kFPOffset == 2 * kPointerSize
+ && StackHandlerConstants::kPCOffset == 3 * kPointerSize);
+ stm(db_w, sp, r3.bit() | fp.bit() | lr.bit());
+ // Save the current handler as the next handler.
+ mov(r3, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
+ ldr(r1, MemOperand(r3));
+ ASSERT(StackHandlerConstants::kNextOffset == 0);
+ push(r1);
+ // Link this handler as the new current one.
+ str(sp, MemOperand(r3));
+ } else {
+ // Must preserve r0-r4, r5-r7 are available.
+ ASSERT(try_location == IN_JS_ENTRY);
+ // The frame pointer does not point to a JS frame so we save NULL
+ // for fp. We expect the code throwing an exception to check fp
+ // before dereferencing it to restore the context.
+ mov(ip, Operand(0, RelocInfo::NONE)); // To save a NULL frame pointer.
+ mov(r6, Operand(StackHandler::ENTRY));
+ ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
+ && StackHandlerConstants::kFPOffset == 2 * kPointerSize
+ && StackHandlerConstants::kPCOffset == 3 * kPointerSize);
+ stm(db_w, sp, r6.bit() | ip.bit() | lr.bit());
+ // Save the current handler as the next handler.
+ mov(r7, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
+ ldr(r6, MemOperand(r7));
+ ASSERT(StackHandlerConstants::kNextOffset == 0);
+ push(r6);
+ // Link this handler as the new current one.
+ str(sp, MemOperand(r7));
+ }
+}
+
+
+void MacroAssembler::PopTryHandler() {
+ ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
+ pop(r1);
+ mov(ip, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
+ add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
+ str(r1, MemOperand(ip));
+}
+
+
+void MacroAssembler::Throw(Register value) {
+ // r0 is expected to hold the exception.
+ if (!value.is(r0)) {
+ mov(r0, value);
+ }
+
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
+
+ // Drop the sp to the top of the handler.
+ mov(r3, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
+ ldr(sp, MemOperand(r3));
+
+ // Restore the next handler and frame pointer, discard handler state.
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ pop(r2);
+ str(r2, MemOperand(r3));
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
+ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state.
+
+ // Before returning we restore the context from the frame pointer if
+ // not NULL. The frame pointer is NULL in the exception handler of a
+ // JS entry frame.
+ cmp(fp, Operand(0, RelocInfo::NONE));
+ // Set cp to NULL if fp is NULL.
+ mov(cp, Operand(0, RelocInfo::NONE), LeaveCC, eq);
+ // Restore cp otherwise.
+ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
+#ifdef DEBUG
+ if (emit_debug_code()) {
+ mov(lr, Operand(pc));
+ }
+#endif
+ STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
+ pop(pc);
+}
+
+
+void MacroAssembler::ThrowUncatchable(UncatchableExceptionType type,
+ Register value) {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
+
+ // r0 is expected to hold the exception.
+ if (!value.is(r0)) {
+ mov(r0, value);
+ }
+
+ // Drop sp to the top stack handler.
+ mov(r3, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
+ ldr(sp, MemOperand(r3));
+
+ // Unwind the handlers until the ENTRY handler is found.
+ Label loop, done;
+ bind(&loop);
+ // Load the type of the current stack handler.
+ const int kStateOffset = StackHandlerConstants::kStateOffset;
+ ldr(r2, MemOperand(sp, kStateOffset));
+ cmp(r2, Operand(StackHandler::ENTRY));
+ b(eq, &done);
+ // Fetch the next handler in the list.
+ const int kNextOffset = StackHandlerConstants::kNextOffset;
+ ldr(sp, MemOperand(sp, kNextOffset));
+ jmp(&loop);
+ bind(&done);
+
+ // Set the top handler address to next handler past the current ENTRY handler.
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ pop(r2);
+ str(r2, MemOperand(r3));
+
+ if (type == OUT_OF_MEMORY) {
+ // Set external caught exception to false.
+ ExternalReference external_caught(
+ Isolate::k_external_caught_exception_address, isolate());
+ mov(r0, Operand(false, RelocInfo::NONE));
+ mov(r2, Operand(external_caught));
+ str(r0, MemOperand(r2));
+
+ // Set pending exception and r0 to out of memory exception.
+ Failure* out_of_memory = Failure::OutOfMemoryException();
+ mov(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
+ mov(r2, Operand(ExternalReference(Isolate::k_pending_exception_address,
+ isolate())));
+ str(r0, MemOperand(r2));
+ }
+
+ // Stack layout at this point. See also StackHandlerConstants.
+ // sp -> state (ENTRY)
+ // fp
+ // lr
+
+ // Discard handler state (r2 is not used) and restore frame pointer.
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
+ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state.
+ // Before returning we restore the context from the frame pointer if
+ // not NULL. The frame pointer is NULL in the exception handler of a
+ // JS entry frame.
+ cmp(fp, Operand(0, RelocInfo::NONE));
+ // Set cp to NULL if fp is NULL.
+ mov(cp, Operand(0, RelocInfo::NONE), LeaveCC, eq);
+ // Restore cp otherwise.
+ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
+#ifdef DEBUG
+ if (emit_debug_code()) {
+ mov(lr, Operand(pc));
+ }
+#endif
+ STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
+ pop(pc);
+}
+
+
+void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
+ Register scratch,
+ Label* miss) {
+ Label same_contexts;
+
+ ASSERT(!holder_reg.is(scratch));
+ ASSERT(!holder_reg.is(ip));
+ ASSERT(!scratch.is(ip));
+
+ // Load current lexical context from the stack frame.
+ ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ // In debug mode, make sure the lexical context is set.
+#ifdef DEBUG
+ cmp(scratch, Operand(0, RelocInfo::NONE));
+ Check(ne, "we should not have an empty lexical context");
+#endif
+
+ // Load the global context of the current context.
+ int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
+ ldr(scratch, FieldMemOperand(scratch, offset));
+ ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
+
+ // Check the context is a global context.
+ if (emit_debug_code()) {
+ // TODO(119): avoid push(holder_reg)/pop(holder_reg)
+ // Cannot use ip as a temporary in this verification code. Due to the fact
+ // that ip is clobbered as part of cmp with an object Operand.
+ push(holder_reg); // Temporarily save holder on the stack.
+ // Read the first word and compare to the global_context_map.
+ ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
+ LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
+ cmp(holder_reg, ip);
+ Check(eq, "JSGlobalObject::global_context should be a global context.");
+ pop(holder_reg); // Restore holder.
+ }
+
+ // Check if both contexts are the same.
+ ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
+ cmp(scratch, Operand(ip));
+ b(eq, &same_contexts);
+
+ // Check the context is a global context.
+ if (emit_debug_code()) {
+ // TODO(119): avoid push(holder_reg)/pop(holder_reg)
+ // Cannot use ip as a temporary in this verification code. Due to the fact
+ // that ip is clobbered as part of cmp with an object Operand.
+ push(holder_reg); // Temporarily save holder on the stack.
+ mov(holder_reg, ip); // Move ip to its holding place.
+ LoadRoot(ip, Heap::kNullValueRootIndex);
+ cmp(holder_reg, ip);
+ Check(ne, "JSGlobalProxy::context() should not be null.");
+
+ ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
+ LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
+ cmp(holder_reg, ip);
+ Check(eq, "JSGlobalObject::global_context should be a global context.");
+ // Restore ip is not needed. ip is reloaded below.
+ pop(holder_reg); // Restore holder.
+ // Restore ip to holder's context.
+ ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
+ }
+
+ // Check that the security token in the calling global object is
+ // compatible with the security token in the receiving global
+ // object.
