summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/arm/full-codegen-arm.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/arm/full-codegen-arm.cc')
-rw-r--r--src/3rdparty/v8/src/arm/full-codegen-arm.cc4374
1 files changed, 4374 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/arm/full-codegen-arm.cc b/src/3rdparty/v8/src/arm/full-codegen-arm.cc
new file mode 100644
index 0000000..3267951
--- /dev/null
+++ b/src/3rdparty/v8/src/arm/full-codegen-arm.cc
@@ -0,0 +1,4374 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#if defined(V8_TARGET_ARCH_ARM)
+
+#include "code-stubs.h"
+#include "codegen-inl.h"
+#include "compiler.h"
+#include "debug.h"
+#include "full-codegen.h"
+#include "parser.h"
+#include "scopes.h"
+#include "stub-cache.h"
+
+#include "arm/code-stubs-arm.h"
+
+namespace v8 {
+namespace internal {
+
+#define __ ACCESS_MASM(masm_)
+
+
+// A patch site is a location in the code which it is possible to patch. This
+// class has a number of methods to emit the code which is patchable and the
+// method EmitPatchInfo to record a marker back to the patchable code. This
+// marker is a cmp rx, #yyy instruction, and x * 0x00000fff + yyy (raw 12 bit
+// immediate value is used) is the delta from the pc to the first instruction of
+// the patchable code.
+class JumpPatchSite BASE_EMBEDDED {
+ public:
+ explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
+#ifdef DEBUG
+ info_emitted_ = false;
+#endif
+ }
+
+ ~JumpPatchSite() {
+ ASSERT(patch_site_.is_bound() == info_emitted_);
+ }
+
+ // When initially emitting this ensure that a jump is always generated to skip
+ // the inlined smi code.
+ void EmitJumpIfNotSmi(Register reg, Label* target) {
+ ASSERT(!patch_site_.is_bound() && !info_emitted_);
+ __ bind(&patch_site_);
+ __ cmp(reg, Operand(reg));
+ // Don't use b(al, ...) as that might emit the constant pool right after the
+ // branch. After patching when the branch is no longer unconditional
+ // execution can continue into the constant pool.
+ __ b(eq, target); // Always taken before patched.
+ }
+
+ // When initially emitting this ensure that a jump is never generated to skip
+ // the inlined smi code.
+ void EmitJumpIfSmi(Register reg, Label* target) {
+ ASSERT(!patch_site_.is_bound() && !info_emitted_);
+ __ bind(&patch_site_);
+ __ cmp(reg, Operand(reg));
+ __ b(ne, target); // Never taken before patched.
+ }
+
+ void EmitPatchInfo() {
+ int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
+ Register reg;
+ reg.set_code(delta_to_patch_site / kOff12Mask);
+ __ cmp_raw_immediate(reg, delta_to_patch_site % kOff12Mask);
+#ifdef DEBUG
+ info_emitted_ = true;
+#endif
+ }
+
+ bool is_bound() const { return patch_site_.is_bound(); }
+
+ private:
+ MacroAssembler* masm_;
+ Label patch_site_;
+#ifdef DEBUG
+ bool info_emitted_;
+#endif
+};
+
+
+// Generate code for a JS function. On entry to the function the receiver
+// and arguments have been pushed on the stack left to right. The actual
+// argument count matches the formal parameter count expected by the
+// function.
+//
+// The live registers are:
+// o r1: the JS function object being called (ie, ourselves)
+// o cp: our context
+// o fp: our caller's frame pointer
+// o sp: stack pointer
+// o lr: return address
+//
+// The function builds a JS frame. Please see JavaScriptFrameConstants in
+// frames-arm.h for its layout.
+void FullCodeGenerator::Generate(CompilationInfo* info) {
+ ASSERT(info_ == NULL);
+ info_ = info;
+ SetFunctionPosition(function());
+ Comment cmnt(masm_, "[ function compiled by full code generator");
+
+#ifdef DEBUG
+ if (strlen(FLAG_stop_at) > 0 &&
+ info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
+ __ stop("stop-at");
+ }
+#endif
+
+ int locals_count = scope()->num_stack_slots();
+
+ __ Push(lr, fp, cp, r1);
+ if (locals_count > 0) {
+ // Load undefined value here, so the value is ready for the loop
+ // below.
+ __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+ }
+ // Adjust fp to point to caller's fp.
+ __ add(fp, sp, Operand(2 * kPointerSize));
+
+ { Comment cmnt(masm_, "[ Allocate locals");
+ for (int i = 0; i < locals_count; i++) {
+ __ push(ip);
+ }
+ }
+
+ bool function_in_register = true;
+
+ // Possibly allocate a local context.
+ int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+ if (heap_slots > 0) {
+ Comment cmnt(masm_, "[ Allocate local context");
+ // Argument to NewContext is the function, which is in r1.
+ __ push(r1);
+ if (heap_slots <= FastNewContextStub::kMaximumSlots) {
+ FastNewContextStub stub(heap_slots);
+ __ CallStub(&stub);
+ } else {
+ __ CallRuntime(Runtime::kNewContext, 1);
+ }
+ function_in_register = false;
+ // Context is returned in both r0 and cp. It replaces the context
+ // passed to us. It's saved in the stack and kept live in cp.
+ __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ // Copy any necessary parameters into the context.
+ int num_parameters = scope()->num_parameters();
+ for (int i = 0; i < num_parameters; i++) {
+ Slot* slot = scope()->parameter(i)->AsSlot();
+ if (slot != NULL && slot->type() == Slot::CONTEXT) {
+ int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+ (num_parameters - 1 - i) * kPointerSize;
+ // Load parameter from stack.
+ __ ldr(r0, MemOperand(fp, parameter_offset));
+ // Store it in the context.
+ __ mov(r1, Operand(Context::SlotOffset(slot->index())));
+ __ str(r0, MemOperand(cp, r1));
+ // Update the write barrier. This clobbers all involved
+ // registers, so we have to use two more registers to avoid
+ // clobbering cp.
+ __ mov(r2, Operand(cp));
+ __ RecordWrite(r2, Operand(r1), r3, r0);
+ }
+ }
+ }
+
+ Variable* arguments = scope()->arguments();
+ if (arguments != NULL) {
+ // Function uses arguments object.
+ Comment cmnt(masm_, "[ Allocate arguments object");
+ if (!function_in_register) {
+ // Load this again, if it's used by the local context below.
+ __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ } else {
+ __ mov(r3, r1);
+ }
+ // Receiver is just before the parameters on the caller's stack.
+ int offset = scope()->num_parameters() * kPointerSize;
+ __ add(r2, fp,
+ Operand(StandardFrameConstants::kCallerSPOffset + offset));
+ __ mov(r1, Operand(Smi::FromInt(scope()->num_parameters())));
+ __ Push(r3, r2, r1);
+
+ // Arguments to ArgumentsAccessStub:
+ // function, receiver address, parameter count.
+ // The stub will rewrite receiever and parameter count if the previous
+ // stack frame was an arguments adapter frame.
+ ArgumentsAccessStub stub(
+ is_strict_mode() ? ArgumentsAccessStub::NEW_STRICT
+ : ArgumentsAccessStub::NEW_NON_STRICT);
+ __ CallStub(&stub);
+
+ Variable* arguments_shadow = scope()->arguments_shadow();
+ if (arguments_shadow != NULL) {
+ // Duplicate the value; move-to-slot operation might clobber registers.
+ __ mov(r3, r0);
+ Move(arguments_shadow->AsSlot(), r3, r1, r2);
+ }
+ Move(arguments->AsSlot(), r0, r1, r2);
+ }
+
+ if (FLAG_trace) {
+ __ CallRuntime(Runtime::kTraceEnter, 0);
+ }
+
+ // Visit the declarations and body unless there is an illegal
+ // redeclaration.
+ if (scope()->HasIllegalRedeclaration()) {
+ Comment cmnt(masm_, "[ Declarations");
+ scope()->VisitIllegalRedeclaration(this);
+
+ } else {
+ { Comment cmnt(masm_, "[ Declarations");
+ // For named function expressions, declare the function name as a
+ // constant.
+ if (scope()->is_function_scope() && scope()->function() != NULL) {
+ EmitDeclaration(scope()->function(), Variable::CONST, NULL);
+ }
+ VisitDeclarations(scope()->declarations());
+ }
+
+ { Comment cmnt(masm_, "[ Stack check");
+ PrepareForBailout(info->function(), NO_REGISTERS);
+ Label ok;
+ __ LoadRoot(ip, Heap::kStackLimitRootIndex);
+ __ cmp(sp, Operand(ip));
+ __ b(hs, &ok);
+ StackCheckStub stub;
+ __ CallStub(&stub);
+ __ bind(&ok);
+ }
+
+ { Comment cmnt(masm_, "[ Body");
+ ASSERT(loop_depth() == 0);
+ VisitStatements(function()->body());
+ ASSERT(loop_depth() == 0);
+ }
+ }
+
+ // Always emit a 'return undefined' in case control fell off the end of
+ // the body.
+ { Comment cmnt(masm_, "[ return <undefined>;");
+ __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
+ }
+ EmitReturnSequence();
+
+ // Force emit the constant pool, so it doesn't get emitted in the middle
+ // of the stack check table.
+ masm()->CheckConstPool(true, false);
+}
+
+
+void FullCodeGenerator::ClearAccumulator() {
+ __ mov(r0, Operand(Smi::FromInt(0)));
+}
+
+
+void FullCodeGenerator::EmitStackCheck(IterationStatement* stmt) {
+ Comment cmnt(masm_, "[ Stack check");
+ Label ok;
+ __ LoadRoot(ip, Heap::kStackLimitRootIndex);
+ __ cmp(sp, Operand(ip));
+ __ b(hs, &ok);
+ StackCheckStub stub;
+ __ CallStub(&stub);
+ // Record a mapping of this PC offset to the OSR id. This is used to find
+ // the AST id from the unoptimized code in order to use it as a key into
+ // the deoptimization input data found in the optimized code.
+ RecordStackCheck(stmt->OsrEntryId());
+
+ __ bind(&ok);
+ PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
+ // Record a mapping of the OSR id to this PC. This is used if the OSR
+ // entry becomes the target of a bailout. We don't expect it to be, but
+ // we want it to work if it is.
+ PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
+}
+
+
+void FullCodeGenerator::EmitReturnSequence() {
+ Comment cmnt(masm_, "[ Return sequence");
+ if (return_label_.is_bound()) {
+ __ b(&return_label_);
+ } else {
+ __ bind(&return_label_);
+ if (FLAG_trace) {
+ // Push the return value on the stack as the parameter.
+ // Runtime::TraceExit returns its parameter in r0.
+ __ push(r0);
+ __ CallRuntime(Runtime::kTraceExit, 1);
+ }
+
+#ifdef DEBUG
+ // Add a label for checking the size of the code used for returning.
+ Label check_exit_codesize;
+ masm_->bind(&check_exit_codesize);
+#endif
+ // Make sure that the constant pool is not emitted inside of the return
+ // sequence.
+ { Assembler::BlockConstPoolScope block_const_pool(masm_);
+ // Here we use masm_-> instead of the __ macro to avoid the code coverage
+ // tool from instrumenting as we rely on the code size here.
+ int32_t sp_delta = (scope()->num_parameters() + 1) * kPointerSize;
+ CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
+ __ RecordJSReturn();
+ masm_->mov(sp, fp);
+ masm_->ldm(ia_w, sp, fp.bit() | lr.bit());
+ masm_->add(sp, sp, Operand(sp_delta));
+ masm_->Jump(lr);
+ }
+
+#ifdef DEBUG
+ // Check that the size of the code used for returning is large enough
+ // for the debugger's requirements.
+ ASSERT(Assembler::kJSReturnSequenceInstructions <=
+ masm_->InstructionsGeneratedSince(&check_exit_codesize));
+#endif
+ }
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Slot* slot) const {
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(Slot* slot) const {
+ codegen()->Move(result_register(), slot);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(Slot* slot) const {
+ codegen()->Move(result_register(), slot);
+ __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Slot* slot) const {
+ // For simplicity we always test the accumulator register.
+ codegen()->Move(result_register(), slot);
+ codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL);
+ codegen()->DoTest(true_label_, false_label_, fall_through_);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+ Heap::RootListIndex index) const {
+ __ LoadRoot(result_register(), index);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(
+ Heap::RootListIndex index) const {
+ __ LoadRoot(result_register(), index);
+ __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
+ codegen()->PrepareForBailoutBeforeSplit(TOS_REG,
+ true,
+ true_label_,
+ false_label_);
+ if (index == Heap::kUndefinedValueRootIndex ||
+ index == Heap::kNullValueRootIndex ||
+ index == Heap::kFalseValueRootIndex) {
+ if (false_label_ != fall_through_) __ b(false_label_);
+ } else if (index == Heap::kTrueValueRootIndex) {
+ if (true_label_ != fall_through_) __ b(true_label_);
+ } else {
+ __ LoadRoot(result_register(), index);
+ codegen()->DoTest(true_label_, false_label_, fall_through_);
+ }
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+ Handle<Object> lit) const {
+ __ mov(result_register(), Operand(lit));
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
+ // Immediates cannot be pushed directly.
+ __ mov(result_register(), Operand(lit));
+ __ push(result_register());
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
+ codegen()->PrepareForBailoutBeforeSplit(TOS_REG,
+ true,
+ true_label_,
+ false_label_);
+ ASSERT(!lit->IsUndetectableObject()); // There are no undetectable literals.
+ if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
+ if (false_label_ != fall_through_) __ b(false_label_);
+ } else if (lit->IsTrue() || lit->IsJSObject()) {
+ if (true_label_ != fall_through_) __ b(true_label_);
+ } else if (lit->IsString()) {
+ if (String::cast(*lit)->length() == 0) {
+ if (false_label_ != fall_through_) __ b(false_label_);
+ __ b(false_label_);
+ } else {
+ if (true_label_ != fall_through_) __ b(true_label_);
+ }
+ } else if (lit->IsSmi()) {
+ if (Smi::cast(*lit)->value() == 0) {
+ if (false_label_ != fall_through_) __ b(false_label_);
+ } else {
+ if (true_label_ != fall_through_) __ b(true_label_);
+ }
+ } else {
+ // For simplicity we always test the accumulator register.
+ __ mov(result_register(), Operand(lit));
+ codegen()->DoTest(true_label_, false_label_, fall_through_);
+ }
+}
+
+
+void FullCodeGenerator::EffectContext::DropAndPlug(int count,
+ Register reg) const {
+ ASSERT(count > 0);
+ __ Drop(count);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
+ int count,
+ Register reg) const {
+ ASSERT(count > 0);
+ __ Drop(count);
+ __ Move(result_register(), reg);
+}
+
+
+void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
+ Register reg) const {
+ ASSERT(count > 0);
+ if (count > 1) __ Drop(count - 1);
+ __ str(reg, MemOperand(sp, 0));
+}
+
+
+void FullCodeGenerator::TestContext::DropAndPlug(int count,
+ Register reg) const {
+ ASSERT(count > 0);
+ // For simplicity we always test the accumulator register.
+ __ Drop(count);
+ __ Move(result_register(), reg);
+ codegen()->PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL);
+ codegen()->DoTest(true_label_, false_label_, fall_through_);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
+ Label* materialize_false) const {
+ ASSERT(materialize_true == materialize_false);
+ __ bind(materialize_true);
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(
+ Label* materialize_true,
+ Label* materialize_false) const {
+ Label done;
+ __ bind(materialize_true);
+ __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
+ __ jmp(&done);
+ __ bind(materialize_false);
+ __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
+ __ bind(&done);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(
+ Label* materialize_true,
+ Label* materialize_false) const {
+ Label done;
+ __ bind(materialize_true);
+ __ LoadRoot(ip, Heap::kTrueValueRootIndex);
+ __ push(ip);
+ __ jmp(&done);
+ __ bind(materialize_false);
+ __ LoadRoot(ip, Heap::kFalseValueRootIndex);
+ __ push(ip);
+ __ bind(&done);
+}
+
+
+void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
+ Label* materialize_false) const {
+ ASSERT(materialize_true == true_label_);
+ ASSERT(materialize_false == false_label_);
+}
+
+
+void FullCodeGenerator::EffectContext::Plug(bool flag) const {
+}
+
+
+void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
+ Heap::RootListIndex value_root_index =
+ flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
+ __ LoadRoot(result_register(), value_root_index);
+}
+
+
+void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
+ Heap::RootListIndex value_root_index =
+ flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
+ __ LoadRoot(ip, value_root_index);
+ __ push(ip);
+}
+
+
+void FullCodeGenerator::TestContext::Plug(bool flag) const {
+ codegen()->PrepareForBailoutBeforeSplit(TOS_REG,
+ true,
+ true_label_,
+ false_label_);
+ if (flag) {
+ if (true_label_ != fall_through_) __ b(true_label_);
+ } else {
+ if (false_label_ != fall_through_) __ b(false_label_);
+ }
+}
+
+
+void FullCodeGenerator::DoTest(Label* if_true,
+ Label* if_false,
+ Label* fall_through) {
+ if (CpuFeatures::IsSupported(VFP3)) {
+ CpuFeatures::Scope scope(VFP3);
+ // Emit the inlined tests assumed by the stub.
+ __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+ __ cmp(result_register(), ip);
+ __ b(eq, if_false);
+ __ LoadRoot(ip, Heap::kTrueValueRootIndex);
+ __ cmp(result_register(), ip);
+ __ b(eq, if_true);
+ __ LoadRoot(ip, Heap::kFalseValueRootIndex);
+ __ cmp(result_register(), ip);
+ __ b(eq, if_false);
+ STATIC_ASSERT(kSmiTag == 0);
+ __ tst(result_register(), result_register());
+ __ b(eq, if_false);
+ __ JumpIfSmi(result_register(), if_true);
+
+ // Call the ToBoolean stub for all other cases.
+ ToBooleanStub stub(result_register());
+ __ CallStub(&stub);
+ __ tst(result_register(), result_register());
+ } else {
+ // Call the runtime to find the boolean value of the source and then
+ // translate it into control flow to the pair of labels.
+ __ push(result_register());
+ __ CallRuntime(Runtime::kToBool, 1);
+ __ LoadRoot(ip, Heap::kFalseValueRootIndex);
+ __ cmp(r0, ip);
+ }
+
+ // The stub returns nonzero for true.
+ Split(ne, if_true, if_false, fall_through);
+}
+
+
+void FullCodeGenerator::Split(Condition cond,
+ Label* if_true,
+ Label* if_false,
+ Label* fall_through) {
+ if (if_false == fall_through) {
+ __ b(cond, if_true);
+ } else if (if_true == fall_through) {
+ __ b(NegateCondition(cond), if_false);
+ } else {
+ __ b(cond, if_true);
+ __ b(if_false);
+ }
+}
+
+
+MemOperand FullCodeGenerator::EmitSlotSearch(Slot* slot, Register scratch) {
+ switch (slot->type()) {
+ case Slot::PARAMETER:
+ case Slot::LOCAL:
+ return MemOperand(fp, SlotOffset(slot));
+ case Slot::CONTEXT: {
+ int context_chain_length =
+ scope()->ContextChainLength(slot->var()->scope());
+ __ LoadContext(scratch, context_chain_length);
+ return ContextOperand(scratch, slot->index());
+ }
+ case Slot::LOOKUP:
+ UNREACHABLE();
+ }
+ UNREACHABLE();
+ return MemOperand(r0, 0);
+}
+
+
+void FullCodeGenerator::Move(Register destination, Slot* source) {
+ // Use destination as scratch.
+ MemOperand slot_operand = EmitSlotSearch(source, destination);
+ __ ldr(destination, slot_operand);
+}
+
+
+void FullCodeGenerator::Move(Slot* dst,
+ Register src,
+ Register scratch1,
+ Register scratch2) {
+ ASSERT(dst->type() != Slot::LOOKUP); // Not yet implemented.
+ ASSERT(!scratch1.is(src) && !scratch2.is(src));
+ MemOperand location = EmitSlotSearch(dst, scratch1);
+ __ str(src, location);
+ // Emit the write barrier code if the location is in the heap.
+ if (dst->type() == Slot::CONTEXT) {
+ __ RecordWrite(scratch1,
+ Operand(Context::SlotOffset(dst->index())),
+ scratch2,
+ src);
+ }
+}
+
+
+void FullCodeGenerator::PrepareForBailoutBeforeSplit(State state,
+ bool should_normalize,
+ Label* if_true,
+ Label* if_false) {
+ // Only prepare for bailouts before splits if we're in a test
+ // context. Otherwise, we let the Visit function deal with the
+ // preparation to avoid preparing with the same AST id twice.
+ if (!context()->IsTest() || !info_->IsOptimizable()) return;
+
+ Label skip;
+ if (should_normalize) __ b(&skip);
+
+ ForwardBailoutStack* current = forward_bailout_stack_;
+ while (current != NULL) {
+ PrepareForBailout(current->expr(), state);
+ current = current->parent();
+ }
+
+ if (should_normalize) {
+ __ LoadRoot(ip, Heap::kTrueValueRootIndex);
+ __ cmp(r0, ip);
+ Split(eq, if_true, if_false, NULL);
+ __ bind(&skip);
+ }
+}
+
+
+void FullCodeGenerator::EmitDeclaration(Variable* variable,
+ Variable::Mode mode,
+ FunctionLiteral* function) {
+ Comment cmnt(masm_, "[ Declaration");
+ ASSERT(variable != NULL); // Must have been resolved.
+ Slot* slot = variable->AsSlot();
+ Property* prop = variable->AsProperty();
+
+ if (slot != NULL) {
+ switch (slot->type()) {
+ case Slot::PARAMETER:
+ case Slot::LOCAL:
+ if (mode == Variable::CONST) {
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ __ str(ip, MemOperand(fp, SlotOffset(slot)));
+ } else if (function != NULL) {
+ VisitForAccumulatorValue(function);
+ __ str(result_register(), MemOperand(fp, SlotOffset(slot)));
+ }
+ break;
+
+ case Slot::CONTEXT:
+ // We bypass the general EmitSlotSearch because we know more about
+ // this specific context.
+
+ // The variable in the decl always resides in the current function
+ // context.
+ ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
+ if (FLAG_debug_code) {
+ // Check that we're not inside a 'with'.
+ __ ldr(r1, ContextOperand(cp, Context::FCONTEXT_INDEX));
+ __ cmp(r1, cp);
+ __ Check(eq, "Unexpected declaration in current context.");
+ }
+ if (mode == Variable::CONST) {
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ __ str(ip, ContextOperand(cp, slot->index()));
+ // No write barrier since the_hole_value is in old space.
+ } else if (function != NULL) {
+ VisitForAccumulatorValue(function);
+ __ str(result_register(), ContextOperand(cp, slot->index()));
+ int offset = Context::SlotOffset(slot->index());
+ // We know that we have written a function, which is not a smi.
+ __ mov(r1, Operand(cp));
+ __ RecordWrite(r1, Operand(offset), r2, result_register());
+ }
+ break;
+
+ case Slot::LOOKUP: {
+ __ mov(r2, Operand(variable->name()));
+ // Declaration nodes are always introduced in one of two modes.
+ ASSERT(mode == Variable::VAR ||
+ mode == Variable::CONST);
+ PropertyAttributes attr =
+ (mode == Variable::VAR) ? NONE : READ_ONLY;
+ __ mov(r1, Operand(Smi::FromInt(attr)));
+ // Push initial value, if any.
+ // Note: For variables we must not push an initial value (such as
+ // 'undefined') because we may have a (legal) redeclaration and we
+ // must not destroy the current value.
+ if (mode == Variable::CONST) {
+ __ LoadRoot(r0, Heap::kTheHoleValueRootIndex);
+ __ Push(cp, r2, r1, r0);
+ } else if (function != NULL) {
+ __ Push(cp, r2, r1);
+ // Push initial value for function declaration.
+ VisitForStackValue(function);
+ } else {
+ __ mov(r0, Operand(Smi::FromInt(0))); // No initial value!
+ __ Push(cp, r2, r1, r0);
+ }
+ __ CallRuntime(Runtime::kDeclareContextSlot, 4);
+ break;
+ }
+ }
+
+ } else if (prop != NULL) {
+ if (function != NULL || mode == Variable::CONST) {
+ // We are declaring a function or constant that rewrites to a
+ // property. Use (keyed) IC to set the initial value. We
+ // cannot visit the rewrite because it's shared and we risk
+ // recording duplicate AST IDs for bailouts from optimized code.
+ ASSERT(prop->obj()->AsVariableProxy() != NULL);
+ { AccumulatorValueContext for_object(this);
+ EmitVariableLoad(prop->obj()->AsVariableProxy()->var());
+ }
+ if (function != NULL) {
+ __ push(r0);
+ VisitForAccumulatorValue(function);
+ __ pop(r2);
+ } else {
+ __ mov(r2, r0);
+ __ LoadRoot(r0, Heap::kTheHoleValueRootIndex);
+ }
+ ASSERT(prop->key()->AsLiteral() != NULL &&
+ prop->key()->AsLiteral()->handle()->IsSmi());
+ __ mov(r1, Operand(prop->key()->AsLiteral()->handle()));
+
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+ : isolate()->builtins()->KeyedStoreIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+ // Value in r0 is ignored (declarations are statements).
+ }
+ }
+}
+
+
+void FullCodeGenerator::VisitDeclaration(Declaration* decl) {
+ EmitDeclaration(decl->proxy()->var(), decl->mode(), decl->fun());
+}
+
+
+void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
+ // Call the runtime to declare the globals.
+ // The context is the first argument.
+ __ mov(r2, Operand(pairs));
+ __ mov(r1, Operand(Smi::FromInt(is_eval() ? 1 : 0)));
+ __ mov(r0, Operand(Smi::FromInt(strict_mode_flag())));
+ __ Push(cp, r2, r1, r0);
+ __ CallRuntime(Runtime::kDeclareGlobals, 4);
+ // Return value is ignored.
+}
+
+
+void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
+ Comment cmnt(masm_, "[ SwitchStatement");
+ Breakable nested_statement(this, stmt);
+ SetStatementPosition(stmt);
+
+ // Keep the switch value on the stack until a case matches.
+ VisitForStackValue(stmt->tag());
+ PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
+
+ ZoneList<CaseClause*>* clauses = stmt->cases();
+ CaseClause* default_clause = NULL; // Can occur anywhere in the list.
+
+ Label next_test; // Recycled for each test.
+ // Compile all the tests with branches to their bodies.
+ for (int i = 0; i < clauses->length(); i++) {
+ CaseClause* clause = clauses->at(i);
+ clause->body_target()->entry_label()->Unuse();
+
+ // The default is not a test, but remember it as final fall through.
+ if (clause->is_default()) {
+ default_clause = clause;
+ continue;
+ }
+
+ Comment cmnt(masm_, "[ Case comparison");
+ __ bind(&next_test);
+ next_test.Unuse();
+
+ // Compile the label expression.
+ VisitForAccumulatorValue(clause->label());
+
+ // Perform the comparison as if via '==='.
+ __ ldr(r1, MemOperand(sp, 0)); // Switch value.
+ bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
+ JumpPatchSite patch_site(masm_);
+ if (inline_smi_code) {
+ Label slow_case;
+ __ orr(r2, r1, r0);
+ patch_site.EmitJumpIfNotSmi(r2, &slow_case);
+
+ __ cmp(r1, r0);
+ __ b(ne, &next_test);
+ __ Drop(1); // Switch value is no longer needed.
+ __ b(clause->body_target()->entry_label());
+ __ bind(&slow_case);
+ }
+
+ // Record position before stub call for type feedback.
+ SetSourcePosition(clause->position());
+ Handle<Code> ic = CompareIC::GetUninitialized(Token::EQ_STRICT);
+ EmitCallIC(ic, &patch_site);
+ __ cmp(r0, Operand(0));
+ __ b(ne, &next_test);
+ __ Drop(1); // Switch value is no longer needed.
+ __ b(clause->body_target()->entry_label());
+ }
+
+ // Discard the test value and jump to the default if present, otherwise to
+ // the end of the statement.
+ __ bind(&next_test);
+ __ Drop(1); // Switch value is no longer needed.
+ if (default_clause == NULL) {
+ __ b(nested_statement.break_target());
+ } else {
+ __ b(default_clause->body_target()->entry_label());
+ }
+
+ // Compile all the case bodies.
+ for (int i = 0; i < clauses->length(); i++) {
+ Comment cmnt(masm_, "[ Case body");
+ CaseClause* clause = clauses->at(i);
+ __ bind(clause->body_target()->entry_label());
+ PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
+ VisitStatements(clause->statements());
+ }
+
+ __ bind(nested_statement.break_target());
+ PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
+}
+
+
+void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
+ Comment cmnt(masm_, "[ ForInStatement");
+ SetStatementPosition(stmt);
+
+ Label loop, exit;
+ ForIn loop_statement(this, stmt);
+ increment_loop_depth();
+
+ // Get the object to enumerate over. Both SpiderMonkey and JSC
+ // ignore null and undefined in contrast to the specification; see
+ // ECMA-262 section 12.6.4.
+ VisitForAccumulatorValue(stmt->enumerable());
+ __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+ __ cmp(r0, ip);
+ __ b(eq, &exit);
+ Register null_value = r5;
+ __ LoadRoot(null_value, Heap::kNullValueRootIndex);
+ __ cmp(r0, null_value);
+ __ b(eq, &exit);
+
+ // Convert the object to a JS object.
+ Label convert, done_convert;
+ __ JumpIfSmi(r0, &convert);
+ __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
+ __ b(hs, &done_convert);
+ __ bind(&convert);
+ __ push(r0);
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
+ __ bind(&done_convert);
+ __ push(r0);
+
+ // Check cache validity in generated code. This is a fast case for
+ // the JSObject::IsSimpleEnum cache validity checks. If we cannot
+ // guarantee cache validity, call the runtime system to check cache
+ // validity or get the property names in a fixed array.
+ Label next, call_runtime;
+ // Preload a couple of values used in the loop.
+ Register empty_fixed_array_value = r6;
+ __ LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
+ Register empty_descriptor_array_value = r7;
+ __ LoadRoot(empty_descriptor_array_value,
+ Heap::kEmptyDescriptorArrayRootIndex);
+ __ mov(r1, r0);
+ __ bind(&next);
+
+ // Check that there are no elements. Register r1 contains the
+ // current JS object we've reached through the prototype chain.
+ __ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset));
+ __ cmp(r2, empty_fixed_array_value);
+ __ b(ne, &call_runtime);
+
+ // Check that instance descriptors are not empty so that we can
+ // check for an enum cache. Leave the map in r2 for the subsequent
+ // prototype load.
+ __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ ldr(r3, FieldMemOperand(r2, Map::kInstanceDescriptorsOffset));
+ __ cmp(r3, empty_descriptor_array_value);
+ __ b(eq, &call_runtime);
+
+ // Check that there is an enum cache in the non-empty instance
+ // descriptors (r3). This is the case if the next enumeration
+ // index field does not contain a smi.
+ __ ldr(r3, FieldMemOperand(r3, DescriptorArray::kEnumerationIndexOffset));
+ __ JumpIfSmi(r3, &call_runtime);
+
+ // For all objects but the receiver, check that the cache is empty.
+ Label check_prototype;
+ __ cmp(r1, r0);
+ __ b(eq, &check_prototype);
+ __ ldr(r3, FieldMemOperand(r3, DescriptorArray::kEnumCacheBridgeCacheOffset));
+ __ cmp(r3, empty_fixed_array_value);
+ __ b(ne, &call_runtime);
+
+ // Load the prototype from the map and loop if non-null.
+ __ bind(&check_prototype);
+ __ ldr(r1, FieldMemOperand(r2, Map::kPrototypeOffset));
+ __ cmp(r1, null_value);
+ __ b(ne, &next);
+
+ // The enum cache is valid. Load the map of the object being
+ // iterated over and use the cache for the iteration.
+ Label use_cache;
+ __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ b(&use_cache);
+
+ // Get the set of properties to enumerate.
+ __ bind(&call_runtime);
+ __ push(r0); // Duplicate the enumerable object on the stack.
+ __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
+
+ // If we got a map from the runtime call, we can do a fast
+ // modification check. Otherwise, we got a fixed array, and we have
+ // to do a slow check.
+ Label fixed_array;
+ __ mov(r2, r0);
+ __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::kMetaMapRootIndex);
+ __ cmp(r1, ip);
+ __ b(ne, &fixed_array);
+
+ // We got a map in register r0. Get the enumeration cache from it.
+ __ bind(&use_cache);
+ __ ldr(r1, FieldMemOperand(r0, Map::kInstanceDescriptorsOffset));
+ __ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset));
+ __ ldr(r2, FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset));
+
+ // Setup the four remaining stack slots.
+ __ push(r0); // Map.
+ __ ldr(r1, FieldMemOperand(r2, FixedArray::kLengthOffset));
+ __ mov(r0, Operand(Smi::FromInt(0)));
+ // Push enumeration cache, enumeration cache length (as smi) and zero.
+ __ Push(r2, r1, r0);
+ __ jmp(&loop);
+
+ // We got a fixed array in register r0. Iterate through that.
+ __ bind(&fixed_array);
+ __ mov(r1, Operand(Smi::FromInt(0))); // Map (0) - force slow check.
+ __ Push(r1, r0);
+ __ ldr(r1, FieldMemOperand(r0, FixedArray::kLengthOffset));
+ __ mov(r0, Operand(Smi::FromInt(0)));
+ __ Push(r1, r0); // Fixed array length (as smi) and initial index.
+
+ // Generate code for doing the condition check.
+ __ bind(&loop);
+ // Load the current count to r0, load the length to r1.
+ __ Ldrd(r0, r1, MemOperand(sp, 0 * kPointerSize));
+ __ cmp(r0, r1); // Compare to the array length.
+ __ b(hs, loop_statement.break_target());
+
+ // Get the current entry of the array into register r3.
+ __ ldr(r2, MemOperand(sp, 2 * kPointerSize));
+ __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
+
+ // Get the expected map from the stack or a zero map in the
+ // permanent slow case into register r2.