+ int token_offset = Context::kHeaderSize +
+ Context::SECURITY_TOKEN_INDEX * kPointerSize;
+
+ ldr(scratch, FieldMemOperand(scratch, token_offset));
+ ldr(ip, FieldMemOperand(ip, token_offset));
+ cmp(scratch, Operand(ip));
+ b(ne, miss);
+
+ bind(&same_contexts);
+}
+
+
+void MacroAssembler::AllocateInNewSpace(int object_size,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ AllocationFlags flags) {
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ mov(result, Operand(0x7091));
+ mov(scratch1, Operand(0x7191));
+ mov(scratch2, Operand(0x7291));
+ }
+ jmp(gc_required);
+ return;
+ }
+
+ ASSERT(!result.is(scratch1));
+ ASSERT(!result.is(scratch2));
+ ASSERT(!scratch1.is(scratch2));
+ ASSERT(!scratch1.is(ip));
+ ASSERT(!scratch2.is(ip));
+
+ // Make object size into bytes.
+ if ((flags & SIZE_IN_WORDS) != 0) {
+ object_size *= kPointerSize;
+ }
+ ASSERT_EQ(0, object_size & kObjectAlignmentMask);
+
+ // Check relative positions of allocation top and limit addresses.
+ // The values must be adjacent in memory to allow the use of LDM.
+ // Also, assert that the registers are numbered such that the values
+ // are loaded in the correct order.
+ ExternalReference new_space_allocation_top =
+ ExternalReference::new_space_allocation_top_address(isolate());
+ ExternalReference new_space_allocation_limit =
+ ExternalReference::new_space_allocation_limit_address(isolate());
+ intptr_t top =
+ reinterpret_cast<intptr_t>(new_space_allocation_top.address());
+ intptr_t limit =
+ reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
+ ASSERT((limit - top) == kPointerSize);
+ ASSERT(result.code() < ip.code());
+
+ // Set up allocation top address and object size registers.
+ Register topaddr = scratch1;
+ Register obj_size_reg = scratch2;
+ mov(topaddr, Operand(new_space_allocation_top));
+ mov(obj_size_reg, Operand(object_size));
+
+ // This code stores a temporary value in ip. This is OK, as the code below
+ // does not need ip for implicit literal generation.
+ if ((flags & RESULT_CONTAINS_TOP) == 0) {
+ // Load allocation top into result and allocation limit into ip.
+ ldm(ia, topaddr, result.bit() | ip.bit());
+ } else {
+ if (emit_debug_code()) {
+ // Assert that result actually contains top on entry. ip is used
+ // immediately below so this use of ip does not cause difference with
+ // respect to register content between debug and release mode.
+ ldr(ip, MemOperand(topaddr));
+ cmp(result, ip);
+ Check(eq, "Unexpected allocation top");
+ }
+ // Load allocation limit into ip. Result already contains allocation top.
+ ldr(ip, MemOperand(topaddr, limit - top));
+ }
+
+ // Calculate new top and bail out if new space is exhausted. Use result
+ // to calculate the new top.
+ add(scratch2, result, Operand(obj_size_reg), SetCC);
+ b(cs, gc_required);
+ cmp(scratch2, Operand(ip));
+ b(hi, gc_required);
+ str(scratch2, MemOperand(topaddr));
+
+ // Tag object if requested.
+ if ((flags & TAG_OBJECT) != 0) {
+ add(result, result, Operand(kHeapObjectTag));
+ }
+}
+
+
+void MacroAssembler::AllocateInNewSpace(Register object_size,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required,
+ AllocationFlags flags) {
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ mov(result, Operand(0x7091));
+ mov(scratch1, Operand(0x7191));
+ mov(scratch2, Operand(0x7291));
+ }
+ jmp(gc_required);
+ return;
+ }
+
+ // Assert that the register arguments are different and that none of
+ // them are ip. ip is used explicitly in the code generated below.
+ ASSERT(!result.is(scratch1));
+ ASSERT(!result.is(scratch2));
+ ASSERT(!scratch1.is(scratch2));
+ ASSERT(!result.is(ip));
+ ASSERT(!scratch1.is(ip));
+ ASSERT(!scratch2.is(ip));
+
+ // Check relative positions of allocation top and limit addresses.
+ // The values must be adjacent in memory to allow the use of LDM.
+ // Also, assert that the registers are numbered such that the values
+ // are loaded in the correct order.
+ ExternalReference new_space_allocation_top =
+ ExternalReference::new_space_allocation_top_address(isolate());
+ ExternalReference new_space_allocation_limit =
+ ExternalReference::new_space_allocation_limit_address(isolate());
+ intptr_t top =
+ reinterpret_cast<intptr_t>(new_space_allocation_top.address());
+ intptr_t limit =
+ reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
+ ASSERT((limit - top) == kPointerSize);
+ ASSERT(result.code() < ip.code());
+
+ // Set up allocation top address.
+ Register topaddr = scratch1;
+ mov(topaddr, Operand(new_space_allocation_top));
+
+ // This code stores a temporary value in ip. This is OK, as the code below
+ // does not need ip for implicit literal generation.
+ if ((flags & RESULT_CONTAINS_TOP) == 0) {
+ // Load allocation top into result and allocation limit into ip.
+ ldm(ia, topaddr, result.bit() | ip.bit());
+ } else {
+ if (emit_debug_code()) {
+ // Assert that result actually contains top on entry. ip is used
+ // immediately below so this use of ip does not cause difference with
+ // respect to register content between debug and release mode.
+ ldr(ip, MemOperand(topaddr));
+ cmp(result, ip);
+ Check(eq, "Unexpected allocation top");
+ }
+ // Load allocation limit into ip. Result already contains allocation top.
+ ldr(ip, MemOperand(topaddr, limit - top));
+ }
+
+ // Calculate new top and bail out if new space is exhausted. Use result
+ // to calculate the new top. Object size may be in words so a shift is
+ // required to get the number of bytes.
+ if ((flags & SIZE_IN_WORDS) != 0) {
+ add(scratch2, result, Operand(object_size, LSL, kPointerSizeLog2), SetCC);
+ } else {
+ add(scratch2, result, Operand(object_size), SetCC);
+ }
+ b(cs, gc_required);
+ cmp(scratch2, Operand(ip));
+ b(hi, gc_required);
+
+ // Update allocation top. result temporarily holds the new top.
+ if (emit_debug_code()) {
+ tst(scratch2, Operand(kObjectAlignmentMask));
+ Check(eq, "Unaligned allocation in new space");
+ }
+ str(scratch2, MemOperand(topaddr));
+
+ // Tag object if requested.
+ if ((flags & TAG_OBJECT) != 0) {
+ add(result, result, Operand(kHeapObjectTag));
+ }
+}
+
+
+void MacroAssembler::UndoAllocationInNewSpace(Register object,
+ Register scratch) {
+ ExternalReference new_space_allocation_top =
+ ExternalReference::new_space_allocation_top_address(isolate());
+
+ // Make sure the object has no tag before resetting top.
+ and_(object, object, Operand(~kHeapObjectTagMask));
+#ifdef DEBUG
+ // Check that the object un-allocated is below the current top.
+ mov(scratch, Operand(new_space_allocation_top));
+ ldr(scratch, MemOperand(scratch));
+ cmp(object, scratch);
+ Check(lt, "Undo allocation of non allocated memory");
+#endif
+ // Write the address of the object to un-allocate as the current top.
+ mov(scratch, Operand(new_space_allocation_top));
+ str(object, MemOperand(scratch));
+}
+
+
+void MacroAssembler::AllocateTwoByteString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required) {
+ // Calculate the number of bytes needed for the characters in the string while
+ // observing object alignment.
+ ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ mov(scratch1, Operand(length, LSL, 1)); // Length in bytes, not chars.
+ add(scratch1, scratch1,
+ Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
+ and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
+
+ // Allocate two-byte string in new space.
+ AllocateInNewSpace(scratch1,
+ result,
+ scratch2,
+ scratch3,
+ gc_required,
+ TAG_OBJECT);
+
+ // Set the map, length and hash field.
+ InitializeNewString(result,
+ length,
+ Heap::kStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateAsciiString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* gc_required) {
+ // Calculate the number of bytes needed for the characters in the string while
+ // observing object alignment.
+ ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
+ ASSERT(kCharSize == 1);
+ add(scratch1, length,
+ Operand(kObjectAlignmentMask + SeqAsciiString::kHeaderSize));
+ and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
+
+ // Allocate ASCII string in new space.
+ AllocateInNewSpace(scratch1,
+ result,
+ scratch2,
+ scratch3,
+ gc_required,
+ TAG_OBJECT);
+
+ // Set the map, length and hash field.
+ InitializeNewString(result,
+ length,
+ Heap::kAsciiStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateTwoByteConsString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ AllocateInNewSpace(ConsString::kSize,
+ result,
+ scratch1,
+ scratch2,
+ gc_required,
+ TAG_OBJECT);
+
+ InitializeNewString(result,
+ length,
+ Heap::kConsStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateAsciiConsString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ AllocateInNewSpace(ConsString::kSize,
+ result,
+ scratch1,
+ scratch2,
+ gc_required,
+ TAG_OBJECT);
+
+ InitializeNewString(result,
+ length,
+ Heap::kConsAsciiStringMapRootIndex,
+ scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::CompareObjectType(Register object,
+ Register map,
+ Register type_reg,
+ InstanceType type) {
+ ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
+ CompareInstanceType(map, type_reg, type);
+}
+
+
+void MacroAssembler::CompareInstanceType(Register map,
+ Register type_reg,
+ InstanceType type) {
+ ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ cmp(type_reg, Operand(type));
+}
+
+
+void MacroAssembler::CompareRoot(Register obj,
+ Heap::RootListIndex index) {
+ ASSERT(!obj.is(ip));
+ LoadRoot(ip, index);
+ cmp(obj, ip);
+}
+
+
+void MacroAssembler::CheckMap(Register obj,
+ Register scratch,
+ Handle<Map> map,
+ Label* fail,
+ bool is_heap_object) {
+ if (!is_heap_object) {
+ JumpIfSmi(obj, fail);
+ }
+ ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+ mov(ip, Operand(map));
+ cmp(scratch, ip);
+ b(ne, fail);
+}
+
+
+void MacroAssembler::CheckMap(Register obj,
+ Register scratch,
+ Heap::RootListIndex index,
+ Label* fail,
+ bool is_heap_object) {
+ if (!is_heap_object) {
+ JumpIfSmi(obj, fail);
+ }
+ ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+ LoadRoot(ip, index);
+ cmp(scratch, ip);
+ b(ne, fail);
+}
+
+
+void MacroAssembler::TryGetFunctionPrototype(Register function,
+ Register result,
+ Register scratch,
+ Label* miss) {
+ // Check that the receiver isn't a smi.
+ JumpIfSmi(function, miss);
+
+ // Check that the function really is a function. Load map into result reg.
+ CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
+ b(ne, miss);
+
+ // Make sure that the function has an instance prototype.
+ Label non_instance;
+ ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
+ tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
+ b(ne, &non_instance);
+
+ // Get the prototype or initial map from the function.
+ ldr(result,
+ FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+ // If the prototype or initial map is the hole, don't return it and
+ // simply miss the cache instead. This will allow us to allocate a
+ // prototype object on-demand in the runtime system.
+ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ cmp(result, ip);
+ b(eq, miss);
+
+ // If the function does not have an initial map, we're done.
+ Label done;
+ CompareObjectType(result, scratch, scratch, MAP_TYPE);
+ b(ne, &done);
+
+ // Get the prototype from the initial map.
+ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
+ jmp(&done);
+
+ // Non-instance prototype: Fetch prototype from constructor field
+ // in initial map.
+ bind(&non_instance);
+ ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
+
+ // All done.
+ bind(&done);
+}
+
+
+void MacroAssembler::CallStub(CodeStub* stub, Condition cond) {
+ ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
+ Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
+}
+
+
+void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
+ ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
+ Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
+}
+
+
+MaybeObject* MacroAssembler::TryTailCallStub(CodeStub* stub, Condition cond) {
+ ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
+ Object* result;
+ { MaybeObject* maybe_result = stub->TryGetCode();
+ if (!maybe_result->ToObject(&result)) return maybe_result;
+ }
+ Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
+ return result;
+}
+
+
+static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
+ return ref0.address() - ref1.address();
+}
+
+
+MaybeObject* MacroAssembler::TryCallApiFunctionAndReturn(
+ ExternalReference function, int stack_space) {
+ ExternalReference next_address =
+ ExternalReference::handle_scope_next_address();
+ const int kNextOffset = 0;
+ const int kLimitOffset = AddressOffset(
+ ExternalReference::handle_scope_limit_address(),
+ next_address);
+ const int kLevelOffset = AddressOffset(
+ ExternalReference::handle_scope_level_address(),
+ next_address);
+
+ // Allocate HandleScope in callee-save registers.
+ mov(r7, Operand(next_address));
+ ldr(r4, MemOperand(r7, kNextOffset));
+ ldr(r5, MemOperand(r7, kLimitOffset));
+ ldr(r6, MemOperand(r7, kLevelOffset));
+ add(r6, r6, Operand(1));
+ str(r6, MemOperand(r7, kLevelOffset));
+
+ // Native call returns to the DirectCEntry stub which redirects to the
+ // return address pushed on stack (could have moved after GC).
+ // DirectCEntry stub itself is generated early and never moves.
+ DirectCEntryStub stub;
+ stub.GenerateCall(this, function);
+
+ Label promote_scheduled_exception;
+ Label delete_allocated_handles;
+ Label leave_exit_frame;
+
+ // If result is non-zero, dereference to get the result value
+ // otherwise set it to undefined.
+ cmp(r0, Operand(0));
+ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
+ ldr(r0, MemOperand(r0), ne);
+
+ // No more valid handles (the result handle was the last one). Restore
+ // previous handle scope.
+ str(r4, MemOperand(r7, kNextOffset));
+ if (emit_debug_code()) {
+ ldr(r1, MemOperand(r7, kLevelOffset));
+ cmp(r1, r6);
+ Check(eq, "Unexpected level after return from api call");
+ }
+ sub(r6, r6, Operand(1));
+ str(r6, MemOperand(r7, kLevelOffset));
+ ldr(ip, MemOperand(r7, kLimitOffset));
+ cmp(r5, ip);
+ b(ne, &delete_allocated_handles);
+
+ // Check if the function scheduled an exception.
+ bind(&leave_exit_frame);
+ LoadRoot(r4, Heap::kTheHoleValueRootIndex);
+ mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate())));
+ ldr(r5, MemOperand(ip));
+ cmp(r4, r5);
+ b(ne, &promote_scheduled_exception);
+
+ // LeaveExitFrame expects unwind space to be in a register.
+ mov(r4, Operand(stack_space));
+ LeaveExitFrame(false, r4);
+ mov(pc, lr);
+
+ bind(&promote_scheduled_exception);
+ MaybeObject* result
+ = TryTailCallExternalReference(
+ ExternalReference(Runtime::kPromoteScheduledException, isolate()),
+ 0,
+ 1);
+ if (result->IsFailure()) {
+ return result;
+ }
+
+ // HandleScope limit has changed. Delete allocated extensions.