+ __ ldr(r2, MemOperand(sp, 3 * kPointerSize));
+
+ // Check if the expected map still matches that of the enumerable.
+ // If not, we have to filter the key.
+ Label update_each;
+ __ ldr(r1, MemOperand(sp, 4 * kPointerSize));
+ __ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset));
+ __ cmp(r4, Operand(r2));
+ __ b(eq, &update_each);
+
+ // Convert the entry to a string or (smi) 0 if it isn't a property
+ // any more. If the property has been removed while iterating, we
+ // just skip it.
+ __ push(r1); // Enumerable.
+ __ push(r3); // Current entry.
+ __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS);
+ __ mov(r3, Operand(r0), SetCC);
+ __ b(eq, loop_statement.continue_target());
+
+ // Update the 'each' property or variable from the possibly filtered
+ // entry in register r3.
+ __ bind(&update_each);
+ __ mov(result_register(), r3);
+ // Perform the assignment as if via '='.
+ { EffectContext context(this);
+ EmitAssignment(stmt->each(), stmt->AssignmentId());
+ }
+
+ // Generate code for the body of the loop.
+ Visit(stmt->body());
+
+ // Generate code for the going to the next element by incrementing
+ // the index (smi) stored on top of the stack.
+ __ bind(loop_statement.continue_target());
+ __ pop(r0);
+ __ add(r0, r0, Operand(Smi::FromInt(1)));
+ __ push(r0);
+
+ EmitStackCheck(stmt);
+ __ b(&loop);
+
+ // Remove the pointers stored on the stack.
+ __ bind(loop_statement.break_target());
+ __ Drop(5);
+
+ // Exit and decrement the loop depth.
+ __ bind(&exit);
+ decrement_loop_depth();
+}
+
+
+void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
+ bool pretenure) {
+ // Use the fast case closure allocation code that allocates in new
+ // space for nested functions that don't need literals cloning. If
+ // we're running with the --always-opt or the --prepare-always-opt
+ // flag, we need to use the runtime function so that the new function
+ // we are creating here gets a chance to have its code optimized and
+ // doesn't just get a copy of the existing unoptimized code.
+ if (!FLAG_always_opt &&
+ !FLAG_prepare_always_opt &&
+ !pretenure &&
+ scope()->is_function_scope() &&
+ info->num_literals() == 0) {
+ FastNewClosureStub stub(info->strict_mode() ? kStrictMode : kNonStrictMode);
+ __ mov(r0, Operand(info));
+ __ push(r0);
+ __ CallStub(&stub);
+ } else {
+ __ mov(r0, Operand(info));
+ __ LoadRoot(r1, pretenure ? Heap::kTrueValueRootIndex
+ : Heap::kFalseValueRootIndex);
+ __ Push(cp, r0, r1);
+ __ CallRuntime(Runtime::kNewClosure, 3);
+ }
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
+ Comment cmnt(masm_, "[ VariableProxy");
+ EmitVariableLoad(expr->var());
+}
+
+
+MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(
+ Slot* slot,
+ Label* slow) {
+ ASSERT(slot->type() == Slot::CONTEXT);
+ Register context = cp;
+ Register next = r3;
+ Register temp = r4;
+
+ for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
+ if (s->num_heap_slots() > 0) {
+ if (s->calls_eval()) {
+ // Check that extension is NULL.
+ __ ldr(temp, ContextOperand(context, Context::EXTENSION_INDEX));
+ __ tst(temp, temp);
+ __ b(ne, slow);
+ }
+ __ ldr(next, ContextOperand(context, Context::CLOSURE_INDEX));
+ __ ldr(next, FieldMemOperand(next, JSFunction::kContextOffset));
+ // Walk the rest of the chain without clobbering cp.
+ context = next;
+ }
+ }
+ // Check that last extension is NULL.
+ __ ldr(temp, ContextOperand(context, Context::EXTENSION_INDEX));
+ __ tst(temp, temp);
+ __ b(ne, slow);
+
+ // This function is used only for loads, not stores, so it's safe to
+ // return an cp-based operand (the write barrier cannot be allowed to
+ // destroy the cp register).
+ return ContextOperand(context, slot->index());
+}
+
+
+void FullCodeGenerator::EmitDynamicLoadFromSlotFastCase(
+ Slot* slot,
+ TypeofState typeof_state,
+ Label* slow,
+ Label* done) {
+ // Generate fast-case code for variables that might be shadowed by
+ // eval-introduced variables. Eval is used a lot without
+ // introducing variables. In those cases, we do not want to
+ // perform a runtime call for all variables in the scope
+ // containing the eval.
+ if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
+ EmitLoadGlobalSlotCheckExtensions(slot, typeof_state, slow);
+ __ jmp(done);
+ } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
+ Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot();
+ Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite();
+ if (potential_slot != NULL) {
+ // Generate fast case for locals that rewrite to slots.
+ __ ldr(r0, ContextSlotOperandCheckExtensions(potential_slot, slow));
+ if (potential_slot->var()->mode() == Variable::CONST) {
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ __ cmp(r0, ip);
+ __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
+ }
+ __ jmp(done);
+ } else if (rewrite != NULL) {
+ // Generate fast case for calls of an argument function.
+ Property* property = rewrite->AsProperty();
+ if (property != NULL) {
+ VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
+ Literal* key_literal = property->key()->AsLiteral();
+ if (obj_proxy != NULL &&
+ key_literal != NULL &&
+ obj_proxy->IsArguments() &&
+ key_literal->handle()->IsSmi()) {
+ // Load arguments object if there are no eval-introduced
+ // variables. Then load the argument from the arguments
+ // object using keyed load.
+ __ ldr(r1,
+ ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(),
+ slow));
+ __ mov(r0, Operand(key_literal->handle()));
+ Handle<Code> ic =
+ isolate()->builtins()->KeyedLoadIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+ __ jmp(done);
+ }
+ }
+ }
+ }
+}
+
+
+void FullCodeGenerator::EmitLoadGlobalSlotCheckExtensions(
+ Slot* slot,
+ TypeofState typeof_state,
+ Label* slow) {
+ Register current = cp;
+ Register next = r1;
+ Register temp = r2;
+
+ Scope* s = scope();
+ while (s != NULL) {
+ if (s->num_heap_slots() > 0) {
+ if (s->calls_eval()) {
+ // Check that extension is NULL.
+ __ ldr(temp, ContextOperand(current, Context::EXTENSION_INDEX));
+ __ tst(temp, temp);
+ __ b(ne, slow);
+ }
+ // Load next context in chain.
+ __ ldr(next, ContextOperand(current, Context::CLOSURE_INDEX));
+ __ ldr(next, FieldMemOperand(next, JSFunction::kContextOffset));
+ // Walk the rest of the chain without clobbering cp.
+ current = next;
+ }
+ // If no outer scope calls eval, we do not need to check more
+ // context extensions.
+ if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
+ s = s->outer_scope();
+ }
+
+ if (s->is_eval_scope()) {
+ Label loop, fast;
+ if (!current.is(next)) {
+ __ Move(next, current);
+ }
+ __ bind(&loop);
+ // Terminate at global context.
+ __ ldr(temp, FieldMemOperand(next, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
+ __ cmp(temp, ip);
+ __ b(eq, &fast);
+ // Check that extension is NULL.
+ __ ldr(temp, ContextOperand(next, Context::EXTENSION_INDEX));
+ __ tst(temp, temp);
+ __ b(ne, slow);
+ // Load next context in chain.
+ __ ldr(next, ContextOperand(next, Context::CLOSURE_INDEX));
+ __ ldr(next, FieldMemOperand(next, JSFunction::kContextOffset));
+ __ b(&loop);
+ __ bind(&fast);
+ }
+
+ __ ldr(r0, GlobalObjectOperand());
+ __ mov(r2, Operand(slot->var()->name()));
+ RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
+ ? RelocInfo::CODE_TARGET
+ : RelocInfo::CODE_TARGET_CONTEXT;
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ EmitCallIC(ic, mode);
+}
+
+
+void FullCodeGenerator::EmitVariableLoad(Variable* var) {
+ // Four cases: non-this global variables, lookup slots, all other
+ // types of slots, and parameters that rewrite to explicit property
+ // accesses on the arguments object.
+ Slot* slot = var->AsSlot();
+ Property* property = var->AsProperty();
+
+ if (var->is_global() && !var->is_this()) {
+ Comment cmnt(masm_, "Global variable");
+ // Use inline caching. Variable name is passed in r2 and the global
+ // object (receiver) in r0.
+ __ ldr(r0, GlobalObjectOperand());
+ __ mov(r2, Operand(var->name()));
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
+ context()->Plug(r0);
+
+ } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
+ Label done, slow;
+
+ // Generate code for loading from variables potentially shadowed
+ // by eval-introduced variables.
+ EmitDynamicLoadFromSlotFastCase(slot, NOT_INSIDE_TYPEOF, &slow, &done);
+
+ __ bind(&slow);
+ Comment cmnt(masm_, "Lookup slot");
+ __ mov(r1, Operand(var->name()));
+ __ Push(cp, r1); // Context and name.
+ __ CallRuntime(Runtime::kLoadContextSlot, 2);
+ __ bind(&done);
+
+ context()->Plug(r0);
+
+ } else if (slot != NULL) {
+ Comment cmnt(masm_, (slot->type() == Slot::CONTEXT)
+ ? "Context slot"
+ : "Stack slot");
+ if (var->mode() == Variable::CONST) {
+ // Constants may be the hole value if they have not been initialized.
+ // Unhole them.
+ MemOperand slot_operand = EmitSlotSearch(slot, r0);
+ __ ldr(r0, slot_operand);
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ __ cmp(r0, ip);
+ __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
+ context()->Plug(r0);
+ } else {
+ context()->Plug(slot);
+ }
+ } else {
+ Comment cmnt(masm_, "Rewritten parameter");
+ ASSERT_NOT_NULL(property);
+ // Rewritten parameter accesses are of the form "slot[literal]".
+
+ // Assert that the object is in a slot.
+ Variable* object_var = property->obj()->AsVariableProxy()->AsVariable();
+ ASSERT_NOT_NULL(object_var);
+ Slot* object_slot = object_var->AsSlot();
+ ASSERT_NOT_NULL(object_slot);
+
+ // Load the object.
+ Move(r1, object_slot);
+
+ // Assert that the key is a smi.
+ Literal* key_literal = property->key()->AsLiteral();
+ ASSERT_NOT_NULL(key_literal);
+ ASSERT(key_literal->handle()->IsSmi());
+
+ // Load the key.
+ __ mov(r0, Operand(key_literal->handle()));
+
+ // Call keyed load IC. It has arguments key and receiver in r0 and r1.
+ Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+ context()->Plug(r0);
+ }
+}
+
+
+void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
+ Comment cmnt(masm_, "[ RegExpLiteral");
+ Label materialized;
+ // Registers will be used as follows:
+ // r5 = materialized value (RegExp literal)
+ // r4 = JS function, literals array
+ // r3 = literal index
+ // r2 = RegExp pattern
+ // r1 = RegExp flags
+ // r0 = RegExp literal clone
+ __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ ldr(r4, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
+ int literal_offset =
+ FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
+ __ ldr(r5, FieldMemOperand(r4, literal_offset));
+ __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
+ __ cmp(r5, ip);
+ __ b(ne, &materialized);
+
+ // Create regexp literal using runtime function.
+ // Result will be in r0.
+ __ mov(r3, Operand(Smi::FromInt(expr->literal_index())));
+ __ mov(r2, Operand(expr->pattern()));
+ __ mov(r1, Operand(expr->flags()));
+ __ Push(r4, r3, r2, r1);
+ __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
+ __ mov(r5, r0);
+
+ __ bind(&materialized);
+ int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
+ Label allocated, runtime_allocate;
+ __ AllocateInNewSpace(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT);
+ __ jmp(&allocated);
+
+ __ bind(&runtime_allocate);
+ __ push(r5);
+ __ mov(r0, Operand(Smi::FromInt(size)));
+ __ push(r0);
+ __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
+ __ pop(r5);
+
+ __ bind(&allocated);
+ // After this, registers are used as follows:
+ // r0: Newly allocated regexp.
+ // r5: Materialized regexp.
+ // r2: temp.
+ __ CopyFields(r0, r5, r2.bit(), size / kPointerSize);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
+ Comment cmnt(masm_, "[ ObjectLiteral");
+ __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
+ __ mov(r2, Operand(Smi::FromInt(expr->literal_index())));
+ __ mov(r1, Operand(expr->constant_properties()));
+ int flags = expr->fast_elements()
+ ? ObjectLiteral::kFastElements
+ : ObjectLiteral::kNoFlags;
+ flags |= expr->has_function()
+ ? ObjectLiteral::kHasFunction
+ : ObjectLiteral::kNoFlags;
+ __ mov(r0, Operand(Smi::FromInt(flags)));
+ __ Push(r3, r2, r1, r0);
+ if (expr->depth() > 1) {
+ __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
+ } else {
+ __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
+ }
+
+ // If result_saved is true the result is on top of the stack. If
+ // result_saved is false the result is in r0.
+ bool result_saved = false;
+
+ // Mark all computed expressions that are bound to a key that
+ // is shadowed by a later occurrence of the same key. For the
+ // marked expressions, no store code is emitted.
+ expr->CalculateEmitStore();
+
+ for (int i = 0; i < expr->properties()->length(); i++) {
+ ObjectLiteral::Property* property = expr->properties()->at(i);
+ if (property->IsCompileTimeValue()) continue;
+
+ Literal* key = property->key();
+ Expression* value = property->value();
+ if (!result_saved) {
+ __ push(r0); // Save result on stack
+ result_saved = true;
+ }
+ switch (property->kind()) {
+ case ObjectLiteral::Property::CONSTANT:
+ UNREACHABLE();
+ case ObjectLiteral::Property::MATERIALIZED_LITERAL:
+ ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value()));
+ // Fall through.
+ case ObjectLiteral::Property::COMPUTED:
+ if (key->handle()->IsSymbol()) {
+ if (property->emit_store()) {
+ VisitForAccumulatorValue(value);
+ __ mov(r2, Operand(key->handle()));
+ __ ldr(r1, MemOperand(sp));
+ Handle<Code> ic = isolate()->builtins()->StoreIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+ PrepareForBailoutForId(key->id(), NO_REGISTERS);
+ } else {
+ VisitForEffect(value);
+ }
+ break;
+ }
+ // Fall through.
+ case ObjectLiteral::Property::PROTOTYPE:
+ // Duplicate receiver on stack.
+ __ ldr(r0, MemOperand(sp));
+ __ push(r0);
+ VisitForStackValue(key);
+ VisitForStackValue(value);
+ if (property->emit_store()) {
+ __ mov(r0, Operand(Smi::FromInt(NONE))); // PropertyAttributes
+ __ push(r0);
+ __ CallRuntime(Runtime::kSetProperty, 4);
+ } else {
+ __ Drop(3);
+ }
+ break;
+ case ObjectLiteral::Property::GETTER:
+ case ObjectLiteral::Property::SETTER:
+ // Duplicate receiver on stack.
+ __ ldr(r0, MemOperand(sp));
+ __ push(r0);
+ VisitForStackValue(key);
+ __ mov(r1, Operand(property->kind() == ObjectLiteral::Property::SETTER ?
+ Smi::FromInt(1) :
+ Smi::FromInt(0)));
+ __ push(r1);
+ VisitForStackValue(value);
+ __ CallRuntime(Runtime::kDefineAccessor, 4);
+ break;
+ }
+ }
+
+ if (expr->has_function()) {
+ ASSERT(result_saved);
+ __ ldr(r0, MemOperand(sp));
+ __ push(r0);
+ __ CallRuntime(Runtime::kToFastProperties, 1);
+ }
+
+ if (result_saved) {
+ context()->PlugTOS();
+ } else {
+ context()->Plug(r0);
+ }
+}
+
+
+void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
+ Comment cmnt(masm_, "[ ArrayLiteral");
+
+ ZoneList<Expression*>* subexprs = expr->values();
+ int length = subexprs->length();
+
+ __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
+ __ mov(r2, Operand(Smi::FromInt(expr->literal_index())));
+ __ mov(r1, Operand(expr->constant_elements()));
+ __ Push(r3, r2, r1);
+ if (expr->constant_elements()->map() ==
+ isolate()->heap()->fixed_cow_array_map()) {
+ FastCloneShallowArrayStub stub(
+ FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
+ __ CallStub(&stub);
+ __ IncrementCounter(
+ isolate()->counters()->cow_arrays_created_stub(), 1, r1, r2);
+ } else if (expr->depth() > 1) {
+ __ CallRuntime(Runtime::kCreateArrayLiteral, 3);
+ } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
+ __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
+ } else {
+ FastCloneShallowArrayStub stub(
+ FastCloneShallowArrayStub::CLONE_ELEMENTS, length);
+ __ CallStub(&stub);
+ }
+
+ bool result_saved = false; // Is the result saved to the stack?
+
+ // Emit code to evaluate all the non-constant subexpressions and to store
+ // them into the newly cloned array.
+ for (int i = 0; i < length; i++) {
+ Expression* subexpr = subexprs->at(i);
+ // If the subexpression is a literal or a simple materialized literal it
+ // is already set in the cloned array.
+ if (subexpr->AsLiteral() != NULL ||
+ CompileTimeValue::IsCompileTimeValue(subexpr)) {
+ continue;
+ }
+
+ if (!result_saved) {
+ __ push(r0);
+ result_saved = true;
+ }
+ VisitForAccumulatorValue(subexpr);
+
+ // Store the subexpression value in the array's elements.
+ __ ldr(r1, MemOperand(sp)); // Copy of array literal.
+ __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset));
+ int offset = FixedArray::kHeaderSize + (i * kPointerSize);
+ __ str(result_register(), FieldMemOperand(r1, offset));
+
+ // Update the write barrier for the array store with r0 as the scratch
+ // register.
+ __ RecordWrite(r1, Operand(offset), r2, result_register());
+
+ PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
+ }
+
+ if (result_saved) {
+ context()->PlugTOS();
+ } else {
+ context()->Plug(r0);
+ }
+}
+
+
+void FullCodeGenerator::VisitAssignment(Assignment* expr) {
+ Comment cmnt(masm_, "[ Assignment");
+ // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
+ // on the left-hand side.
+ if (!expr->target()->IsValidLeftHandSide()) {
+ VisitForEffect(expr->target());
+ return;
+ }
+
+ // Left-hand side can only be a property, a global or a (parameter or local)
+ // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
+ enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
+ LhsKind assign_type = VARIABLE;
+ Property* property = expr->target()->AsProperty();
+ if (property != NULL) {
+ assign_type = (property->key()->IsPropertyName())
+ ? NAMED_PROPERTY
+ : KEYED_PROPERTY;
+ }
+
+ // Evaluate LHS expression.
+ switch (assign_type) {
+ case VARIABLE:
+ // Nothing to do here.
+ break;
+ case NAMED_PROPERTY:
+ if (expr->is_compound()) {
+ // We need the receiver both on the stack and in the accumulator.
+ VisitForAccumulatorValue(property->obj());
+ __ push(result_register());
+ } else {
+ VisitForStackValue(property->obj());
+ }
+ break;
+ case KEYED_PROPERTY:
+ if (expr->is_compound()) {
+ if (property->is_arguments_access()) {
+ VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
+ __ ldr(r0, EmitSlotSearch(obj_proxy->var()->AsSlot(), r0));
+ __ push(r0);
+ __ mov(r0, Operand(property->key()->AsLiteral()->handle()));
+ } else {
+ VisitForStackValue(property->obj());
+ VisitForAccumulatorValue(property->key());
+ }
+ __ ldr(r1, MemOperand(sp, 0));
+ __ push(r0);
+ } else {
+ if (property->is_arguments_access()) {
+ VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
+ __ ldr(r1, EmitSlotSearch(obj_proxy->var()->AsSlot(), r0));
+ __ mov(r0, Operand(property->key()->AsLiteral()->handle()));
+ __ Push(r1, r0);
+ } else {
+ VisitForStackValue(property->obj());
+ VisitForStackValue(property->key());
+ }
+ }
+ break;
+ }
+
+ // For compound assignments we need another deoptimization point after the
+ // variable/property load.
+ if (expr->is_compound()) {
+ { AccumulatorValueContext context(this);
+ switch (assign_type) {
+ case VARIABLE:
+ EmitVariableLoad(expr->target()->AsVariableProxy()->var());
+ PrepareForBailout(expr->target(), TOS_REG);
+ break;
+ case NAMED_PROPERTY:
+ EmitNamedPropertyLoad(property);
+ PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
+ break;
+ case KEYED_PROPERTY:
+ EmitKeyedPropertyLoad(property);
+ PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
+ break;
+ }
+ }
+
+ Token::Value op = expr->binary_op();
+ __ push(r0); // Left operand goes on the stack.
+ VisitForAccumulatorValue(expr->value());
+
+ OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
+ ? OVERWRITE_RIGHT
+ : NO_OVERWRITE;
+ SetSourcePosition(expr->position() + 1);
+ AccumulatorValueContext context(this);
+ if (ShouldInlineSmiCase(op)) {
+ EmitInlineSmiBinaryOp(expr,
+ op,
+ mode,
+ expr->target(),
+ expr->value());
+ } else {
+ EmitBinaryOp(op, mode);
+ }
+
+ // Deoptimization point in case the binary operation may have side effects.
+ PrepareForBailout(expr->binary_operation(), TOS_REG);
+ } else {
+ VisitForAccumulatorValue(expr->value());
+ }
+
+ // Record source position before possible IC call.
+ SetSourcePosition(expr->position());
+
+ // Store the value.
+ switch (assign_type) {
+ case VARIABLE:
+ EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
+ expr->op());
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context()->Plug(r0);
+ break;
+ case NAMED_PROPERTY:
+ EmitNamedPropertyAssignment(expr);
+ break;
+ case KEYED_PROPERTY:
+ EmitKeyedPropertyAssignment(expr);
+ break;
+ }
+}
+
+
+void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
+ SetSourcePosition(prop->position());
+ Literal* key = prop->key()->AsLiteral();
+ __ mov(r2, Operand(key->handle()));
+ // Call load IC. It has arguments receiver and property name r0 and r2.
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+}
+
+
+void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
+ SetSourcePosition(prop->position());
+ // Call keyed load IC. It has arguments key and receiver in r0 and r1.
+ Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+}
+
+
+void FullCodeGenerator::EmitInlineSmiBinaryOp(Expression* expr,
+ Token::Value op,
+ OverwriteMode mode,
+ Expression* left_expr,
+ Expression* right_expr) {
+ Label done, smi_case, stub_call;
+
+ Register scratch1 = r2;
+ Register scratch2 = r3;
+
+ // Get the arguments.
+ Register left = r1;
+ Register right = r0;
+ __ pop(left);
+
+ // Perform combined smi check on both operands.
+ __ orr(scratch1, left, Operand(right));
+ STATIC_ASSERT(kSmiTag == 0);
+ JumpPatchSite patch_site(masm_);
+ patch_site.EmitJumpIfSmi(scratch1, &smi_case);
+
+ __ bind(&stub_call);
+ TypeRecordingBinaryOpStub stub(op, mode);
+ EmitCallIC(stub.GetCode(), &patch_site);
+ __ jmp(&done);
+
+ __ bind(&smi_case);
+ // Smi case. This code works the same way as the smi-smi case in the type
+ // recording binary operation stub, see
+ // TypeRecordingBinaryOpStub::GenerateSmiSmiOperation for comments.
+ switch (op) {
+ case Token::SAR:
+ __ b(&stub_call);
+ __ GetLeastBitsFromSmi(scratch1, right, 5);
+ __ mov(right, Operand(left, ASR, scratch1));
+ __ bic(right, right, Operand(kSmiTagMask));
+ break;
+ case Token::SHL: {
+ __ b(&stub_call);
+ __ SmiUntag(scratch1, left);
+ __ GetLeastBitsFromSmi(scratch2, right, 5);
+ __ mov(scratch1, Operand(scratch1, LSL, scratch2));
+ __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
+ __ b(mi, &stub_call);
+ __ SmiTag(right, scratch1);
+ break;
+ }
+ case Token::SHR: {
+ __ b(&stub_call);
+ __ SmiUntag(scratch1, left);
+ __ GetLeastBitsFromSmi(scratch2, right, 5);
+ __ mov(scratch1, Operand(scratch1, LSR, scratch2));
+ __ tst(scratch1, Operand(0xc0000000));
+ __ b(ne, &stub_call);
+ __ SmiTag(right, scratch1);
+ break;
+ }
+ case Token::ADD:
+ __ add(scratch1, left, Operand(right), SetCC);
+ __ b(vs, &stub_call);
+ __ mov(right, scratch1);
+ break;
+ case Token::SUB:
+ __ sub(scratch1, left, Operand(right), SetCC);
+ __ b(vs, &stub_call);
+ __ mov(right, scratch1);
+ break;
+ case Token::MUL: {
+ __ SmiUntag(ip, right);
+ __ smull(scratch1, scratch2, left, ip);
+ __ mov(ip, Operand(scratch1, ASR, 31));
+ __ cmp(ip, Operand(scratch2));
+ __ b(ne, &stub_call);
+ __ tst(scratch1, Operand(scratch1));
+ __ mov(right, Operand(scratch1), LeaveCC, ne);
+ __ b(ne, &done);
+ __ add(scratch2, right, Operand(left), SetCC);
+ __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
+ __ b(mi, &stub_call);
+ break;
+ }
+ case Token::BIT_OR:
+ __ orr(right, left, Operand(right));
+ break;
+ case Token::BIT_AND:
+ __ and_(right, left, Operand(right));
+ break;
+ case Token::BIT_XOR:
+ __ eor(right, left, Operand(right));
+ break;
+ default:
+ UNREACHABLE();
+ }
+
+ __ bind(&done);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitBinaryOp(Token::Value op,
+ OverwriteMode mode) {
+ __ pop(r1);
+ TypeRecordingBinaryOpStub stub(op, mode);
+ EmitCallIC(stub.GetCode(), NULL);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitAssignment(Expression* expr, int bailout_ast_id) {
+ // Invalid left-hand sides are rewritten to have a 'throw
+ // ReferenceError' on the left-hand side.
+ if (!expr->IsValidLeftHandSide()) {
+ VisitForEffect(expr);
+ return;
+ }
+
+ // Left-hand side can only be a property, a global or a (parameter or local)
+ // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
+ enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
+ LhsKind assign_type = VARIABLE;
+ Property* prop = expr->AsProperty();
+ if (prop != NULL) {
+ assign_type = (prop->key()->IsPropertyName())
+ ? NAMED_PROPERTY
+ : KEYED_PROPERTY;
+ }
+
+ switch (assign_type) {
+ case VARIABLE: {
+ Variable* var = expr->AsVariableProxy()->var();
+ EffectContext context(this);
+ EmitVariableAssignment(var, Token::ASSIGN);
+ break;
+ }
+ case NAMED_PROPERTY: {
+ __ push(r0); // Preserve value.
+ VisitForAccumulatorValue(prop->obj());
+ __ mov(r1, r0);
+ __ pop(r0); // Restore value.
+ __ mov(r2, Operand(prop->key()->AsLiteral()->handle()));
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->StoreIC_Initialize_Strict()
+ : isolate()->builtins()->StoreIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+ break;
+ }
+ case KEYED_PROPERTY: {
+ __ push(r0); // Preserve value.
+ if (prop->is_synthetic()) {
+ ASSERT(prop->obj()->AsVariableProxy() != NULL);
+ ASSERT(prop->key()->AsLiteral() != NULL);
+ { AccumulatorValueContext for_object(this);
+ EmitVariableLoad(prop->obj()->AsVariableProxy()->var());
+ }
+ __ mov(r2, r0);
+ __ mov(r1, Operand(prop->key()->AsLiteral()->handle()));
+ } else {
+ VisitForStackValue(prop->obj());
+ VisitForAccumulatorValue(prop->key());
+ __ mov(r1, r0);
+ __ pop(r2);
+ }
+ __ pop(r0); // Restore value.
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+ : isolate()->builtins()->KeyedStoreIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+ break;
+ }
+ }
+ PrepareForBailoutForId(bailout_ast_id, TOS_REG);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitVariableAssignment(Variable* var,
+ Token::Value op) {
+ // Left-hand sides that rewrite to explicit property accesses do not reach
+ // here.
+ ASSERT(var != NULL);
+ ASSERT(var->is_global() || var->AsSlot() != NULL);
+
+ if (var->is_global()) {
+ ASSERT(!var->is_this());
+ // Assignment to a global variable. Use inline caching for the
+ // assignment. Right-hand-side value is passed in r0, variable name in
+ // r2, and the global object in r1.
+ __ mov(r2, Operand(var->name()));
+ __ ldr(r1, GlobalObjectOperand());
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->StoreIC_Initialize_Strict()
+ : isolate()->builtins()->StoreIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
+
+ } else if (op == Token::INIT_CONST) {
+ // Like var declarations, const declarations are hoisted to function
+ // scope. However, unlike var initializers, const initializers are able
+ // to drill a hole to that function context, even from inside a 'with'
+ // context. We thus bypass the normal static scope lookup.
+ Slot* slot = var->AsSlot();
+ Label skip;
+ switch (slot->type()) {
+ case Slot::PARAMETER:
+ // No const parameters.
+ UNREACHABLE();
+ break;
+ case Slot::LOCAL:
+ // Detect const reinitialization by checking for the hole value.
+ __ ldr(r1, MemOperand(fp, SlotOffset(slot)));
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ __ cmp(r1, ip);
+ __ b(ne, &skip);
+ __ str(result_register(), MemOperand(fp, SlotOffset(slot)));
+ break;
+ case Slot::CONTEXT: {
+ __ ldr(r1, ContextOperand(cp, Context::FCONTEXT_INDEX));
+ __ ldr(r2, ContextOperand(r1, slot->index()));
+ __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
+ __ cmp(r2, ip);
+ __ b(ne, &skip);
+ __ str(r0, ContextOperand(r1, slot->index()));
+ int offset = Context::SlotOffset(slot->index());
+ __ mov(r3, r0); // Preserve the stored value in r0.
+ __ RecordWrite(r1, Operand(offset), r3, r2);
+ break;
+ }
+ case Slot::LOOKUP:
+ __ push(r0);
+ __ mov(r0, Operand(slot->var()->name()));
+ __ Push(cp, r0); // Context and name.
+ __ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
+ break;
+ }
+ __ bind(&skip);
+
+ } else if (var->mode() != Variable::CONST) {
+ // Perform the assignment for non-const variables. Const assignments
+ // are simply skipped.
+ Slot* slot = var->AsSlot();
+ switch (slot->type()) {
+ case Slot::PARAMETER:
+ case Slot::LOCAL:
+ // Perform the assignment.
+ __ str(result_register(), MemOperand(fp, SlotOffset(slot)));
+ break;
+
+ case Slot::CONTEXT: {
+ MemOperand target = EmitSlotSearch(slot, r1);
+ // Perform the assignment and issue the write barrier.
+ __ str(result_register(), target);
+ // RecordWrite may destroy all its register arguments.
+ __ mov(r3, result_register());
+ int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
+ __ RecordWrite(r1, Operand(offset), r2, r3);
+ break;
+ }
+
+ case Slot::LOOKUP:
+ // Call the runtime for the assignment.
+ __ push(r0); // Value.
+ __ mov(r1, Operand(slot->var()->name()));
+ __ mov(r0, Operand(Smi::FromInt(strict_mode_flag())));
+ __ Push(cp, r1, r0); // Context, name, strict mode.
+ __ CallRuntime(Runtime::kStoreContextSlot, 4);
+ break;
+ }
+ }
+}
+
+
+void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
+ // Assignment to a property, using a named store IC.
+ Property* prop = expr->target()->AsProperty();
+ ASSERT(prop != NULL);
+ ASSERT(prop->key()->AsLiteral() != NULL);
+
+ // If the assignment starts a block of assignments to the same object,
+ // change to slow case to avoid the quadratic behavior of repeatedly
+ // adding fast properties.
+ if (expr->starts_initialization_block()) {
+ __ push(result_register());
+ __ ldr(ip, MemOperand(sp, kPointerSize)); // Receiver is now under value.
+ __ push(ip);
+ __ CallRuntime(Runtime::kToSlowProperties, 1);
+ __ pop(result_register());
+ }
+
+ // Record source code position before IC call.
+ SetSourcePosition(expr->position());
+ __ mov(r2, Operand(prop->key()->AsLiteral()->handle()));
+ // Load receiver to r1. Leave a copy in the stack if needed for turning the
+ // receiver into fast case.
+ if (expr->ends_initialization_block()) {
+ __ ldr(r1, MemOperand(sp));
+ } else {
+ __ pop(r1);
+ }
+
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->StoreIC_Initialize_Strict()
+ : isolate()->builtins()->StoreIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+
+ // If the assignment ends an initialization block, revert to fast case.
+ if (expr->ends_initialization_block()) {
+ __ push(r0); // Result of assignment, saved even if not needed.
+ // Receiver is under the result value.
+ __ ldr(ip, MemOperand(sp, kPointerSize));
+ __ push(ip);
+ __ CallRuntime(Runtime::kToFastProperties, 1);
+ __ pop(r0);
+ __ Drop(1);
+ }
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
+ // Assignment to a property, using a keyed store IC.
+
+ // If the assignment starts a block of assignments to the same object,
+ // change to slow case to avoid the quadratic behavior of repeatedly
+ // adding fast properties.
+ if (expr->starts_initialization_block()) {
+ __ push(result_register());
+ // Receiver is now under the key and value.
+ __ ldr(ip, MemOperand(sp, 2 * kPointerSize));
+ __ push(ip);
+ __ CallRuntime(Runtime::kToSlowProperties, 1);
+ __ pop(result_register());
+ }
+
+ // Record source code position before IC call.
+ SetSourcePosition(expr->position());
+ __ pop(r1); // Key.