+ bind(&delete_allocated_handles);
+ str(r5, MemOperand(r7, kLimitOffset));
+ mov(r4, r0);
+ PrepareCallCFunction(1, r5);
+ mov(r0, Operand(ExternalReference::isolate_address()));
+ CallCFunction(
+ ExternalReference::delete_handle_scope_extensions(isolate()), 1);
+ mov(r0, r4);
+ jmp(&leave_exit_frame);
+
+ return result;
+}
+
+
+void MacroAssembler::IllegalOperation(int num_arguments) {
+ if (num_arguments > 0) {
+ add(sp, sp, Operand(num_arguments * kPointerSize));
+ }
+ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
+}
+
+
+void MacroAssembler::IndexFromHash(Register hash, Register index) {
+ // If the hash field contains an array index pick it out. The assert checks
+ // that the constants for the maximum number of digits for an array index
+ // cached in the hash field and the number of bits reserved for it does not
+ // conflict.
+ ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
+ (1 << String::kArrayIndexValueBits));
+ // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
+ // the low kHashShift bits.
+ STATIC_ASSERT(kSmiTag == 0);
+ Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
+ mov(index, Operand(hash, LSL, kSmiTagSize));
+}
+
+
+void MacroAssembler::IntegerToDoubleConversionWithVFP3(Register inReg,
+ Register outHighReg,
+ Register outLowReg) {
+ // ARMv7 VFP3 instructions to implement integer to double conversion.
+ mov(r7, Operand(inReg, ASR, kSmiTagSize));
+ vmov(s15, r7);
+ vcvt_f64_s32(d7, s15);
+ vmov(outLowReg, outHighReg, d7);
+}
+
+
+void MacroAssembler::ObjectToDoubleVFPRegister(Register object,
+ DwVfpRegister result,
+ Register scratch1,
+ Register scratch2,
+ Register heap_number_map,
+ SwVfpRegister scratch3,
+ Label* not_number,
+ ObjectToDoubleFlags flags) {
+ Label done;
+ if ((flags & OBJECT_NOT_SMI) == 0) {
+ Label not_smi;
+ JumpIfNotSmi(object, &not_smi);
+ // Remove smi tag and convert to double.
+ mov(scratch1, Operand(object, ASR, kSmiTagSize));
+ vmov(scratch3, scratch1);
+ vcvt_f64_s32(result, scratch3);
+ b(&done);
+ bind(&not_smi);
+ }
+ // Check for heap number and load double value from it.
+ ldr(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
+ sub(scratch2, object, Operand(kHeapObjectTag));
+ cmp(scratch1, heap_number_map);
+ b(ne, not_number);
+ if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
+ // If exponent is all ones the number is either a NaN or +/-Infinity.
+ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
+ Sbfx(scratch1,
+ scratch1,
+ HeapNumber::kExponentShift,
+ HeapNumber::kExponentBits);
+ // All-one value sign extend to -1.
+ cmp(scratch1, Operand(-1));
+ b(eq, not_number);
+ }
+ vldr(result, scratch2, HeapNumber::kValueOffset);
+ bind(&done);
+}
+
+
+void MacroAssembler::SmiToDoubleVFPRegister(Register smi,
+ DwVfpRegister value,
+ Register scratch1,
+ SwVfpRegister scratch2) {
+ mov(scratch1, Operand(smi, ASR, kSmiTagSize));
+ vmov(scratch2, scratch1);
+ vcvt_f64_s32(value, scratch2);
+}
+
+
+// Tries to get a signed int32 out of a double precision floating point heap
+// number. Rounds towards 0. Branch to 'not_int32' if the double is out of the
+// 32bits signed integer range.
+void MacroAssembler::ConvertToInt32(Register source,
+ Register dest,
+ Register scratch,
+ Register scratch2,
+ DwVfpRegister double_scratch,
+ Label *not_int32) {
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ sub(scratch, source, Operand(kHeapObjectTag));
+ vldr(double_scratch, scratch, HeapNumber::kValueOffset);
+ vcvt_s32_f64(double_scratch.low(), double_scratch);
+ vmov(dest, double_scratch.low());
+ // Signed vcvt instruction will saturate to the minimum (0x80000000) or
+ // maximun (0x7fffffff) signed 32bits integer when the double is out of
+ // range. When substracting one, the minimum signed integer becomes the
+ // maximun signed integer.
+ sub(scratch, dest, Operand(1));
+ cmp(scratch, Operand(LONG_MAX - 1));
+ // If equal then dest was LONG_MAX, if greater dest was LONG_MIN.
+ b(ge, not_int32);
+ } else {
+ // This code is faster for doubles that are in the ranges -0x7fffffff to
+ // -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds almost to
+ // the range of signed int32 values that are not Smis. Jumps to the label
+ // 'not_int32' if the double isn't in the range -0x80000000.0 to
+ // 0x80000000.0 (excluding the endpoints).
+ Label right_exponent, done;
+ // Get exponent word.
+ ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
+ // Get exponent alone in scratch2.
+ Ubfx(scratch2,
+ scratch,
+ HeapNumber::kExponentShift,
+ HeapNumber::kExponentBits);
+ // Load dest with zero. We use this either for the final shift or
+ // for the answer.
+ mov(dest, Operand(0, RelocInfo::NONE));
+ // Check whether the exponent matches a 32 bit signed int that is not a Smi.
+ // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is
+ // the exponent that we are fastest at and also the highest exponent we can
+ // handle here.
+ const uint32_t non_smi_exponent = HeapNumber::kExponentBias + 30;
+ // The non_smi_exponent, 0x41d, is too big for ARM's immediate field so we
+ // split it up to avoid a constant pool entry. You can't do that in general
+ // for cmp because of the overflow flag, but we know the exponent is in the
+ // range 0-2047 so there is no overflow.
+ int fudge_factor = 0x400;
+ sub(scratch2, scratch2, Operand(fudge_factor));
+ cmp(scratch2, Operand(non_smi_exponent - fudge_factor));
+ // If we have a match of the int32-but-not-Smi exponent then skip some
+ // logic.
+ b(eq, &right_exponent);
+ // If the exponent is higher than that then go to slow case. This catches
+ // numbers that don't fit in a signed int32, infinities and NaNs.
+ b(gt, not_int32);
+
+ // We know the exponent is smaller than 30 (biased). If it is less than
+ // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
+ // it rounds to zero.
+ const uint32_t zero_exponent = HeapNumber::kExponentBias + 0;
+ sub(scratch2, scratch2, Operand(zero_exponent - fudge_factor), SetCC);
+ // Dest already has a Smi zero.
+ b(lt, &done);
+
+ // We have an exponent between 0 and 30 in scratch2. Subtract from 30 to
+ // get how much to shift down.
+ rsb(dest, scratch2, Operand(30));
+
+ bind(&right_exponent);
+ // Get the top bits of the mantissa.
+ and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask));
+ // Put back the implicit 1.
+ orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift));
+ // Shift up the mantissa bits to take up the space the exponent used to
+ // take. We just orred in the implicit bit so that took care of one and
+ // we want to leave the sign bit 0 so we subtract 2 bits from the shift
+ // distance.
+ const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
+ mov(scratch2, Operand(scratch2, LSL, shift_distance));
+ // Put sign in zero flag.
+ tst(scratch, Operand(HeapNumber::kSignMask));
+ // Get the second half of the double. For some exponents we don't
+ // actually need this because the bits get shifted out again, but
+ // it's probably slower to test than just to do it.
+ ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
+ // Shift down 22 bits to get the last 10 bits.
+ orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance));
+ // Move down according to the exponent.
+ mov(dest, Operand(scratch, LSR, dest));
+ // Fix sign if sign bit was set.
+ rsb(dest, dest, Operand(0, RelocInfo::NONE), LeaveCC, ne);
+ bind(&done);
+ }
+}
+
+
+void MacroAssembler::EmitVFPTruncate(VFPRoundingMode rounding_mode,
+ SwVfpRegister result,
+ DwVfpRegister double_input,
+ Register scratch1,
+ Register scratch2,
+ CheckForInexactConversion check_inexact) {
+ ASSERT(CpuFeatures::IsSupported(VFP3));
+ CpuFeatures::Scope scope(VFP3);
+ Register prev_fpscr = scratch1;
+ Register scratch = scratch2;
+
+ int32_t check_inexact_conversion =
+ (check_inexact == kCheckForInexactConversion) ? kVFPInexactExceptionBit : 0;
+
+ // Set custom FPCSR:
+ // - Set rounding mode.
+ // - Clear vfp cumulative exception flags.
+ // - Make sure Flush-to-zero mode control bit is unset.
+ vmrs(prev_fpscr);
+ bic(scratch,
+ prev_fpscr,
+ Operand(kVFPExceptionMask |
+ check_inexact_conversion |
+ kVFPRoundingModeMask |
+ kVFPFlushToZeroMask));
+ // 'Round To Nearest' is encoded by 0b00 so no bits need to be set.
+ if (rounding_mode != kRoundToNearest) {
+ orr(scratch, scratch, Operand(rounding_mode));
+ }
+ vmsr(scratch);
+
+ // Convert the argument to an integer.
+ vcvt_s32_f64(result,
+ double_input,
+ (rounding_mode == kRoundToZero) ? kDefaultRoundToZero
+ : kFPSCRRounding);
+
+ // Retrieve FPSCR.
+ vmrs(scratch);
+ // Restore FPSCR.
+ vmsr(prev_fpscr);
+ // Check for vfp exceptions.
+ tst(scratch, Operand(kVFPExceptionMask | check_inexact_conversion));
+}
+
+
+void MacroAssembler::EmitOutOfInt32RangeTruncate(Register result,
+ Register input_high,
+ Register input_low,
+ Register scratch) {
+ Label done, normal_exponent, restore_sign;
+
+ // Extract the biased exponent in result.
+ Ubfx(result,
+ input_high,
+ HeapNumber::kExponentShift,
+ HeapNumber::kExponentBits);
+
+ // Check for Infinity and NaNs, which should return 0.
+ cmp(result, Operand(HeapNumber::kExponentMask));
+ mov(result, Operand(0), LeaveCC, eq);
+ b(eq, &done);
+
+ // Express exponent as delta to (number of mantissa bits + 31).
+ sub(result,
+ result,
+ Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31),
+ SetCC);
+
+ // If the delta is strictly positive, all bits would be shifted away,
+ // which means that we can return 0.
+ b(le, &normal_exponent);
+ mov(result, Operand(0));
+ b(&done);
+
+ bind(&normal_exponent);
+ const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
+ // Calculate shift.
+ add(scratch, result, Operand(kShiftBase + HeapNumber::kMantissaBits), SetCC);
+
+ // Save the sign.
+ Register sign = result;
+ result = no_reg;
+ and_(sign, input_high, Operand(HeapNumber::kSignMask));
+
+ // Set the implicit 1 before the mantissa part in input_high.
+ orr(input_high,
+ input_high,
+ Operand(1 << HeapNumber::kMantissaBitsInTopWord));
+ // Shift the mantissa bits to the correct position.
+ // We don't need to clear non-mantissa bits as they will be shifted away.
+ // If they weren't, it would mean that the answer is in the 32bit range.
+ mov(input_high, Operand(input_high, LSL, scratch));
+
+ // Replace the shifted bits with bits from the lower mantissa word.
+ Label pos_shift, shift_done;
+ rsb(scratch, scratch, Operand(32), SetCC);
+ b(&pos_shift, ge);
+
+ // Negate scratch.
+ rsb(scratch, scratch, Operand(0));
+ mov(input_low, Operand(input_low, LSL, scratch));
+ b(&shift_done);
+
+ bind(&pos_shift);
+ mov(input_low, Operand(input_low, LSR, scratch));
+
+ bind(&shift_done);
+ orr(input_high, input_high, Operand(input_low));
+ // Restore sign if necessary.
+ cmp(sign, Operand(0));
+ result = sign;
+ sign = no_reg;
+ rsb(result, input_high, Operand(0), LeaveCC, ne);
+ mov(result, input_high, LeaveCC, eq);
+ bind(&done);
+}
+
+
+void MacroAssembler::EmitECMATruncate(Register result,
+ DwVfpRegister double_input,
+ SwVfpRegister single_scratch,
+ Register scratch,
+ Register input_high,
+ Register input_low) {
+ CpuFeatures::Scope scope(VFP3);
+ ASSERT(!input_high.is(result));
+ ASSERT(!input_low.is(result));
+ ASSERT(!input_low.is(input_high));
+ ASSERT(!scratch.is(result) &&
+ !scratch.is(input_high) &&
+ !scratch.is(input_low));
+ ASSERT(!single_scratch.is(double_input.low()) &&
+ !single_scratch.is(double_input.high()));
+
+ Label done;
+
+ // Clear cumulative exception flags.
+ ClearFPSCRBits(kVFPExceptionMask, scratch);
+ // Try a conversion to a signed integer.
+ vcvt_s32_f64(single_scratch, double_input);
+ vmov(result, single_scratch);
+ // Retrieve he FPSCR.
+ vmrs(scratch);
+ // Check for overflow and NaNs.
+ tst(scratch, Operand(kVFPOverflowExceptionBit |
+ kVFPUnderflowExceptionBit |
+ kVFPInvalidOpExceptionBit));
+ // If we had no exceptions we are done.
+ b(eq, &done);
+
+ // Load the double value and perform a manual truncation.
+ vmov(input_low, input_high, double_input);
+ EmitOutOfInt32RangeTruncate(result,
+ input_high,
+ input_low,
+ scratch);
+ bind(&done);
+}
+
+
+void MacroAssembler::GetLeastBitsFromSmi(Register dst,
+ Register src,
+ int num_least_bits) {
+ if (CpuFeatures::IsSupported(ARMv7)) {
+ ubfx(dst, src, kSmiTagSize, num_least_bits);
+ } else {
+ mov(dst, Operand(src, ASR, kSmiTagSize));
+ and_(dst, dst, Operand((1 << num_least_bits) - 1));
+ }
+}
+
+
+void MacroAssembler::GetLeastBitsFromInt32(Register dst,
+ Register src,
+ int num_least_bits) {
+ and_(dst, src, Operand((1 << num_least_bits) - 1));
+}
+
+
+void MacroAssembler::CallRuntime(const Runtime::Function* f,
+ int num_arguments) {
+ // All parameters are on the stack. r0 has the return value after call.
+
+ // If the expected number of arguments of the runtime function is
+ // constant, we check that the actual number of arguments match the
+ // expectation.