+ // Load receiver to r2. Leave a copy in the stack if needed for turning the
+ // receiver into fast case.
+ if (expr->ends_initialization_block()) {
+ __ ldr(r2, MemOperand(sp));
+ } else {
+ __ pop(r2);
+ }
+
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+ : isolate()->builtins()->KeyedStoreIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+
+ // If the assignment ends an initialization block, revert to fast case.
+ if (expr->ends_initialization_block()) {
+ __ push(r0); // Result of assignment, saved even if not needed.
+ // Receiver is under the result value.
+ __ ldr(ip, MemOperand(sp, kPointerSize));
+ __ push(ip);
+ __ CallRuntime(Runtime::kToFastProperties, 1);
+ __ pop(r0);
+ __ Drop(1);
+ }
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::VisitProperty(Property* expr) {
+ Comment cmnt(masm_, "[ Property");
+ Expression* key = expr->key();
+
+ if (key->IsPropertyName()) {
+ VisitForAccumulatorValue(expr->obj());
+ EmitNamedPropertyLoad(expr);
+ context()->Plug(r0);
+ } else {
+ VisitForStackValue(expr->obj());
+ VisitForAccumulatorValue(expr->key());
+ __ pop(r1);
+ EmitKeyedPropertyLoad(expr);
+ context()->Plug(r0);
+ }
+}
+
+void FullCodeGenerator::EmitCallWithIC(Call* expr,
+ Handle<Object> name,
+ RelocInfo::Mode mode) {
+ // Code common for calls using the IC.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+ { PreservePositionScope scope(masm()->positions_recorder());
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+ __ mov(r2, Operand(name));
+ }
+ // Record source position for debugger.
+ SetSourcePosition(expr->position());
+ // Call the IC initialization code.
+ InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
+ Handle<Code> ic =
+ isolate()->stub_cache()->ComputeCallInitialize(arg_count, in_loop);
+ EmitCallIC(ic, mode);
+ RecordJSReturnSite(expr);
+ // Restore context register.
+ __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
+ Expression* key,
+ RelocInfo::Mode mode) {
+ // Load the key.
+ VisitForAccumulatorValue(key);
+
+ // Swap the name of the function and the receiver on the stack to follow
+ // the calling convention for call ICs.
+ __ pop(r1);
+ __ push(r0);
+ __ push(r1);
+
+ // Code common for calls using the IC.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+ { PreservePositionScope scope(masm()->positions_recorder());
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+ }
+ // Record source position for debugger.
+ SetSourcePosition(expr->position());
+ // Call the IC initialization code.
+ InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
+ Handle<Code> ic =
+ isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count, in_loop);
+ __ ldr(r2, MemOperand(sp, (arg_count + 1) * kPointerSize)); // Key.
+ EmitCallIC(ic, mode);
+ RecordJSReturnSite(expr);
+ // Restore context register.
+ __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ context()->DropAndPlug(1, r0); // Drop the key still on the stack.
+}
+
+
+void FullCodeGenerator::EmitCallWithStub(Call* expr) {
+ // Code common for calls using the call stub.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+ { PreservePositionScope scope(masm()->positions_recorder());
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+ }
+ // Record source position for debugger.
+ SetSourcePosition(expr->position());
+ InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
+ CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
+ __ CallStub(&stub);
+ RecordJSReturnSite(expr);
+ // Restore context register.
+ __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ context()->DropAndPlug(1, r0);
+}
+
+
+void FullCodeGenerator::EmitResolvePossiblyDirectEval(ResolveEvalFlag flag,
+ int arg_count) {
+ // Push copy of the first argument or undefined if it doesn't exist.
+ if (arg_count > 0) {
+ __ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
+ } else {
+ __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
+ }
+ __ push(r1);
+
+ // Push the receiver of the enclosing function and do runtime call.
+ __ ldr(r1, MemOperand(fp, (2 + scope()->num_parameters()) * kPointerSize));
+ __ push(r1);
+ // Push the strict mode flag.
+ __ mov(r1, Operand(Smi::FromInt(strict_mode_flag())));
+ __ push(r1);
+
+ __ CallRuntime(flag == SKIP_CONTEXT_LOOKUP
+ ? Runtime::kResolvePossiblyDirectEvalNoLookup
+ : Runtime::kResolvePossiblyDirectEval, 4);
+}
+
+
+void FullCodeGenerator::VisitCall(Call* expr) {
+#ifdef DEBUG
+ // We want to verify that RecordJSReturnSite gets called on all paths
+ // through this function. Avoid early returns.
+ expr->return_is_recorded_ = false;
+#endif
+
+ Comment cmnt(masm_, "[ Call");
+ Expression* fun = expr->expression();
+ Variable* var = fun->AsVariableProxy()->AsVariable();
+
+ if (var != NULL && var->is_possibly_eval()) {
+ // In a call to eval, we first call %ResolvePossiblyDirectEval to
+ // resolve the function we need to call and the receiver of the
+ // call. Then we call the resolved function using the given
+ // arguments.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+
+ { PreservePositionScope pos_scope(masm()->positions_recorder());
+ VisitForStackValue(fun);
+ __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
+ __ push(r2); // Reserved receiver slot.
+
+ // Push the arguments.
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+
+ // If we know that eval can only be shadowed by eval-introduced
+ // variables we attempt to load the global eval function directly
+ // in generated code. If we succeed, there is no need to perform a
+ // context lookup in the runtime system.
+ Label done;
+ if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) {
+ Label slow;
+ EmitLoadGlobalSlotCheckExtensions(var->AsSlot(),
+ NOT_INSIDE_TYPEOF,
+ &slow);
+ // Push the function and resolve eval.
+ __ push(r0);
+ EmitResolvePossiblyDirectEval(SKIP_CONTEXT_LOOKUP, arg_count);
+ __ jmp(&done);
+ __ bind(&slow);
+ }
+
+ // Push copy of the function (found below the arguments) and
+ // resolve eval.
+ __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
+ __ push(r1);
+ EmitResolvePossiblyDirectEval(PERFORM_CONTEXT_LOOKUP, arg_count);
+ if (done.is_linked()) {
+ __ bind(&done);
+ }
+
+ // The runtime call returns a pair of values in r0 (function) and
+ // r1 (receiver). Touch up the stack with the right values.
+ __ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize));
+ __ str(r1, MemOperand(sp, arg_count * kPointerSize));
+ }
+
+ // Record source position for debugger.
+ SetSourcePosition(expr->position());
+ InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP;
+ CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE);
+ __ CallStub(&stub);
+ RecordJSReturnSite(expr);
+ // Restore context register.
+ __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ context()->DropAndPlug(1, r0);
+ } else if (var != NULL && !var->is_this() && var->is_global()) {
+ // Push global object as receiver for the call IC.
+ __ ldr(r0, GlobalObjectOperand());
+ __ push(r0);
+ EmitCallWithIC(expr, var->name(), RelocInfo::CODE_TARGET_CONTEXT);
+ } else if (var != NULL && var->AsSlot() != NULL &&
+ var->AsSlot()->type() == Slot::LOOKUP) {
+ // Call to a lookup slot (dynamically introduced variable).
+ Label slow, done;
+
+ { PreservePositionScope scope(masm()->positions_recorder());
+ // Generate code for loading from variables potentially shadowed
+ // by eval-introduced variables.
+ EmitDynamicLoadFromSlotFastCase(var->AsSlot(),
+ NOT_INSIDE_TYPEOF,
+ &slow,
+ &done);
+ }
+
+ __ bind(&slow);
+ // Call the runtime to find the function to call (returned in r0)
+ // and the object holding it (returned in edx).
+ __ push(context_register());
+ __ mov(r2, Operand(var->name()));
+ __ push(r2);
+ __ CallRuntime(Runtime::kLoadContextSlot, 2);
+ __ Push(r0, r1); // Function, receiver.
+
+ // If fast case code has been generated, emit code to push the
+ // function and receiver and have the slow path jump around this
+ // code.
+ if (done.is_linked()) {
+ Label call;
+ __ b(&call);
+ __ bind(&done);
+ // Push function.
+ __ push(r0);
+ // Push global receiver.
+ __ ldr(r1, GlobalObjectOperand());
+ __ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset));
+ __ push(r1);
+ __ bind(&call);
+ }
+
+ EmitCallWithStub(expr);
+ } else if (fun->AsProperty() != NULL) {
+ // Call to an object property.
+ Property* prop = fun->AsProperty();
+ Literal* key = prop->key()->AsLiteral();
+ if (key != NULL && key->handle()->IsSymbol()) {
+ // Call to a named property, use call IC.
+ { PreservePositionScope scope(masm()->positions_recorder());
+ VisitForStackValue(prop->obj());
+ }
+ EmitCallWithIC(expr, key->handle(), RelocInfo::CODE_TARGET);
+ } else {
+ // Call to a keyed property.
+ // For a synthetic property use keyed load IC followed by function call,
+ // for a regular property use keyed CallIC.
+ if (prop->is_synthetic()) {
+ // Do not visit the object and key subexpressions (they are shared
+ // by all occurrences of the same rewritten parameter).
+ ASSERT(prop->obj()->AsVariableProxy() != NULL);
+ ASSERT(prop->obj()->AsVariableProxy()->var()->AsSlot() != NULL);
+ Slot* slot = prop->obj()->AsVariableProxy()->var()->AsSlot();
+ MemOperand operand = EmitSlotSearch(slot, r1);
+ __ ldr(r1, operand);
+
+ ASSERT(prop->key()->AsLiteral() != NULL);
+ ASSERT(prop->key()->AsLiteral()->handle()->IsSmi());
+ __ mov(r0, Operand(prop->key()->AsLiteral()->handle()));
+
+ // Record source code position for IC call.
+ SetSourcePosition(prop->position());
+
+ Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+ __ ldr(r1, GlobalObjectOperand());
+ __ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset));
+ __ Push(r0, r1); // Function, receiver.
+ EmitCallWithStub(expr);
+ } else {
+ { PreservePositionScope scope(masm()->positions_recorder());
+ VisitForStackValue(prop->obj());
+ }
+ EmitKeyedCallWithIC(expr, prop->key(), RelocInfo::CODE_TARGET);
+ }
+ }
+ } else {
+ { PreservePositionScope scope(masm()->positions_recorder());
+ VisitForStackValue(fun);
+ }
+ // Load global receiver object.
+ __ ldr(r1, GlobalObjectOperand());
+ __ ldr(r1, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset));
+ __ push(r1);
+ // Emit function call.
+ EmitCallWithStub(expr);
+ }
+
+#ifdef DEBUG
+ // RecordJSReturnSite should have been called.
+ ASSERT(expr->return_is_recorded_);
+#endif
+}
+
+
+void FullCodeGenerator::VisitCallNew(CallNew* expr) {
+ Comment cmnt(masm_, "[ CallNew");
+ // According to ECMA-262, section 11.2.2, page 44, the function
+ // expression in new calls must be evaluated before the
+ // arguments.
+
+ // Push constructor on the stack. If it's not a function it's used as
+ // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
+ // ignored.
+ VisitForStackValue(expr->expression());
+
+ // Push the arguments ("left-to-right") on the stack.
+ ZoneList<Expression*>* args = expr->arguments();
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+
+ // Call the construct call builtin that handles allocation and
+ // constructor invocation.
+ SetSourcePosition(expr->position());
+
+ // Load function and argument count into r1 and r0.
+ __ mov(r0, Operand(arg_count));
+ __ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
+
+ Handle<Code> construct_builtin =
+ isolate()->builtins()->JSConstructCall();
+ __ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitIsSmi(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ __ tst(r0, Operand(kSmiTagMask));
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsNonNegativeSmi(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ __ tst(r0, Operand(kSmiTagMask | 0x80000000));
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsObject(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(r0, if_false);
+ __ LoadRoot(ip, Heap::kNullValueRootIndex);
+ __ cmp(r0, ip);
+ __ b(eq, if_true);
+ __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
+ // Undetectable objects behave like undefined when tested with typeof.
+ __ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset));
+ __ tst(r1, Operand(1 << Map::kIsUndetectable));
+ __ b(ne, if_false);
+ __ ldrb(r1, FieldMemOperand(r2, Map::kInstanceTypeOffset));
+ __ cmp(r1, Operand(FIRST_JS_OBJECT_TYPE));
+ __ b(lt, if_false);
+ __ cmp(r1, Operand(LAST_JS_OBJECT_TYPE));
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(le, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsSpecObject(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(r0, if_false);
+ __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(ge, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsUndetectableObject(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(r0, if_false);
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldrb(r1, FieldMemOperand(r1, Map::kBitFieldOffset));
+ __ tst(r1, Operand(1 << Map::kIsUndetectable));
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(ne, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
+ ZoneList<Expression*>* args) {
+
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ if (FLAG_debug_code) __ AbortIfSmi(r0);
+
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldrb(ip, FieldMemOperand(r1, Map::kBitField2Offset));
+ __ tst(ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
+ __ b(ne, if_true);
+
+ // Check for fast case object. Generate false result for slow case object.
+ __ ldr(r2, FieldMemOperand(r0, JSObject::kPropertiesOffset));
+ __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::kHashTableMapRootIndex);
+ __ cmp(r2, ip);
+ __ b(eq, if_false);
+
+ // Look for valueOf symbol in the descriptor array, and indicate false if
+ // found. The type is not checked, so if it is a transition it is a false
+ // negative.
+ __ ldr(r4, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset));
+ __ ldr(r3, FieldMemOperand(r4, FixedArray::kLengthOffset));
+ // r4: descriptor array
+ // r3: length of descriptor array
+ // Calculate the end of the descriptor array.
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ STATIC_ASSERT(kPointerSize == 4);
+ __ add(r2, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ add(r2, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
+
+ // Calculate location of the first key name.
+ __ add(r4,
+ r4,
+ Operand(FixedArray::kHeaderSize - kHeapObjectTag +
+ DescriptorArray::kFirstIndex * kPointerSize));
+ // Loop through all the keys in the descriptor array. If one of these is the
+ // symbol valueOf the result is false.
+ Label entry, loop;
+ // The use of ip to store the valueOf symbol asumes that it is not otherwise
+ // used in the loop below.
+ __ mov(ip, Operand(FACTORY->value_of_symbol()));
+ __ jmp(&entry);
+ __ bind(&loop);
+ __ ldr(r3, MemOperand(r4, 0));
+ __ cmp(r3, ip);
+ __ b(eq, if_false);
+ __ add(r4, r4, Operand(kPointerSize));
+ __ bind(&entry);
+ __ cmp(r4, Operand(r2));
+ __ b(ne, &loop);
+
+ // If a valueOf property is not found on the object check that it's
+ // prototype is the un-modified String prototype. If not result is false.
+ __ ldr(r2, FieldMemOperand(r1, Map::kPrototypeOffset));
+ __ tst(r2, Operand(kSmiTagMask));
+ __ b(eq, if_false);
+ __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
+ __ ldr(r3, ContextOperand(cp, Context::GLOBAL_INDEX));
+ __ ldr(r3, FieldMemOperand(r3, GlobalObject::kGlobalContextOffset));
+ __ ldr(r3, ContextOperand(r3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
+ __ cmp(r2, r3);
+ __ b(ne, if_false);
+
+ // Set the bit in the map to indicate that it has been checked safe for
+ // default valueOf and set true result.
+ __ ldrb(r2, FieldMemOperand(r4, Map::kBitField2Offset));
+ __ orr(r2, r2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
+ __ strb(r2, FieldMemOperand(r4, Map::kBitField2Offset));
+ __ jmp(if_true);
+
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsFunction(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(r0, if_false);
+ __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsArray(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(r0, if_false);
+ __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitIsRegExp(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ JumpIfSmi(r0, if_false);
+ __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+
+void FullCodeGenerator::EmitIsConstructCall(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 0);
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ // Get the frame pointer for the calling frame.
+ __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+
+ // Skip the arguments adaptor frame if it exists.
+ Label check_frame_marker;
+ __ ldr(r1, MemOperand(r2, StandardFrameConstants::kContextOffset));
+ __ cmp(r1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ b(ne, &check_frame_marker);
+ __ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset));
+
+ // Check the marker in the calling frame.
+ __ bind(&check_frame_marker);
+ __ ldr(r1, MemOperand(r2, StandardFrameConstants::kMarkerOffset));
+ __ cmp(r1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitObjectEquals(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 2);
+
+ // Load the two objects into registers and perform the comparison.
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ pop(r1);
+ __ cmp(r0, r1);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitArguments(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ // ArgumentsAccessStub expects the key in edx and the formal
+ // parameter count in r0.
+ VisitForAccumulatorValue(args->at(0));
+ __ mov(r1, r0);
+ __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters())));
+ ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
+ __ CallStub(&stub);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitArgumentsLength(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 0);
+
+ Label exit;
+ // Get the number of formal parameters.
+ __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters())));
+
+ // Check if the calling frame is an arguments adaptor frame.
+ __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
+ __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ b(ne, &exit);
+
+ // Arguments adaptor case: Read the arguments length from the
+ // adaptor frame.
+ __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
+
+ __ bind(&exit);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitClassOf(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+ Label done, null, function, non_function_constructor;
+
+ VisitForAccumulatorValue(args->at(0));
+
+ // If the object is a smi, we return null.