+ if (f->nargs >= 0 && f->nargs != num_arguments) {
+ IllegalOperation(num_arguments);
+ return;
+ }
+
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ mov(r0, Operand(num_arguments));
+ mov(r1, Operand(ExternalReference(f, isolate())));
+ CEntryStub stub(1);
+ CallStub(&stub);
+}
+
+
+void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
+ CallRuntime(Runtime::FunctionForId(fid), num_arguments);
+}
+
+
+void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
+ const Runtime::Function* function = Runtime::FunctionForId(id);
+ mov(r0, Operand(function->nargs));
+ mov(r1, Operand(ExternalReference(function, isolate())));
+ CEntryStub stub(1);
+ stub.SaveDoubles();
+ CallStub(&stub);
+}
+
+
+void MacroAssembler::CallExternalReference(const ExternalReference& ext,
+ int num_arguments) {
+ mov(r0, Operand(num_arguments));
+ mov(r1, Operand(ext));
+
+ CEntryStub stub(1);
+ CallStub(&stub);
+}
+
+
+void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
+ int num_arguments,
+ int result_size) {
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ mov(r0, Operand(num_arguments));
+ JumpToExternalReference(ext);
+}
+
+
+MaybeObject* MacroAssembler::TryTailCallExternalReference(
+ const ExternalReference& ext, int num_arguments, int result_size) {
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ mov(r0, Operand(num_arguments));
+ return TryJumpToExternalReference(ext);
+}
+
+
+void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
+ int num_arguments,
+ int result_size) {
+ TailCallExternalReference(ExternalReference(fid, isolate()),
+ num_arguments,
+ result_size);
+}
+
+
+void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
+#if defined(__thumb__)
+ // Thumb mode builtin.
+ ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
+#endif
+ mov(r1, Operand(builtin));
+ CEntryStub stub(1);
+ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
+}
+
+
+MaybeObject* MacroAssembler::TryJumpToExternalReference(
+ const ExternalReference& builtin) {
+#if defined(__thumb__)
+ // Thumb mode builtin.
+ ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
+#endif
+ mov(r1, Operand(builtin));
+ CEntryStub stub(1);
+ return TryTailCallStub(&stub);
+}
+
+
+void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
+ InvokeJSFlags flags,
+ CallWrapper* call_wrapper) {
+ GetBuiltinEntry(r2, id);
+ if (flags == CALL_JS) {
+ if (call_wrapper != NULL) call_wrapper->BeforeCall(CallSize(r2));
+ Call(r2);
+ if (call_wrapper != NULL) call_wrapper->AfterCall();
+ } else {
+ ASSERT(flags == JUMP_JS);
+ Jump(r2);
+ }
+}
+
+
+void MacroAssembler::GetBuiltinFunction(Register target,
+ Builtins::JavaScript id) {
+ // Load the builtins object into target register.
+ ldr(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
+ // Load the JavaScript builtin function from the builtins object.
+ ldr(target, FieldMemOperand(target,
+ JSBuiltinsObject::OffsetOfFunctionWithId(id)));
+}
+
+
+void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
+ ASSERT(!target.is(r1));
+ GetBuiltinFunction(r1, id);
+ // Load the code entry point from the builtins object.
+ ldr(target, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
+}
+
+
+void MacroAssembler::SetCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ mov(scratch1, Operand(value));
+ mov(scratch2, Operand(ExternalReference(counter)));
+ str(scratch1, MemOperand(scratch2));
+ }
+}
+
+
+void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ ASSERT(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ mov(scratch2, Operand(ExternalReference(counter)));
+ ldr(scratch1, MemOperand(scratch2));
+ add(scratch1, scratch1, Operand(value));
+ str(scratch1, MemOperand(scratch2));
+ }
+}
+
+
+void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ ASSERT(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ mov(scratch2, Operand(ExternalReference(counter)));
+ ldr(scratch1, MemOperand(scratch2));
+ sub(scratch1, scratch1, Operand(value));
+ str(scratch1, MemOperand(scratch2));
+ }
+}
+
+
+void MacroAssembler::Assert(Condition cond, const char* msg) {
+ if (emit_debug_code())
+ Check(cond, msg);
+}
+
+
+void MacroAssembler::AssertRegisterIsRoot(Register reg,
+ Heap::RootListIndex index) {
+ if (emit_debug_code()) {
+ LoadRoot(ip, index);
+ cmp(reg, ip);
+ Check(eq, "Register did not match expected root");
+ }
+}
+
+
+void MacroAssembler::AssertFastElements(Register elements) {
+ if (emit_debug_code()) {
+ ASSERT(!elements.is(ip));
+ Label ok;
+ push(elements);
+ ldr(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
+ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
+ cmp(elements, ip);
+ b(eq, &ok);
+ LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
+ cmp(elements, ip);
+ b(eq, &ok);
+ Abort("JSObject with fast elements map has slow elements");
+ bind(&ok);
+ pop(elements);
+ }
+}
+
+
+void MacroAssembler::Check(Condition cond, const char* msg) {
+ Label L;
+ b(cond, &L);
+ Abort(msg);
+ // will not return here
+ bind(&L);
+}
+
+
+void MacroAssembler::Abort(const char* msg) {
+ Label abort_start;
+ bind(&abort_start);
+ // We want to pass the msg string like a smi to avoid GC
+ // problems, however msg is not guaranteed to be aligned
+ // properly. Instead, we pass an aligned pointer that is
+ // a proper v8 smi, but also pass the alignment difference
+ // from the real pointer as a smi.
+ intptr_t p1 = reinterpret_cast<intptr_t>(msg);
+ intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
+ ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
+#ifdef DEBUG
+ if (msg != NULL) {
+ RecordComment("Abort message: ");
+ RecordComment(msg);
+ }
+#endif
+ // Disable stub call restrictions to always allow calls to abort.
+ AllowStubCallsScope allow_scope(this, true);
+
+ mov(r0, Operand(p0));
+ push(r0);
+ mov(r0, Operand(Smi::FromInt(p1 - p0)));
+ push(r0);
+ CallRuntime(Runtime::kAbort, 2);
+ // will not return here
+ if (is_const_pool_blocked()) {
+ // If the calling code cares about the exact number of
+ // instructions generated, we insert padding here to keep the size
+ // of the Abort macro constant.
+ static const int kExpectedAbortInstructions = 10;
+ int abort_instructions = InstructionsGeneratedSince(&abort_start);
+ ASSERT(abort_instructions <= kExpectedAbortInstructions);
+ while (abort_instructions++ < kExpectedAbortInstructions) {
+ nop();
+ }
+ }
+}
+
+
+void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
+ if (context_chain_length > 0) {
+ // Move up the chain of contexts to the context containing the slot.
+ ldr(dst, MemOperand(cp, Context::SlotOffset(Context::CLOSURE_INDEX)));
+ // Load the function context (which is the incoming, outer context).
+ ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset));
+ for (int i = 1; i < context_chain_length; i++) {
+ ldr(dst, MemOperand(dst, Context::SlotOffset(Context::CLOSURE_INDEX)));
+ ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset));
+ }
+ } else {
+ // Slot is in the current function context. Move it into the
+ // destination register in case we store into it (the write barrier
+ // cannot be allowed to destroy the context in esi).
+ mov(dst, cp);
+ }
+
+ // We should not have found a 'with' context by walking the context chain
+ // (i.e., the static scope chain and runtime context chain do not agree).
+ // A variable occurring in such a scope should have slot type LOOKUP and
+ // not CONTEXT.
+ if (emit_debug_code()) {
+ ldr(ip, MemOperand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX)));
+ cmp(dst, ip);
+ Check(eq, "Yo dawg, I heard you liked function contexts "
+ "so I put function contexts in all your contexts");
+ }
+}
+
+
+void MacroAssembler::LoadGlobalFunction(int index, Register function) {
+ // Load the global or builtins object from the current context.
+ ldr(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ // Load the global context from the global or builtins object.
+ ldr(function, FieldMemOperand(function,
+ GlobalObject::kGlobalContextOffset));
+ // Load the function from the global context.
+ ldr(function, MemOperand(function, Context::SlotOffset(index)));
+}
+
+
+void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
+ Register map,
+ Register scratch) {
+ // Load the initial map. The global functions all have initial maps.
+ ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+ if (emit_debug_code()) {
+ Label ok, fail;
+ CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, false);
+ b(&ok);
+ bind(&fail);
+ Abort("Global functions must have initial map");
+ bind(&ok);
+ }
+}
+
+
+void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
+ Register reg,
+ Register scratch,
+ Label* not_power_of_two_or_zero) {
+ sub(scratch, reg, Operand(1), SetCC);
+ b(mi, not_power_of_two_or_zero);
+ tst(scratch, reg);
+ b(ne, not_power_of_two_or_zero);
+}
+
+
+void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(
+ Register reg,
+ Register scratch,
+ Label* zero_and_neg,
+ Label* not_power_of_two) {
+ sub(scratch, reg, Operand(1), SetCC);
+ b(mi, zero_and_neg);
+ tst(scratch, reg);
+ b(ne, not_power_of_two);
+}
+
+
+void MacroAssembler::JumpIfNotBothSmi(Register reg1,
+ Register reg2,
+ Label* on_not_both_smi) {
+ STATIC_ASSERT(kSmiTag == 0);
+ tst(reg1, Operand(kSmiTagMask));
+ tst(reg2, Operand(kSmiTagMask), eq);
+ b(ne, on_not_both_smi);
+}
+
+
+void MacroAssembler::JumpIfEitherSmi(Register reg1,
+ Register reg2,
+ Label* on_either_smi) {
+ STATIC_ASSERT(kSmiTag == 0);
+ tst(reg1, Operand(kSmiTagMask));
+ tst(reg2, Operand(kSmiTagMask), ne);
+ b(eq, on_either_smi);
+}
+
+
+void MacroAssembler::AbortIfSmi(Register object) {
+ STATIC_ASSERT(kSmiTag == 0);
+ tst(object, Operand(kSmiTagMask));
+ Assert(ne, "Operand is a smi");
+}
+
+
+void MacroAssembler::AbortIfNotSmi(Register object) {
+ STATIC_ASSERT(kSmiTag == 0);
+ tst(object, Operand(kSmiTagMask));
+ Assert(eq, "Operand is not smi");
+}
+
+
+void MacroAssembler::AbortIfNotString(Register object) {
+ STATIC_ASSERT(kSmiTag == 0);
+ tst(object, Operand(kSmiTagMask));
+ Assert(ne, "Operand is not a string");
+ push(object);
+ ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
+ CompareInstanceType(object, object, FIRST_NONSTRING_TYPE);
+ pop(object);
+ Assert(lo, "Operand is not a string");
+}
+
+
+
+void MacroAssembler::AbortIfNotRootValue(Register src,
+ Heap::RootListIndex root_value_index,
+ const char* message) {
+ CompareRoot(src, root_value_index);
+ Assert(eq, message);
+}
+
+
+void MacroAssembler::JumpIfNotHeapNumber(Register object,
+ Register heap_number_map,
+ Register scratch,
+ Label* on_not_heap_number) {
+ ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ cmp(scratch, heap_number_map);
+ b(ne, on_not_heap_number);
+}
+
+
+void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
+ Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure) {
+ // Test that both first and second are sequential ASCII strings.
+ // Assume that they are non-smis.
+ ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
+ ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
+ ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+ ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
+
+ JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1,
+ scratch2,
+ scratch1,
+ scratch2,
+ failure);
+}
+
+void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure) {
+ // Check that neither is a smi.
+ STATIC_ASSERT(kSmiTag == 0);
+ and_(scratch1, first, Operand(second));
+ tst(scratch1, Operand(kSmiTagMask));
+ b(eq, failure);
+ JumpIfNonSmisNotBothSequentialAsciiStrings(first,
+ second,
+ scratch1,
+ scratch2,
+ failure);
+}
+
+
+// Allocates a heap number or jumps to the need_gc label if the young space
+// is full and a scavenge is needed.
+void MacroAssembler::AllocateHeapNumber(Register result,
+ Register scratch1,
+ Register scratch2,
+ Register heap_number_map,
+ Label* gc_required) {
+ // Allocate an object in the heap for the heap number and tag it as a heap
+ // object.
+ AllocateInNewSpace(HeapNumber::kSize,
+ result,
+ scratch1,
+ scratch2,
+ gc_required,
+ TAG_OBJECT);
+
+ // Store heap number map in the allocated object.
+ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
+}
+
+
+void MacroAssembler::AllocateHeapNumberWithValue(Register result,
+ DwVfpRegister value,
+ Register scratch1,
+ Register scratch2,
+ Register heap_number_map,
+ Label* gc_required) {
+ AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
+ sub(scratch1, result, Operand(kHeapObjectTag));
+ vstr(value, scratch1, HeapNumber::kValueOffset);
+}
+
+
+// Copies a fixed number of fields of heap objects from src to dst.
+void MacroAssembler::CopyFields(Register dst,
+ Register src,
+ RegList temps,
+ int field_count) {
+ // At least one bit set in the first 15 registers.
+ ASSERT((temps & ((1 << 15) - 1)) != 0);
+ ASSERT((temps & dst.bit()) == 0);
+ ASSERT((temps & src.bit()) == 0);
+ // Primitive implementation using only one temporary register.
+
+ Register tmp = no_reg;
+ // Find a temp register in temps list.
+ for (int i = 0; i < 15; i++) {
+ if ((temps & (1 << i)) != 0) {
+ tmp.set_code(i);
+ break;
+ }
+ }
+ ASSERT(!tmp.is(no_reg));
+
+ for (int i = 0; i < field_count; i++) {
+ ldr(tmp, FieldMemOperand(src, i * kPointerSize));
+ str(tmp, FieldMemOperand(dst, i * kPointerSize));
+ }
+}
+
+
+void MacroAssembler::CopyBytes(Register src,
+ Register dst,
+ Register length,
+ Register scratch) {
+ Label align_loop, align_loop_1, word_loop, byte_loop, byte_loop_1, done;
+
+ // Align src before copying in word size chunks.
+ bind(&align_loop);
+ cmp(length, Operand(0));
+ b(eq, &done);
+ bind(&align_loop_1);
+ tst(src, Operand(kPointerSize - 1));
+ b(eq, &word_loop);
+ ldrb(scratch, MemOperand(src, 1, PostIndex));
+ strb(scratch, MemOperand(dst, 1, PostIndex));
+ sub(length, length, Operand(1), SetCC);
+ b(ne, &byte_loop_1);
+
+ // Copy bytes in word size chunks.
+ bind(&word_loop);
+ if (emit_debug_code()) {
+ tst(src, Operand(kPointerSize - 1));
+ Assert(eq, "Expecting alignment for CopyBytes");
+ }
+ cmp(length, Operand(kPointerSize));
+ b(lt, &byte_loop);
+ ldr(scratch, MemOperand(src, kPointerSize, PostIndex));
+#if CAN_USE_UNALIGNED_ACCESSES
+ str(scratch, MemOperand(dst, kPointerSize, PostIndex));
+#else
+ strb(scratch, MemOperand(dst, 1, PostIndex));
+ mov(scratch, Operand(scratch, LSR, 8));
+ strb(scratch, MemOperand(dst, 1, PostIndex));
+ mov(scratch, Operand(scratch, LSR, 8));
+ strb(scratch, MemOperand(dst, 1, PostIndex));
+ mov(scratch, Operand(scratch, LSR, 8));
+ strb(scratch, MemOperand(dst, 1, PostIndex));
+#endif
+ sub(length, length, Operand(kPointerSize));
+ b(&word_loop);
+
+ // Copy the last bytes if any left.