+ __ JumpIfSmi(r0, &null);
+
+ // Check that the object is a JS object but take special care of JS
+ // functions to make sure they have 'Function' as their class.
+ __ CompareObjectType(r0, r0, r1, FIRST_JS_OBJECT_TYPE); // Map is now in r0.
+ __ b(lt, &null);
+
+ // As long as JS_FUNCTION_TYPE is the last instance type and it is
+ // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
+ // LAST_JS_OBJECT_TYPE.
+ ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
+ ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
+ __ cmp(r1, Operand(JS_FUNCTION_TYPE));
+ __ b(eq, &function);
+
+ // Check if the constructor in the map is a function.
+ __ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset));
+ __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
+ __ b(ne, &non_function_constructor);
+
+ // r0 now contains the constructor function. Grab the
+ // instance class name from there.
+ __ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
+ __ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset));
+ __ b(&done);
+
+ // Functions have class 'Function'.
+ __ bind(&function);
+ __ LoadRoot(r0, Heap::kfunction_class_symbolRootIndex);
+ __ jmp(&done);
+
+ // Objects with a non-function constructor have class 'Object'.
+ __ bind(&non_function_constructor);
+ __ LoadRoot(r0, Heap::kfunction_class_symbolRootIndex);
+ __ jmp(&done);
+
+ // Non-JS objects have class null.
+ __ bind(&null);
+ __ LoadRoot(r0, Heap::kNullValueRootIndex);
+
+ // All done.
+ __ bind(&done);
+
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitLog(ZoneList<Expression*>* args) {
+ // Conditionally generate a log call.
+ // Args:
+ // 0 (literal string): The type of logging (corresponds to the flags).
+ // This is used to determine whether or not to generate the log call.
+ // 1 (string): Format string. Access the string at argument index 2
+ // with '%2s' (see Logger::LogRuntime for all the formats).
+ // 2 (array): Arguments to the format string.
+ ASSERT_EQ(args->length(), 3);
+#ifdef ENABLE_LOGGING_AND_PROFILING
+ if (CodeGenerator::ShouldGenerateLog(args->at(0))) {
+ VisitForStackValue(args->at(1));
+ VisitForStackValue(args->at(2));
+ __ CallRuntime(Runtime::kLog, 2);
+ }
+#endif
+ // Finally, we're expected to leave a value on the top of the stack.
+ __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitRandomHeapNumber(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 0);
+
+ Label slow_allocate_heapnumber;
+ Label heapnumber_allocated;
+
+ __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
+ __ AllocateHeapNumber(r4, r1, r2, r6, &slow_allocate_heapnumber);
+ __ jmp(&heapnumber_allocated);
+
+ __ bind(&slow_allocate_heapnumber);
+ // Allocate a heap number.
+ __ CallRuntime(Runtime::kNumberAlloc, 0);
+ __ mov(r4, Operand(r0));
+
+ __ bind(&heapnumber_allocated);
+
+ // Convert 32 random bits in r0 to 0.(32 random bits) in a double
+ // by computing:
+ // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
+ if (CpuFeatures::IsSupported(VFP3)) {
+ __ PrepareCallCFunction(1, r0);
+ __ mov(r0, Operand(ExternalReference::isolate_address()));
+ __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
+
+ CpuFeatures::Scope scope(VFP3);
+ // 0x41300000 is the top half of 1.0 x 2^20 as a double.
+ // Create this constant using mov/orr to avoid PC relative load.
+ __ mov(r1, Operand(0x41000000));
+ __ orr(r1, r1, Operand(0x300000));
+ // Move 0x41300000xxxxxxxx (x = random bits) to VFP.
+ __ vmov(d7, r0, r1);
+ // Move 0x4130000000000000 to VFP.
+ __ mov(r0, Operand(0, RelocInfo::NONE));
+ __ vmov(d8, r0, r1);
+ // Subtract and store the result in the heap number.
+ __ vsub(d7, d7, d8);
+ __ sub(r0, r4, Operand(kHeapObjectTag));
+ __ vstr(d7, r0, HeapNumber::kValueOffset);
+ __ mov(r0, r4);
+ } else {
+ __ PrepareCallCFunction(2, r0);
+ __ mov(r0, Operand(r4));
+ __ mov(r1, Operand(ExternalReference::isolate_address()));
+ __ CallCFunction(
+ ExternalReference::fill_heap_number_with_random_function(isolate()), 2);
+ }
+
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitSubString(ZoneList<Expression*>* args) {
+ // Load the arguments on the stack and call the stub.
+ SubStringStub stub;
+ ASSERT(args->length() == 3);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ VisitForStackValue(args->at(2));
+ __ CallStub(&stub);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitRegExpExec(ZoneList<Expression*>* args) {
+ // Load the arguments on the stack and call the stub.
+ RegExpExecStub stub;
+ ASSERT(args->length() == 4);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ VisitForStackValue(args->at(2));
+ VisitForStackValue(args->at(3));
+ __ CallStub(&stub);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitValueOf(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0)); // Load the object.
+
+ Label done;
+ // If the object is a smi return the object.
+ __ JumpIfSmi(r0, &done);
+ // If the object is not a value type, return the object.
+ __ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE);
+ __ b(ne, &done);
+ __ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset));
+
+ __ bind(&done);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitMathPow(ZoneList<Expression*>* args) {
+ // Load the arguments on the stack and call the runtime function.
+ ASSERT(args->length() == 2);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ MathPowStub stub;
+ __ CallStub(&stub);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitSetValueOf(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 2);
+
+ VisitForStackValue(args->at(0)); // Load the object.
+ VisitForAccumulatorValue(args->at(1)); // Load the value.
+ __ pop(r1); // r0 = value. r1 = object.
+
+ Label done;
+ // If the object is a smi, return the value.
+ __ JumpIfSmi(r1, &done);
+
+ // If the object is not a value type, return the value.
+ __ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE);
+ __ b(ne, &done);
+
+ // Store the value.
+ __ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
+ // Update the write barrier. Save the value as it will be
+ // overwritten by the write barrier code and is needed afterward.
+ __ RecordWrite(r1, Operand(JSValue::kValueOffset - kHeapObjectTag), r2, r3);
+
+ __ bind(&done);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitNumberToString(ZoneList<Expression*>* args) {
+ ASSERT_EQ(args->length(), 1);
+
+ // Load the argument on the stack and call the stub.
+ VisitForStackValue(args->at(0));
+
+ NumberToStringStub stub;
+ __ CallStub(&stub);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitStringCharFromCode(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ VisitForAccumulatorValue(args->at(0));
+
+ Label done;
+ StringCharFromCodeGenerator generator(r0, r1);
+ generator.GenerateFast(masm_);
+ __ jmp(&done);
+
+ NopRuntimeCallHelper call_helper;
+ generator.GenerateSlow(masm_, call_helper);
+
+ __ bind(&done);
+ context()->Plug(r1);
+}
+
+
+void FullCodeGenerator::EmitStringCharCodeAt(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 2);
+
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1));
+
+ Register object = r1;
+ Register index = r0;
+ Register scratch = r2;
+ Register result = r3;
+
+ __ pop(object);
+
+ Label need_conversion;
+ Label index_out_of_range;
+ Label done;
+ StringCharCodeAtGenerator generator(object,
+ index,
+ scratch,
+ result,
+ &need_conversion,
+ &need_conversion,
+ &index_out_of_range,
+ STRING_INDEX_IS_NUMBER);
+ generator.GenerateFast(masm_);
+ __ jmp(&done);
+
+ __ bind(&index_out_of_range);
+ // When the index is out of range, the spec requires us to return
+ // NaN.
+ __ LoadRoot(result, Heap::kNanValueRootIndex);
+ __ jmp(&done);
+
+ __ bind(&need_conversion);
+ // Load the undefined value into the result register, which will
+ // trigger conversion.
+ __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
+ __ jmp(&done);
+
+ NopRuntimeCallHelper call_helper;
+ generator.GenerateSlow(masm_, call_helper);
+
+ __ bind(&done);
+ context()->Plug(result);
+}
+
+
+void FullCodeGenerator::EmitStringCharAt(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 2);
+
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1));
+
+ Register object = r1;
+ Register index = r0;
+ Register scratch1 = r2;
+ Register scratch2 = r3;
+ Register result = r0;
+
+ __ pop(object);
+
+ Label need_conversion;
+ Label index_out_of_range;
+ Label done;
+ StringCharAtGenerator generator(object,
+ index,
+ scratch1,
+ scratch2,
+ result,
+ &need_conversion,
+ &need_conversion,
+ &index_out_of_range,
+ STRING_INDEX_IS_NUMBER);
+ generator.GenerateFast(masm_);
+ __ jmp(&done);
+
+ __ bind(&index_out_of_range);
+ // When the index is out of range, the spec requires us to return
+ // the empty string.
+ __ LoadRoot(result, Heap::kEmptyStringRootIndex);
+ __ jmp(&done);
+
+ __ bind(&need_conversion);
+ // Move smi zero into the result register, which will trigger
+ // conversion.
+ __ mov(result, Operand(Smi::FromInt(0)));
+ __ jmp(&done);
+
+ NopRuntimeCallHelper call_helper;
+ generator.GenerateSlow(masm_, call_helper);
+
+ __ bind(&done);
+ context()->Plug(result);
+}
+
+
+void FullCodeGenerator::EmitStringAdd(ZoneList<Expression*>* args) {
+ ASSERT_EQ(2, args->length());
+
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+
+ StringAddStub stub(NO_STRING_ADD_FLAGS);
+ __ CallStub(&stub);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitStringCompare(ZoneList<Expression*>* args) {
+ ASSERT_EQ(2, args->length());
+
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+
+ StringCompareStub stub;
+ __ CallStub(&stub);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitMathSin(ZoneList<Expression*>* args) {
+ // Load the argument on the stack and call the stub.
+ TranscendentalCacheStub stub(TranscendentalCache::SIN,
+ TranscendentalCacheStub::TAGGED);
+ ASSERT(args->length() == 1);
+ VisitForStackValue(args->at(0));
+ __ CallStub(&stub);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitMathCos(ZoneList<Expression*>* args) {
+ // Load the argument on the stack and call the stub.
+ TranscendentalCacheStub stub(TranscendentalCache::COS,
+ TranscendentalCacheStub::TAGGED);
+ ASSERT(args->length() == 1);
+ VisitForStackValue(args->at(0));
+ __ CallStub(&stub);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitMathLog(ZoneList<Expression*>* args) {
+ // Load the argument on the stack and call the stub.
+ TranscendentalCacheStub stub(TranscendentalCache::LOG,
+ TranscendentalCacheStub::TAGGED);
+ ASSERT(args->length() == 1);
+ VisitForStackValue(args->at(0));
+ __ CallStub(&stub);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitMathSqrt(ZoneList<Expression*>* args) {
+ // Load the argument on the stack and call the runtime function.
+ ASSERT(args->length() == 1);
+ VisitForStackValue(args->at(0));
+ __ CallRuntime(Runtime::kMath_sqrt, 1);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitCallFunction(ZoneList<Expression*>* args) {
+ ASSERT(args->length() >= 2);
+
+ int arg_count = args->length() - 2; // For receiver and function.
+ VisitForStackValue(args->at(0)); // Receiver.
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i + 1));
+ }
+ VisitForAccumulatorValue(args->at(arg_count + 1)); // Function.
+
+ // InvokeFunction requires function in r1. Move it in there.
+ if (!result_register().is(r1)) __ mov(r1, result_register());
+ ParameterCount count(arg_count);
+ __ InvokeFunction(r1, count, CALL_FUNCTION);
+ __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitRegExpConstructResult(ZoneList<Expression*>* args) {
+ RegExpConstructResultStub stub;
+ ASSERT(args->length() == 3);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ VisitForStackValue(args->at(2));
+ __ CallStub(&stub);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitSwapElements(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 3);
+ VisitForStackValue(args->at(0));
+ VisitForStackValue(args->at(1));
+ VisitForStackValue(args->at(2));
+ Label done;
+ Label slow_case;
+ Register object = r0;
+ Register index1 = r1;
+ Register index2 = r2;
+ Register elements = r3;
+ Register scratch1 = r4;
+ Register scratch2 = r5;
+
+ __ ldr(object, MemOperand(sp, 2 * kPointerSize));
+ // Fetch the map and check if array is in fast case.
+ // Check that object doesn't require security checks and
+ // has no indexed interceptor.
+ __ CompareObjectType(object, scratch1, scratch2, JS_ARRAY_TYPE);
+ __ b(ne, &slow_case);
+ // Map is now in scratch1.
+
+ __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitFieldOffset));
+ __ tst(scratch2, Operand(KeyedLoadIC::kSlowCaseBitFieldMask));
+ __ b(ne, &slow_case);
+
+ // Check the object's elements are in fast case and writable.
+ __ ldr(elements, FieldMemOperand(object, JSObject::kElementsOffset));
+ __ ldr(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
+ __ cmp(scratch1, ip);
+ __ b(ne, &slow_case);
+
+ // Check that both indices are smis.
+ __ ldr(index1, MemOperand(sp, 1 * kPointerSize));
+ __ ldr(index2, MemOperand(sp, 0));
+ __ JumpIfNotBothSmi(index1, index2, &slow_case);
+
+ // Check that both indices are valid.
+ __ ldr(scratch1, FieldMemOperand(object, JSArray::kLengthOffset));
+ __ cmp(scratch1, index1);
+ __ cmp(scratch1, index2, hi);
+ __ b(ls, &slow_case);
+
+ // Bring the address of the elements into index1 and index2.
+ __ add(scratch1, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ add(index1,
+ scratch1,
+ Operand(index1, LSL, kPointerSizeLog2 - kSmiTagSize));
+ __ add(index2,
+ scratch1,
+ Operand(index2, LSL, kPointerSizeLog2 - kSmiTagSize));
+
+ // Swap elements.
+ __ ldr(scratch1, MemOperand(index1, 0));
+ __ ldr(scratch2, MemOperand(index2, 0));
+ __ str(scratch1, MemOperand(index2, 0));
+ __ str(scratch2, MemOperand(index1, 0));
+
+ Label new_space;
+ __ InNewSpace(elements, scratch1, eq, &new_space);
+ // Possible optimization: do a check that both values are Smis
+ // (or them and test against Smi mask.)
+
+ __ mov(scratch1, elements);
+ __ RecordWriteHelper(elements, index1, scratch2);
+ __ RecordWriteHelper(scratch1, index2, scratch2); // scratch1 holds elements.
+
+ __ bind(&new_space);
+ // We are done. Drop elements from the stack, and return undefined.
+ __ Drop(3);
+ __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
+ __ jmp(&done);
+
+ __ bind(&slow_case);
+ __ CallRuntime(Runtime::kSwapElements, 3);
+
+ __ bind(&done);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitGetFromCache(ZoneList<Expression*>* args) {
+ ASSERT_EQ(2, args->length());
+
+ ASSERT_NE(NULL, args->at(0)->AsLiteral());
+ int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
+
+ Handle<FixedArray> jsfunction_result_caches(
+ isolate()->global_context()->jsfunction_result_caches());
+ if (jsfunction_result_caches->length() <= cache_id) {
+ __ Abort("Attempt to use undefined cache.");
+ __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
+ context()->Plug(r0);
+ return;
+ }
+
+ VisitForAccumulatorValue(args->at(1));
+
+ Register key = r0;
+ Register cache = r1;
+ __ ldr(cache, ContextOperand(cp, Context::GLOBAL_INDEX));
+ __ ldr(cache, FieldMemOperand(cache, GlobalObject::kGlobalContextOffset));
+ __ ldr(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
+ __ ldr(cache,
+ FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
+
+
+ Label done, not_found;
+ // tmp now holds finger offset as a smi.
+ ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
+ __ ldr(r2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
+ // r2 now holds finger offset as a smi.
+ __ add(r3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ // r3 now points to the start of fixed array elements.
+ __ ldr(r2, MemOperand(r3, r2, LSL, kPointerSizeLog2 - kSmiTagSize, PreIndex));
+ // Note side effect of PreIndex: r3 now points to the key of the pair.
+ __ cmp(key, r2);
+ __ b(ne, &not_found);
+
+ __ ldr(r0, MemOperand(r3, kPointerSize));
+ __ b(&done);
+
+ __ bind(&not_found);
+ // Call runtime to perform the lookup.
+ __ Push(cache, key);
+ __ CallRuntime(Runtime::kGetFromCache, 2);
+
+ __ bind(&done);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitIsRegExpEquivalent(ZoneList<Expression*>* args) {
+ ASSERT_EQ(2, args->length());
+
+ Register right = r0;
+ Register left = r1;
+ Register tmp = r2;
+ Register tmp2 = r3;
+
+ VisitForStackValue(args->at(0));
+ VisitForAccumulatorValue(args->at(1));
+ __ pop(left);
+
+ Label done, fail, ok;
+ __ cmp(left, Operand(right));
+ __ b(eq, &ok);
+ // Fail if either is a non-HeapObject.
+ __ and_(tmp, left, Operand(right));
+ __ tst(tmp, Operand(kSmiTagMask));
+ __ b(eq, &fail);
+ __ ldr(tmp, FieldMemOperand(left, HeapObject::kMapOffset));
+ __ ldrb(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset));
+ __ cmp(tmp2, Operand(JS_REGEXP_TYPE));
+ __ b(ne, &fail);
+ __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+ __ cmp(tmp, Operand(tmp2));
+ __ b(ne, &fail);
+ __ ldr(tmp, FieldMemOperand(left, JSRegExp::kDataOffset));
+ __ ldr(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset));
+ __ cmp(tmp, tmp2);
+ __ b(eq, &ok);
+ __ bind(&fail);
+ __ LoadRoot(r0, Heap::kFalseValueRootIndex);
+ __ jmp(&done);
+ __ bind(&ok);
+ __ LoadRoot(r0, Heap::kTrueValueRootIndex);
+ __ bind(&done);
+
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitHasCachedArrayIndex(ZoneList<Expression*>* args) {
+ VisitForAccumulatorValue(args->at(0));
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ __ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset));
+ __ tst(r0, Operand(String::kContainsCachedArrayIndexMask));
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ Split(eq, if_true, if_false, fall_through);
+
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::EmitGetCachedArrayIndex(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+ VisitForAccumulatorValue(args->at(0));
+
+ if (FLAG_debug_code) {
+ __ AbortIfNotString(r0);
+ }
+
+ __ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset));
+ __ IndexFromHash(r0, r0);
+
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::EmitFastAsciiArrayJoin(ZoneList<Expression*>* args) {
+ Label bailout, done, one_char_separator, long_separator,
+ non_trivial_array, not_size_one_array, loop,
+ empty_separator_loop, one_char_separator_loop,
+ one_char_separator_loop_entry, long_separator_loop;
+
+ ASSERT(args->length() == 2);
+ VisitForStackValue(args->at(1));
+ VisitForAccumulatorValue(args->at(0));
+
+ // All aliases of the same register have disjoint lifetimes.
+ Register array = r0;
+ Register elements = no_reg; // Will be r0.
+ Register result = no_reg; // Will be r0.
+ Register separator = r1;
+ Register array_length = r2;
+ Register result_pos = no_reg; // Will be r2
+ Register string_length = r3;
+ Register string = r4;
+ Register element = r5;
+ Register elements_end = r6;
+ Register scratch1 = r7;
+ Register scratch2 = r9;
+
+ // Separator operand is on the stack.
+ __ pop(separator);
+
+ // Check that the array is a JSArray.
+ __ JumpIfSmi(array, &bailout);
+ __ CompareObjectType(array, scratch1, scratch2, JS_ARRAY_TYPE);
+ __ b(ne, &bailout);
+
+ // Check that the array has fast elements.
+ __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
+ __ tst(scratch2, Operand(1 << Map::kHasFastElements));
+ __ b(eq, &bailout);
+
+ // If the array has length zero, return the empty string.
+ __ ldr(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
+ __ SmiUntag(array_length, SetCC);
+ __ b(ne, &non_trivial_array);
+ __ LoadRoot(r0, Heap::kEmptyStringRootIndex);
+ __ b(&done);
+
+ __ bind(&non_trivial_array);
+
+ // Get the FixedArray containing array's elements.
+ elements = array;
+ __ ldr(elements, FieldMemOperand(array, JSArray::kElementsOffset));
+ array = no_reg; // End of array's live range.
+
+ // Check that all array elements are sequential ASCII strings, and
+ // accumulate the sum of their lengths, as a smi-encoded value.
+ __ mov(string_length, Operand(0));
+ __ add(element,
+ elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
+ // Loop condition: while (element < elements_end).
+ // Live values in registers:
+ // elements: Fixed array of strings.
+ // array_length: Length of the fixed array of strings (not smi)
+ // separator: Separator string
+ // string_length: Accumulated sum of string lengths (smi).
+ // element: Current array element.
+ // elements_end: Array end.
+ if (FLAG_debug_code) {
+ __ cmp(array_length, Operand(0));
+ __ Assert(gt, "No empty arrays here in EmitFastAsciiArrayJoin");
+ }
+ __ bind(&loop);
+ __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
+ __ JumpIfSmi(string, &bailout);
+ __ ldr(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
+ __ ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+ __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
+ __ ldr(scratch1, FieldMemOperand(string, SeqAsciiString::kLengthOffset));
+ __ add(string_length, string_length, Operand(scratch1));
+ __ b(vs, &bailout);
+ __ cmp(element, elements_end);
+ __ b(lt, &loop);
+
+ // If array_length is 1, return elements[0], a string.
+ __ cmp(array_length, Operand(1));
+ __ b(ne, &not_size_one_array);
+ __ ldr(r0, FieldMemOperand(elements, FixedArray::kHeaderSize));
+ __ b(&done);
+
+ __ bind(&not_size_one_array);
+
+ // Live values in registers:
+ // separator: Separator string
+ // array_length: Length of the array.
+ // string_length: Sum of string lengths (smi).
+ // elements: FixedArray of strings.
+
+ // Check that the separator is a flat ASCII string.
+ __ JumpIfSmi(separator, &bailout);
+ __ ldr(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
+ __ ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+ __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
+
+ // Add (separator length times array_length) - separator length to the
+ // string_length to get the length of the result string. array_length is not
+ // smi but the other values are, so the result is a smi
+ __ ldr(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset));
+ __ sub(string_length, string_length, Operand(scratch1));
+ __ smull(scratch2, ip, array_length, scratch1);
+ // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
+ // zero.
+ __ cmp(ip, Operand(0));
+ __ b(ne, &bailout);
+ __ tst(scratch2, Operand(0x80000000));
+ __ b(ne, &bailout);
+ __ add(string_length, string_length, Operand(scratch2));
+ __ b(vs, &bailout);
+ __ SmiUntag(string_length);
+
+ // Get first element in the array to free up the elements register to be used
+ // for the result.
+ __ add(element,
+ elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ result = elements; // End of live range for elements.
+ elements = no_reg;
+ // Live values in registers:
+ // element: First array element
+ // separator: Separator string
+ // string_length: Length of result string (not smi)
+ // array_length: Length of the array.
+ __ AllocateAsciiString(result,
+ string_length,
+ scratch1,
+ scratch2,
+ elements_end,
+ &bailout);
+ // Prepare for looping. Set up elements_end to end of the array. Set
+ // result_pos to the position of the result where to write the first
+ // character.
+ __ add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
+ result_pos = array_length; // End of live range for array_length.
+ array_length = no_reg;
+ __ add(result_pos,
+ result,
+ Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+
+ // Check the length of the separator.
+ __ ldr(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset));
+ __ cmp(scratch1, Operand(Smi::FromInt(1)));
+ __ b(eq, &one_char_separator);
+ __ b(gt, &long_separator);
+
+ // Empty separator case
+ __ bind(&empty_separator_loop);
+ // Live values in registers:
+ // result_pos: the position to which we are currently copying characters.
+ // element: Current array element.
+ // elements_end: Array end.
+
+ // Copy next array element to the result.
+ __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
+ __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset));
+ __ SmiUntag(string_length);
+ __ add(string, string, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ CopyBytes(string, result_pos, string_length, scratch1);
+ __ cmp(element, elements_end);
+ __ b(lt, &empty_separator_loop); // End while (element < elements_end).
+ ASSERT(result.is(r0));
+ __ b(&done);
+
+ // One-character separator case
+ __ bind(&one_char_separator);
+ // Replace separator with its ascii character value.
+ __ ldrb(separator, FieldMemOperand(separator, SeqAsciiString::kHeaderSize));
+ // Jump into the loop after the code that copies the separator, so the first
+ // element is not preceded by a separator
+ __ jmp(&one_char_separator_loop_entry);
+
+ __ bind(&one_char_separator_loop);
+ // Live values in registers:
+ // result_pos: the position to which we are currently copying characters.
+ // element: Current array element.
+ // elements_end: Array end.
+ // separator: Single separator ascii char (in lower byte).
+
+ // Copy the separator character to the result.
+ __ strb(separator, MemOperand(result_pos, 1, PostIndex));
+
+ // Copy next array element to the result.
+ __ bind(&one_char_separator_loop_entry);
+ __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
+ __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset));
+ __ SmiUntag(string_length);
+ __ add(string, string, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ CopyBytes(string, result_pos, string_length, scratch1);
+ __ cmp(element, elements_end);
+ __ b(lt, &one_char_separator_loop); // End while (element < elements_end).
+ ASSERT(result.is(r0));
+ __ b(&done);
+
+ // Long separator case (separator is more than one character). Entry is at the
+ // label long_separator below.
+ __ bind(&long_separator_loop);
+ // Live values in registers:
+ // result_pos: the position to which we are currently copying characters.
+ // element: Current array element.
+ // elements_end: Array end.
+ // separator: Separator string.
+
+ // Copy the separator to the result.
+ __ ldr(string_length, FieldMemOperand(separator, String::kLengthOffset));
+ __ SmiUntag(string_length);
+ __ add(string,
+ separator,
+ Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ CopyBytes(string, result_pos, string_length, scratch1);
+
+ __ bind(&long_separator);
+ __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
+ __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset));
+ __ SmiUntag(string_length);
+ __ add(string, string, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
+ __ CopyBytes(string, result_pos, string_length, scratch1);
+ __ cmp(element, elements_end);
+ __ b(lt, &long_separator_loop); // End while (element < elements_end).
+ ASSERT(result.is(r0));
+ __ b(&done);
+
+ __ bind(&bailout);
+ __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
+ __ bind(&done);
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
+ Handle<String> name = expr->name();
+ if (name->length() > 0 && name->Get(0) == '_') {
+ Comment cmnt(masm_, "[ InlineRuntimeCall");
+ EmitInlineRuntimeCall(expr);
+ return;
+ }
+
+ Comment cmnt(masm_, "[ CallRuntime");
+ ZoneList<Expression*>* args = expr->arguments();
+
+ if (expr->is_jsruntime()) {
+ // Prepare for calling JS runtime function.
+ __ ldr(r0, GlobalObjectOperand());
+ __ ldr(r0, FieldMemOperand(r0, GlobalObject::kBuiltinsOffset));
+ __ push(r0);
+ }
+
+ // Push the arguments ("left-to-right").
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ VisitForStackValue(args->at(i));
+ }
+
+ if (expr->is_jsruntime()) {
+ // Call the JS runtime function.
+ __ mov(r2, Operand(expr->name()));
+ Handle<Code> ic =
+ isolate()->stub_cache()->ComputeCallInitialize(arg_count, NOT_IN_LOOP);
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+ // Restore context register.
+ __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ } else {
+ // Call the C runtime function.
+ __ CallRuntime(expr->function(), arg_count);
+ }
+ context()->Plug(r0);
+}
+
+
+void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
+ switch (expr->op()) {
+ case Token::DELETE: {
+ Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
+ Property* prop = expr->expression()->AsProperty();
+ Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
+
+ if (prop != NULL) {
+ if (prop->is_synthetic()) {
+ // Result of deleting parameters is false, even when they rewrite
+ // to accesses on the arguments object.
+ context()->Plug(false);
+ } else {
+ VisitForStackValue(prop->obj());
+ VisitForStackValue(prop->key());
+ __ mov(r1, Operand(Smi::FromInt(strict_mode_flag())));
+ __ push(r1);
+ __ InvokeBuiltin(Builtins::DELETE, CALL_JS);
+ context()->Plug(r0);
+ }
+ } else if (var != NULL) {
+ // Delete of an unqualified identifier is disallowed in strict mode
+ // but "delete this" is.
+ ASSERT(strict_mode_flag() == kNonStrictMode || var->is_this());
+ if (var->is_global()) {
+ __ ldr(r2, GlobalObjectOperand());
+ __ mov(r1, Operand(var->name()));
+ __ mov(r0, Operand(Smi::FromInt(kNonStrictMode)));
+ __ Push(r2, r1, r0);
+ __ InvokeBuiltin(Builtins::DELETE, CALL_JS);
+ context()->Plug(r0);
+ } else if (var->AsSlot() != NULL &&
+ var->AsSlot()->type() != Slot::LOOKUP) {
+ // Result of deleting non-global, non-dynamic variables is false.
+ // The subexpression does not have side effects.
+ context()->Plug(false);
+ } else {
+ // Non-global variable. Call the runtime to try to delete from the
+ // context where the variable was introduced.
+ __ push(context_register());
+ __ mov(r2, Operand(var->name()));
+ __ push(r2);
+ __ CallRuntime(Runtime::kDeleteContextSlot, 2);
+ context()->Plug(r0);
+ }
+ } else {
+ // Result of deleting non-property, non-variable reference is true.
+ // The subexpression may have side effects.
+ VisitForEffect(expr->expression());
+ context()->Plug(true);
+ }
+ break;
+ }
+
+ case Token::VOID: {
+ Comment cmnt(masm_, "[ UnaryOperation (VOID)");
+ VisitForEffect(expr->expression());
+ context()->Plug(Heap::kUndefinedValueRootIndex);
+ break;
+ }
+
+ case Token::NOT: {
+ Comment cmnt(masm_, "[ UnaryOperation (NOT)");
+ if (context()->IsEffect()) {
+ // Unary NOT has no side effects so it's only necessary to visit the
+ // subexpression. Match the optimizing compiler by not branching.
+ VisitForEffect(expr->expression());
+ } else {
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+
+ // Notice that the labels are swapped.
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_false, &if_true, &fall_through);
+ if (context()->IsTest()) ForwardBailoutToChild(expr);
+ VisitForControl(expr->expression(), if_true, if_false, fall_through);
+ context()->Plug(if_false, if_true); // Labels swapped.
+ }
+ break;
+ }
+
+ case Token::TYPEOF: {
+ Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
+ { StackValueContext context(this);
+ VisitForTypeofValue(expr->expression());
+ }
+ __ CallRuntime(Runtime::kTypeof, 1);
+ context()->Plug(r0);
+ break;
+ }
+
+ case Token::ADD: {
+ Comment cmt(masm_, "[ UnaryOperation (ADD)");
+ VisitForAccumulatorValue(expr->expression());
+ Label no_conversion;
+ __ tst(result_register(), Operand(kSmiTagMask));
+ __ b(eq, &no_conversion);
+ ToNumberStub convert_stub;
+ __ CallStub(&convert_stub);
+ __ bind(&no_conversion);
+ context()->Plug(result_register());
+ break;
+ }
+
+ case Token::SUB: {
+ Comment cmt(masm_, "[ UnaryOperation (SUB)");
+ bool can_overwrite = expr->expression()->ResultOverwriteAllowed();
+ UnaryOverwriteMode overwrite =
+ can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
+ GenericUnaryOpStub stub(Token::SUB, overwrite, NO_UNARY_FLAGS);
+ // GenericUnaryOpStub expects the argument to be in the
+ // accumulator register r0.
+ VisitForAccumulatorValue(expr->expression());
+ __ CallStub(&stub);
+ context()->Plug(r0);
+ break;
+ }
+
+ case Token::BIT_NOT: {
+ Comment cmt(masm_, "[ UnaryOperation (BIT_NOT)");
+ // The generic unary operation stub expects the argument to be
+ // in the accumulator register r0.
+ VisitForAccumulatorValue(expr->expression());
+ Label done;
+ bool inline_smi_code = ShouldInlineSmiCase(expr->op());
+ if (inline_smi_code) {
+ Label call_stub;
+ __ JumpIfNotSmi(r0, &call_stub);
+ __ mvn(r0, Operand(r0));
+ // Bit-clear inverted smi-tag.
+ __ bic(r0, r0, Operand(kSmiTagMask));
+ __ b(&done);
+ __ bind(&call_stub);
+ }
+ bool overwrite = expr->expression()->ResultOverwriteAllowed();
+ UnaryOpFlags flags = inline_smi_code
+ ? NO_UNARY_SMI_CODE_IN_STUB
+ : NO_UNARY_FLAGS;
+ UnaryOverwriteMode mode =
+ overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
+ GenericUnaryOpStub stub(Token::BIT_NOT, mode, flags);
+ __ CallStub(&stub);
+ __ bind(&done);
+ context()->Plug(r0);
+ break;
+ }
+
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
+ Comment cmnt(masm_, "[ CountOperation");
+ SetSourcePosition(expr->position());
+
+ // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
+ // as the left-hand side.
+ if (!expr->expression()->IsValidLeftHandSide()) {
+ VisitForEffect(expr->expression());
+ return;
+ }
+
+ // Expression can only be a property, a global or a (parameter or local)
+ // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY.
+ enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
+ LhsKind assign_type = VARIABLE;
+ Property* prop = expr->expression()->AsProperty();
+ // In case of a property we use the uninitialized expression context
+ // of the key to detect a named property.
+ if (prop != NULL) {
+ assign_type =
+ (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
+ }
+
+ // Evaluate expression and get value.
+ if (assign_type == VARIABLE) {
+ ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
+ AccumulatorValueContext context(this);
+ EmitVariableLoad(expr->expression()->AsVariableProxy()->var());
+ } else {
+ // Reserve space for result of postfix operation.
+ if (expr->is_postfix() && !context()->IsEffect()) {
+ __ mov(ip, Operand(Smi::FromInt(0)));
+ __ push(ip);
+ }
+ if (assign_type == NAMED_PROPERTY) {
+ // Put the object both on the stack and in the accumulator.