+ bind(&byte_loop);
+ cmp(length, Operand(0));
+ b(eq, &done);
+ bind(&byte_loop_1);
+ ldrb(scratch, MemOperand(src, 1, PostIndex));
+ strb(scratch, MemOperand(dst, 1, PostIndex));
+ sub(length, length, Operand(1), SetCC);
+ b(ne, &byte_loop_1);
+ bind(&done);
+}
+
+
+void MacroAssembler::CountLeadingZeros(Register zeros, // Answer.
+ Register source, // Input.
+ Register scratch) {
+ ASSERT(!zeros.is(source) || !source.is(scratch));
+ ASSERT(!zeros.is(scratch));
+ ASSERT(!scratch.is(ip));
+ ASSERT(!source.is(ip));
+ ASSERT(!zeros.is(ip));
+#ifdef CAN_USE_ARMV5_INSTRUCTIONS
+ clz(zeros, source); // This instruction is only supported after ARM5.
+#else
+ mov(zeros, Operand(0, RelocInfo::NONE));
+ Move(scratch, source);
+ // Top 16.
+ tst(scratch, Operand(0xffff0000));
+ add(zeros, zeros, Operand(16), LeaveCC, eq);
+ mov(scratch, Operand(scratch, LSL, 16), LeaveCC, eq);
+ // Top 8.
+ tst(scratch, Operand(0xff000000));
+ add(zeros, zeros, Operand(8), LeaveCC, eq);
+ mov(scratch, Operand(scratch, LSL, 8), LeaveCC, eq);
+ // Top 4.
+ tst(scratch, Operand(0xf0000000));
+ add(zeros, zeros, Operand(4), LeaveCC, eq);
+ mov(scratch, Operand(scratch, LSL, 4), LeaveCC, eq);
+ // Top 2.
+ tst(scratch, Operand(0xc0000000));
+ add(zeros, zeros, Operand(2), LeaveCC, eq);
+ mov(scratch, Operand(scratch, LSL, 2), LeaveCC, eq);
+ // Top bit.
+ tst(scratch, Operand(0x80000000u));
+ add(zeros, zeros, Operand(1), LeaveCC, eq);
+#endif
+}
+
+
+void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
+ Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure) {
+ int kFlatAsciiStringMask =
+ kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
+ int kFlatAsciiStringTag = ASCII_STRING_TYPE;
+ and_(scratch1, first, Operand(kFlatAsciiStringMask));
+ and_(scratch2, second, Operand(kFlatAsciiStringMask));
+ cmp(scratch1, Operand(kFlatAsciiStringTag));
+ // Ignore second test if first test failed.
+ cmp(scratch2, Operand(kFlatAsciiStringTag), eq);
+ b(ne, failure);
+}
+
+
+void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
+ Register scratch,
+ Label* failure) {
+ int kFlatAsciiStringMask =
+ kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
+ int kFlatAsciiStringTag = ASCII_STRING_TYPE;
+ and_(scratch, type, Operand(kFlatAsciiStringMask));
+ cmp(scratch, Operand(kFlatAsciiStringTag));
+ b(ne, failure);
+}
+
+static const int kRegisterPassedArguments = 4;
+
+void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
+ int frame_alignment = ActivationFrameAlignment();
+
+ // Up to four simple arguments are passed in registers r0..r3.
+ int stack_passed_arguments = (num_arguments <= kRegisterPassedArguments) ?
+ 0 : num_arguments - kRegisterPassedArguments;
+ if (frame_alignment > kPointerSize) {
+ // Make stack end at alignment and make room for num_arguments - 4 words
+ // and the original value of sp.
+ mov(scratch, sp);
+ sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
+ ASSERT(IsPowerOf2(frame_alignment));
+ and_(sp, sp, Operand(-frame_alignment));
+ str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
+ } else {
+ sub(sp, sp, Operand(stack_passed_arguments * kPointerSize));
+ }
+}
+
+
+void MacroAssembler::CallCFunction(ExternalReference function,
+ int num_arguments) {
+ CallCFunctionHelper(no_reg, function, ip, num_arguments);
+}
+
+void MacroAssembler::CallCFunction(Register function,
+ Register scratch,
+ int num_arguments) {
+ CallCFunctionHelper(function,
+ ExternalReference::the_hole_value_location(isolate()),
+ scratch,
+ num_arguments);
+}
+
+
+void MacroAssembler::CallCFunctionHelper(Register function,
+ ExternalReference function_reference,
+ Register scratch,
+ int num_arguments) {
+ // Make sure that the stack is aligned before calling a C function unless
+ // running in the simulator. The simulator has its own alignment check which
+ // provides more information.
+#if defined(V8_HOST_ARCH_ARM)
+ if (emit_debug_code()) {
+ int frame_alignment = OS::ActivationFrameAlignment();
+ int frame_alignment_mask = frame_alignment - 1;
+ if (frame_alignment > kPointerSize) {
+ ASSERT(IsPowerOf2(frame_alignment));
+ Label alignment_as_expected;
+ tst(sp, Operand(frame_alignment_mask));
+ b(eq, &alignment_as_expected);
+ // Don't use Check here, as it will call Runtime_Abort possibly
+ // re-entering here.
+ stop("Unexpected alignment");
+ bind(&alignment_as_expected);
+ }
+ }
+#endif
+
+ // Just call directly. The function called cannot cause a GC, or
+ // allow preemption, so the return address in the link register
+ // stays correct.
+ if (function.is(no_reg)) {
+ mov(scratch, Operand(function_reference));
+ function = scratch;
+ }
+ Call(function);
+ int stack_passed_arguments = (num_arguments <= kRegisterPassedArguments) ?
+ 0 : num_arguments - kRegisterPassedArguments;
+ if (OS::ActivationFrameAlignment() > kPointerSize) {
+ ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
+ } else {
+ add(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
+ }
+}
+
+
+void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
+ Register result) {
+ const uint32_t kLdrOffsetMask = (1 << 12) - 1;
+ const int32_t kPCRegOffset = 2 * kPointerSize;
+ ldr(result, MemOperand(ldr_location));
+ if (emit_debug_code()) {
+ // Check that the instruction is a ldr reg, [pc + offset] .
+ and_(result, result, Operand(kLdrPCPattern));
+ cmp(result, Operand(kLdrPCPattern));
+ Check(eq, "The instruction to patch should be a load from pc.");
+ // Result was clobbered. Restore it.
+ ldr(result, MemOperand(ldr_location));
+ }
+ // Get the address of the constant.
+ and_(result, result, Operand(kLdrOffsetMask));
+ add(result, ldr_location, Operand(result));
+ add(result, result, Operand(kPCRegOffset));
+}
+
+
+CodePatcher::CodePatcher(byte* address, int instructions)
+ : address_(address),
+ instructions_(instructions),
+ size_(instructions * Assembler::kInstrSize),
+ masm_(Isolate::Current(), address, size_ + Assembler::kGap) {
+ // Create a new macro assembler pointing to the address of the code to patch.
+ // The size is adjusted with kGap on order for the assembler to generate size
+ // bytes of instructions without failing with buffer size constraints.
+ ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+CodePatcher::~CodePatcher() {
+ // Indicate that code has changed.
+ CPU::FlushICache(address_, size_);
+
+ // Check that the code was patched as expected.
+ ASSERT(masm_.pc_ == address_ + size_);
+ ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+void CodePatcher::Emit(Instr instr) {
+ masm()->emit(instr);
+}
+
+
+void CodePatcher::Emit(Address addr) {
+ masm()->emit(reinterpret_cast<Instr>(addr));
+}
+
+
+void CodePatcher::EmitCondition(Condition cond) {
+ Instr instr = Assembler::instr_at(masm_.pc_);
+ instr = (instr & ~kCondMask) | cond;
+ masm_.emit(instr);
+}
+
+
+} } // namespace v8::internal
+
+#endif // V8_TARGET_ARCH_ARM