+ VisitForAccumulatorValue(prop->obj());
+ __ push(r0);
+ EmitNamedPropertyLoad(prop);
+ } else {
+ if (prop->is_arguments_access()) {
+ VariableProxy* obj_proxy = prop->obj()->AsVariableProxy();
+ __ ldr(r0, EmitSlotSearch(obj_proxy->var()->AsSlot(), r0));
+ __ push(r0);
+ __ mov(r0, Operand(prop->key()->AsLiteral()->handle()));
+ } else {
+ VisitForStackValue(prop->obj());
+ VisitForAccumulatorValue(prop->key());
+ }
+ __ ldr(r1, MemOperand(sp, 0));
+ __ push(r0);
+ EmitKeyedPropertyLoad(prop);
+ }
+ }
+
+ // We need a second deoptimization point after loading the value
+ // in case evaluating the property load my have a side effect.
+ if (assign_type == VARIABLE) {
+ PrepareForBailout(expr->expression(), TOS_REG);
+ } else {
+ PrepareForBailout(expr->increment(), TOS_REG);
+ }
+
+ // Call ToNumber only if operand is not a smi.
+ Label no_conversion;
+ __ JumpIfSmi(r0, &no_conversion);
+ ToNumberStub convert_stub;
+ __ CallStub(&convert_stub);
+ __ bind(&no_conversion);
+
+ // Save result for postfix expressions.
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ // Save the result on the stack. If we have a named or keyed property
+ // we store the result under the receiver that is currently on top
+ // of the stack.
+ switch (assign_type) {
+ case VARIABLE:
+ __ push(r0);
+ break;
+ case NAMED_PROPERTY:
+ __ str(r0, MemOperand(sp, kPointerSize));
+ break;
+ case KEYED_PROPERTY:
+ __ str(r0, MemOperand(sp, 2 * kPointerSize));
+ break;
+ }
+ }
+ }
+
+
+ // Inline smi case if we are in a loop.
+ Label stub_call, done;
+ JumpPatchSite patch_site(masm_);
+
+ int count_value = expr->op() == Token::INC ? 1 : -1;
+ if (ShouldInlineSmiCase(expr->op())) {
+ __ add(r0, r0, Operand(Smi::FromInt(count_value)), SetCC);
+ __ b(vs, &stub_call);
+ // We could eliminate this smi check if we split the code at
+ // the first smi check before calling ToNumber.
+ patch_site.EmitJumpIfSmi(r0, &done);
+
+ __ bind(&stub_call);
+ // Call stub. Undo operation first.
+ __ sub(r0, r0, Operand(Smi::FromInt(count_value)));
+ }
+ __ mov(r1, Operand(Smi::FromInt(count_value)));
+
+ // Record position before stub call.
+ SetSourcePosition(expr->position());
+
+ TypeRecordingBinaryOpStub stub(Token::ADD, NO_OVERWRITE);
+ EmitCallIC(stub.GetCode(), &patch_site);
+ __ bind(&done);
+
+ // Store the value returned in r0.
+ switch (assign_type) {
+ case VARIABLE:
+ if (expr->is_postfix()) {
+ { EffectContext context(this);
+ EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
+ Token::ASSIGN);
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context.Plug(r0);
+ }
+ // For all contexts except EffectConstant We have the result on
+ // top of the stack.
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
+ Token::ASSIGN);
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ context()->Plug(r0);
+ }
+ break;
+ case NAMED_PROPERTY: {
+ __ mov(r2, Operand(prop->key()->AsLiteral()->handle()));
+ __ pop(r1);
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->StoreIC_Initialize_Strict()
+ : isolate()->builtins()->StoreIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ context()->Plug(r0);
+ }
+ break;
+ }
+ case KEYED_PROPERTY: {
+ __ pop(r1); // Key.
+ __ pop(r2); // Receiver.
+ Handle<Code> ic = is_strict_mode()
+ ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
+ : isolate()->builtins()->KeyedStoreIC_Initialize();
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+ PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
+ if (expr->is_postfix()) {
+ if (!context()->IsEffect()) {
+ context()->PlugTOS();
+ }
+ } else {
+ context()->Plug(r0);
+ }
+ break;
+ }
+ }
+}
+
+
+void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
+ ASSERT(!context()->IsEffect());
+ ASSERT(!context()->IsTest());
+ VariableProxy* proxy = expr->AsVariableProxy();
+ if (proxy != NULL && !proxy->var()->is_this() && proxy->var()->is_global()) {
+ Comment cmnt(masm_, "Global variable");
+ __ ldr(r0, GlobalObjectOperand());
+ __ mov(r2, Operand(proxy->name()));
+ Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
+ // Use a regular load, not a contextual load, to avoid a reference
+ // error.
+ EmitCallIC(ic, RelocInfo::CODE_TARGET);
+ PrepareForBailout(expr, TOS_REG);
+ context()->Plug(r0);
+ } else if (proxy != NULL &&
+ proxy->var()->AsSlot() != NULL &&
+ proxy->var()->AsSlot()->type() == Slot::LOOKUP) {
+ Label done, slow;
+
+ // Generate code for loading from variables potentially shadowed
+ // by eval-introduced variables.
+ Slot* slot = proxy->var()->AsSlot();
+ EmitDynamicLoadFromSlotFastCase(slot, INSIDE_TYPEOF, &slow, &done);
+
+ __ bind(&slow);
+ __ mov(r0, Operand(proxy->name()));
+ __ Push(cp, r0);
+ __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
+ PrepareForBailout(expr, TOS_REG);
+ __ bind(&done);
+
+ context()->Plug(r0);
+ } else {
+ // This expression cannot throw a reference error at the top level.
+ context()->HandleExpression(expr);
+ }
+}
+
+
+bool FullCodeGenerator::TryLiteralCompare(Token::Value op,
+ Expression* left,
+ Expression* right,
+ Label* if_true,
+ Label* if_false,
+ Label* fall_through) {
+ if (op != Token::EQ && op != Token::EQ_STRICT) return false;
+
+ // Check for the pattern: typeof <expression> == <string literal>.
+ Literal* right_literal = right->AsLiteral();
+ if (right_literal == NULL) return false;
+ Handle<Object> right_literal_value = right_literal->handle();
+ if (!right_literal_value->IsString()) return false;
+ UnaryOperation* left_unary = left->AsUnaryOperation();
+ if (left_unary == NULL || left_unary->op() != Token::TYPEOF) return false;
+ Handle<String> check = Handle<String>::cast(right_literal_value);
+
+ { AccumulatorValueContext context(this);
+ VisitForTypeofValue(left_unary->expression());
+ }
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+
+ if (check->Equals(isolate()->heap()->number_symbol())) {
+ __ JumpIfSmi(r0, if_true);
+ __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
+ __ cmp(r0, ip);
+ Split(eq, if_true, if_false, fall_through);
+ } else if (check->Equals(isolate()->heap()->string_symbol())) {
+ __ JumpIfSmi(r0, if_false);
+ // Check for undetectable objects => false.
+ __ CompareObjectType(r0, r0, r1, FIRST_NONSTRING_TYPE);
+ __ b(ge, if_false);
+ __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
+ __ tst(r1, Operand(1 << Map::kIsUndetectable));
+ Split(eq, if_true, if_false, fall_through);
+ } else if (check->Equals(isolate()->heap()->boolean_symbol())) {
+ __ CompareRoot(r0, Heap::kTrueValueRootIndex);
+ __ b(eq, if_true);
+ __ CompareRoot(r0, Heap::kFalseValueRootIndex);
+ Split(eq, if_true, if_false, fall_through);
+ } else if (check->Equals(isolate()->heap()->undefined_symbol())) {
+ __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
+ __ b(eq, if_true);
+ __ JumpIfSmi(r0, if_false);
+ // Check for undetectable objects => true.
+ __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
+ __ tst(r1, Operand(1 << Map::kIsUndetectable));
+ Split(ne, if_true, if_false, fall_through);
+
+ } else if (check->Equals(isolate()->heap()->function_symbol())) {
+ __ JumpIfSmi(r0, if_false);
+ __ CompareObjectType(r0, r1, r0, FIRST_FUNCTION_CLASS_TYPE);
+ Split(ge, if_true, if_false, fall_through);
+
+ } else if (check->Equals(isolate()->heap()->object_symbol())) {
+ __ JumpIfSmi(r0, if_false);
+ __ CompareRoot(r0, Heap::kNullValueRootIndex);
+ __ b(eq, if_true);
+ // Check for JS objects => true.
+ __ CompareObjectType(r0, r0, r1, FIRST_JS_OBJECT_TYPE);
+ __ b(lo, if_false);
+ __ CompareInstanceType(r0, r1, FIRST_FUNCTION_CLASS_TYPE);
+ __ b(hs, if_false);
+ // Check for undetectable objects => false.
+ __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
+ __ tst(r1, Operand(1 << Map::kIsUndetectable));
+ Split(eq, if_true, if_false, fall_through);
+ } else {
+ if (if_false != fall_through) __ jmp(if_false);
+ }
+
+ return true;
+}
+
+
+void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
+ Comment cmnt(masm_, "[ CompareOperation");
+ SetSourcePosition(expr->position());
+
+ // Always perform the comparison for its control flow. Pack the result
+ // into the expression's context after the comparison is performed.
+
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ // First we try a fast inlined version of the compare when one of
+ // the operands is a literal.
+ Token::Value op = expr->op();
+ Expression* left = expr->left();
+ Expression* right = expr->right();
+ if (TryLiteralCompare(op, left, right, if_true, if_false, fall_through)) {
+ context()->Plug(if_true, if_false);
+ return;
+ }
+
+ VisitForStackValue(expr->left());
+ switch (op) {
+ case Token::IN:
+ VisitForStackValue(expr->right());
+ __ InvokeBuiltin(Builtins::IN, CALL_JS);
+ PrepareForBailoutBeforeSplit(TOS_REG, false, NULL, NULL);
+ __ LoadRoot(ip, Heap::kTrueValueRootIndex);
+ __ cmp(r0, ip);
+ Split(eq, if_true, if_false, fall_through);
+ break;
+
+ case Token::INSTANCEOF: {
+ VisitForStackValue(expr->right());
+ InstanceofStub stub(InstanceofStub::kNoFlags);
+ __ CallStub(&stub);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ // The stub returns 0 for true.
+ __ tst(r0, r0);
+ Split(eq, if_true, if_false, fall_through);
+ break;
+ }
+
+ default: {
+ VisitForAccumulatorValue(expr->right());
+ Condition cond = eq;
+ bool strict = false;
+ switch (op) {
+ case Token::EQ_STRICT:
+ strict = true;
+ // Fall through
+ case Token::EQ:
+ cond = eq;
+ __ pop(r1);
+ break;
+ case Token::LT:
+ cond = lt;
+ __ pop(r1);
+ break;
+ case Token::GT:
+ // Reverse left and right sides to obtain ECMA-262 conversion order.
+ cond = lt;
+ __ mov(r1, result_register());
+ __ pop(r0);
+ break;
+ case Token::LTE:
+ // Reverse left and right sides to obtain ECMA-262 conversion order.
+ cond = ge;
+ __ mov(r1, result_register());
+ __ pop(r0);
+ break;
+ case Token::GTE:
+ cond = ge;
+ __ pop(r1);
+ break;
+ case Token::IN:
+ case Token::INSTANCEOF:
+ default:
+ UNREACHABLE();
+ }
+
+ bool inline_smi_code = ShouldInlineSmiCase(op);
+ JumpPatchSite patch_site(masm_);
+ if (inline_smi_code) {
+ Label slow_case;
+ __ orr(r2, r0, Operand(r1));
+ patch_site.EmitJumpIfNotSmi(r2, &slow_case);
+ __ cmp(r1, r0);
+ Split(cond, if_true, if_false, NULL);
+ __ bind(&slow_case);
+ }
+
+ // Record position and call the compare IC.
+ SetSourcePosition(expr->position());
+ Handle<Code> ic = CompareIC::GetUninitialized(op);
+ EmitCallIC(ic, &patch_site);
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ __ cmp(r0, Operand(0));
+ Split(cond, if_true, if_false, fall_through);
+ }
+ }
+
+ // Convert the result of the comparison into one expected for this
+ // expression's context.
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::VisitCompareToNull(CompareToNull* expr) {
+ Comment cmnt(masm_, "[ CompareToNull");
+ Label materialize_true, materialize_false;
+ Label* if_true = NULL;
+ Label* if_false = NULL;
+ Label* fall_through = NULL;
+ context()->PrepareTest(&materialize_true, &materialize_false,
+ &if_true, &if_false, &fall_through);
+
+ VisitForAccumulatorValue(expr->expression());
+ PrepareForBailoutBeforeSplit(TOS_REG, true, if_true, if_false);
+ __ LoadRoot(r1, Heap::kNullValueRootIndex);
+ __ cmp(r0, r1);
+ if (expr->is_strict()) {
+ Split(eq, if_true, if_false, fall_through);
+ } else {
+ __ b(eq, if_true);
+ __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
+ __ cmp(r0, r1);
+ __ b(eq, if_true);
+ __ tst(r0, Operand(kSmiTagMask));
+ __ b(eq, if_false);
+ // It can be an undetectable object.
+ __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
+ __ ldrb(r1, FieldMemOperand(r1, Map::kBitFieldOffset));
+ __ and_(r1, r1, Operand(1 << Map::kIsUndetectable));
+ __ cmp(r1, Operand(1 << Map::kIsUndetectable));
+ Split(eq, if_true, if_false, fall_through);
+ }
+ context()->Plug(if_true, if_false);
+}
+
+
+void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
+ __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ context()->Plug(r0);
+}
+
+
+Register FullCodeGenerator::result_register() {
+ return r0;
+}
+
+
+Register FullCodeGenerator::context_register() {
+ return cp;
+}
+
+
+void FullCodeGenerator::EmitCallIC(Handle<Code> ic, RelocInfo::Mode mode) {
+ ASSERT(mode == RelocInfo::CODE_TARGET ||
+ mode == RelocInfo::CODE_TARGET_CONTEXT);
+ Counters* counters = isolate()->counters();
+ switch (ic->kind()) {
+ case Code::LOAD_IC:
+ __ IncrementCounter(counters->named_load_full(), 1, r1, r2);
+ break;
+ case Code::KEYED_LOAD_IC:
+ __ IncrementCounter(counters->keyed_load_full(), 1, r1, r2);
+ break;
+ case Code::STORE_IC:
+ __ IncrementCounter(counters->named_store_full(), 1, r1, r2);
+ break;
+ case Code::KEYED_STORE_IC:
+ __ IncrementCounter(counters->keyed_store_full(), 1, r1, r2);
+ default:
+ break;
+ }
+
+ __ Call(ic, mode);
+}
+
+
+void FullCodeGenerator::EmitCallIC(Handle<Code> ic, JumpPatchSite* patch_site) {
+ Counters* counters = isolate()->counters();
+ switch (ic->kind()) {
+ case Code::LOAD_IC:
+ __ IncrementCounter(counters->named_load_full(), 1, r1, r2);
+ break;
+ case Code::KEYED_LOAD_IC:
+ __ IncrementCounter(counters->keyed_load_full(), 1, r1, r2);
+ break;
+ case Code::STORE_IC:
+ __ IncrementCounter(counters->named_store_full(), 1, r1, r2);
+ break;
+ case Code::KEYED_STORE_IC:
+ __ IncrementCounter(counters->keyed_store_full(), 1, r1, r2);
+ default:
+ break;
+ }
+
+ __ Call(ic, RelocInfo::CODE_TARGET);
+ if (patch_site != NULL && patch_site->is_bound()) {
+ patch_site->EmitPatchInfo();
+ } else {
+ __ nop(); // Signals no inlined code.
+ }
+}
+
+
+void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
+ ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
+ __ str(value, MemOperand(fp, frame_offset));
+}
+
+
+void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
+ __ ldr(dst, ContextOperand(cp, context_index));
+}
+
+
+// ----------------------------------------------------------------------------
+// Non-local control flow support.
+
+void FullCodeGenerator::EnterFinallyBlock() {
+ ASSERT(!result_register().is(r1));
+ // Store result register while executing finally block.
+ __ push(result_register());
+ // Cook return address in link register to stack (smi encoded Code* delta)
+ __ sub(r1, lr, Operand(masm_->CodeObject()));
+ ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
+ ASSERT_EQ(0, kSmiTag);
+ __ add(r1, r1, Operand(r1)); // Convert to smi.
+ __ push(r1);
+}
+
+
+void FullCodeGenerator::ExitFinallyBlock() {
+ ASSERT(!result_register().is(r1));
+ // Restore result register from stack.
+ __ pop(r1);
+ // Uncook return address and return.
+ __ pop(result_register());
+ ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
+ __ mov(r1, Operand(r1, ASR, 1)); // Un-smi-tag value.
+ __ add(pc, r1, Operand(masm_->CodeObject()));
+}
+
+
+#undef __
+
+} } // namespace v8::internal
+
+#endif // V8_TARGET_ARCH_ARM